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Abstract

Gender bias in large language models (LLMs) perpetuates harmful stereotypes and
unfair outcomes in Al applications. While traditional bias mitigation methods like
fine-tuning and activation steering can be effective, they often require significant
data modifications and computational resources. This paper highlights the dual
utility of Sparse AutoEncoders (SAEs) in both detecting and mitigating these
biases. We demonstrate how SAEs facilitate the identification of bias-inducing
components within LLMs, enabling more targeted and efficient bias mitigation
strategies without the need for extensive model retraining or specialized datasets.
Our findings suggest that SAEs offer a promising approach for enhancing the
interpretability and efficiency of bias mitigation processes in LLMs.

1 Introduction

Large Language Models (LLMs) have shown remarkable capabilities across a variety of natural
language processing (NLP) tasks. Models like Mistral (Jiang et al.|[2023]]) and LLaMA (Touvron et al.
[2023]]), trained on vast and diverse datasets which enables LLMs to perform well across multiple
domains. However, the same diversity also exposes these models to a range of social biases embedded
within the data they are trained on. As a result, LLMs can reflect and amplify harmful biases, such as
gender, racial, and cultural stereotypes. Given the significant impact of biased Al systems on society,
it is crucial to both understand and mitigate biases in LLMs.

To address this issue, various interpretability techniques have been developed, including layer-wise
bias analysis (Prakash and Lee| [2023]]), feature-mapping approaches (Prakash and Roy| [2024]),
and analysis of attention heads (Vig et al.|[2020]). These methods have provided valuable insights
into how biases are embedded within model components. Efforts to mitigate bias have included
strategies such as fine-tuning (Dong et al.| [2024]]), instruction guiding (Dong et al.[[2024]), and
activation patching (Prakash and Roy| [2024]], |Vig et al.|[2020]). However, these methods often
require significant computational resources or specialized datasets, limiting their practicality.

Our research explores the use of Sparse AutoEncoders (SAEs) (Ng et al.[[2011])) to both understand
and mitigate bias in LLMs. The strength of SAEs lies in their ability to create sparse, interpretable
representations of model activations(Bricken et al.| [2023]], |(Cunningham et al.| [2023]]). Unlike
fine-tuning, which requires retraining on counterfactual data, SAEs operate directly on activations,
identifying bias-inducing components without altering model parameters. This makes SAEs a more
efficient and scalable solution for bias mitigation, eliminating the need for additional training data or
extensive retraining.

Contributions: In this paper, we analyze the decomposed components of SAEs to identify the
source of gender bias in large language models (LLMs). By focusing on the SAE latent space,
we uncover gender-specific patterns that contribute to biased associations, such as linking certain
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professions or hobbies to specific genders. Based on this analysis, we propose a method to mitigate
gender bias by suppressing these gender-specific components within the SAE representation, steering
the model towards more balanced outputs without modifying the underlying LLM.

2 Related work

Identifying and Mitigating Gender Bias: Research has intensively explored gender bias in LLMs,
with studies like |Vig et al.|[2020] and [Chintam et al.|[2023]] examining the role of attention heads
in GPT-2. Beyond attention mechanisms, |Prakash and Roy| [2024]] analyzed bias through a feature
evolution model. Historical studies such as those by Bolukbasi et al.|[2016]] and [Zhao et al.| [2018]]
have documented persistent gender biases in occupations, prompting the development of tools like
BBQ (Parrish et al.|[2021]])) and BOLD (Dhamala et al.| [2021]]) to measure and mitigate these biases.
Techniques like Counterfactual Data Augmentation by [Mishra et al.| [2024]], Sharma et al.| [2020]
have refined debiasing strategies.

SAE:s for Interpretability: Innovative approaches have leveraged SAE:s to interpret the "black box"
nature of LLMs. Recent advances by |Gao et al. [2024]] and Karvonen et al.|[2024] have enhanced
the scalability and efficacy of SAEs in extracting interpretable features from LLMs like GPT-4.
Foundational techniques by [Makhzani and Frey|[2013]] established controlling sparsity as crucial for
effective feature extraction in SAEs. Several recent works have leveraged SAEs to interpret LLMs.
Makelov et al. (2024) used SAEs to understand how LLMs learn the task of indirect object detection,
Kissane et al. (2024) applied them to interpret attention layer outputs, and O’Neill et al. (2024)
utilized SAEs to disentangle dense embeddings and better understand the features learned by LLMs.

3 Method

We use SAEs to decompose LLM activations and identify bias-inducing components. These compo-
nents, are then suppressed from LLM’s residual stream to reduce their impact on model predictions.
Gender bias is measured by examining the LLM’s probabilities for "he" or "she" following gender-
neutral sentences, with bias quantified using the Gender Logits Difference (GLD) metric (Dong et al.
[2024]).

4 Experimental setup

4.1 Dataset and models

In this study, we assess gender bias in LLMs using a method that evaluates the likelihood of gender-
specific tokens following gender-neutral contexts. Our dataset, sourced from Dong et al.| [2024],
comprises 13k sentences (combination of naturally sourced and synthetically generated) with neutral
openings like "My friend is a nurse and". It includes various professions and hobbies such as "doctor,"
"teacher," "chess," and "karate," and other enthusiast groups like "veganism" and "Star Wars fan".
For each sentence, we analyze the model’s probability of generating "he" or "she" as the next word.
For our experiments, we utilized GPT-2 small (Radford et al.|[2019]), a model with 12 transformer
layers and a 768-dimensional residual stream. To analyze and mitigate gender bias, we employed
pre-trained SAEs (Lin and Bloom|[2023]]), trained on the residual streams of various GPT-2 layers,
each containing 25k features.

