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ABSTRACT

Recent work has empirically shown that Vision-Language Models (VLMs) strug-
gle to fully understand the compositional properties of the human language, usu-
ally modeling an image caption as a “bag of words”. As a result, they perform
poorly on compositional tasks, which require a deeper understanding of the dif-
ferent entities of a sentence (subject, verb, etc.) jointly with their mutual rela-
tionships in order to be solved. In this paper, we model the dependency relations
among textual and visual tokens using a Causal Graphical Model (CGM), built us-
ing a dependency parser, and we train a decoder conditioned by the VLM visual
encoder. Differently from standard autoregressive or parallel predictions, our de-
coder’s generative process is partially-ordered following the CGM structure. This
structure encourages the decoder to learn only the main causal dependencies in
a sentence discarding spurious correlations. Using extensive experiments on five
compositional benchmarks, we show that our method significantly outperforms
all the state-of-the-art compositional approaches by a large margin, and it also im-
proves over methods trained using much larger datasets. The code is anonymously
available1 and it will be publicly released after the paper acceptance.

1 INTRODUCTION

Vision-Language Models (VLMs) have shown impressive results in different tasks such as, for in-
stance, zero-shot classification, image-text retrieval, vision-question answering, image-captioning,
and many others (Radford et al., 2021; Li et al., 2023b; Singh et al., 2021; Liu et al., 2023). How-
ever, despite this success, most VLMs still struggle in understanding the compositional nature of the
human language. For instance, Yuksekgonul et al. (2023) empirically showed that common VLMs
usually do not consider the order and the syntactic/semantic relations of words in a sentence, which is
treated as a bag of words, where “the horse is eating the grass” and “the grass is eating the horse” can
easily be confused. Jointly with Yuksekgonul et al. (2023), many other authors have recently pro-
posed different compositional benchmarks which confirm the poor performance of common VLMs
when tested against compositional tasks (Hsieh et al., 2024; Zhao et al., 2022; Burapacheep et al.,
2024). One of the probable reasons of this bag-of-words behavior is the contrastive loss used in
CLIP (Radford et al., 2021) (and in other VLMs), which compares a single vector representing the
textual encoder’s output with a single vector representing the visual encoder’s output, sacrificing
textual and visual details (Yuksekgonul et al., 2023; Kamath et al., 2023; Basu et al., 2024). Another
reason is the low quality of the captions used for VLM pre-training, which are usually noisy or do
not describe the details of the image and the interactions among its objects (Doveh et al., 2023a).

Most of the compositional methods that have been recently proposed to alleviate this problem focus
on creating annotations with a richer compositional structure, used to fine-tune a VLM (Yuksekgonul
et al., 2023; Doveh et al., 2023a; Cascante-Bonilla et al., 2023). For instance, NegCLIP (Yuksek-
gonul et al., 2023) creates hard negatives, in which the original caption is modified swapping the
positions of some words, and these hard negatives are used jointly with common negatives to fine-
tune CLIP using the standard contrastive loss. However, the automatic creation of hard negatives is
itself noisy, leading to captions which often do not have a correct syntactic/semantic meaning (this
problem is inherited by some compositional benchmarks, see Sec. 4). In (Tschannen et al., 2023),

1https://anonymous.4open.science/r/iclr2025-7318
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a VLM is pre-trained from scratch using a captioning strategy and a huge private dataset. Specif-
ically, the authors propose both Cap, where the pre-training strategy is a standard AutoRegressive
(AR) next-token prediction, and CapPa, where the AR training is mixed with a parallel training, in
which all the textual tokens are simultaneously predicted. Tschannen et al. (2023) show that both
Cap and CapPa achieve excellent results on compositional tasks, and argue that a generative training
encourages the VLM to focus on fine-grained descriptions of the visual content.

In this paper, inspired by Cap and CapPa, we propose a VLM adaptation approach for compositional
reasoning which is based on a decoder trained with a captioning strategy. However, differently from
the standard fully-sequential AR and the parallel predictions used in (Tschannen et al., 2023), we
propose a partially ordered, semi-parallel AR prediction strategy which is guided by the dependency
relations of a Causal Graphical Model (CGM) (Schölkopf et al., 2021). In more detail, we use an
off-the-shelf dependency parser (Dozat & Manning, 2016), which creates a syntactic tree from a
given textual sentence. Specifically, given a caption, a dependency parser automatically builds a De-
pendency Tree (DT), in which each node is associated with a caption word and each edge represents
a syntactic dependency relation between two words (Fig. 1). The DT, jointly with the visual features
extracted from the image using a frozen visual encoder, are used to build a CGM, which describes
the dependency relations among image patches and textual tokens. Our token prediction strategy
is based on the dependency relations contained in this CGM. The rationale behind this approach
is illustrated in Fig. 1 using the caption “A brown bird has a small yellow head”. For instance, in
the resulting DT, the adjective “brown” depends on the noun “bird”. However, using a standard
AR approach, where the token prediction order follows the English grammar, the captioning model
should predict “brown” before knowing that this adjective refers to “bird”, which is a quite ambigu-
ous task, since many objects may be brown in the image. Conversely, when our model predicts the
adjective (“brown”), it knows the noun (“bird”) it refers to, thus the word generation can be specific
to the entities, the attributes and the relations contained in the input image. Generally speaking, we
factorize the joint distribution of all the caption words following the disentangled factorization of a
CGM (Schölkopf et al., 2021), and our semi-parallel AR model predicts a token conditioned only
on the tokens on which it depends. For instance, in the example of Fig. 1, “small” and “yellow”
are predicted in parallel and they are conditionally independent given “head”, thus no statistical de-
pendence is learned between these two words. The advantage of this strategy is that the decoder
can focus on learning only the main causal dependency relations, ignoring possible spurious asso-
ciations (Pearl & Verma, 1995) induced by the sequential order of the words in a natural language
sentence. Moreover, we use the same prediction strategy also at inference time, when we compute
the likelihood of a candidate caption. In this case too, the use of the CGM makes the likelihood
estimation independent of spurious associations due to the sequential order of the words.

We validate our method using different VLMs (CLIP, XVLM (Zeng et al., 2022) and InstructBLIP
(Dai et al., 2023)). Using extensive experiments with five compositional datasets, we show that our
approach largely outperforms all previous works, setting a new state of the art in all the evaluated
benchmarks, and that it also improves on Cap and CapPa, despite being trained on much less data.

2 RELATED WORK

Compositional Methods. Most of the compositional methods are based on creating annotated train-
ing samples which force the VLM to acquire compositional knowledge. For instance, (Yuksekgonul
et al., 2023; Zhang et al., 2024; Huang et al., 2024; Buettner & Kovashka, 2024; Momeni et al.,
2023; Doveh et al., 2023b; Singh et al., 2023; Oh et al., 2024; Yellinek et al., 2023; Herzig et al.,
2023) use either a rule-based method or a Large Language Model (LLM) to create hard negatives
(Sec. 1), which typically consist in replacing or swapping the position of some words in the ground-
truth caption associated with a training image. In (Cascante-Bonilla et al., 2023), dense captions are
constructed using synthetic videos created with a 3D physics-based simulator, while (Singh et al.,
2024) use real videos. In DAC (Doveh et al., 2023a), dense captions are created by combining the
results of either an LLM (GPT-NEO-2.7B) or a segmentation network (SAM (Kirillov et al., 2023))
with a captioner (BLIP-2 (Li et al., 2023b)). SAM is also used in (Sahin et al., 2024) jointly with
Stable Diffusion (Rombach et al., 2022) to generate hard negative images. Moreover, Stable Diffu-
sion is used in (Li et al., 2023a; Clark & Jaini, 2023; Krojer et al., 2023) as an alternative VLM. The
main idea is that the noise prediction error of the Diffusion Model (DM) (Ho et al., 2020), obtained
by feeding Stable Diffusion with a corrupted version of the test image and a given caption, can be
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Figure 1: Dependency relations between words in a sentence. On the left, the DT (T ) extracted from
the caption shown above using a dependency parser (Dozat & Manning, 2016). On the right, the
corresponding CGM (G). To improve readability, in G we use different colors for different variable
types and we omit the causal dependencies between visual (Z) and textual (W ) variables.

used as an estimate of the image-caption similarity. Finally, Stable Diffusion is used in (Basu et al.,
2024) as an additional regularization loss to fine-tune CLIP.

