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ABSTRACT

Change points are the timestamps at which a time series experiences meaningful
changes. Recently, representation-based change point detection has gained pop-
ularity, but its emphasis on consecutive distance difference backfires, especially
when the changes are gradual. In this paper, we propose a change point detection
method, RECURVE, based on a novel change metric, the curvature of a repre-
sentation trajectory, to accommodate both gradual and abrupt changes. Here, a
sequence of representations in the representation space is interpreted as a trajec-
tory, and a curvature at each timestamp can be computed. Using the theory of ran-
dom walk, we formally show that the mean curvature is lower near change points
than at other points. Extensive experiments using diverse real-world time-series
datasets confirm the superiority of RECURVE over state-of-the-art methods.

1 INTRODUCTION

In a time series composed of sequential data points (simply points) indexed by timestamps, there
are change points signifying transitions between different classes or states, such as a shift from
running to walking (Aminikhanghahi & Cook, 2017; Truong et al., 2020). Detecting change points
is a crucial task in preprocessing and diverse applications of time-series data. As preprocessing, they
partition a time series into segments of coherent points, accelerating annotation of the time-series for
further analysis and giving additional supervision in classification (Li et al., 2021; Ishikawa et al.,
2021). As primary tasks, they are valuable for identifying changes that require human attention in a
variety of domains, including climate, health care, finance, and manufacturing; epilepsy detection,
stock price tracking, and action segmentation are examples of possible applications (Reeves et al.,
2007; Malladi et al., 2013; Pepelyshev & Polunchenko, 2016; Xia et al., 2020).

Representation-based change-point detection methods (Ryck et al., 2021; Deldari et al., 2021) are
prevalent today because they do not require specific assumptions on time-series properties, such
as distribution or temporal shape, and can handle high dimensionality due to the capability of a
self-supervised model that autonomously learns distinctive features from raw time series. In these
methods, a self-supervised model (Tonekaboni et al., 2021; Yue et al., 2022; Zhang et al., 2022) is
first used to derive a representation of each point, and then a point is identified as a change point if
its representation significantly deviates from those of adjacent points. Let’s refer to the points close
to a change point as inter-segment points and the remaining points as intra-segment points. In short,
these methods operate by assuming that the distance between consecutive representations is greater
between inter-segment points than between intra-segment points.

However, this assumption on the distance difference does not always hold, especially when the
changes are subtle or gradual. Time-series representation learning methods often pursue preserving
the temporal coherence of a time series as their training goal is to make temporally close points simi-
lar in their representations and distant points dissimilar (Tonekaboni et al., 2021) As demonstrated in
Figure 1, the consecutive distances are not clearly distinguishable between intra- and inter-segment
points for relatively subtle changes with stair up↔stair down because just the direction of
motion differs between the two classes, whereas they are for abrupt changes with stand↔sit.
Thus, the inability to handle subtle changes hinders achieving an overall good performance.

In this work, we take a novel perspective on detecting change points by leveraging curvatures in-
stead of distances in the representation space. As shown in Figure 2, the curvature at a point in a
curve measures the instantaneous rate of direction change, or more precisely, the amount by which
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Figure 1: Consecutive distance (cosine similarity) distri-
bution from intra- and inter-segment points in the repre-
sentations of the HAPT dataset.

High curv.

Inter

Class ball

Intra

Low curv. 

Representation Space

Intra

Figure 2: Curvature comparison be-
tween intra- and inter-segment points
in a representation space.

the curve deviates from being a straight line (Lewiner et al., 2005). Suppose that a sequence of point
representations from a time series constitutes a representation trajectory. We observe that, regard-
less of whether the changes are gradual or abrupt, the direction of the representation trajectory tends
to change more sharply (showing a higher curvature) at intra-segment points than at inter-segment
points. Accordingly, we contend that the curvature of a representation trajectory should be a very
promising indicator for change point detection.

Using Figure 2, we justify the intuition behind curvature-based change point detection. Because
representation learning tries to learn class-separated features, well-embedded points of a certain
class (or a segment) can be drawn from its class-specific ball (Wang et al., 2022; Parulekar et al.,
2023). That is, the representation trajectory of intra-segment points is confined within a class ball,
whereas that of inter-segment points is not. Then, for intra-segment points to reside exclusively
within a class ball, their representation trajectory needs to make sharp turns frequently. In contrast,
the transition from one class ball to another does not necessarily make sharp turns. This observation
is formally proven by the relationship between the mean curvature and the radius of a confining
hypersphere, assuming a random walk of a point representation (see Section 3.4).

Overall, for change point detection, treating a sequence of representations as a trajectory and mea-
suring its curvature is an entirely novel approach, which results in RECURVE (Representation
trajEctory CURVaturE). A representation trajectory is derived by a time-series representation learn-
ing method, and the curvature at each point is calculated very efficiently; then, the points whose
curvature is relatively small are identified as change points. RECURVE is simple yet powerful, and
can be combined with any time-series representation learning method. We conduct comprehensive
evaluations on a variety of time-series datasets, comparing it against state-of-the-art change point
detection methods. The results demonstrate that RECURVE consistently enhances the accuracy,
achieving improvements of up to 12.7%. Furthermore, this superiority is shown to exist regardless
of the degree of change between different classes.

