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Abstract. Video anomaly detection (VAD) in autonomous driving sce-005 005
nario is an important task, however it involves several challenges due006 006
to the ego-centric views and moving camera. Due to this, it remains007 007
largely under-explored. While recent developments in weakly-supervised008 008
VAD methods have shown remarkable progress in detecting critical real-009 009
world anomalies in static camera scenario, the development and valida-010 010
tion of such methods are yet to be explored for moving camera VAD.011 011
This is mainly due to existing datasets like DoTA not following training012 012
pre-conditions of weakly-supervised learning. In this paper, we aim to013 013
promote weakly-supervised method development for autonomous driv-014 014
ing VAD. We reorganize the DoTA dataset and aim to validate recent015 015
powerful weakly-supervised VAD methods on moving camera scenarios.016 016
Further, we provide a detailed analysis of what modifications on state-017 017
of-the-art methods can significantly improve the detection performance.018 018
Towards this, we propose a “feature transformation block” and through019 019
experimentation we show that our propositions can empower existing020 020
weakly-supervised VAD methods significantly in improving the VAD in021 021
autonomous driving.022 022

Keywords: Video Anomaly Detection · Weakly-supervised Learning023 023

1 Introduction024 024

Anomaly detection on egocentric vehicle videos is a prominent task in computer025 025

vision to ensure safety and take actionable decision (such as emergency break-026 026

ing) in a autonomous driving scenario. While video anomaly detection (VAD) in027 027

static CCTV scenarios has been extensively studied in recent research, egocentric028 028

vehicle view anomaly detection (ego-VAD) remains largely unexplored. This is029 029

due to the complexity involved in ego-VAD as it poses several unique challenges.030 030

These include: (i) complex dynamic scenarios due to moving cameras, (ii) low031 031

camera field of view, (iii) little to no prior cues before anomaly occurrence. Fur-032 032

thermore, the previous methods majorly focused on pixel reconstruction based033 033

unsupervised anomaly detection while a few follow supervised settings. However,034 034

the unsupervised methods [1, 2, 17,20] have low generalization ability to diverse035 035

scenarios and tends to generate false positives for minor variations from training036 036

samples. Anomalies are measured against a contextual notion of normalcy which037 037

changes from region to region in traffic scenarios, which poses a unique problem038 038

for unsupervised techniques. On the contrary, supervised methods have moder-039 039

ate generalization ability in the diverse real-world scenarios but obtaining the040 040
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full temporal annotation required for the training of these models is laborious041 041

and time consuming.042 042

To combat this, recent static camera VAD approaches [6,11,18,21,25–27,29]043 043

adopt a weakly-supervised binary classification paradigm where both normal and044 044

anomaly videos are used during training. In this setting, for a long untrimmed045 045

video sequence, only coarse video-level labels (i.e. normal and anomaly) are re-046 046

quired for training instead of frame-level annotations. Here, previous approaches047 047

first extract features using a pre-trained frozen off-the-shelf feature backbone048 048

(i.e. 3D ConvNet, video transformer) and then learn an MLP ranker by multiple049 049

instance learning (MIL) based optimization. Largely, previous methods consider050 050

only global feature representation (i.e. features extracted from the whole frame)051 051

for optimizing the MLP ranker. However some specilaized methods extract both052 052

global and local features to promote subtle and sharp VAD. Furthermore, for op-053 053

timizing the MLP ranker, earlier WSVAD approaches adapt a classical MIL loss054 054

proposed by [18] which selects two instances based on the presence of abnormality055 055

(i.e. one each from normal and anomaly videos) to take part in the optimiza-056 056

tion process. Recent popular weakly-supervised VAD methods [3,19,28] follow a057 057

magnitude-based optimization wherein they encourage the sharp abnormal cues058 058

of short anomalies to take part in optimization. This feature magnitudes-based059 059

optimization is influenced by strong spatio-temporal variation across temporal060 060

segments leading to effective separability for sharp and global anomalies.061 061

