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Abstract
Countless signal processing applications include the reconstruction of an unknown
signal from very few indirect linear measurements. Because the measurement
operator is commonly constrained by the hardware or the physics of the observation
process, finding measurement matrices that enable accurate signal recovery poses a
challenging discrete optimization task. Meanwhile, recent advances in the field of
machine learning have highlighted the effectiveness of gradient-based optimization
methods applied to large computational graphs such as those arising naturally
when unrolling iterative algorithms for signal recovery. However, it has remained
unclear how to leverage this technique when the set of admissible measurement
matrices is both discrete and sparse. In this paper, we tackle this problem and
propose an efficient and flexible method for learning structured sparse measurement
matrices. Our approach uses unrolled optimization in conjunction with Gumbel
reparametrizations. We empirically demonstrate the effectiveness of our method in
two prototypical compressed sensing situations.

1 Introduction
Linear measurement operators following a structure that is constrained by the physics of the mea-
surement process or the hardware of the measuring device are ubiquitous in signal processing. In
particular, structured sparse matrices appear in many signal processing applications [20, 31, 9, 25].
The optimal design of such measurement operators—which reside in a discrete subset—to improve
the performance of downstream tasks poses great computational challenges. Classical approaches
commonly employ discrete optimization, as no gradients can be directly computed.

On the other hand, in the field of machine learning, gradient-based optimization via backpropagation
through massive nonlinear computational graphs has shown impressive performance in many applica-
tions. A promising concept to enable gradient-based learning in non-differentiable settings is given
by Gumbel reparametrizations [16, 21], which allow estimating the gradients of categorical random
variables. In this work, we employ this technique to fuse gradient-based learning with the design of
sparse measurement operators that are constrained to a discrete set.

Signal recovery problems are often solved by convex optimization methods. It is well established
that the computational graph of many iterative convex optimization schemes can be unrolled to
obtain a neural network that can be readily backpropagated through [11], enabling the computation
of gradients with respect to the measurement operator and other involved parameters. However, it
has remained unclear how this technique can be leveraged when the set of admissible measurement
operators is sparse and discrete. We present a novel approach to tackle this problem. Our main
contributions can be summarized as follows:

• We propose an efficient and easy-to-implement method for learning structured sparse
measurement matrices for signal recovery by using unrolled optimization and Gumbel
reparametrizations. Due to its compatibility with automatic differentiation, our method
provides a novel framework for the data-driven design of practicable measurement operators.

• We successfully apply our algorithmic approach in two prototypical situations, namely
compressed sensing with left-d-regular graphs and single-pixel imaging, outperforming
conventional setups based on randomization.
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2 Background & Related Work
2.1 Linear Inverse Problems & Compressed Sensing
In linear inverse problems, the basic task is to recover an unknown target signal x ∈ Rn from indirect
observations of the form y = Φx+e, where Φ ∈ Rm×n is a known measurement matrix and e ∈ Rm
noise. The number of measurements m is usually much smaller than the signal dimension n, making
the inverse problem ill-posed and only solvable under prior knowledge about the underlying signals. A
prominent example is given by compressed sensing, in which the signal is assumed to be sparse [6, 8].
In particular, when x is s-sparse, it is possible to robustly reconstruct x from m ∈ O(s log(n/s))
measurements via convex optimization, given that Φ fulfills the null space property [10]. The convex
program that is to be solved corresponds to a LASSO problem [27] with hyperparameter λ:

min
x̂
‖Φx̂− y‖22 + λ‖x̂‖1. (1)

Many randomized measurement operators fulfill the null space property with high probability [10],
allowing theoretical guarantees on the reconstruction of generic sparse signals. However, for real-
world applications, randomization is not a necessary prerequisite.
A widely-used class of algorithms for solving LASSO-type problems in compressed sensing are
gradient-based methods. For example, an iterative proximal scheme, known as the Iterative Soft
Thresholding Algorithm (ISTA) [7], can be used to solve (1):

x̂(t+1) = proxλ‖·‖1
(
x̂(t) + γ∇x̂(t)

(
‖y − Φx̂(t)‖22

))
, (2)

where proxλ‖·‖1(v) = sign(v) max(|v| − λ, 0). Another popular method is based on Iterative Hard
Thresholding (IHT) [4], in which the proximal operator in is replaced by a projection onto the set of
s-sparse vectors by clipping the entries of all but the largest s absolute values to zero.