2 RELATED WORK

2.1 CHANGE POINT DETECTION

Time-series change point detection methods assess the dissimilarity between two successive inter-
vals and apply a threshold to pinpoint the positions of change points. There are multiple methods
available for quantifying dissimilarity: (1) conducting statistical tests, (2) quantifying the deviation
from discovered temporal patterns, and (3) calculating distances between the representations learned
from a self-supervised model. We summarize each category here, with additional in-depth details
available in extensive surveys (Aminikhanghahi & Cook, 2017; Truong et al., 2020).

Statistical tests often rely on the probability density ratio of two consecutive intervals as a key
statistic. CUSUM is a traditional parametric algorithm that adds up the log likelihood ratio when
a probability density function is given (Basseville & Nikiforov, 1993; Jeske et al., 2009; Cho &
Fryzlewicz, 2015). RuLSIF is a non-parametric algorithm that directly estimates the probability
density ratio using Pearson divergence without a probability density function (Yamada et al., 2013;
Feuz et al., 2014; Hushchyn & Ustyuzhanin, 2021). A kernel-based statistical test maps each interval
to a kernel space and then computes the kernel Fisher discriminant ratio as a statistic (Harchaoui
et al., 2008; 2009). KL-CPD uses a deep neural network as a generator for kernel parameters, which
solves high sensitivity in selecting parameters (Chang et al., 2019).

The proactive discovery of frequent temporal patterns is necessary for temporal pattern-based
change point detection. FLOSS stores the locations of similar subsequences in a time series using
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Matrix Profile and measures the likelihood of a regime change (Gharghabi et al., 2019). Motif-based
change point detection relies on the identification of short temporal patterns (motifs) determined
through the minimum description length criterion; these motifs are then compared for similarity
with other subsequences within a time series (Zakaria et al., 2012; Xia et al., 2020). ESPRESSO,
on the other hand, is a hybrid of pattern- and statistic-based approaches, detecting a wide range of
change points across different scenarios and data types (Deldari et al., 2020).

Representation-based change point detection methods are distinguished by the manner in which a
self-supervised model is trained. TIRE exploits an autoencoder to retain time-invariant features in
consecutive timestamps to make representations of change points salient (Ryck et al., 2021); after
training, the output representations undergo a process of smoothing, wherein a moving average is
applied prior to the dissimilarity computation. TS-CP2 leverages contrastive learning techniques to
promote close proximity between representations of two consecutive timestamps and distant prox-
imity between representations at randomly selected timestamps (Deldari et al., 2021); it examines
the difference between each consecutive distance and the moving average.

2.2 TIME-SERIES REPRESENTATION LEARNING

Time-series representation learning builds a model to create versatile representations capable of per-
forming diverse downstream tasks such as classification, forecasting, and anomaly detection (Zhang
et al., 2023; Ma et al., 2023). Reconstruction-based learning methods train autoencoder-based deep
neural networks using a reconstruction loss. TimeNet is an early example that uses a sequence-to-
sequence autoencoder and uses the hidden embedding extracted from the encoder as a representa-
tion (Malhotra et al., 2017). DTCR extends traditional reconstruction-based learning by incorporat-
ing a k-means loss alongside the reconstruction loss (Ma et al., 2019). Input masking is also com-
monly used for reconstructing data with specific timestamps intentionally masked or hidden (Shao
et al., 2022; Chowdhury et al., 2022; Chauhan et al., 2022).

In contrastive learning, the Info-NCE (Noise Contrastive Estimation) loss plays a pivotal role by
bringing a positive pair closer together and pushing a negative pair apart in the representation space.
An early approach considers a sampled window and a subsequence from the window as a positive
pair (Franceschi et al., 2019). In recent methods such as TNC (Temporal Neighborhood Coding),
the temporal distance serves as a criterion for identifying a positive pair, keeping two neighboring
timestamp representations close (Tonekaboni et al., 2021; Deldari et al., 2021; Chen et al., 2022).
Following the principles of SimCLR (Chen et al., 2020), a positive pair can be created by pairing a
sampled window with its augmentation which involves data perturbation or context changes (Eldele
et al., 2021; Yue et al., 2022). Besides, the Fourier transform of a time series serves as an augmen-
tation technique for generating positive pairs or providing a new representation space (Woo et al.,
2021; Yang & Hong, 2022; Zhang et al., 2022).

3 RECURVE: CURVATURE-BASED CHANGE POINT DETECTION

3.1 PRELIMINARIES AND PROBLEM SETTING

Dataset and Model: Let X = (xt)
T
t=1 be a time series, where T is the total number of points,

and xt ∈ Rd is a d-dimensional point at timestamp t. Let C = {tk | k ∈ J1, KK} be a set
of the timestamps for the ground-truth change points. Considering class labels annotated at each
timestamp, C is composed of the timestamps where there is a change in the label from the previous
one (e.g., stand→walk). A window Xtm = (xt)

tm+I−1
t=tm−I is a sequence of consecutive 2I points

centered at timestamp tm. A representation model fθ, which is a deep neural network parameterized
by θ, converts each window Xtm to its representation ztm ∈ Rd′

, i.e., ztm = fθ(Xtm).