Another, critical aspect of weakly-supervised VAD lies in effective tempo-062 062

ral modeling to discriminate anomalies from normal events. To promote this,063 063

previous classical methods [18, 21] adopt conventional temporal modeling net-064 064

works like TCN [10], LSTM [15] to discriminate short anomalies from normal065 065

events. In contrast, authors in [19] proposed a multi-scale temporal convolu-066 066

tion network (MTN) for global temporal dependency modeling between normal067 067

and anomaly segments. Recently, Zhou et al. [28] and Chen et al. [3] adopt068 068

transformer-based global-local and focus-glance blocks respectively to capture069 069

long and short-term temporal dependencies in normal and anomalous videos.070 070

Distinctively, Majhi et al. [14]propose a Outlier-Embedded Cross Temporal Scale071 071

Transformer (OE-CTST) that first generates anomaly-aware temporal informa-072 072

tion for both long and short anomalies and hence allows the transformer to073 073

effectively model the global temporal relation among the normal and anoma-074 074

lies. Recent weakly-supervised VAD methods empowered by effective temporal075 075

modeling ability and strong optimization ability with limited supervision have076 076

gained popularity in static camera condition, however their adaptation to moving077 077

ego-camera setting is still unexplored.078 078

Motivated by this, in this paper we aim to provide an extensive exploration of079 079

recent popular weakly-supervised methods on ego-centric VAD task. We choose080 080

four state-of-the-art (SoTA) reproducible methods: RTFM [19] (ICCV’21), MGFN [3]081 081

(AAAI’23), UR-DMU [28] (AAAI’23), and OE-CTST [14] (WACV’24) for quan-082 082

titative and qualitative analysis. Further, as weakly-supervised methods majorly083 083

relay on pre-computed input feature maps, we leverage recent popular vision-084 084

language model CLIP [16] for backbone feature extraction. Next, we proceed to085 085

propose a feature transformation block (FTB) to enhance the temporal saliency086 086

which can enable better temporal modeling and optimization with feature magni-087 087



ROAM ECCV 2024 Submission #none 3

tude supervision in SoTA methods. Further, as existing ego-centric VAD datasets088 088

like DoTA [23] does not have normal samples in training split, so the official089 089

DoTA dataset is not useful for weakly-supervised training (requires both nor-090 090

mal and anomaly samples for training). Thus, we reorganize the training split of091 091

DoTA dataset to fulfill the weakly-supervised training regime and kept the test092 092

split as in official DoTA dataset for fair comparison with previous unsupervised093 093

methods. We declare this reorganize DoTA dataset as WS-DoTA to promote094 094

weakly supervised research exploration on ego-cetric VAD task. Through exper-095 095

imentation, we have shown in section 5 that what matters in weakly-supervised096 096

learning of anomalies in ego-centric autonomous driving videos. Further, we show097 097

how the proposed FTB enhances the SoTA methods performance significantly098 098

on WS-DoTA dataset.099 099

2 Preliminaries of Video Anomaly Detection in100 100

Weakly-Supervised Setting101 101

Table 1: WS-DoTA Dataset Statistics. The numbers in red
denote the statistics for only the abnormal segment of the
videos. Here, abnormal classes in test splits are ST:Collision
with another vehicle which starts, stops, or is stationary,
AH: Collision with another vehicle moving ahead or wait-
ing, LA: Collision with another vehicle moving laterally in
the same direction, OC:Collision with another oncoming ve-
hicle, TC:Collision with another vehicle which turns into or
crosses a road, VP: Collision between vehicle and pedestrian,
VO: Collision with an obstacle in the roadway, 00: Out-of-
control and leaving the roadway to the left or right