Apart from DM-based methods, most of the compositional approaches are based on fine-tuning or
adapting CLIP. For instance, Zhang et al. (2024) use an hinge loss with a curriculum-learning based
adaptive margin, while Doveh et al. (2023a) use a Multiple Instance Learning loss. Curriculum
learning is used also in (Singh et al., 2023), while Zheng et al. (2024) iteratively retrain CLIP and
represent an image using a sparse combination of codebook codes. Oh et al. (2024) propose a local
hard negative loss to fine-tune CLIP which is based on a dense alignment betweeen patch embed-
dings and textual token embeddings. Wazni et al. (2024) use a dependency parser (see below) to
extract triplets (subject, verb, object) from a caption. Subjects and objects are represented as em-
bedding vectors using the CLIP textual encoder, while verbs are represented by matrices that are
multiplied with either the subject or the verb to change their meaning. In (Li et al., 2024a), CLIP
is embedded in a larger VLM, which includes a detection network and an LLM. The LLM comu-
nicates with the detection network using special tokens. A few methods use generative pre-trained
VLMs, and their results usually show a large improvement with respect to encoder-based VLMs
when applied to compositional tasks, most likely because the next-token prediction pre-training en-
courages the VLM to learn the natural language compositional characteristics. For instance, Herzig
et al. (2023) use “Adaptive Scene Graph Tokens” to adapt both CLIP and BLIP-2 (Li et al., 2023b) to
predict scene graph information, and they show that the BLIP-2 based results are much higher than
those based on CLIP. Wan et al. (2024) use LLaVA (Liu et al., 2023) and a classifier-free guidance
strategy, in which they compare the VLM prediction on two images: the original test image and a
modified version where the main objects are masked-out. BLIP is used also by (Lin et al., 2024),
who focus on mitigating the linguistic bias on the VLM pre-training dataset. Finally, Tschannen
et al. (2023) propose two VLMs, called Cap and CapPa (see Sec. 1), both trained generatively. Cap
is a standard AR captioner, while CapPa is trained using a combination of 25% AR next-token pre-
diction and 75% fully-parallel token prediction. Inspired by the success of generative pre-training,
in this paper we propose a decoder trained using a semi-parallel prediction strategy, where the order
in which future tokens are predicted depends on a CGM, and we show that it can be applied to both
encoder-only and generative pre-trained VLMs, significatively boosting the results of both.

Causal Graphical Models. CGMs are used in causal learning to represent the causal relations
among a set of variables (Schölkopf et al., 2021; Perry et al., 2022). These relations are supposed
to be known and are represented by the edges connecting each variable (node) in the graph with the
variables on which it depends (“parents”). The joint distribution of all the variables of the CGM is
computed using the disentangled factorization (Schölkopf et al., 2021; Perry et al., 2022), given by
the product of all the conditional distributions of each variable with respect to its parents (App. A).
The main advantage of this factorization is that, since it is assumed to be causally sufficient, the
model does not need to learn other inter-variable conditional distributions, in this way reducing the
number of training samples necessary to learn the joint distribution (Schölkopf et al., 2021). As
far as we know, the only work using CGMs for vision-language compositional tasks is (Jiang et al.,
2024), where Independent Causal Mechanisms (ICMs) (Parascandolo et al., 2018; Goyal et al., 2021;
Schölkopf et al., 2021) describe the relations between the subject, the object and the action of an

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

image. However, the method proposed in (Jiang et al., 2024) is radically different from our proposal,
being each ICM simply computed as the CLIP similarity between a word and a sub-image.

Syntactic Trees. In Dependency Grammars, dependency relations are syntactic and semantic con-
nections between words in a sentence, where one word (called “head”) governs or determines the
grammatical behavior of the “dependent” word (Nivre, 2005). Given a sentence, these dependen-
cies are organized in a Dependency Tree (DT), which can be automatically extracted using a parser
(Honnibal et al., 2020; Zhang et al., 2020; Dozat & Manning, 2016). In (Yang & Wan, 2022) a
Language Model (LM) is trained to predict whether the future tokens in the sequence are head or
dependent of a previously observed token, and this prediction replaces the standard Maximum Like-
lihood Estimation objective. Similarly, in (Deguchi et al., 2019) the dependency relations extracted
by an external parser are learned by the LM and used to modulate the Transformer (Vaswani et al.,
2017) attention maps. A DT can also be used to compute a syntactic distance between words, which
in turn can be used, e.g., as an additional loss (Du et al., 2020) or to modulate the attention maps
(Hou et al., 2022). In the vision-language domain, DTs are used in (Song et al., 2022) to convert a
textual question into a template for CLIP fine-tuning, and in (Li et al., 2024b) to replace and swap
words in a sentence and fine-tune a VLM using the correction of the modified sequence as a pretext
task. Finally, constituency parsers group words that belong to a specific grammatical category in a
sub-phrase. Constituency trees are used, e.g., in (Yellinek et al., 2023) to generate sub-phrase spe-
cific hard negative captions or in (Zhang et al., 2022) to extended the contrastive loss by maximizing
the similarity of words in the same sub-phrase. Differently from previous work, we use a DT to
extract syntactic and semantic dependencies between the words of a sentence, and we interpret these
dependencies as causal relations that guide the construction of our CGM.

3 METHOD

Given an image-caption pair (X,C), our goal is to define a set of conditional distributions over the
random variables associated with the image features and the caption words. For this purpose, as
anticipated in Sec. 1 and 2, we use an off-the-shelf dependency parser (Dozat & Manning, 2016)
which, for a specific C = [w1, ..., wn], returns a DT T 2 (Fig. 1), where each node corresponds
to a word and each edge (i, j) connects the “dependent” word wj with its “head” wi (Sec. 2). T
contains the syntactic and semantic dependencies between the words in C (Nivre, 2005), and we
make this dependency explicit by connecting each word to all the words it transitively depends on
in the tree. Specifically, we define a CGM G by associating each word wj with a random variable
Wj , corresponding to a node of G. Moreover, we connect the node corresponding to Wj with all
the variables corresponding to the ancestors of wj in T (Fig. 1). Formally, if wi1 , ..., wik are the
ancestors of wj in T , then we assume a causal dependence between the corresponding variables:
Wi1 → Wj , ...,Wik → Wj . Furthermore, the parser labels each word in T with a syntactic type
using a prefixed vocabulary V (Silveira et al., 2014; Zhang et al., 2020). For instance, if type(wj) =
nsubj ∈ V , it means that wj is a noun and it plays the role of the subject in the sentence. Intuitively,
we can think of these syntactic types as categorical syntactic features extracted from C, which we
formally describe using n random variables S1, ..., Sn, where each Sj ranges over V . In G, we
assume that each Wj depends on its corresponding syntactic variable Sj : Sj → Wj .

Finally, we extract a set of features from X using the VLM visual encoder E : Z = E(X) =
{zzz1, ..., zzzm} (details in Sec. 3.1), and, similarly to the textual case, we associate a random variable
Zk to each feature zzzk ∈ Z . In G, we assume that Wj depends on all the visual variables: Z1 →
Wj , ..., Zm → Wj . Using the above assumptions, we define the parents (Schölkopf et al., 2021) of
Wj as: PA(Wj) = {Wi1 , ...,Wik , Sj , Z1, ..., Zm}, and we model the conditional joint distribution
of the textual variables given the visual and the syntactic variables as:

P (W1, ...,Wn|S1, ..., Sn, Z1, ..., Zm) =

n∏
j=1

P (Wj |PA(Wj)), (1)

where the right side of Eq. (1) is obtained using the disentangled factorization of CGMs (Schölkopf
et al., 2021; Perry et al., 2022) and assuming that S1, ..., Sn and Z1, ..., Zm are independent of each

2Note that, for each C in the training/testing set, T needs to be extracted only once and can be done offline.
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Figure 2: A schematic illustration of our decoder.

other (see App. A for more details). In Sec. 3.1 we show how a VLM can be adapted to predict this
disentangled factorization both at training and at inference time.

Discussion. Tschannen et al. (2023) formulate the joint distribution of the words in C using the
standard AR prediction strategy commonly adopted by image captioning methods (Sec. 1):

P (W1, ...,Wn|Z1, ..., Zm) =

n∏
j=1

P (Wj |W1, ...,Wj−1, Z1, ..., Zm). (2)

The advantage of our formulation (Eq. (1)) over Eq. (2) is that, in our case, the model needs to
learn only the inter-variable conditional distributions indicated by the dependency parser, reducing
the risk of overfitting on the training data (Schölkopf et al., 2021). Specifically, the dependency
parser helps in discarding those spurious associations (Pearl, 2009; Pearl & Verma, 1995) contained
in Eq. (2) which depend on the sequence of words in C but do not correspond to a strict seman-
tic/syntactic relation (e.g., “small” and “yellow” in the example of Sec. 1). In contrast, we interpret
the dependency relations extracted by a dependency parser as causal relations because they directly
model the (linguistic) influence of the “head” variable with respect to the generation of the “depen-
dent” variable. For instance, the probability values of an adjective are directly influenced by the
noun it refers to, because the adjective describes an attribute of that noun, thus the corresponding
conditional probability is not a spurious association (more details in App. A).

While the causal dependency relations in C may not be exhaustively described by G and there
may be other relations between words in C, we follow (Goyal & Bengio, 2020), and we assume
that, in a symbolic domain like the natural language, the joint distribution over the words of a
sentence should be sparse. This is also in line with very recent work which shows that sparse
attention in Transformers helps the network focus on the most relevant context and improves its
performance removing noise (Leviathan et al., 2024; Ye et al., 2024). Thus, we prefer sparseness
to completeness and we assume that the word dependencies extracted by a dependency parser are
causally sufficient (Sec. 2, with more details in App. A). Finally, Tschannen et al. (2023) propose
also a parallel prediction strategy, which corresponds to:

P (W1, ...,Wn|Z1, ..., Zm) =

n∏
j=1

P (Wj |Z1, ..., Zm). (3)

In Eq. (3), each Wj is assumed to be conditionally independent from all the other textual variables
given the visual variables. The empirical results reported in (Tschannen et al., 2023) do not show
a clear winner between the AR and the parallel prediction, and the authors use a mixture of the
two strategies in training their VLM (Sec. 2). Conversely, in our experiments (Sec. 4.1 and 4.2)
we show that our proposed disentangled factorization (Eq. (1)) is a better trade-off between the
conditional independence of Eq. (3) and the standard image captioning factorization of Eq. (2), and
it also improves over the mixed strategy adopted in (Tschannen et al., 2023).
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3.1 USING A DECODER FOR CAUSAL PREDICTION

In this section, we show how textual tokens can be generated using our CGM. Note that our goal
is not image captioning, but we use our method, which we call Causally-Ordered Generative Train-
ing (COGT), for vision-language compositional understanding. Since CLIP is the most commonly
adopted backbone by previous works on compositionality (Sec. 2), in the following we use CLIP as
an example VLM, and in Sec. 4.2 we show additional results obtained with other VLMs.