2.2 Unrolled Optimization in Linear Inverse Problems
Many iterative optimization schemes can be viewed as a neural network via unrolling the computa-
tional graph of a finite number of iterations T . Once unrolled, the parameters θ of a given recovery
algorithm fθ : Rm → Rn as well as the measurement operator Φ can be fit to a (training) dataset by
minimizing a loss function L : Rn × Rn → R via (stochastic) gradient-based optimization:

min
θ,Φ

Ex
[
L(fθ(Φx), x)

]
. (3)

In the context of linear inverse problems, a prominent example of unrolled optimization is Learned
ISTA (LISTA) [11], where ISTA is unrolled and the involved matrices, step-sizes, and thresholds
are learned in an end-to-end fashion. Such a data-driven approach can reduce the required number
of iterations to solve recovery problems by orders of magnitude. Further improvements to LISTA
are made by Analytic LISTA [19], and Neurally Augemented LISTA (NA-ALISTA) [2]. Unrolled
optimization provides a natural approach to learning data-driven Φ by including it in an end-to-end
training procedure. For unconstrained, dense Φ this has been explored in [30, 1]. However, in
real-world applications, the measurement matrix must often follow constraints imposed by hardware
or the underlying physics, limiting the practicability of such approaches.

2.3 Gumbel Reparametrizations
Gradient-based learning has been shown to be effective and scalable [26, 5]. However, when discrete
nodes are included in the computational graphs, gradients cannot be computed directly and have to
be estimated. Formally, we consider a computational graph including a discrete random variable v
taking one of the values 1, . . . , a (in one-hot encoding), where its unnormalized log-probabilities
are denoted by ϕ = [ϕ1, . . . , ϕa]T ∈ Ra. The value of v is then passed through a deterministic,
differentiable function f . As v is discrete, it is not possible to directly backpropagate through v.
Therefore, an estimate of the gradient ∇ϕEv[f(v)] must be computed. The Gumbel-softmax trick
[16, 21] allows computing a differentiable relaxation of v by adding component-wise i.i.d. Gumbel
noise to ϕ before applying a softmax. This modification of the Gumbel-max trick [12, 22] enables the
backpropagation through discrete random variables outperforming previous approaches to estimating
the gradient of discrete nodes [3, 29, 23]. In cases where true discreteness is needed, it is possible to
use the argmax operator in the forward pass and the softmax in the backward pass of backpropagation.
This is known as the straight-through Gumbel softmax estimator. It can be directly extended to taking
multiple samples without replacement from a categorical distribution, namely by selecting the top-K
values instead of only the largest one [28].
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3 Method
We propose a method that enables gradient-based learning of structured sparse matrices for signal
recovery by using unrolled optimization in conjunction with Gumbel reparametrizations. To this
end, we model the measurement matrix Φ ∈ Rm×n as being governed by a learnable parameter
ϕ ∈ Rm×n, employing Gumbel top-k operators on a partition of the indices of ϕ. Formally, consider
the index set I := {1 . . .m} × {1 . . . n}. Let P(I) denote a partition of I, i.e., a set of non-empty
pairwise disjoint subsets I1, . . . , Il ⊂ I such that

⋃
i∈{1...l} Ii = I. We introduce the notation ϕ[Ii]

for indexing the elements of ϕ in the index sets Ii. Then, for each i ∈ {1 . . . l}, we use a Gumbel
reparametrization to select di elements from the i-th set in P(I). This is done by adding element-wise
i.i.d. Gumbel noise to each element of ϕ[Ii], and then taking the top-di values in the forward pass. In
the backward-pass of the backpropagation, the gradient of the softmax is used instead of the hard
top-di. A pseudo-code implementation of this procedure, assuming a software framework capable of
automatic differentiation, is provided in Algorithm 1.

The binary matrix resulting from Algorithm 1 can be used like any other matrix in a framework with
automatic differentiation, as the gradient with respect to ϕ is well-defined. This means that Φ can be
constructed from this binary matrix by combination with other constants or learned parameters. In
that way, our method can be used in an out-of-the-box fashion to learn a masking pattern for fixed
matrices such as Fourier matrices. A simpler special case is obtained by choosing the trivial partition,
where all entries of Φ are governed by a single Gumbel reparametrization; in other words, a single
top-K is used to select elements of the entire matrix. This can be readily applied whenever learning a
single sampling mask is required, for example, in the context of compressive magnetic resonance
imaging [15, 14], where a fixed number of rows from a Fourier matrix is selected. However, the
flexibility of our method comes from the fact that the partition can be freely chosen to take any
fine-grained structure of the matrices into account.