Representation Learning: RECURVE is not bound to a specific representation learning method,
and we summarize the training process using one of the popular methods, the temporal predictive
coding (TPC) proposed in TS-CP2 (Deldari et al., 2021). Here, two non-overlapping consecutive
windows are used as a positive pair, and two randomly-sampled windows are used as a negative pair.
Thus, TS-CP2 randomly samples b windows as well as their succeeding windows and constructs a
batch B = {Xt1 , Xt2 , . . . , Xtb , Xt1+2I , Xt2+2I , . . . , Xtb+2I}. Then, it minimizes the InfoNCE
loss (Mnih & Kavukcuoglu, 2013),

ℓ(B, θ) = −1

b

b∑
j=1

log
exp(sim(ztj , ztj+2I)/τ)∑b

k=1,k ̸=j exp(sim(ztj , ztk)/τ)
, (1)
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where sim(·, ·) is the cosine similarity function, exp(·) is the exponential function, ztj = fθ(Xtj ),
and τ is a scaling parameter. The model parameter θ is updated iteratively by gradient descent, i.e.,
θ ← θ − η∇θℓ(B, θ), where η is a learning rate.

Change Metric and Detection: Using the representations of all windows centered at each point in
X , i.e., {zt | t ∈ J1, T K}1, a change metric ŷt is derived for each point xt ∈ X , which represents
the probability that xt is a change point. For example, the change metric in TS-CP2 employs the
distance (i.e., cosine similarity) between the embeddings of adjacent points,

ŷdist
t = MinMaxNorm(|sim(zt, zt+1)− MovAvg(sim(zt, zt+1))|), (2)

where MovAvg calculates a simple central moving average and MinMaxNorm is min-max normal-
ization over all timestamps to rescale a value between 0 and 1. Then, similar to binary classification,
the points whose change metric exceeds a certain threshold φ are identified as change points,

Ĉ = {t | ŷt ≥ φ where t ∈ J1, T K}. (3)
Goal: Obviously, an effective change metric is crucial to the success of change point detection.
Therefore, we propose a novel change metric, ŷcurvt , using the curvatures in the representation
space instead of the consecutive distances in the representation space.

3.2 CURVATURE-BASED CHANGE METRIC

A trajectory usually refers to the path or track that an object (e.g., human and vehicle) in motion
follows through space and time (Lee et al., 2007). Thus, we get to Definition 3.1 if we think of an
object as a point floating in the representation space.

Definition 3.1 (TRAJECTORY). A representation trajectory (simply trajectory) T is a curve speci-
fied by a sequence of representations at consecutive timestamps and denoted as T = (zt)

|T |
t=1.

𝜃𝑡𝒛𝑡

𝒛𝑡−
𝒛𝑡+

Figure 3: Turning angle.

The curvature at a specific point on a curve is the rate at which the direc-
tion of the curve changes instantaneously at the point (Lewiner et al.,
2005). It is a well-defined concept in geometry and quantifies how
sharply or gradually the curve bends or deviates from a straight line. We
employ the definition designed for a trajectory (Buchin et al., 2011). For
three timestamps in order, t−, t, and t+, where t− < t < t+, consider
their representations zt− , zt, and zt+ . Two difference vectors, zt − zt− and zt+ − zt, are naturally
derived, and the turning angle θt between them in Figure 3 is calculated by

θt = arccos
(zt − zt−) · (zt+ − zt)

||zt − zt− ||||zt+ − zt||
. (4)

Each value of θt ranges between 0 and π, where t ∈ J2, T−1K. Then, the curvature is the rate of
the direction changes between the two difference vectors, i.e. how much a difference vector rotates
per unit length, as defined in Definition 3.2.

Definition 3.2 (CURVATURE). The curvature at timestamp t in a representation trajectory T is the
turning angle θt divided by the sum of the difference vector lengths,

κt =
θt

||zt − zt− ||+ ||zt+ − zt||
. (5)

According to our observations and intuitions described in Section 1, the curvature of an intra-
segment point is higher than that of an inter-segment point. Thus, the curvature defined in Definition
3.2 can be used as a change metric. For stability, the timestamps t− and t+ in Eq. (5) are determined
to be w > 1 timestamps before and after timestamp t. We set w to 5% of the mean segment length,
which is observed to work well in most situations. Please refer to Section 4.4 about the sensitivity
analysis on the value of w. Definition 3.3 concludes our novel curvature-based change metric.

Definition 3.3 (CHANGE METRIC). The curvature-based change metric at timestamp t becomes
ŷcurvt = MovAvg(1− MinMaxNorm(κt,w)), (6)

where κt,w is obtained from Eq. (5) with t− = t − w and t+ = t + w (w > 1); and MovAvg and
MinMaxNorm are the same as Eq. (2).