Frame Count Train Split Test Split
Normal Anomaly ST AH LA OC TC VP VO OO

Average 737.8 104.6 25.5 32.6 36.7 28.4 29.1 30.1 30.4 49.2
Minimum 287 30 9 7 4 5 1 10 12 9
Maximum 750 299 50 84 158 203 135 71 75 143
Total Videos 3592 2689 24 164 168 115 390 35 29 106

Video anomaly de-102 102

tection (VAD) aims103 103

to detect whether an104 104

anomaly is occurring105 105

at the current mo-106 106

ment (t). For VAD,107 107

an algorithm can com-108 108

pute an anomaly score109 109

s(t) for the current110 110

frame ft. In the con-111 111

text of supervised ano-112 112

maly detection, a clas-113 113

sifier needs full tem-114 114

poral annotations of115 115

each frame in videos.116 116

However, obtaining tem-117 117

poral annotations for118 118

long videos is time119 119

consuming and laborious. Weakly-supervised setting relaxes the assumption of120 120

having these accurate temporal annotations. Here, only video-level labels indicat-121 121

ing the presence of an anomaly in the whole video is needed. A video containing122 122

anomalies is labeled as positive and a video without any anomaly is labeled as123 123

negative. Formally the weakly-supervised anomaly detection task can be formu-124 124

lated as:125 125

Given a set of normal , anomaly untrimmed video for training and a test126 126

query untrimmed video V with n frames i.e. V = {f1, f2, f3, . . . , fn}, goal is to127 127

find out a set of m (m ≤ n) frames, Vanomaly that contains an anomaly video128 128

pattern i.e. Vanomaly = {fa
1 , f

a
2 , f

a
3 , . . . , f

a
m}, where Vanomaly ⊆ V .129 129

– Vanomaly can be ϕ, if all frames of V are normal.130 130

– Vanomaly can be V , if all frames of V contain anomaly.131 131
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Fig. 1: Our Framework for experimental analysing of Weakly-supervised video anomaly
detection methods on autonomous driving videos. Here, we integrate a feature trans-
formation block (FTB) to improve state-of-the-art methods perfromance.
3 WS-DoTA Dataset132 132

To train wekly-supervised models we require the dataset to contain both normal133 133

and anomalous videos. We curate a suitable dataset having over 6000 videos134 134

for training, and over 1000 videos for testing all of which are anomalous. The135 135

training split contains videos from Detection of Traffic Anomaly (DoTA) ??136 136

which contains anomalous videos and D2-City dataset which contains normal137 137

videos. The test split contains videos from only the DoTA dataset.138 138

4 Benchmark Methods Discussion and Our Proposition139 139

The performance of weakly-supervised VAD algorithms keeps improving with the140 140

recent state-of-the-art (SoTA) methods obtaining impressive results on publicly141 141

available benchmark datasets. For this, we have analyzed four SoTA methods142 142

and their functionality on ego-centric vehicle view moving camera dataset. A143 143

typical framework for analyzing SoTA methods can be seen in Figure 2. The144 144

functional analysis begins with extracting off-the-shelf video features from145 145

CLIP [16] image encoder Fv ∈ RT×D0, where T and D0 is the temporal (i.e.146 146

no.of frames) and embedding dimension respectively. Next, the Fv is spatio-147 147

temporally enhanced via a proposed "feature transformation block (FTB)" and148 148

the resultant is passed it to SoTA methods for learning the abnormality. The149 149

functional analysis framework in Figure 2 is designed such that by "switching150 150

on" a particular SoTA method, the respective anomaly detection performance is151 151

reported. Next we briefly characterize the SoTA methodologies before proceeding152 152

for the description of proposed FTB. Detailed functional framework of SoTA153 153

methods is provided in supplementary material.154 154

4.1 RTFM [19]155 155

Robust temporal Feature Magnitude (RTFM) addresses one of the major chal-156 156

lenge of WSVAD i.e. how to localise anomalous snippets from a video labelled157 157

as abnormal. The challenge arises due to two reasons: (i) the majority of snip-158 158