We freeze the CLIP visual encoder (E) and, from a given image X , we extract a set of features from
the last (L) and the penultimate (L − 1) layer of E : Z = {zzzL[CLS], zzz

L
1 ..., zzz

L
p , zzz

L−1
[CLS], zzz

L−1
1 ..., zzzL−1

p }.
For the l-th layer of the encoder, zzzl[CLS] is the embedding vector of the class token (Dosovitskiy et al.,
2021), while zzzl1..., zzz

l
p are the embedding vectors of the patch tokens. Using a grid of p patch tokens,

we have m = 2p + 2. We use the embedding vectors of the penultimate layer jointly with the last
layer features to help the model reasoning about smaller resolution objects. Indeed, previous work
(Ghiasi et al., 2022; Wysoczańska et al., 2024) showed that there is usually a decrease in the amount
of spatial information represented in the last layer of CLIP. Moreover, we use a mapping network
M (Fig. 2) to reduce the dimensionality of the visual features to match the decoder embedding size.
M is composed of a linear layer, preceded and followed by LayerNorm, and all features in Z are
obtained as output of M. The parameters of M are learned jointly with our decoder (see below)
and M is shared by all features in Z and both layers of E (L and L− 1).

We replace the CLIP textual encoder with our decoder D, a relatively small network, composed
of only three blocks with ∼39M total parameters, which is the module we use to adapt CLIP to
solve compositional tasks. Fig. 2 shows the architecture of D, which takes as input 2n tokens. The
first sequence of n tokens are masked tokens, while the others are visible tokens, and we represent
each wj with both a masked and a visible token. Specifically, to condition D with respect to the
event Sj = t (t ∈ V ) in Eq. (1), we use masked tokens specific for each syntactic type t in V .
In more detail, V is composed of the 45 standard syntactic categories defined in (Silveira et al.,
2014) (see App. F). We associate each category t with a masked token MSKt. Then, for each word
wj ∈ C, if type(wj) = t, then the masked token used for wj is MSKt. This is simply implemented
using a lookup table of masked token embeddings, composed of 45 different initial embedding
vectors (learned using standard backpropagation) and which extends the (single) masked token used
in common masked-token prediction tasks (Kenton & Toutanova, 2019). The other n tokens are
visible, standard textual tokens, one for each wj ∈ C. In this way, wj is represented both as a
visible token and as a masked token of type t. In a given layer of D, these two tokens are respectively
represented by the masked-token embedding vector mmmj and the visible-token embedding vector vvvj .

Each block of D is composed of two layers. In the first layer, we compute the self-attention of each
masked embedding mmmj with itself, jointly with the attention of mmmj with all the visible embeddings
vvvi1 , ..., vvvik , where PA(Wj) = {Wi1 , ...,Wik , Sj , Z1, ..., Zm}. Note that there is no attention be-
tween mmmj1 and mmmj2 , with j1 ̸= j2. In the same layer, we compute the self-attention of each visible
embedding vvvj with itself, jointly with the attention of vvvj with vvvi1 , ..., vvvik (Fig. 2). Note that there
is no information leak, since mmmj , later used for the final prediction, has no direct or indirect access
to vvvj . We call this Dependency Guided Attention to differentiate it from the standard self-attention
(Fig. 2). In the second layer of each block of D, both the masked (mmmj) and the visible (vvvj) embed-
dings pay attention to the visual features in Z using cross-attention, in this way implementing the
dependence between Wj and Z1, ..., Zm. Finally, after the last block of D we discard the visible-
token embeddings and we fed each masked-token final embedding to a linear layer computing a
posterior distribution over the vocabulary of textual terms.

D is trained from scratch using as the only objective the maximization of the log-likelihood of the
disentangled factorization:

L = log

 n∏
j=1

P (Wj |PA(Wj))

 =

n∑
j=1

log(P (Wj |PA(Wj))). (4)

Inference Most of the compositional tasks are modeled as image-to-text retrieval tasks. In case of
COGT, given a testing image X , we compute the log-likelihood of all the candidate testing captions
and we select the highest scoring sentence. Note that computing Z is independent of the specific
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caption C, and it can be done once for each image in the dataset. The log-likelihood is computed
using Eq. (4) and a semi-parallel AR prediction strategy which follows the partial order induced by
the DT. Specifically, using the dependency parser we extract T from a candidate caption C. Then
we proceed using a level order traversal of T , in which, starting from the root, we predict in parallel
all the tokens of a given level of the tree and then we move to the next level.

4 EXPERIMENTS

In our evaluation we use four common compositional benchmarks: ARO (Yuksekgonul et al., 2023),
SugarCrepe (Hsieh et al., 2024), VL-CheckList (Zhao et al., 2022) and ColorSwap (Burapacheep
et al., 2024), and an additional benchmark FG-OVD (Bianchi et al., 2024) which we propose in
this paper. Most of them are composed of different tasks and datasets, and we report both the task-
specific and the average accuracy across all tasks. Following (Zhang et al., 2024), we do not use
COCO Order and Flickr Order (two of the ARO tasks) because it has been previously showed that a
“blind” LM, with no access to the image, can achieve about 99% accuracy on these tasks (Tschannen
et al., 2023). The reason of this is due to the grammatical and semantic errors introduced in the neg-
atives when swapping or replacing caption words (see Sec. 1). For instance, the sentence “with man
is wearing ears the an glasses pierced orange hat and” (Flickr Order) can be easily detected as false
by an LM without any visual knowledge. Similarly, following (Zhang et al., 2024), we do not use
Winoground (Thrush et al., 2022), because it also contains annotation ambiguities and requires the
VLM to be able to detect out-of-focus objects in low-resolution images (Diwan et al., 2022), which
is hard to obtain with a CLIP backbone. In contrast, we propose to use FG-OVD (Bianchi et al.,
2024), a benchmark originally proposed to evaluate the ability of open-vocabulary object detectors
to discern fine-grained object properties. In FG-OVD, negative captions are created starting from
the object-specific captions by replacing attributes referring to the object’s color, material, texture,
etc. We crop the objects’ bounding boxes which we use jointly with positive and negative captions
and an image-to-text retrieval task (more details in App. B).

Table 1: Comparison between different generative training strategies. The value +x reported in the
i-th row, column Average, refers to the average improvement across all datasets with respect to the
method in row i− 1.

ARO SugarCrepe VL-Checklist ColorSwap FG-OVD Avg
Model Relation Attribute Avg Add Replace Swap Avg Attribute Object Relation Avg ITT Avg
Fully-Parallel 76.37 49.24 62.81 98.98 77.98 68.81 81.92 83.66 67.55 74.7 75.3 25.24 41.84 57.42
Mixed 84.83 69.12 76.98 99.01 84.17 78.39 87.19 85.89 76.96 91.44 84.76 41.33 45.21 67.10+9.67
Sequential-AR 84.86 77.87 81.37 98.96 83.62 81.50 88.02 86.82 75.45 91.11 84.45 46.33 46.24 69.28+2.18
COGT 87.56 90.26 88.91 98.26 87.10 83.14 89.50 86.07 78.91 89.37 84.78 61.33 51.48 75.20+5.92

4.1 ABLATIONS

In the experiments of this section we follow a widely adopted protocol, first proposed in (Yuksek-
gonul et al., 2023), in which the VLM backbone is CLIP and the only training dataset is COCO (Lin
et al., 2014). However, we do not use the hard negatives of (Yuksekgonul et al., 2023) for training
because of their frequent semantic and syntactic errors (see above). In Tab. 1 we compare to each
other the different word prediction strategies described in Sec. 3 using CLIP as the VLM. Specifi-
cally, we indicate with Sequential-AR the replacement of our decoder with a standard AR decoder
(cross-attention over Z and standard causal attention over the past words of the caption), trained
using the common image captioning objective defined in Eq. (2). Similarly to COGT, we freeze the
CLIP encoder and we use the visual features (Z) extracted from both the last and the penultimate
layer of E (Sec. 3.1). We use a same-size decoder, which takes only visible words as input (details
in App. D). Sequential-AR can be considered as our re-implementation of Cap3 (Tschannen et al.,
2023), trained on COCO and with a frozen visual encoder, which can directly be compared with the
CGM-based strategy of COGT. Similarly, we indicate with Fully-Parallel our re-implementation of
the parallel prediction strategy proposed in (Tschannen et al., 2023), using a decoder which takes
as input only masked tokens (only cross-attention over Z with a frozen visual encoder), trained us-
ing Eq. (3). Finally, in Mixed we use the sequential-parallel mixed strategy adopted in CapPa, in

3There are no publicly available network weights for (Tschannen et al., 2023).
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Table 2: Empirical contribution of different components of COGT.