1Due to one-to-one correspondence between windows and points, each zt can be regraded as the represen-
tation of each xt.
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3.3 CHANGE METRIC THRESHOLDING

Once the change metric ŷcurvt in Eq. (6) is prepared, it is possible to detect change points by finding
the points where ŷcurvt ≥ φ, as formulated by Eq. (3). Therefore, it is necessary to develop a
heuristic for determining the threshold φ, and additional information can be utilized for this purpose.
Such additional information includes the mean segment length and the validation dataset. If the
mean segment length, i.e., the average of the lengths of segments distinguished by change points,
is known, the estimated number of change points can be calculated by dividing the total number of
timestamps by the mean segment length. The threshold φ is then determined to obtain the estimated
number of change points. Alternatively, if we have a validation dataset, we select the threshold φ
that yields the best performance based on an evaluation measure. Empirical evaluation in Section 4
employs the heuristic based on the mean segment length.

3.4 THEORETICAL ANALYSIS

Enclosing ball

Class 𝐶𝑗’s 

confining ball

𝑂𝐶𝑖
𝑂𝐶𝑗𝑅intra

𝑅inter
𝒛inter

Class 𝐶𝑖’s 

confining ball

𝜃inter 𝜃intra

𝒛intra
𝜃intra

𝜃inter

Change 
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Figure 4: Comparison of the curvatures between
intra- and inter-segment points.

Our theoretical analysis is conducted by show-
ing the following properties: (1) the intra-
segment points in the representation space are
confined within a smaller hypersphere than the
inter-segment points, as shown in Figure 4; (2)
the mean total curvature of a representation tra-
jectory increases as the radius of the confining
hypersphere decreases, which leads to the ratio-
nale behind Definition 3.3.

Proposition 3.4 (CONFINEMENT). Consider a
subsequence of a specific class Ci, XCi

=
(xt)

tend
t=tstart

, as well as its representation tra-
jectory, TCi

= (zt)
tend
t=tstart

, in Figure 4. Then,
TCi is confined within a hypersphere SCi ⊂
Rd′

centered at OCi
∈ Rd′

of radius Rintra. That is, ∀t ∈ Jtstart, tendK, zt ∈ SCi
holds.

Regarding the proof of Proposition 3.4, it is widely known that representation (contrastive) learning
produces class-separated representations (Wang et al., 2022; Parulekar et al., 2023). According to
Wang et al. (2022), the augmentations of positive examples overlap under some assumptions, and
the positive examples form a connected graph based on augmentation overlap; thus, the alignment
of positive examples by constrastive learning will cluster the examples of the same class together
and lead to class-separated representations.

Proposition 3.5 (CONFINEMENT RADIUS). Consider a transition from a class Ci to another class
Cj in Figure 4. Let SCi , SCj ⊂ Rd′

be the confining hyperspheres for Ci and Cj , respectively, of
radius Rintra. Then, consider a larger hypersphere of radius Rinter that encloses the inter-segment
points (in red) as well as SCi and SCj . Thus, Rintra < Rinter holds by definition.

Based on temporal coherence (Deldari et al., 2021; Shin et al., 2022; 2023) inherent in time series,
we make an assumption on the representation trajectory before proceeding to the second step.

Assumption 3.6 (EQUILATERAL RANDOM WALK). A representation trajectory T = (zt)
|T |
t=1 is a

Markov chain, where zt is sampled over the surface of the unit hypersphere centered at zt−1 and
also contained in a confining hypersphere of radius R. That is, ||zt − zt−1|| = 1 (t ∈ J2, |T |K) and
||zt|| < R (t ∈ J1, |T |K) such that R > 1.

Under Assumption 3.6, the curvature in Eq. (5) becomes the turning angle in Eq. (4) because the
denominator is reduced to a constant. Then, when a given representation trajectory T is confined by
a hypersphere of radius R, its mean total curvature is defined by

KT (R) =
1

|T |
∑
zt∈T

Ezt|R[θt], (7)

where Ezt|R[θt] is the expectation of the curvature at timestamp t with respect to the distribution of
the representations in the confining hypersphere of radius R.
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Proposition 3.7 (MEAN TOTAL CURVATURE). Consider a representation trajectory T confined
in a hypersphere of radius R under Assumption 3.6. Then, the mean total curvature KT (R) is a
decreasing function of the radius R, i.e., d

dRKT (R) < 0.

The proof of Proposition 3.7 is provided by Diao et al. (2013). The mean total curvature is rigorously
formulated as a complicated integral. By a simulation of random walk with one million steps,
the decrease in the curvature is represented by the linear function 3.53 − 1.21R and the function
π/2 + 0.65/R1.5 for two different regimes of R.

Notation. The representation trajectories confined within the hyperspheres of radii Rintra and
Rinter in Figure 4 are called intra-segment and inter-segment trajectories as well as denoted by
Tintra and Tinter, respectively.

Putting Propositions 3.5 and 3.7 together, the observation on the difference in the curvature is finally
formalized by Theorem 3.8.

Theorem 3.8 (CURVATURE DIFFERENCE). The mean total curvature of an intra-segment trajectory
is greater than that of an inter-segment trajectory, i.e., KTintra(Rintra) > KTinter (Rinter).