pets from an abnormal video consist of normal events, which can overwhelm159 159

the training process and challenge the fitting of the few abnormal snippets; (ii)160 160

the distinction between normal and abnormal snippets may be subtle, making161 161

it difficult to clearly differentiate between the two.162 162
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RTFM uses the temporal feature magnitude of video snippets, with low-163 163

magnitude features indicating normal (negative) snippets and high-magnitude164 164

features indicating abnormal (positive) snippets. It is based on the top-k multi-165 165

ple instance learning (MIL) approach, which involves training a classifier using166 166

the k highest-scoring instances from both abnormal and normal videos. Addi-167 167

tionally, to capture both long and short-range temporal dependencies within168 168

each video, RTFM integrates a pyramid of dilated convolutions with a temporal169 169

self-attention module. This combination allows for more comprehensive learning170 170

of temporal patterns across different time scales.171 171

4.2 MGFN [3]172 172

Magnitude-Contrastive Glance-and-Focus Network (MGFN) advances the no-173 173

tion of RTFM [19] and provides a contrastive learning framework for WSVAD.174 174

Using global-to-local information integration mechanism similar to human vi-175 175

sion system for detecting anomalies in a long video, MGFN first glances the176 176

whole video sequence to capture long-term context information, and then fur-177 177

ther addresses each specific portion for anomaly detection. Instead of merely178 178

fusing spatio-temporal features, the MGFN strategy allows the network to first179 179

gain an overview of the scene, then detect scene-adaptive anomalies using global180 180

knowledge as a prior. Crucially, unlike the RTFM loss, which simply separates181 181

normal and abnormal features without accounting for different scene attributes,182 182

they propose a Magnitude Contrastive loss to learn a scene-adaptive cross-video183 183

magnitude distribution.184 184

4.3 URDMU [28]185 185

To enhance anomaly detection under weak supervision, URDMU uses dual mem-186 186

ory units with uncertainty regulation to store and differentiate normal and abnor-187 187

mal prototypes, unlike previous methods that use a single memory for normality.188 188

The anomaly memory bank gathers information from anomalous videos, while189 189

the normal memory bank learns patterns from normal and abnormal videos.190 190

Building on RTFM [19] finding that normal features typically have low mag-191 191

nitudes, URDU observes normal feature fluctuations due to factors like camera192 192

switching. These are modeled with a Gaussian distribution, using a normal data193 193

uncertainty learning scheme to create a latent normal space, helping to sepa-194 194

rate normal and anomalous instances and minimize false alarms. Additionally, a195 195

Global and Local Multi-Head Self Attention module is used in the Transformer196 196

network to capture video associations more effectively.197 197

4.4 OE-CTST [14]198 198

The Outlier Embedded Cross Temporal Scale Transformer (OE-CTST) takes in-199 199

spiration from transformer-based methods like UR-DMU [28] and MGFN [3]. It200 200

proposes a novel framework with an outlier embedder (OE) and a cross temporal201 201

scale transformer (CTST). Unlike traditional position embeddings, the OE gen-202 202

erates anomaly-aware temporal position encodings by learning from a uni-class203 203

distribution, treating outliers as anomalies. These encodings are integrated with204 204

temporal tokens and processed by the CTST.205 205

The CTST effectively encodes global temporal relations among normal and206 206

abnormal segments through two main components: a multi-stage design and a207 207

Cross Temporal Field Attention (CTFA) block. The multi-stage design enables208 208

the CTST to examine anomaly-aware tokens at different scales via multi-scale209 209

tokenization.210 210
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4.5 Proposed Feature Transformation Block (FTB)211 211