ARO SugarCrepe VL-Checklist ColorSwap FG-OVD Avg
Parser Mask-Specific Layers Relation Attribute Avg Add Replace Swap Avg Attribute Object Relation Avg ITT Avg
CRFPar ✓ 2 85.68 88.34 87.01 98.16 84.94 80.30 87.80 86.99 77.68 87.09 83.92 56.33 43.74 71.76
Deep Biaffine ✓ 2 86.56 89.10 87.83 98.11 85.80 81.49 88.46 87.02 78.30 87.75 84.35 61.33 44.74 73.34
Deep Biaffine + RoBERTa ✗ 2 84.75 86.16 85.46 98.86 84.37 80.25 87.82 83.79 78.24 90.84 84.29 58.00 46.99 72.51
Deep Biaffine + RoBERTa ✓ 1 86.82 89.67 88.25 98.26 86.56 82.33 89.05 84.41 78.94 89.54 84.30 45.00 45.63 70.45
Deep Biaffine + RoBERTa ✓ 2 87.56 90.26 88.91 98.26 87.10 83.14 89.50 86.07 78.91 89.37 84.78 61.33 51.48 75.20

which, following (Tschannen et al., 2023), we use 75% of the training samples with a parallel pre-
diction (Eq. (3)) and 25% of the samples with an AR prediction (Eq. (2)). Architectural details are
provided in App. D. The results show that COGT outperforms all the other prediction strategies in
all the datasets, often with a significant margin. For instance, COGT achieves an average accuracy
improvement of +17.77 points across all datasets with respect to Fully-Parallel, which arguably
shows that the conditional independence assumption in Eq. (3) is too strong. Overall, these results
confirm that an off-the-shelf dependency parser provides a priori knowledge which can be exploited
to model the conditional dependencies between words in a sentence.

We further investigate the role of the dependency parser in Tab. 2. Specifically, the column Parser
refers to the adopted dependency parser, where we compare 3 different methods: Deep Biaffine
(Dozat & Manning, 2016), CRFPar (Zhang et al., 2020) and Deep Biaffine + RoBERTa (Dozat &
Manning, 2016). Note that we use the parsers as black boxes, without any training or fine-tuning,
and the differences in the corresponding rows of Tab. 2 are based only in the use of a different
external parser for COGT. Tab. 2 shows that the best results correspond to the use of Deep Biaffine
+ RoBERTa (Dozat & Manning, 2016), which is aligned with the higher accuracy of this parser
compared to the other two according to the linguistic leaderboard Penn Tree Bank (Marcus et al.,
1993). Note also that, according to this widely adopted parser ranking (Marcus et al., 1993), there are
higher performing parsers (e.g., (Mrini et al., 2019)), however their code is not publicly available or
it is not easy to use. Thus, we opted for Deep Biaffine + RoBERTa (used in all the other experiments
of this paper). However, the results in Tab. 2 show that, using a better parser, COGT can most likely
achieve even better results.

The Mask-Specific column in Tab. 2 indicates the use of a dedicated masked token for each of the
45 syntactic categories of V (Sec. 3.1), which is compared with a generic BERT-like masked token
(Kenton & Toutanova, 2019). In the latter case, we use the same masked token initial embedding
vector for all the n masked tokens fed to D (replicated n times), thus dropping any conditioning on
Sj in Eq. (1). The results in Tab. 2 show that this corresponds to a −2.69 point drop in accuracy
averaged across all five datasets.

Finally, the Layers column in Tab. 2 indicates the number of layers of CLIP we use to extract the
visual features Z: Layers = 1 means only the last layer (L); Layers = 2 means that we use also
the penultimate layer (Sec. 3.1). When the last layer only is used, the average accuracy drop is
−4.75, showing the importance of using lower-level features in compositionality tasks where the
VLM needs to consider small, non-foreground objects.

In App. C.1 we provide the complete version of Tab. 2 with all the possible combinations between
the values of Parser, Mask-Specific and Layers, which confirm the results shown here.

4.2 MAIN EXPERIMENTS

Setting. In this section we compare COGT with state-of-the-art compositional methods. Since
different works are based on different VLMs and use different training data, to make the comparison
as fair as possible, we split our evaluation based on both the VLM backbone and the used training
set. Specifically, in Tab. 3 we group the approaches based on CLIP (Radford et al., 2021) and in
Tab. 4 those which adopt a different VLM, while Tab. 5 is dedicated to methods based on VLMs
pre-trained using a language based decoder. In the first category, our approach is indicated by
COGT-CLIP. In the second group, we use XVLM (Zeng et al., 2022) as our backbone (COGT-
XVLM). Finally, we use InstructBLIP (Dai et al., 2023) for the VLM category with a language-
based decoder (COGT-InstructBLIP) (more details in App. D). COGT-CLIP, COGT-XVLM and
COGT-InstructBLIP are trained on COCO only (∼ 100K training samples, see Sec. 4.1). Moreover,
following (Zhang et al., 2024), we present additional results training on a combination of three
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datasets: COCO, CC3M (Sharma et al., 2018), and Visual Genome (Krishna et al., 2017), and we
call the corresponding methods as COGT-CLIP+, COGT-XVLM+ and COGT-InstructBLIP+. In
this case, we use a decoder D with four blocks. Note that we use only ∼ 50K samples from Visual
Genome because we removed those training data which overlap with ARO and VL-Checklist. On
the other hand, CC3M (∼3.3M training samples) is a much larger but also noisier dataset, since its
captions are obtained from the Alt-text HTML attribute associated with web images, and we use it
also to indirectly evaluate the robustness of COGT to noisy textual descriptions (see App. C.1). For
each compared baseline, the results shown in the tables refer to the values reported in the original
article (when available) or to our reproduction using the (possibly available) public code. The results
on FG-OVD are averaged over all tasks and we report in App. C.2 the task-specific values.

Table 3: Comparison with compositional methods based on CLIP. For each baseline, we report the
values published in the original article. In case a given dataset was not used by that baseline, but a
public code is available, we report the results obtained by our reproduction. With x, x and x∗ we
indicate the first, the second and the third best result, respectively.

ARO SugarCrepe VL-Checklist ColorSwap FG-OVD Avg
Model Relation Attribute Avg Add Replace Swap Avg Attribute Object Relation Avg ITT Avg

Zero-shot
CLIP (Radford et al., 2021) 59.00 62.00 60.50 85.58 80.76 70.83 79.05 67.93 82.83 64.19 71.65 35.67* 47.33 58.84

Training on COCO only
CLIP Fine-Tuned (Yuksekgonul et al., 2023) 63.00 65.00 64.00 . . . . . . . . . . .
NegCLIP (Yuksekgonul et al., 2023) 81.00 71.00 76.00 87.29 85.36 75.30 82.65 72.24 87.00 71.39 76.87 35.67* 41.69 62.57
CE-CLIP (Zhang et al., 2024) 83.00 76.40 79.70 92.90 87.00 74.90 84.94 72.60 84.60 71.80 76.30 18.67 41.97 60.31
Structure-CLIP (Huang et al., 2024) 85.10* 83.50* 84.30* . . . . . . . . . . .
GNM (Sahin et al., 2024) 65.00 65.00 65.00 82.85 80.95 66.71 76.83 70.15 85.91 64.10 73.38 13.00 38.79 53.40
Plausible Adj. Neg (Buettner & Kovashka, 2024) 65.07 67.94 66.51 89.64 85.37 70.88 81.96 76.51 88.13 69.90 78.17 17.67 44.98 57.86
SDS-CLIP (Basu et al., 2023) 55.00 66.00 60.50 . . . . . . . . . . .
COGT-CLIP 87.56 90.26 88.91 98.26 87.10* 83.14 89.50 86.07 78.91 89.37* 84.78 61.33 51.48 75.20

Training on datasets larger than COCO
CE-CLIP+ (Zhang et al., 2024) 83.60 77.10 80.35 94.40 89.30 78.00*87.23* 76.70 86.30 74.70 79.23 . . .
IL-CLIP (Zheng et al., 2024) . . . 73.80 73.00 62.90 69.90 . . . . . . .
syn-CyCLIP (Cascante-Bonilla et al., 2023) 69.00 63.65 66.33 . . . . 68.06 . 65.73 . . . .
DAC-SAM (Doveh et al., 2023a) 77.16 70.50 73.83 92.87 86.18 71.06 83.37 75.80 88.50 89.80 84.70* 16.33 48.36 61.31
DAC-LLM (Doveh et al., 2023a) 81.28 73.91 77.60 95.83* 88.09 72.48 85.47 77.30* 87.30* 86.40 83.66 18.33 49.60* 62.93*
COGT-CLIP+ 90.67 96.01 93.34 98.42 87.05 84.21 89.89 90.71 84.91 92.33 89.31 81.66 69.96 84.83

CLIP based methods. Tab. 3 shows that COGT-CLIP largely outperforms all the other approaches
trained only on COCO and it also outperforms all the methods trained on datasets larger than
COCO. For instance, using the average across all the datasets, COGT-CLIP outperforms the second
best result in Tab. 3 (DAC-LLM (Doveh et al., 2023a)) by a remarkable 12.27 points. Note that
DAC-LLM was trained on CC3M, a dataset an order of magnitude larger than COCO, and using
high-quality LLM-based annotations (Sec. 2). Moreover, even considering the average computed on
the individual datasets, COGT-CLIP outperforms all the other methods in Tab. 3 (including those
trained on datasets larger than COCO). We believe that these results show that our CGM-based
training strategy can better generalize by leveraging available training data, most likely because we
remove spurious inter-variable associations from the learning objective (Sec. 3). Moreover, COGT-
CLIP+ achieves even better results, with an average across all benchmarks that is almost 22 points
more than the second best result (DAC-LLM).

Table 4: Comparison with methods based on other VLMs. Similar to Tab. 3, the baseline results are
either taken from the original paper or reproduced using the public code.