Proof. Because Rintra < Rinter by Proposition 3.5, KTintra
(Rintra) > KTinter

(Rinter) obviously
holds by the decreasing nature of KT (R) of Proposition 3.7.

Theorem 3.8 can be intuitively explained if we consider the special case in which the next repre-
sentation of zintra or zinter lies on the surface of a hypersphere, as visualized in Figure 4. Since
a smaller radius necessitates a sharper turn, θintra > θinter holds true. In this particular instance,
where zintra or zinter is an orthogonal projection onto the surface, the turning angle can be ex-
pressed as π − arccos 1

2R , which is also a decreasing function of R.

3.5 EMPIRICAL PROOFS

The findings in the theoretical analysis also align well with the visualizations of the representa-
tions from a real dataset. Figure 5 displays three representation trajectories in the representation
space of two principal components, which are obtained by the TPC method with d′ = 32 for the
mHealth dataset. Each representation trajectory includes 100 points centered at a change point.
Inter-segment points within 5 timestamps from the change point are denoted by “×”, while intra-
segment points are denoted by “•”. The color of each symbol indicates the value of our change
metric—i.e., 1−curvature. Obviously, inter-segment points have higher values of the change metric
than intra-segment points. Interestingly, in Figure 5, the distance between two consecutive repre-
sentations remains similar regardless of whether they are intra- or inter-segment points. This result
reaffirms the existence of temporal coherence in the representation space, which could reduce the
accuracy of distance-based change point detection methods. Moreover, it is evident that the repre-
sentation trajectories of intra-segment points exhibit clearer confinement, resulting in more closed
shapes and larger average turning angles. The representation trajectories of inter-segment points
undergo fewer rotations and produce a relatively straighter shape.

HighLow :Intra :InterChange metric
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(b) Change point at t = 321128.
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(c) Change point at t = 339047.
(Run−→Jump)

Figure 5: Three representation trajectories in the space of two principal components in mHealth.
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4 EVALUATION

4.1 EXPERIMENT SETTING

Table 1: Summary of datasets and hyper-parameters.
Dataset Timestamps Length #class d Rate #CP Window Epoch

WISDM 343092 697 6 3 20 491 50 10

HAPT 407807 903 6 6 50 450 100 50

mHealth 343195 2932 12 23 50 119 100 50

50salads 496250 551 19 2048 30 898 50 100

Datasets: The profiles of the four
datasets used in our experiments are
summarized in Table 1, which lists
the number of timestamps, mean
segment length, number of classes,
data dimensionality, sampling rate in
Hz, and number of change points.
WISDM (Kwapisz et al., 2011), HAPT (Anguita et al., 2013), and mHealth (Anguita et al., 2013)
are human action recognition datasets, which are measured by single or multiple accelerometers
and/or gyroscopes. 50salads (Stein & McKenna, 2013) is a video dataset that captures 25 people
preparing salads; the I3D features of 2048 dimensions are extracted, following Farha & Gall (2019).
The set of ground-truth change points, C, is defined as the set of the timestamps where the class
changes. The dimensionality of the representation space is set to d′ = 8 for WISDM and HAPT and
d′ = 32 for mHealth and 50salads, considering their data dimensionality.

RECURVE Details: To obtain the point representations, we employ two time-series representa-
tion learning methods, TPC proposed in TS-CP2 (Deldari et al., 2021) and TNC (Tonekaboni et al.,
2021). RECURVE+TPC and RECURVE+TNC indicate the two implementations depending on the
representation learning method. A temporal convolutional network (TCN) is trained in both meth-
ods. Note that any representation learning method can be combined with RECURVE. The window
size, 2I , and the number of training epochs for each dataset are shown in Table 1, where the window
size is approximately twice the sampling rate. The learning rate is set to 0.005 for all datasets. The
hyperparameter w, indicating the length of a representation vector, is set to 5% of the mean segment
length. A moving average in Eq. (6) is computed using the ten timestamps preceding and following
each timestamp. RECURVE is implemented using PyTorch 1.13.0, and its source code is available
at https://bit.ly/3ET7vmg.

Compared Methods: RuLSIF (Hushchyn & Ustyuzhanin, 2021), KL-CPD (Chang et al., 2019),
and TS-CP2 (Deldari et al., 2021) are chosen as the representative method from each of the three
categories in Section 2.1. The window size in Table 1 is applied to all compared methods for fair
comparison. A multilayer perceptron is used for the regressor of RulSIF. The hyperparameters of
RuLSIF and KL-CPD are favorably determined by a grid search, as detailed in Appendix A. The
public implementations of RuLSIF2 and KL-CPD3 are used for our experiments. TS-CP2 is the clos-
est to our work, and its main mechanism is briefly described in Section 3.1. Because representation
learning itself is shared between TS-CP2 and RECURVE when TPC is used, the same hyperparam-
eter setting is applied to both methods whenever possible. TS-CP2 is re-implemented using PyTorch
1.13.0 for direct comparison with RECURVE.