Primarily, this section considers a new feature transformation strategy ideal212 212

for image models like CLIP [16] and weakly-supervised VAD. A key drawback213 213

in CLIP for video feature extraction is that it extracts per-frame features as a214 214

results it ignores the underlying motion of the video. This underlying motion cue215 215

is a relevant attribute in autonomous VAD. Hence a motion enhanced feature216 216

map that can highlight the salient temporal region is desirable. For this, we217 217

study and propose three modules (M1, M2, M3) of feature transformation as218 218

described below.219 219

M1: Spatial Feature As shown in Figure 2, this module considers the raw220 220

spatial video feature obtained from Image encoder of CLIP Fv ∈ RT×D0 as a221 221

baseline. The feature map Fv has enriched spatial semantics thanks to large-scale222 222

vision-language pre-training. However, Fv without motion representation alone223 223

may not be self-sufficient to represent an abnormality in autonomous VAD.224 224

M2: Frequency aware Temporal Regularity Feature To overcome the225 225

lacuna of M1, this module shown in Figure 2 explicitly encodes the motion rep-226 226

resentation via the temporal regularity feature map ∆Fv ∈ RT×D0 and it’s cor-227 227

responding discrete cosine transform (DCT) coefficients. To obtain ∆Fv, at first,228 228

a temporal shift operation is applied to Fv that principally moves the tempo-229 229

ral feature vector along the temporal dimension. The outcome of the temporal230 230

shift operator is also a T ×D0 dimensional video feature map F+
v where the231 231

first and last temporal tokens are padded and truncated respectively. Then, an232 232

absolute difference between Fv and F+
v is performed to compute the temporal233 233

regularity ∆Fv. This operation enables to capture the amount of change between234 234

consecutive segments. Further, to enhance the motion representations, discrete235 235

cosine transform s applied on top of temporal regularity feature ∆Fv. The moti-236 236

vation and intution behind using DCT for feature enhancement is quite straight237 237

forward, as DCT components can represent entire temporal motion sequence238 238

and can be sensitive to subtle motion patterns as well. Further, Low-frequency239 239

DCT coefficients reflect the movements with steady or static motion patterns,240 240

which are not discriminative enough. Thus, we element-wise added the resultant241 241

of DCT and ∆Fv to infuse low-frequency component of DCT with higher order242 242

temporal regularity feature. This feature transformation allow the sharp tempo-243 243

ral regularity feature to be aware of subtle low-frequency features which is to be244 244

used by SoTA method for anomaly separability learning.245 245

M3: Spatial aware Temporal Regularity Feature As shown in Figure 2,246 246

this module extends the notion of M2 in feature enhancement and re utilizes the247 247

enriched vision-language spatial semantics on top of temporal regularity feature248 248

∆Fv. The motion salient temporal regularity features has the ability to capture249 249

sharp changes however it’s agnostic about spatial scenario variances. Moreover,250 250

these spatial information could be critical along with the motion encoding in251 251

autonous deiving condition where the scenario is quite dynamic. Thus, In order252 252

to complement the temporal regularity features ∆Fv via spatial feature, Fv is253 253

sigmoid activated and added element-wise to ∆Fv to result in a spatial aware254 254

temporal regularity feature map to be used by SoTA methods.255 255
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5 State-of-the-art Quantitative Comparison and Qualitative Analysis256 256

In Table 2, we compare the four popular weakly-supervised state-of-the-art (W-257 257

SoTA) methods RTFM [19], MGFN [3], URDMU [28], and OE-CTST [14] with258 258

the classical unsupervised and supervised methods. Further, we analyse the ef-259 259

fectiveness of our feature transformation block (FTB) in performance gain across260 260

four W-SoTA method. To suuport this, a detailed qualitative analysis is shown261 261

in Figure 2. In Table 2, the performances are compared across two indicator262 262

i.e. overall and class-wise performance. Kindly note that, unlike unsupervised263 263

methods we only use raw RGB frames as input to W-SoTA methods, hence it264 264

is fair to compare the results on only RGB modalities. Additional qualitative265 265

analysis is provided in supplementary material.266 266

Table 2: State-of-the-art comparisons on the test set of
WS-DoTA dataset across overall and class-wise perfor-
mance indicator, where the considered test-set of WS-
DoTA has the same test protocol as DoTA [23] dataset
for fair comparison with previous.