ARO SugarCrepe VL-Checklist ColorSwap FG-OVD Avg
Model Relation Attribute Avg Add Replace Swap Avg Attribute Object Relation Avg ITT Avg

Zero-shot
XVLM (Zeng et al., 2022) 73.40 86.80 80.10 . . . . 75.10* 85.80 70.40 76.50 . . .

Training on COCO only
CE-XVLM (Zhang et al., 2024) 73.90* 89.30* 81.60* . . . . 74.80 86.90 79.70* 78.60* . . .
HardNeg-DiffusionITM (Krojer et al., 2023) 52.30 67.60 59.95 . . . . . . . . . . .
COGT-XVLM 87.64 92.30 89.97 98.65* 89.17 84.37 90.73 85.87 80.49 88.74 85.03 69.67 50.12 77.10

Training on datasets larger than COCO
COGT-XVLM+ 91.71 96.59 94.15 98.30 88.97 86.49 91.25 91.54 84.73* 92.33 89.53 82.33 74.22 86.30

Other VLMs. The results in Tab. 3 are confirmed by those reported in Tab. 4, where COGT-XVLM
largely outperforms the other methods, included CE-XVLM (Zhang et al., 2024), which uses our
same VLM (XVLM) and the same training data (COCO). COGT-XVLM+ further improves these
results and it also outperforms COGT-CLIP+. This is probably because the XVLM encoder can
better represent small-scale objects than the CLIP encoder, and these objects are often referenced in
the captions of these compositional benchmarks (Yuksekgonul et al., 2023).
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Table 5: Comparison with methods based on encoder-decoder VLM architectures pre-trained with
a textual token prediction task. † Lin et al. (2024) show additional results with α set using dataset-
specific cross-validation data, which we do not report, however, to make the comparison fair to other
methods that do not have access to benchmark data.

ARO SugarCrepe VL-Checklist ColorSwap FG-OVD Avg
Model Relation Attribute Avg Add Replace Swap Avg Attribute Object Relation Avg ITT Avg
BLIP (Li et al., 2022) 59.00 88.00 73.50 . . . . 75.20 82.20 70.50 75.70 . . .
BLIP2 (Li et al., 2023c) 41.20 71.30 56.25 . . . . 77.80 84.90 70.60 77.80 . . .
InstructBLIP (FlanT5XL) (Dai et al., 2023) 69.20 50.83 60.02 65.43 72.59 63.41 67.14 56.37 80.33 53.34 63.35 40.33* 26.80* 51.53*
MiniGPT-4 (Zhu et al., 2023) 46.90 55.70 51.30 . . . . 71.30 84.20* . . . . .
GPT-4V (OpenAI, 2023) . . . 91.68 93.37 86.61 90.55 . . . . . . .
LLaVA-1.5-13B (Liu et al., 2023) . . . . . 80.95 . . . . . . . .
LLaVA-1.5-13B+CRG (Wan et al., 2024) . . . . . 87.90 . . . . . . . .
LLaVA-1.6-34B (Liu et al., 2024) . . . . . 81.25 . . . . . . . .
LLaVA-1.6-34B+CRG (Wan et al., 2024) . . . . . 90.75 . . . . . . . .
VisualGPTScore (α = 0) (Lin et al., 2024) † 89.10 95.30 92.20 91.00 93.30 91.00 91.77 78.70 92.60 90.80 87.37 . . .
Cap (Tschannen et al., 2023) 86.60 88.90 87.75 98.94 88.21 84.00 90.38 . . . . . .
CapPa (Tschannen et al., 2023) 86.70 85.70 86.20 99.13 87.67 83.11 89.97 . . . . . . .

COGT-InstructBLIP 87.63* 88.93* 88.28*98.55* 90.61* 88.12*92.42 85.77 79.96 89.14* 84.96* 72.66 51.26 77.87
COGT-InstructBLIP+ 90.54 95.49 93.02 98.40 90.19 87.74 92.11 90.43 86.05 92.40 89.63 82.66 71.34 85.75

Table 6: Comparison of CLIP-based models using image classification tasks and linear probing.

Model CIFAR10 CIFAR100 ImageNet1K (top 1) ImageNet1K (top 5)
CLIP (Radford et al., 2021) 94.2 79.0 75.0 93.2
CLIP Fine-Tuned (Yuksekgonul et al., 2023) 95.0 80.0 74.0 -
NegCLIP (Yuksekgonul et al., 2023) 94.0 79.0 72.0 -
CE-CLIP (Zhang et al., 2024) 93.8 78.0 - 92.6
CE-CLIP+ (Zhang et al., 2024) 93.8 78.1 - 92.7
COGT-CLIP 96.7 84.9 74.4 93.3
COGT-CLIP+ 96.8 85.4 75.3 93.8

Language-decoding based VLMs. In Tab. 5 we compare to each other VLMs pre-trained using a
decoder and a generative word prediction task. The compositional skills of these methods are gen-
erally much higher than the other VLMs, which indirectly confirms that a word-prediction training
helps the VLM to understand the compositional nature of the human language (Sec. 2). However,
a direct comparison with VLMs such as CLIP, XVLM or Stable Diffusion (Krojer et al., 2023) is
difficult, since each of these backbones has been pre-trained on datasets with a huge difference in
size. For instance, Cap and CapPa (Tschannen et al., 2023) were pre-trained with a private dataset
composed of 1B image/Alt-text pairs (Tschannen et al., 2023), which is different orders of magni-
tude larger than the dataset used to pre-train XVLM (∼ 16M training samples (Zeng et al., 2022)).
Despite that, COGT-XVLM+ (Tab. 4) outperforms both Cap and CapPa and all the other methods
in Tab. 5. Similarly, COGT-InstructBLIP+ significantly outperforms the zero-shot accuracy of In-
structBLIP and, jointly with COGT-XVLM+, establishes a new state of the art on each of these
compositional datasets.

4.3 DOWNSTREAM TASKS

Doveh et al. (2023b) show that most compositional methods usually deteriorate the VLM skills on
non-compositional, standard tasks. We analyze this aspect using the protocol adopted by (Yuksek-
gonul et al., 2023; Zhang et al., 2024), which is based on linear probing the fine-tuned CLIP visual
encoder on CIFAR10, CIFAR100 and ImageNet. Since in COGT E is frozen, we use E jointly with
our mapping network M and, specifically, the feature zzzL[CLS]. The results shown in Tab. 6 show that
COGT not only does it not deteriorate CLIP’s features but it can even improve them.

5 CONCLUSION

In this paper we presented COGT, a compositional method based on a semi-parallel generative train-
ing. Specifically, we exploit the a priori knowledge of an off-the-shelf dependency parser to define
a set of causal relations between the words of a sentence. These relations, collectively represented
using a CGM, are used to make sparser the joint probability distribution of the textual variables by
removing possible spurious inter-variable associations. As a result, COGT can better exploit the
training data and reduce the risk of overfitting. Using extensive experiments, we showed that COGT
is much more effective than standard AR or fully-parallel generative predictions and it largely out-
performs all previous compositional works, including methods trained with much larger datasets.
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A CAUSAL GRAFICAL MODELS

A Causal Graphical Model (CGM) over n random variables X = {X1, ..., Xn} is defined (Perry
et al., 2022) as M(G,PX), where: (1) G is a directed acyclic graph with vertices X and edges
Xi → Xj iff Xi is a direct cause of Xj ; (2) PX is the joint distribution of X which follows the
disentangled (or causal) factorization (Schölkopf et al., 2021; Perry et al., 2022):

P (X1, ..., Xn) =

n∏
j=1

P (Xj |PA(Xj)), (5)

where PA(Xj) is the set of parents (direct causes) of Xj in G. The difference between a CGM and
a Directed Graphical Model is that the former assumes that PA(Xj) are direct causes of Xj . Al-
though a formal proof that a statistical dependence is also a causal relation using only observational
data is notoriously difficult (Pearl, 2009), in this paper we assume that the linguistic dependencies
(Nivre, 2005) extracted by a dependency parser have a causal nature because they represent a strict
linguistic association between the “head” and its “dependent”. Specifically, Dependency Grammars
(Sec. 2) can be considered as (probabilistic) generative grammars (Nivre, 2005; Chen & Manning,
2014; Obrêbski & Gralinski, 2004; Diaconescu, 2002), in which a dependence between a “head”
word and its “dependent” word can be extracted using context-free generative rules. We interpret
these rules as causal mechanisms (Schölkopf et al., 2021), which describe the causal influence of
generating a specific “dependent” word given the value of the ‘head” word. We leave as future work
the possibility of replacing the dependency grammars used in this paper with other grammars such
as, for instance, the causal grammars proposed in (Tenenbaum et al., 2007), as well as the possible
introduction of counterfactual reasoning (Pearl, 2009) in our framework.

In Sec. 3, Eq. (1) is obtained using Eq. (5), the definition of conditional distribution and the as-
sumption that S1, ..., Sn and Z1, ..., Zm are independent of each other. Finally, the cardinality of
{W1, ...,Wj−1} in Eq. (2) is, on average, n

2 , while, assuming a balanced DT T , the cardinality of
{Wi1 , ...,Wik} ⊂ PA(Wj) is, on average, O(log(n)). The consequence of this is that the condi-
tional distributions learned at training time (Eq. (1)) and used at inference time (Eq. (4)) are sparser
than those learned by a standard AR model (Sec. 3).