Evaluation Measures: First, the Area Under the ROC Curve (AUC) is measured by considering
change point detection as binary classification with a binary label vector y ∈ {0, 1}T converted
from C. Following Deldari et al. (2021), an error margin is introduced to accommodate some noise
from annotation and detection. A detected change point is considered to be correct if it lies within p
timestamps from one of the ground-truth change points. For this purpose, y is relaxed to

yt =

{
1 if tk − p ≤ t < tk + p where tk ∈ C
0 otherwise.

(8)

Then, for t ∈ J1, T K, whether (ŷt in Eqs. (2) or (6) ≥ φ) is compared against yt in Eq. (8).
We use multiple error margins, p ∈ {5, 10, 20}, since a margin could be different for diverse ap-
plications (Aminikhanghahi & Cook, 2017). Second, the mean LOCation distance (LOC) is mea-
sured, which is the average distance from a detected change point to its closest ground-truth change
point (Gharghabi et al., 2019; Schäfer et al., 2021). The LOC measure is useful for checking the
preciseness of the change points detected.

Regarding the threshold φ, the AUC measure does not require a specific value because it evaluates
the true positive and false positive rates over a given range. For the LOC measure, two values are

2https://github.com/HSE-LAMBDA/roerich/tree/main
3https://github.com/HolyBayes/klcpd
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used for each experiment: one is determined to achieve the best F1 score, and the other is determined
by the heuristic based on the mean segment length in Section 3.3, where the estimated number of
change points is multiplied by p = 10, taking the error margin into account.

For each evaluation measure, we conduct every experiment five times with different seeds and report
the average as well as the standard deviation.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 2: Overall change point detection accuracy in the
AUC measure (the best results in bold).

Methods p
AUC ↑

WISDM HAPT mHealth 50salads

RuLSIF
5 0.559±0.005 0.797±0.001 0.598±0.002 0.606±0.006

10 0.560±0.005 0.797±0.001 0.599±0.002 0.608±0.003
20 0.563±0.005 0.797±0.001 0.600±0.002 0.611±0.004

KL-CPD
5 0.697±0.000 0.868±0.003 0.842±0.117 0.682±0.003

10 0.702±0.000 0.873±0.004 0.849±0.113 0.684±0.003
20 0.710±0.000 0.875±0.005 0.856±0.105 0.689±0.003

TS-CP2
5 0.815±0.012 0.692±0.007 0.560±0.014 0.680±0.010

10 0.820±0.012 0.695±0.006 0.561±0.013 0.682±0.009
20 0.823±0.013 0.697±0.006 0.561±0.010 0.685±0.008

RECURVE
+TPC

5 0.897±0.003 0.909±0.001 0.954±0.003 0.719±0.005
10 0.901±0.004 0.913±0.001 0.954±0.003 0.723±0.006
20 0.902±0.003 0.919±0.001 0.955±0.005 0.729±0.006

RECURVE
+TNC

5 0.880±0.004 0.863±0.017 0.979±0.004 0.594±0.016
10 0.889±0.004 0.867±0.017 0.980±0.004 0.595±0.016
20 0.905±0.004 0.876±0.017 0.980±0.005 0.600±0.015

Tables 2 and 3 display the AUC and
LOC measures for the five meth-
ods across the four datasets. The
AUC measure is presented in Ta-
ble 2 with varying the error mar-
gin p. RECURVE outperforms the
other change point detection meth-
ods, where the optimal representation
approach varies for each dataset. RE-
CURVE wins against TS-CP2 in all
datasets, irrespective of the evalua-
tion measure. This finding demon-
strates that the curvature is more ef-
fective for change point detection
in temporally coherent time series
where the class changes gradually.
WISDM, HAPT, and mHealth exhibit
periodicity in certain classes, including walking and running. This periodicity would produce a
closed shape for intra-segment trajectories and increase their curvatures, enhancing the performance
of RECURVE. In particular, when p = 20, RECURVE outperforms the second-best method by up
to 12.7% in terms of the AUC measure for the mHealth dataset.

Table 3: Overall change point detection accuracy in the LOC measure (the best results in bold).

Methods LOC ↓ (thresholding by best F1) LOC ↓ (thresholding by mean segment length)
WISDM HAPT mHealth 50salads WISDM HAPT mHealth 50salads

RuLSIF 420.9±18.54 108.2±0.188 780.0±8.580 184.4±1.463 429.5±9.968 156.0±0.092 802.6±30.18 189.2±1.120

KL-CPD 189.0±12.20 121.5±4.540 306.4±126.5 179.5±3.853 198.3±2.329 113.0±2.545 352.6±119.7 176.6±1.017

TS-CP2 166.6±7.840 386.6±31.04 879.4±62.57 119.0±6.712 183.1±15.13 404.2±32.60 923.8±44.39 129.4±5.091

RECURVE+TPC 114.7±56.07 33.25±1.290 483.6±64.24 79.29±10.52 178.4±36.05 34.28±0.727 341.0±47.93 93.76±7.475
RECURVE+TNC 210.0±112.3 47.92±2.884 224.0±211.2 175.0±26.38 219.8±102.2 50.71±1.589 239.6±212.4 178.8±20.87