4.2 Bias measurement

If the probabilities of predicting "he" and "she" are equal for a given gender-neutral sample in the
presence of a stereotype token, the model is unbiased. However, any significant deviation from
this balance indicates the presence of bias. To quantify this bias, we use the GLD metric which is
calculated as:

|pz — Di ShE)‘
GLD =
Z he ) + pi(she)

A higher GLD score indicates a greater gender b1as in the model’s output, while a GLD score close to
zero suggests a neutral prediction.



Table 1: Top stereotype biases

Gender Stereotype Bias (GLD)
Male software engineer (.39

Male  meteorologist 0.28
Female nurse 0.7

Female dancer 0.63

4.3 Understanding the bias

To uncover the source of gender bias in LLMs, we utilize SAEs, which are trained on the residual
activations of the LLM. These SAEs provide a sparse decomposition of the LLM’s residual neu-
rons, offering a more interpretable representation of the underlying model activations. The basic
architecture of an SAE model is given by

f(z) = ReLU(Wene + bene),  and & = Wee(f(z)) + baec

Our aim is to identify and analyze components within SAEs that indicate gender bias. Using
automated explanation techniques used in Bills et al.|[2023]] and leveraging effective LLMs like
GPT4(E|, we first identify SAE components that are activated by gender-related tokens, such as *'men,’
’male,” "women,” and ’female’. We then introduce gender-neutral samples containing stereotype
tokens—such as professions or hobbies—into the LLM to observe which SAE components activate.
By correlating these activations with previously identified gender-related components, we pinpoint
those triggered by stereotype tokens with distinct gender associations as the primary sources of bias.

4.4 Mitigation

After identifying the gender bias components in the SAE decomposition, we mitigate the bias by
suppressing these components from the residual stream of the LLM’s last layer, which directly
influences token predictions. This is done by subtracting the contribution of the bias-inducing
components from the residual activations, neutralizing their effect. Specifically, the residual activation
is modified as follows:

debiased_activation = residual_activation — Z Fli] - (Weee[t] + baec[d])

K3

Here, f[i] denotes the activation value for the ith SAE feature and Wy [i] being the corresponding
feature vector identified as contributing to gender bias in the SAE feature space.

5 Results and analysis

GLD Values
GLD Values

rofessions. Hobbies Enthusiastic Groups. veral bbi
Categories Categories

(a) Initial bias across categories (b) Reduction in bias comparison

Figure 1: Comparison of bias

Presence of bias: To quantify the presence of gender bias in our model, we first examined the GLD
across different categories. Our analysis (Figure [Ta) reveals that professions exhibit the highest level
of gender bias compared to hobbies and enthusiast groups. Additionally, table[T|shows the top gender
stereotypes for males and females in our dataset.

2Explanations for this research is adapted from neuropedia (Lin and Bloom|[2023]]



Correlation with SAE feature activation: We further analyzed the correlation between detected
SAE feature activations and GLD values to understand the relationship between specific model
components and the manifestation of bias. Figure [2a] depicting this correlation demonstrates a
discernible trend: higher GLD values tend to coincide with the activation of gender-bias features.
This indicates that identified SAE components are predictive of increased bias in the model’s output,
validating our approach of focusing on these components for bias mitigation.
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Figure 2: Comparison of correlation plots for different layers

Layer-wise analysis: While the features in the final layer (layer 12) exhibited a strong correlation
with gender bias, we also found relevant features in layers 11 and 10. However these were not as
distinct as those in the final layer, and no bias-related features were detected in the lower layers.
Figure [2b]illustrates the correlation of the layer 11 feature with bias, showing both low correlation
and activation values.

Table 2: Reduction in religion bias

Stereotype Initial bias Reduced bias

terrorists ~ 0.963 0.519
extremists  0.949 0.527

Mitigation results: Our mitigation strategy significantly reduced GLD, as shown in Figure[Tb] with
an overall decrease from 0.24 to 0.199. Notably, the largest reductions occurred in the professions
category, while GLD changes for enthusiast groups were minimal, suggesting that bias mitigation is
most effective when SAE features associated with professions are targeted. We also evaluated our
SAE mitigation strategy against instruction guiding, as per Dong et al.|[2024], instructing the model
to omit gender: "Continue the sentence without gender mention: My friend is a nurse and". This
method had minimal impact on GLD, unlike the significant reductions seen with SAEs, likely due
to GPT-2 small’s limitations in following such directives, highlighting SAEs’ effectiveness in such
contexts.

To assess the generalizability, we extended our analysis to religious stereotypes, particularly those
associated with the "Muslim" and "Hindu" religion, identifying and mitigating biases related to
stereotypes like "terrorists" and "extremists". Table [2] details the original and reduced bias levels,
affirming the broad applicability of our approach.

These results underline the effectiveness of our method, particularly in areas with pronounced gender
bias. The correlation between SAE feature activation and GLD provides valuable insights into the
dynamics of bias within the LLM, supporting the strategic suppression of specific components.

6 Conclusion

In conclusion, this study shows that SAEs effectively identify and mitigate gender bias in LLMs,
particularly in professions contexts. By decomposing LLM activations and suppressing bias-inducing
components, we significantly reduced GLD. This highlights the utility of interpretable machine
learning techniques in detecting and mitigating biases without changing the model parameters.
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