In many applications, such as single-pixel imaging or compressed sensing with left-d-regular graphs,
the partition is naturally given by the rows or columns of ϕ, while the number of elements d
to be selected from each partition component is equal. In this case, vectorized, and therefore
computationally efficient softmax top-K operations over an axis can be applied.

In principle, our approach enables learning any type of measurement operator that can be constructed
by differentiable transforms of a sparse binary matrix (which is structured in the sense that entries are
subselected from a specific partition). With this in mind, Algorithm 1 should be seen as an instance
of a more general framework for the data-driven design of measurement operators. A full evaluation
of this methodology and potential generalizations of Algorithm 1 are beyond the scope of this paper.

Algorithm 1 Learning a binary matrix with di ones per set Ii of the partition.
Input: signal x (training data), top-K-keeps d1, . . . , dl ∈ N, differentiable reconstruction algorithm
f : Rm → Rn, index partition P(I) = {I1, . . . , Il}
Learnable Parameters: Parameters of measurement matrix ϕ ∈ Rm×n, parameters of reconstruc-
tion algorithm θ

1: G ∼i.i.d. Gumbel(0, 1)m×n

2: for i ∈ {1 . . . l} do
3: logits := (ϕ[Ii] +G[Ii])
4: probs := softmax(logits)
5: hard := topk(probs, di)
6: Φ[Ii] := hard.detach() + probs - probs.detach()
7: end for
8: y := Φx
9: loss := L(fθ(y), x)

10: loss.backward()

4 Application: Single Pixel Imaging
A remarkable application of compressed sensing is single pixel imaging [9], which makes imaging
possible using compressive measurements acquired by a spatial light modulator or a digital micromir-
ror device that collects light onto a single pixel using a series of m masks. Mathematically, this
process can be modeled as a compressed sensing problem using a binary measurement matrix Φ.
While theoretical results highlight that random masks have favorable reconstruction properties for
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generic sparse signals, this may not be the case when the physics of the measurement process or
additional image structures are taken into account.

Our approach is well suited to incorporate such aspects. For our case study, we partition the indices
of ϕ into the set of row vectors and use Algorithm 1 to learn adaptive masks for the MNIST
dataset (n = 784) [18]. We unroll IHT, which has no additional learnable parameters beyond
the measurement operator, and NA-ALISTA, which adaptively predicts step-sizes and thresholds
by an LSTM-network [13]. The results in Figure 1 show that our method reduces the number of
measurements required for good reconstruction and greatly speeds up convergence; see Appendix for
implementation details. Figure 2 visualizes learned and random masks as well as some reconstructed
MNIST digits: the learned masks have clear structure and lead to better reconstruction. Additional
samples and masks can be found in the Appendix.
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Figure 1: MNIST reconstruction in single pixel imaging setup with d = 36 ones per row and varying
number of measurements (left), as well as varying number of iterations with fixed m = 250 (right).
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Figure 2: Random and learned masks as well as reconstructed samples for m = 250 and d = 90 ones
per row. The reconstructions are obtained by T = 20 IHT-iterations.

5 Application: Compressed Sensing with Left-d-Regular Graphs
Another class of structured random matrices suitable for compressed sensing is given by adjacency
matrices left-d-regular graphs. In particular, for large n, adjacency matrices of random left-d-regular
graphs with d ∈ O(n/s) and m ∈ O(s log(n/s)) allow stable signal recovery [10]. However,
for smaller values of m and n, such random graphs are unlikely to enjoy the required properties
and therefore may not be usable for compressed sensing. This regime is again well suited for our
approach. Invoking Algorithm 1, we partition the entries of the measurement matrix into its row
vectors, and select d = 7 ones per row. As unrolled method, we consider Iterative Hard Thresholding
for expanders (E-IHT):

x̂(t+1) = Hs
(
x̂(t) +M(y − Φx̂(t))

)
. (4)

Here, Hs denotes the hard thresholding operator andM : Rm → Rn the median operator, taking
the median of the d values connected to each left vertex by the graph Φ. Similarly to E-IHT, we
obtain E-NA-ALISTA by replacing the adjoint ΦT in each iteration by the median operatorM. The
experimental results in Figure 3 demonstrate that our approach significantly improves signal recovery
of generic sparse vectors as well as the convergence speed; see Appendix for implementation details.
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Figure 3: NMAE of compressed sensing with left-d-regular graphs on synthetic data during training
with m = 250, n = 784, s = 50, T = 20 (left) and evaluation of convergence speed with m =
250, n = 784, s = 50 (right).
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A Implementation Details