4.3 DETAILED INVESTIGATION ON CHANGE METRIC QUALITY

We display the average values of the change metrics separately for each pair of classes using the
HAPT dataset, which was chosen for ease of visualization due to its small number of classes. Fig-
ure 6a depicts the inter-class embedding distance, which is determined by the Euclidean distance
between the centroids of point representations of given classes. The values of the change metrics
are averaged across the inter-segment points for each distinct class transition. Figures 6b and 6c
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Figure 6: Heatmaps of the inter-class distances and values of the change metrics between the classes
in the HAPT dataset. A grey box indicates no transition between two classes.
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are obtained by the distance-based change metric ŷdist
t of TS-CP2 and the curvature-based change

metric ŷcurv
t of RECURVE, respectively. Intriguingly, ŷcurv

t generates high values for all class pairs
in Figure 6c, which indeed explains the overall high accuracy in Tables 2 and 3. In contrast, in Fig-
ure 6b, ŷdist

t only generates high values when the inter-class embedding distance is sufficiently large
(i.e., abrupt change), whereas it generates moderate values when the inter-class embedding distance
is small (i.e., gradual change). That is, Figures 6a and 6b show a very high correlation. In summary,
ŷcurv
t is insensitive to the degree of changes whereas ŷdist

t is not. Therefore, this result demonstrates
the superiority of the curvature-based change metric over the distance-based change metric.
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Figure 7: Distribution of the change metrics for
each class transition in the HAPT dataset.

Figure 7 magnifies six class pairs selected from
all class pairs depicted in Figures 6b and 6c.
For example, Stand−→Sit and Lie−→Stand
are accompanied by rapid body movement,
and both TS-CP2 and RECURVE capture the
change points well, as evidenced by the high
density in the interval close to 1. In con-
trast, when two action classes are compara-
ble, as in Stand−→Walk, Down−→Up, and
Walk−→Down, the values of the change met-
ric of TS-CP2 disperse to other intervals, result-
ing in a decrease in detection performance. RE-
CURVE maintains the same shape in all density
plots due to the remarkable effectiveness of our
curvature-based change metric.

4.4 SENSITIVITY ANALYSIS ON REPRESENTATION VECTOR LENGTH w

Table 4 shows the performance of RECURVE while varying the representation vector length w (see
Definition 3.3) when the error margin p for the AUC measure is fixed at 10. The value of w ranges
from 0.25× to 4.00× of the default value, which is set to 5% of the mean segment length (indicated
by 1.00×). If the value of w were too large, the denominator of Eq. (5) would be too large for any
point in a time series, and the curvature would be unable to distinguish between intra- and inter-
segment points. If the value of w were too small, some noise in point representations would distort
the curvature. Under this trade-off, the default value performs the best in terms of both evaluation
measures when it is averaged over the four datasets and the two representation learning methods.
On a dataset with lengthy segments, such as mHealth, the sensitivity tends to decrease, and there is
small variation when varying the value of w.

Table 4: Performance of RECURVE with varying the hyperparameter w (the best results in bold).

Repr. w
AUC ↑ LOC ↓ (thresholding by mean segment length)

WISDM HAPT mHealth 50salads WISDM HAPT mHealth 50salads

TPC

0.25× 0.832±0.015 0.901±0.004 0.911±0.008 0.685±0.007 358.7±89.01 40.41±2.233 654.7±36.04 136.9±2.064
0.50× 0.891±0.006 0.914±0.002 0.953±0.004 0.703±0.005 246.3±139.6 37.42±1.309 538.9±49.69 120.0±2.127
1.00× 0.901±0.004 0.913±0.001 0.954±0.003 0.723±0.006 178.4±36.05 34.28±0.727 341.0±47.93 93.76±7.475
2.00× 0.892±0.003 0.887±0.001 0.927±0.003 0.692±0.004 252.9±97.20 42.74±5.383 821.2±53.60 94.21±6.153
4.00× 0.861±0.002 0.847±0.002 0.893±0.004 0.604±0.004 273.8±119.0 53.00±10.77 628.2±39.36 104.0±3.502

TNC

0.25× 0.824±0.016 0.842±0.011 0.956±0.009 0.580±0.015 249.7±37.59 52.95±3.698 213.7±110.2 222.0±7.443
0.50× 0.869±0.009 0.850±0.012 0.978±0.005 0.587±0.014 231.3±79.25 51.15±2.685 236.4±136.5 218.9±16.16
1.00× 0.889±0.004 0.867±0.017 0.980±0.004 0.595±0.016 219.8±102.2 50.71±1.589 239.6±212.4 178.8±20.87
2.00× 0.897±0.002 0.827±0.019 0.962±0.007 0.583±0.008 196.0±79.98 58.19±1.588 346.6±305.9 179.4±16.22
4.00× 0.871±0.002 0.773±0.016 0.937±0.007 0.568±0.009 265.5±58.16 97.38±6.328 265.6±92.20 183.2±17.64

Additional sensitivity analysis on the representation dimensionality d′ is available in Appendix B.