B THE FG-OVD DATASET

In this section, we describe the compositional benchmark based on the FG-OVD dataset which we
propose in this paper and which was used in Sec. 4. The FG-OVD dataset was originally proposed to
evaluate the fine-grained discriminative capabilities of open-vocabulary detectors in object detection
tasks. Each image usually contains multiple objects, where each object is associated with both
a bounding box and a corresponding caption. We use the bounding box to crop the image and
the corresponding caption as the true caption. The cropped images are resized to a resolution of
224 × 224. Then, each object image is associated with several false captions (on average, ten),
selected based on the original FG-OVD Trivial, Easy, Medium, and Hard tasks (Bianchi et al., 2024).
Specifically, in the Trivial task, negative captions are randomly sampled from unrelated objects
(of different images), offering a basic challenge for retrieval. The Easy, Medium, and Hard tasks
progressively increase the difficulty by generating negative captions starting from the true caption.
For instance, in the Easy task, three attributes of the true caption are replaced with three unrelated
attributes. In the Medium and the Hard task, two and one attributes are replaced, respectively.
The rationale is that the less the true sentence is modified, the harder is to distinguish the false
from the true captions (Bianchi et al., 2024). Specifically, as fewer attributes are replaced, the
distinction between correct and incorrect captions becomes more subtle, requiring the model to
capture increasingly fine-grained, compositional details in the image-text pairs. Tab. 10 reports the
number of testing images for each task, while different examples are shown in App. E.1.
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Table 7: Extended version of Tab. 2

ARO SugarCrepe VL-Checklist ColorSwap FG-OVD
Parser LayersMask Specific RelationAttribute Avg Add ReplaceSwap Avg AttributeObjectRelation Avg ITT Avg Avg
Deep Biaffine 1 ✗ 87.19 84.92 86.06 98.31 85.52 78.56 87.46 87.28 78.56 90.24 85.36 14.00 43.91 63.36
Deep Biaffine 1 ✓ 87.34 86.93 87.14 98.02 85.17 80.77 87.99 86.47 79.29 89.41 85.05 38.00 44.77 68.59
Deep Biaffine 2 ✗ 86.10 86.51 86.31 98.48 85.37 80.59 88.14 87.60 77.97 91.51 85.69 60.33 46.46 73.39
Deep Biaffine 2 ✓ 86.56 89.10 87.83 98.11 85.80 81.49 88.46 87.02 78.30 87.75 84.35 61.33 44.74 73.34

CRFPar 1 ✗ 86.46 84.36 87.83 98.45 84.15 78.65 87.08 87.51 77.04 90.15 84.90 14.00 45.83 63.93
CRFPar 1 ✓ 86.85 88.33 87.59 98.10 86.00 81.34 88.47 86.80 78.49 88.80 84.70 42.33 42.27 69.07
CRFPar 2 ✗ 85.53 86.67 86.10 98.74 85.58 81.84 88.72 87.43 77.33 90.30 85.02 59.33 44.08 72.65
CRFPar 2 ✓ 85.68 88.34 87.01 98.16 84.94 80.30 87.80 86.99 77.68 87.09 83.92 56.33 43.74 71.76

Deep Biaffine + RoBERTa 1 ✗ 86.82 86.76 86.79 98.69 86.59 80.35 88.54 85.31 79.11 89.88 84.76 28.33 43.92 66.47
Deep Biaffine + RoBERTa 1 ✓ 86.82 89.67 88.25 98.26 86.56 82.33 89.05 84.41 78.94 89.54 84.30 45.00 45.63 70.45
Deep Biaffine + RoBERTa 2 ✗ 84.75 86.16 85.46 98.86 84.37 80.25 87.82 83.79 78.24 90.84 84.29 58.00 46.99 72.51
Deep Biaffine + RoBERTa 2 ✓ 87.56 90.26 88.91 98.26 87.10 83.14 89.50 86.07 78.91 89.37 84.78 61.33 51.48 75.20

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL ABLATIONS

In Tab. 7 we show an extension of Tab. 2 containing all the possible combinations of the compo-
nents analyzed in Tab. 2. For instance, this table shows the importance of using two visual feature
layers in some of the datasets. Indeed, when both layers are used, the model can leverage not only
high-level, abstract visual features but also more detailed, lower-level information. This is partic-
ularly important in tasks which require attention to object details, where the additional layer helps
to capture a more nuanced representation of the input. For instance, in datasets like ColorSwap,
this deeper feature extraction leads to drastic improvements (observed across all parsers), which is
probably due to the better representation of the color/texture appearance in the lower level features.
On the other hand, the use of mask-specific tokens also plays a significant role. Although the im-
provement magnitude varies depending on the dataset and the task, the overall trend indicates that
using mask-specific tokens contributes positively to the accuracy.

Comparing the results of COGT-CLIP with COGT-CLIP+ and COGT-XVLM with COGT-XVLM+
(Tab. 3 and Tab. 4), the mean improvement of the larger-training versions with respect to the COCO-
only trained models is about 9 points averaged across all the datasets. This shows that COGT can
benefit from larger training and, indirectly, that the noisier captions in CC3M can be effectively
parsed by our parser. Finally, a recent trend in VLM fine-tuning and/or pre-training adopts LLMs to
create or re-write the textual annotations (Li et al., 2024c), which can in principle help the depen-
dency parser with very noisy captions. We leave this as future work.

C.2 FG-OVD

Tab. 9 reports the FG-OVD task-specific accuracy of the methods compared in Tab. 3. In the Zero-
shot category, CLIP (Radford et al., 2021) shows a solid performance on all but the Hard task
(21.35 points accuracy). The same applies to those methods based on CLIP, such as NegCLIP
(Yuksekgonul et al., 2023), GNM (Sahin et al., 2024), Plausible Adj. Neg (Buettner & Kovashka,
2024), and CE-CLIP (Zhang et al., 2024), which show a noticeable drop in performance as the
difficulty increases. Among these models, Plausible Adj. Neg (Buettner & Kovashka, 2024) stands
out with a relatively strong performance, especially on the Medium (43.13) and Easy (45.88) tasks.
On the other hand, COGT-CLIP and COGT-XVLM demonstrate a significant improvement in per-
formance across all difficulty levels, particularly on the Hard task, where COGT-CLIP achieves a
score of 33.82, which is greater than all other methods, including models trained on larger datasets,
such as DAC-SAM and DAC-LLM (Doveh et al., 2023a). These results highlight the strength of
COGT when dealing with fine-grained compositional tasks. Finally, similarly to the results shown in
Sec. 4.2, COGT-CLIP+, COGT-XVLM+ COGT-InstrctBLIP+ further increase the advantage over
other approaches.

C.3 COMPUTATIONAL EFFICIENCY

Tab. 8 shows the training and inference times for COGT and CLIP-based models. COGT-CLIP
and COGT-CLIP+ require respectively 8 and 72 hours to train on a single RTX A5000 GPU with a
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batch size of 128 using the datasets of Sec. 4.2. For comparison, we use DAC-SAM and DAC-LLM
(Doveh et al., 2023a), which are the only models we know with publicly available training times
that can be directly compared to COGT-CLIP+, as they are trained on a similar dataset of ∼3.3M
samples. In particular, both DAC-SAM and DAC-LLM complete their training in 12 hours on six
V100 GPUs with a batch size of 32. However, this training time does not include the computationally
intensive dense annotation generation pipeline (Sec. 2), which involves BLIP2 and SAM or GPT-
Neo-2.7B (for DAC-SAM and DAC-LLM, rispectively). Similarly, the training times for COGT-
CLIP and COGT-CLIP+ do not include the DT generations, which however involves a relatively
quick preprocessing step (one DT per caption), taking approximately 3 minutes for COCO and 1.5
hours for the combined CC3M, COCO, and Visual Genome datasets. Moreover, we evaluate the
computational costs of COGT and CLIP in terms of memory usage and inference time. COGT-
CLIP, COGT-CLIP+, and CLIP require 0.73 GB, 0.88 GB, and 1.16 GB of memory, respectively,
where the difference with respect to CLIP is mainly due to the fact that COGT does not use the CLIP
textual encoder. Finally, for both COGT-CLIP and COGT-CLIP+, the inference times reported in
Tab. 8 include an additional 0.01 seconds required for generating the DT of the testing caption using
the Deep Biaffine + RoBERTa parser, and COGT-CLIP+ is slower than COGT-CLIP because of its
larger (four blocks) decoder. All times are computed using an RTX A5000 GPU with a batch size
of 32.

Table 8: A training and inference times comparison.

Training
Model Training Time (hrs) Batch Size GPU Setup
COGT-CLIP 8 128 RTX A5000 (Single GPU)
COGT-CLIP+ 72 128 RTX A5000 (Single GPU)
DAC-SAM 12 32 V100 (Six GPUs)
DAC-LLM 12 32 V100 (Six GPUs)

Inference
Model Inference Time (s) Batch Size GPU Setup
COGT-CLIP 0.07 32 RTX A5000 (Single GPU)
COGT-CLIP+ 0.09 32 RTX A5000 (Single GPU)
CLIP 0.06 32 RTX A5000 (Single GPU)

D IMPLEMENTATION DETAILS

D.1 ARCHITECTURES

In COGT-CLIP and in COGT-XVLM we use ViT-B/32 CLIP (Ilharco et al., 2021) and the Swin-
Transformer of XVLM (Zeng et al., 2022) as the visual encoder, respectively. In both cases, we use
both the last and the penultimate layer features of the encoder (Sec. 3.1). In COGT-InstructBLIP,
we use the output of the InstructBLIP Q-Former (Dai et al., 2023) as the visual encoder. Since
InstructBLIP needs a textual description of the task (called “instruction” (Dai et al., 2023)), COGT-
InstructBLIP is trained using the prompts suggested in (Dai et al., 2023) for captioning tasks. At
inference time, both the zero-shot results of InstructBLIP and those of COGT-InstructBLIP are
obtained using the prompt “Write a description for the photo.”. The above considerations apply also
to the COGT-X+ models.