In our experimental setup,1 we optimize Φ and θ in Eq. (3) using the Adam optimizer [17] with
β1 = 0.9, β2 = 0.999 (default in PyTorch [24]) and a fixed learning rate of 0.0002. We use mini-
batches of size 512 training samples. The parameters ϕ are initialized using a standard Gumbel
distribution. We find that when learning both Φ and θ, training is more stable when rescaling the
Gumbel noise by a factor of 0.01, both for initialization as well as for the Gumbel reparametrizations
during training. We keep the softmax temperature in all Gumbel reparametrizations fixed at τ = 1,
which has been demonstrated to work well in practice [16].

A.1 Single Pixel Imaging

As the MNIST digits are not very sparse in the image domain, we use bi-orthogonal 2.2 wavelets with
one level as sparsifying transform. For this, we denote the wavelet transform as Ψ and reparametrize
x = Ψx̂, such that the LASSO problem in Eq. (1) yields the synthesis formulation:

min
x
‖ΦΨ∗x− y‖22 + λ‖x‖1. (5)

The target loss function during training in Eq. (3) is set to be the squared loss L(x̂, x) = ‖x̂− x‖22.
Additive i.i.d. Gaussian noise with a signal-to-noise ratio of 40dB is added to the measurement
vector y. As a metric, we use the normalized mean squared error (NMSE), defined as:

NMSE(x, x̂) = 10 log10

(Ex[‖x̂− x‖22]

Ex[‖x‖22]

)
. (6)

A.2 Compressed Sensing with Left-d-Regular Graphs

In the experiments on compressed sensing with left-d-regular graphs, the performance is evaluated on
synthetic generic sparse vectors. The support of the synthetic data is generated using i.i.d. Bernoulli
random variables, and the non-zero components are drawn from a normal distribution. We use
L(x, x̂) = ‖x− y‖1 as the loss function, as the mean absolute error is the usual choice in expander
theory. The experiments in this setup are conducted with heavy tailed noise (student t-distributed with
1 degree of freedom) and a signal-to-noise ratio of 40dB. As a metric, we employ the normalized
mean absolute error (NMAE), defined as:

NMAE(x, x̂) = 10 log10

(Ex[‖x̂− x‖1]

Ex[‖x‖1]

)
. (7)

B Computational Cost

In Algorithm 1, ϕ has m · n learnable parameters, which must be stored in memory during training
time. This is identical to the cost of learning a dense sensing matrix without constraints. At test
time, a single mask is sampled after adding Gumbel noise and performing the top-K, and then kept
fixed. This means that there is no additional computational cost compared to using a conventional
(randomly chosen, but fixed) matrix satisfying the constraints. Hence, our method is feasible for
training and comes at no additional expenses during testing or deployment.

1The full code of our implementation will be made publicly available upon final publication.
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C Supplementary Experimental Results

(a) Random Masks (b) Learned Masks

(c) Random Φ (d) Learned Φ

(e) Reconstruction (random Φ) (f) Reconstruction (learned Φ)

Figure 4: Results from the single pixel imaging setup for m = 250 measurements and d = 90 ones
per row (i.e., ones per mask). The masks correspond to the first four rows of Φ. The reconstructions
are obtained by T = 20 IHT-iterations.
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Figure 5: Comparison of training E-NA-ALISTA using a random but fixed left-d-regular graph
(green), a fixed left-d-regular graph previously learned by E-IHT with T = 16 iterations (orange), and
one previously learned by E-NA-ALISTA with T = 16 iterations (blue). This highlights that the Φ
learned for E-IHT generalizes to E-NA-ALISTA, meaning that Φ fits to this compressed sensing task
without overfitting to the reconstruction algorithm.
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Figure 6: Comparison of E-IHT after varying the number of iterations t using a random but fixed
left-d-regular graph (green), a fixed left-d-regular graph previously learned by E-IHT with T = 16
iterations (orange), and one previously learned by E-NA-ALISTA with T = 16 iterations (blue).
This shows that our approach is able to learn a Φ suitable for the task, but does not overfit to the
reconstruction algorithm at hand.
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