5 CONCLUSION

In this paper, we present RECURVE, a novel change-point detection method that uses the curvature
of a representation trajectory to replace the consecutive distance for a change metric. Theoretically,
the mean total curvature of an intra-segment trajectory is greater than that of an inter-segment tra-
jectory due to the confining nature of the representations of the points within a single class. Unlike
the consecutive distance, this property of the curvature is insensitive to the degree of the changes
between two classes (segments). Our comprehensive experiments confirm that RECURVE achieves
up to 12.7% higher detection accuracy than state-of-the-art methods. Overall, we believe that our
work opens the door to a new direction for change point detection in time series.
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A HYPERPARAMETERS FOR COMPARED METHODS

For RuLSIF, we conduct a grid search for the learning rate (LR) = {0.05, 0.1, 0.2}, the weight of L2
normalization λL2 = {0.01, 0.05, 0.1}, and the parameter of the RuLSIF loss α = {0.01, 0.05, 0.1}.
When applying RuLSIF to the four datasets, we use a multilayer perceptron with a single hid-
den layer with 100 units and train it with a batch size of 32 for 50 epochs. For KL-CPD, we
conduct a grid search to determine the optimal hidden dimensionality h = {10, 50, 100} of the
RNN encoder/decoder, as well as the values for the hyperparameters λAE = {0.1, 0.01, 0.001} and
λReal = {0.1, 0.01, 0.001} which govern the influence of the reconstruction loss and the MMD2 loss
on real datasets. For training the generator of KL-CPD, the batch size is set to 64, the number of
epochs is set to 3, and the learning rate is set to 0.001. Table 5 provides a summary of the determined
hyperparameter values.

Table 5: Hyperparameter values of RuLSIF (left half) and KL-CPD (right half) after a grid search.

Dataset LR λL2 α λAE λReal #hidden

WISDM 0.05 0.1 0.01 0.01 0.001 10

HAPT 0.2 0.01 0.01 0.01 0.1 10

mHealth 0.2 0.1 0.01 0.01 0.01 10

50salads 0.05 0.01 0.05 0.1 0.01 50

B SENSITIVITY ANALYSIS ON REPRESENTATION DIMENSIONALITY

Table 6 shows the performance of RECURVE while varying the representation dimensionality d′

when the error margin p for the AUC measure is fixed at 10. The value of d′ ranges from 0.25×
to 4.00× of the default value, which is 8 for WISDM and HAPT or 32 for mHealth and 50salads
(indicated by 1.00×). A trade-off point in the representation dimensionality exists for nearly all
datasets. A representation space with an excessively high dimensionality is susceptible to the curse
of dimensionality. If the value of d′ were too large, the turning angle and distance in Eq. (5) would
be indistinguishable across all timestamps in a time series, as any two points in a high-dimensional
space would become nearly orthogonal and their distance would always be similar. If the value of
w were too small, low-quality features would be extracted from the original time series by repre-
sentation learning; thus, the performance degrades with an insufficient dimensionality as shown in
the result of 50salads whose data dimensionality is 2048. Overall, the default setting is suitable for
achieving competitive performance for all datasets.

Table 6: Performance of RECURVE with varying the hyperparameter d′ (the best results in bold).

Repr. d′
AUC ↑ LOC ↓ (thresholding by mean segment length)

WISDM HAPT mHealth 50salads WISDM HAPT mHealth 50salads

TPC

0.25× 0.870±0.007 0.844±0.011 0.942±0.007 0.719±0.006 349.9±32.99 307.0±30.03 553.4±69.70 97.64±6.153
0.50× 0.906±0.003 0.836±0.168 0.949±0.006 0.719±0.007 377.5±443.7 104.4±130.3 586.1±39.86 97.33±5.553
1.00× 0.901±0.004 0.913±0.001 0.954±0.003 0.723±0.006 178.4±36.05 34.28±0.727 341.0±47.93 93.76±7.475
2.00× 0.882±0.017 0.905±0.003 0.942±0.005 0.718±0.005 180.6±59.32 35.62±2.669 600.9±36.82 100.9±3.814
4.00× 0.857±0.015 0.900±0.004 0.937±0.006 0.719±0.007 200.4±55.87 38.27±1.191 592.3±64.23 100.0±6.432

TNC

0.25× 0.838±0.046 0.862±0.006 0.963±0.013 0.561±0.018 168.1±79.54 50.37±4.293 241.0±30.85 198.7±20.14
0.50× 0.882±0.008 0.859±0.011 0.971±0.007 0.570±0.013 149.5±35.37 49.17±1.943 245.0±125.0 198.7±37.32
1.00× 0.889±0.004 0.867±0.017 0.980±0.004 0.595±0.016 219.8±102.2 50.71±1.589 239.6±212.4 178.8±20.87
2.00× 0.877±0.006 0.875±0.009 0.972±0.003 0.581±0.011 290.4±148.8 55.35±1.800 260.7±51.26 215.6±15.55
4.00× 0.880±0.003 0.887±0.004 0.973±0.003 0.607±0.012 257.9±81.69 57.72±1.010 280.5±94.19 179.3±14.75
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