Methods Overall Class-Wise Performance (AUC%)
AUC (%) ST AH LA OC TC VP VO OO

Unsupervised Method with RGB only Feature
ConvAE (gray) [7] 64.3 - - - - - - - -
ConvAE (flow) [7] 66.3 - - - - - - - -

ConvLSTMAE (gray) [5] 53.8 - - - - - - -
ConvLSTMAE (flow) [5] 62.5 - - - - - - -

AnoPred (RGB) [13] 67.5 70.4 68.1 67.6 67.6 69.4 65.6 64.2 57.8
AnoPred (Mask RGB) [13] 64.8 69.6 67.9 62.4 66.1 65.6 65.3 58.8 59.9

TAD (Bbox+ flow) [24] 69.2 - - - - - - -
TAD [24] + ML [9] [12](Bbox+ flow) 69.7 71.2 71.8 68.9 71.3 70.6 67.4 63.8 69.2

Ensemble (RGB + Bbox+ flow) 73.0 75.4 75.5 71.0 75.0 74.5 70.6 65.2 69.6
Supervised method with RGB only Feature

LSTM [8] (RGB) 63.7 - - - - - - -
Encoder-Decoder [4] (RGB) 73.0 - - - - - - -

TRN [22] (RGB) 78.0 - - - - - - -
Weakly-Supervised Methods with M1: Spatial only Feature

RTFM [19] 57.9 59.8 58.6 57.6 56.5 56.2 55.2 51.6 60.6
MGFN [3] 66.6 57.1 66.2 64.6 69.6 67.0 63.0 64.3 69.3

URDMU [28] 57.5 50.8 58.8 60.0 57.4 56.7 55.3 53.2 56.2
OE-CTST [14] 70.9 64.2 71.4 71.5 68.2 71.2 66.2 69.6 75.2

Weakly-Supervised Methods with M2: Frequency aware Temporal Regularity Feature
RTFM [19] 56.0 57.1 56.1 55.7 53.4 56.2 57.9 53.9 58.1
MGFN [3] 67.4 67.1 70.0 66.8 67.9 67.6 67.6 73.7 69.0

URDMU [28] 54.8 58.4 56.3 54.3 53.0 54.7 52.8 54.5 55.1
OE-CTST [14] 71.9 66.3 70.6 72.0 72.1 71.1 67.1 76.4 75.9

Weakly-Supervised Methods with M3: Spatial aware Temporal Regularity Feature
RTFM [19] 78.2 62.7 79.2 78.7 76.5 77.5 74.7 79.8 83.1
MGFN [3] 67.4 60.8 68.9 66.5 66.8 67.3 61.2 66.1 68.0

URDMU [28] 73.0 63.8 71.1 72.4 72.9 74.9 65.4 79.5 75.9
OE-CTST [14] 75.6 63.6 77.4 76.0 73.8 74.9 73.3 76.2 78.1

Overall Performance267 267

(AUC%) In this indi-268 268

cator, RTFM [19] with269 269

M3 feature transforma-270 270

tion (i.e. spatial aware271 271

temporal regularity fea-272 272

ture) has a significant273 273

performance gain of +10.7%274 274

compared to unsupervised275 275

Anopred [13] method and276 276

further, it surpasses the277 277

fully supervised TRN by278 278

+0.2%. Similar impres-279 279

sive performance gains280 280

are also achieved by other281 281

W-SoTAs with M3 fea-282 282

ture transformation, which283 283

shows the effectiveness284 284

of M3 in highlighting285 285

anomaly relevant salient286 286

clues in the input fea-287 287

ture maps. In contrast,288 288

W-SoTAs with M1 feature transformation (i.e. spatial only features) per-289 289

forms poorly w.r.t unsupervised and supervised methods. This is mainly due290 290

to the lack of motion representative features in CLIP [16] backbone which291 291

may turn out crucial in ego-centric video anomaly detection. Further, to en-292 292

courage motion features in CLIP embeddings, W-SoTAs are analysed with293 293

M2 feature transformations (i.e. frequency aware Temporal regularity fea-294 294

tures). However, in contrast to our assumptions the performance gain by W-295 295