Independently of the VLM encoder, the features Z are obtained using a mapping network M on top
of the corresponding frozen visual encoder (Sec. 3.1). Our decoder consists of 3 blocks (respectively,
4 blocks in case of COGT-X+), each composed of a multi-head Dependency Guided Attention
(Sec. 3.1) and a cross-attention layer. Each attention layer is composed of 8 attention heads, with
embedding size equal to 512, while we use 12 heads and embedding size equal to 768 in the COGT-
X+ models. We apply a dropout rate of 0.1 to the residual connections, the attention weights, and
the embeddings.

The differences in the number of trainable parameters among the different baselines in Tab. 1 are
only due to the size of the embedding dictionary. Fully-Parallel has an embedding dictionary con-
sisting of only one MSK token, resulting in a total of 13 million trainable parameters, of which only
512 are dedicated to represent the MSK token. The total number of trainable parameters for Mixed,
Sequential-AR, and COGT is approximately 39 million (M included). Among these, Sequential-AR
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Table 9: FG-OVD: task specific results.

Model Hard Medium Easy Trivial Avg
Zero-shot

CLIP (Radford et al., 2021) 21.35 48.75 51.73 67.48* 47.33
InstructBLIP (FlanT5XL) (Dai et al., 2023) 22.23 33.25 31.87 19.85 26.80

Training on COCO only
NegCLIP (Yuksekgonul et al., 2023) 18.39 36.96 41.95 69.49 41.69
GNM (Sahin et al., 2024) 16.08 34.74 39.88 64.48 38.79
Plausible Adj. Neg (Buettner & Kovashka, 2024) 21.35 43.13 45.88 69.59 44.98
CE-CLIP (Zhang et al., 2024) 21.86 40.36 43.11 62.53 41.97
Fully-Parallel 25.22 47.41 54.04 40.72 41.84
Mixed 30.16 51.38 56.2 43.09 45.21
Sequential-AR 30.18 54.01 57.04 43.73 46.24
COGT-CLIP 33.82 59.30 61.35 51.43 51.48
COGT-XVLM 32.69 58.52 60.05 49.22 50.12
COGT-InstructBLIP 33.90 59.91 61.12 50.15 51.26

Training on datasets larger than COCO
DAC-SAM (Doveh et al., 2023a) 26.00 48.65 53.73 65.05 48.36
DAC-LLM (Doveh et al., 2023a) 25.29 52.36 56.89 63.89 49.60
COGT-CLIP+ 55.40 81.50* 85.29* 57.65 69.96*
COGT-XVLM+ 58.78 83.86 87.45 66.82 74.22
COGT-InstructBLIP+ 54.41* 82.08 86.30 62.91 71.35

has
DOBJNSUBJ

aa small yellow

head

brown

bird

DET AMOD AMOD AMODDET

has
DOBJNSUBJ

a sma yellow

head

brown

bird

DET AMOD AMOD AMODDET

all

COMP

Figure 3: Dependency tree modifications due to the sub-word tokenization. On the left, the original
dependency tree T represents the sentence “A brown bird with a small yellow head”, and it is the
output of a word-level dependency parser, where “small” is a single node. On the right, the modified
tree, T̂ , which accounts for sub-word tokenization by splitting the word ’small’ into two nodes: “sm”
and “all”. A new syntactic relation, called comp, is introduced between these sub-word nodes.

uses an embedding dictionary that matches the size of the CLIP ViT-B/32 textual encoder, while
Mixed introduces an additional MSK token for parallel processing. In contrast, COGT employs 45
extra MSK tokens, each representing a specific dependency relation extracted by the parser, resulting
in a negligible increase in the total parameter count of only 0.06%. All the decoders in Tab. 1 are
composed of three blocks which differ only in their attention masks, and they all alternate a textual-
token embedding attention layer with a cross-attention layer with the features Z (extracted from the
last and the penultimate layer of the CLIP visual encoder, see Sec. 3.1).

D.2 TOKENIZATION

The output of the dependency parser is a tree in which each node corresponds to a caption word.
In contrast, the COGT decoder uses a standard sub-word tokenization, splitting words into smaller
tokens which brings to a larger embedding dictionary. This discrepancy leads to cases where a word
of the dependency tree is split into multiple tokens by the COGT decoder’s tokenizer. We modify
the dependency tree to handle this mismatch: if a word wj is split into sub-tokens wj1 and wj2 by
the COGT decoder’s tokenizer, then we create a new node for wj2 and a new edge between wj2 and
wj1 associated with a dedicated relation called comp (Fig. 3). Note that wj has been removed. As
a result, in G we have that: PA(Wj1) = PA(Wj) and PA(Wj2) = PA(Wj) ∪ {Wj1}.
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D.3 EXPERIMENTS

We use the architectures described above across all the experiments (e.g., the same number of blocks,
learnable parameters, etc.). Specifically, we freeze the weights of the visual encoder and we train
only our textual decoder. We train in mixed precision (FP16) with batch size set to 128 on a GPU
RTX A5000 with 24GB of VRAM for 10 epochs. Following Yuksekgonul et al. (2023), we select
the best checkpoint using the validation set provided in (Yuksekgonul et al., 2023). In all the datasets
and in all the experiments, we use the Adam optimizer with an initial learning rate set to 5× 10−4.
Finally, we apply a Cosine Annealing Learning Rate Scheduler with 50 warmup steps.

E DATASETS AND TASKS

We provide details about the FG-OVD dataset and in App. B and we briefly summarize here the
main characteristics of the other benchmarks. Tab. 10 shows the main statistics of each dataset and
in App. E.1 we show a few images illustrating the benchmark typically tasks.

Table 10: Main statistics of the benchmarks.

Dataset Split Number of testing Avg. caption length
samples (n. of words)

ARO Relation 23,937 8.1
ARO Attribution 28,748 7.1

SugarCrepe Add 2,754 12.9
SugarCrepe Replace 3,846 11.5
SugarCrepe Swap 911 13.5

VL-Checklist Attribute 118,253 2.4
VL-Checklist Object 389,357 3.2
VL-Checklist Relation 75,641 3.5

ColorSwap - 300 8.8

FG-OVD Hard 3,545 10.4
FG-OVD Medium 2,968 11.3
FG-OVD Easy 1,299 16.2
FG-OVD Trivial 3,545 9.7

ARO (Yuksekgonul et al., 2023) is a VLM benchmark for compositional reasoning and word-order
sensitivity. It is composed of two main tasks: Visual Genome Relation and Visual Genome Attri-
bution. In the Visual Genome Relation task, the goal is to evaluate the models’ ability to correctly
interpret the relationships between objects. On the other hand, Visual Genome Attribution focuses
on evaluating the ability to associate the correct attribute with the correct object. As mentioned in
Sec. 4, we do not use COCO Order and Flickr Order because different authors recently found that
grammatical errors in the generated captions of these datasets lead to tasks which can be solved
purely relying on an LLM language prior (Zhang et al., 2024; Tschannen et al., 2023; Lin et al.,
2024).

SugarCrepe (Hsieh et al., 2024) is a dataset developed to evaluate how well VLMs can understand
and process complex compositional tasks by presenting them with carefully designed hard negative
examples. Drawing inspiration from datasets like CREPE (Ma et al., 2023), VL-CheckList (Zhao
et al., 2022), and ARO (Yuksekgonul et al., 2023), SugarCrepe focuses on atomic concepts and
their compositions, such as objects, attributes, and relations. The dataset is split into three tasks:
“Replace”, “Swap” and “Add”. In “Replace”, an atomic concept in the original text is replaced with
a new, mismatched concept. A replacement can involve an object, an attribute or a relation. In
“Swap”, the negative caption is created by exchanging two atomic concepts of the same category
without introducing new elements. In “Add”, a new concept is added to the original caption, leading
to a misalignment with the visual scene content.

VL-Checklist (Zhao et al., 2022) is a benchmark composed of four datasets: Visual Genome (Kr-
ishna et al., 2017), SWiG (Pratt et al., 2020), VAW (Pham et al., 2021), and HAKE (Li et al., 2019).
Each image is associated with two descriptions: a true and a false caption. The true descriptions
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originate from the original image-text pairs in the datasets, while the false ones are generated by
modifying a single word in the true description, altering its overall meaning. These false descrip-
tions are organized into three main types: objects, attributes, and relations.

ColorSwap (Burapacheep et al., 2024) evaluates the ability of multimodal models to accurately
associate objects with their corresponding colors. Each sample contains a caption-image pair along
with a “color-swapped” pair. The two captions in each sample use the same text, but the relation
between colors and objects are inverted.

E.1 QUALITATIVE RESULTS

In Fig. 4-Fig. 12 we show some qualitative results in which we compare COGT-CLIP+ with the
second best approach in Tab. 3 (DAC-LLM). We use these figures also to illustrate the tasks of the
different benchmarks, with a special emphasis on FG-OVD, proposed in this paper.

The man is in the train car.
The train car is in the man.

The dog is to the left of the pants.
The pants is to the left of the dog.

The man is behind the building.
The building is behind the man.

The ski is to the right of the wall.
The wall is to the right of the ski.

COGT DAC-LLM COGT DAC-LLM

COGT DAC-LLM COGT DAC-LLM

Figure 4: Qualitative results on sample images of the ARO Relation test split. We compare our
approach with DAC-LLM which is the second best approach according to the results reported in
Tab. 3.

Three teddy bears laying in bed 
under the covers.
Three teddy bears laying in a 
canopy bed under the covers.

COGT DAC-LLM COGT DAC-LLM

COGT DAC-LLM COGT DAC-LLM

A red truck sitting on a grassy field 
next to other trucks.
A rusty red truck sitting on a grassy 
field next to other trucks.

A group of giraffes drink water in 
the wilderness.
A group of giraffes drink crystal 
clear water in the wilderness.

Someone holding out their hand 
with a pair of scissors on it.
Someone holding out their hand 
with a rusty pair of scissors on it.

Figure 5: Qualitative results on sample images of SugarCrepe.
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Standing toothbrush.
Crouching toothbrush.

Looking at camera cow.
Looking down cow.

Standing giraffe.
Running giraffe.

Walking man.
Cooking man.

COGT DAC-LLM COGT DAC-LLM

COGT DAC-LLM COGT DAC-LLM

Figure 6: Qualitative results on sample images of VL-CheckList.

A rustic, brown cabin surrounded 
by a peaceful, green forest
A peaceful, green cabin surrounded 
by a rustic, brown forest.

COGT DAC-LLM COGT DAC-LLM

COGT DAC-LLM COGT DAC-LLM

Watermelons with red pulp are 
mixed with green apples.
Watermelons with green pulp are 
mixed with red apples.

A brown cat is sitting in front of a 
white chair.
A white cat is sitting in front of a 
brown chair.

A gray dinosaur is riding a blue 
bicycle.
A blue dinosaur is riding a gray 
bicycle.

Figure 7: Qualitative results on sample images of ColorSwap.

A white ceramic bowl.
A black plastic bottle with a white label.
A dark pink tissue paper.
A body light green scarf made of fabric.
A kettle with a metallic body in green and dark blue color.
A blue handbag made of leather.
A cooking pan with a grey wood rim.
A ceramic plate with a white color.
A light brown bench made of plastic.
A green car (automobile).
A brown plastic broom with a red and green shaft.

A black laptop computer made of plastic, with a screen that has a light blue, green, purple and white glass front, 
with a text pattern on it.

A blue towel with a body made of velvet.
A mouse made of dark green plastic.
A blue wood pencil with a striped white, red and brown body.
A wallet with a dark brown and white color, made of leather.
A dark yellow napkin made of paper.
A pink plastic broom with a red and dark grey shaft.
A light yellow soap dispenser made of plastic.
A black watch made of fabric with a black strap.
A bowl with a dark red plastic rim.
A shoe made of wool, available in white and black.

DAC-LLM

COGT

DAC-LLM

COGT

Figure 8: Qualitative results on sample images of the FG-OVD Trivial task. The image on the
bottom shows a failure of COGT.
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A ceramic white bowl.
A car with a dark red exterior.
A grey clock case made of wool, with light grey hands.
A microwave oven with a dark grey and white plastic exterior.
A ceramic light yellow mug with a light blue text.
A fabric fan with a black blade and a grey canopy.
A black leather trash can body.
A grey spoon with a bowl made of orange color.
A pink and dark yellow shoe with a light blue outsole.
A chair with black wool arms.
A white newspaper with dark purple text written on paper.

A grey trash can made of plastic.
A leather blender that is transparent.
A light yellow perforated wood bench with a seat.
A black earphone made of metal with fabric ear pads.
A light grey metal tray with a floral bottom part.
A yellow sponge with a dark blue rough surface.
A wrench with a light orange metal head.
A clock made of stone.
A pink plastic scissors with a grey paper blade, handle and finger-holes.
A pink plastic broom with a red and grey shaft.
A studded scarf with a body made of fabric.

DAC-LLM

COGT

Figure 9: Qualitative results on sample images of the FG-OVD Trivial task where COGT is success-
ful while DAC-LLM fails.

A ceramic vase with a brown mouth, a brown neck, a light grey and red body.
A ceramic vase with a purple mouth, a white neck, a dark blue and red body.
A stone vase with a blue mouth, a light blue neck, a light grey and red body.
A wood vase with a dark pink mouth, a dark grey neck, a light grey and red body.
A ceramic vase with a brown mouth, a light yellow neck, a light grey and red body.
A rattan vase with a brown mouth, a light pink neck, a light yellow and red body.
A wool vase with a brown mouth, a black neck, a yellow and red body.
A velvet vase with a light orange mouth, a brown neck, a dark brown and red body.
A ceramic vase with a white mouth, a dark yellow neck, a light grey and yellow body.
A wool vase with a brown mouth, a black neck, a dark yellow and red body.
A crochet vase with a brown mouth, a black neck, a light grey and dark brown body.

A television set with a light brown finish made of glass, featuring buttons made of plastic, a striped pattern on its side, and 
wooden tops and bottoms.

… light brown finish made of glass, featuring buttons made of ceramic, a striped pattern on its side, and text ...
… light brown finish made of glass, featuring buttons made of stone, a plain pattern on its side, and wool ...
… yellow finish made of glass, featuring buttons made of velvet, a striped pattern on its side, and paper …
… light brown finish made of velvet, featuring buttons made of stone, a striped pattern on its side, and wool …
… light brown finish made of fabric, featuring buttons made of plastic, a studded pattern on its side, and stone …
… light brown finish made of stone, featuring buttons made of plastic, a floral pattern on its side, and metal …
… dark grey finish made of glass, featuring buttons made of plastic, a plain pattern on its side, and fabric …
… light brown finish made of glass, featuring buttons made of text, a perforated pattern on its side, and rattan …
… light orange finish made of glass, featuring buttons made of text, a striped pattern on its side, and ceramic …
… blue finish made of glass, featuring buttons made of leather, a checkered pattern on its side, and wooden …

DAC-LLM

COGT

Figure 10: Qualitative results on sample images of the FG-OVD Easy task.

A transparent glass bowl with a striped pattern on the rim.
A translucent glass bowl with a dotted pattern on the rim.
A opaque glass bowl with a checkered pattern on the rim.
A translucent glass bowl with a perforated pattern on the rim.
A translucent glass bowl with a checkered pattern on the rim.
A opaque glass bowl with a woven pattern on the rim.
A translucent leather bowl with a striped pattern on the rim.
A transparent wool bowl with a checkered pattern on the rim.
A translucent glass bowl with a plain pattern on the rim.
A transparent metal bowl with a checkered pattern on the rim.
A translucent crochet bowl with a striped pattern on the rim.

A white pillow made of fabric.
A yellow pillow made of plastic.
A grey pillow made of paper.
A dark red pillow made of velvet.
A yellow pillow made of text.
A light red pillow made of plastic.
A dark orange pillow made of velvet.
A orange pillow made of crochet.
A black pillow made of rattan.
A green pillow made of plastic.
A purple pillow made of crochet.

DAC-LLM

COGT

Figure 11: Qualitative results on sample images of the FG-OVD Medium task.

A laptop computer with a grey metal back, featuring a white logo made of metal.
A laptop computer with a red metal back, featuring a white logo made of metal.
A laptop computer with a grey metal back, featuring a white logo made of glass.
A laptop computer with a dark orange metal back, featuring a white logo made of metal.
A laptop computer with a grey metal back, featuring a white logo made of plastic.
A laptop computer with a grey metal back, featuring a white logo made of crochet
A laptop computer with a grey crochet back, featuring a white logo made of metal.
A laptop computer with a pink metal back, featuring a white logo made of metal.
A laptop computer with a grey leather back, featuring a white logo made of metal.
A laptop computer with a grey metal back, featuring a dark purple logo made or metal.
A laptop computer with a grey metal back, featuring a white logo made of stone.

A light blue and light grey plastic clock with a text pattern and a black metal hand.
A light blue and light grey plastic clock with a text pattern and a black fabric hand.
A light blue and light grey fabric clock with a text pattern and a black metal hand.
A light blue and light red plastic clock with a text pattern and a black metal hand.
A light blue and light grey plastic clock with a studded pattern and a black metal hand.
A light blue and light grey plastic clock with a text pattern and a black ceramic hand.
A light blue and light grey plastic clock with a text pattern and a white metal hand.
A light blue and light grey plastic clock with a text pattern and a black wool hand.
A light blue and light grey plastic clock with a text pattern and a yellow metal hand.
A light blue and light grey plastic clock with a striped pattern and a black metal hand.
A light blue and light grey plastic clock with a text pattern and a black crochet hand.

DAC-LLM

COGT

Figure 12: Qualitative results on sample images of the FG-OVD Hard task.
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F SYNTACTIC CATEGORIES

We report in Tab. 11 the 45 syntactic categories defined in (Silveira et al., 2014) and which form our
set V (Sec. 3).

Table 11: List of the syntactic categories defined in (Silveira et al., 2014).

Syntactic Categories
acomp
advcl
advmod
amod
appos
aux
auxpass
cc
ccomp
conj
cop
csubj
csubjpass
dep
det
discourse
dobj
expl
goeswith
iobj
mark
mwe
neg
nn
npadvmod
nsubj
nsubjpass
num
number
parataxis
pcomp
pobj
poss
possessive
preconj
predet
prep
prt
punct
quantmod
rcmod
root
tmod
xcomp
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