SoTAs are marginal or even lower for some cases. From details investiga-296 296

tion, we found that the DCT frequency components in M2 feature transfor-297 297

mations has sensitivity even for subtle motions. Thus, it tends to produce298 298

many false positives in autonomous driving condition as the dynamic scene299 299

has many subtle to sharp motion cues. The drawback of M1 and M2 fea-300 300

ture transformations are addressed by M3 by encouraging only sharp mo-301 301
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tion cues while retaining the rich spatial semantic of the scene. Thanks to302 302

this, all the W-SoTAs considered for analysis has larger performance gain.303 303

W-SoTA with M1: 
Spatial Feature

W-SoTA with M2: Frequency 
aware Temporal Regularity 

Feature

W-SoTA with M3: Spatial 
aware Temporal Regularity 

Feature

GT
MGFN

OECTST
RTFM
URDMU

GT
MGFN

OECTST
RTFM
URDMU

GT
MGFN

OECTST
RTFM
URDMU

Video Name: O9uvBFovKj8_001577.mp4

Video Name: 8dI7OolIEXY_005013.mp4

Video Name: bhA2ckvE-TQ_000722.mp4 

Fig. 2: Visualization of Ground truth vs. prediction
heatmaps for SoTAs in withe different feature mpas ob-
tained from feature Transformation block (FTB). We
portray such visualization for three challenging videos.
More visualization can be found in appendix.

Class-wise Performance304 304

(AUC%) To bring addi-305 305

tional analytical insights306 306

to W-SoTA performance307 307

comparison, Table 2 pro-308 308

vides an anomaly class-309 309

wise performance com-310 310

parison. The W-SoTAs311 311

with M3 feature transfor-312 312

mation has the significant313 313

performance gain many314 314

classes with few excep-315 315

tions like "ST", where W-316 316

SoTAs across all feature317 317

transformations (M1, M2,318 318

M3) are less better than319 319

unsupervised Anopred [13]320 320

method. However, from321 321

empirical investigation we322 322

found that "ST" cate-323 323

gories have less abnormal324 324

samples compared to oth-325 325

ers in the test set of WS-326 326

DoTA and thus W-SoTAs327 327

with our feature transformation block could not outperform with less test sam-328 328

ples. Apart from this, W-SoTAs (specifically RTFM) able to achieve significant329 329

performance gain (i.e. at least +8% and at most +25% ) in class-wise perfor-330 330

mance thanks to the M3 feature transformations where salient sharp motion331 331

cues are encouraged along with the relevant spatial semantics.332 332

From state-of-the-art comparison and analysis, it is evident that weakly-333 333

supervised methods has the potential to improve the anomaly detection in au-334 334

tonomous driving condition provided the input feature maps has the explicit335 335

encoding for motion and spatial semantics cues.336 336

6 Conclusion337 337

In this work, we provide a experimental exploration of state-of-the-art weakly-338 338

supervised methods on video anomaly detection for autonomous driving scenar-339 339

ios. By covering experimental depth and breadth, it is evident that the weakly-340 340

supervised methods along with our feature transformation block has the po-341 341

tential to drive the detection performances far ahead of classical unsupervised342 342

methods. Next, to promote subsequent research of weakly-supervised method343 343

on autonomous driving video anomaly detection task, we provide a WS-DoTA344 344

dataset and the validation of benchmark methods to be considered for baseline.345 345

in future, we will develop specialized framework for detection and description of346 346

video anomalies in autonomous driving scenario.347 347
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