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ABSTRACT

Zero-shot text classification (ZSC) offers the promise of eliminating costly task-
specific annotation by matching texts directly to human-readable label descrip-
tions. While early approaches have predominantly relied on cross-encoder
models fine-tuned for natural language inference (NLI), recent advances in
text-embedding models, rerankers, and instruction-tuned large language mod-
els (LLMs) have challenged the dominance of NLI-based architectures. Yet,
systematically comparing these diverse approaches remains difficult. Existing
evaluations, such as MTEB, often incorporate labeled examples through super-
vised probes or fine-tuning, leaving genuine zero-shot capabilities underexplored.
To address this, we introduce BTZSC, a comprehensive benchmark of 22 pub-
lic datasets spanning sentiment, topic, intent, and emotion classification, cap-
turing diverse domains, class cardinalities, and document lengths. Leveraging
BTZSC, we conduct a systematic comparison across four major model families,
NLI cross-encoders, embedding models, rerankers and instruction-tuned LLMs,
encompassing 38 public and custom checkpoints. Our results show that: (i) mod-
ern rerankers, exemplified by Qwen3-Reranker-8B, set a new state-of-the-art with
macro F1 = 0.72; (ii) strong embedding models such as GTE-large-en-v1.5 sub-
stantially close the accuracy gap while offering the best trade-off between accu-
racy and latency; (iii) instruction-tuned LLMs at 4–12B parameters achieve com-
petitive performance (macro F1 up to 0.67), excelling particularly on topic classi-
fication but trailing specialized rerankers; (iv) NLI cross-encoders plateau even as
backbone size increases; and (v) scaling primarily benefits rerankers and LLMs
over embedding models. BTZSC and accompanying evaluation code are publicly
released to support fair and reproducible progress in zero-shot text understanding.

1 INTRODUCTION

Text classification is a foundational problem in Natural Language Processing (NLP), finding broad
applications across diverse domains, including topic categorization of news articles, intent detection
in conversational agents, sentiment analysis of product reviews, and emotion recognition in mental
health support systems (Sebastiani, 2002; Kowsari et al., 2019). Formally, the task involves assign-
ing one or more predefined labels to textual data based solely on the content of the text (Sebastiani,
2002). However, the supervised approach to text classification necessitates the creation of large-
scale, high-quality annotated datasets, a process that is often prohibitively expensive, particularly in
specialized domains requiring expert annotators (Settles, 2012).

Zero-shot text classification (ZSC) addresses this challenge by enabling models to predict labels
that have not been explicitly observed during training (Yin et al., 2019). The core principle under-
lying ZSC methods is the exploitation of semantic relationships between input texts and candidate
labels. This relationship is typically captured using pretrained language models, which encode se-
mantics based on extensive pretraining on large textual corpora (Yin et al., 2019; Brown et al., 2020).
One straightforward approach involves prompting (instruction-tuned) large autoregressive language
models (LLMs) directly with textual inputs and candidate label descriptions. While effective, this
method entails considerable computational cost and latency, limiting its feasibility in real-time de-
ployment scenarios (Brown et al., 2020).
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A widely adopted, more computationally efficient alternative involves fine-tuning pretrained encoder
models on Natural Language Inference (NLI) datasets, reframing classification tasks as entailment
problems. Specifically, the input text acts as a premise and each candidate label as a hypothesis sen-
tence (Yin et al., 2019; Bowman et al., 2015; Williams et al., 2018). NLI datasets, including SNLI
(Bowman et al., 2015) and MultiNLI (Williams et al., 2018), contain sentence pairs annotated with
labels indicating entailment, contradiction, or neutrality. By fine-tuning encoders on these corpora,
models learn to discern semantic compatibility, thus enabling effective reuse in ZSC scenarios. De-
spite their success and lower computational demands relative to generative LLMs, improvements in
NLI-based cross-encoder methods have plateaued in recent years.

Concurrent to this, significant advances have occurred in the domain of text-embedding models
(Reimers & Gurevych, 2019; Gao et al., 2021; Muennighoff et al., 2023). Embedding models learn
mappings, f : text → Rd, from textual inputs to dense vector representations, ensuring semanti-
cally related texts are closely situated in the embedding space. This characteristic facilitates effi-
cient similarity-based retrieval, and in principle, supports ZSC through nearest-neighbor matching
to candidate label embeddings (Reimers & Gurevych, 2019; Gao et al., 2021). The Massive Text
Embedding Benchmark (MTEB) systematically evaluates embedding models across various tasks,
encompassing 58 datasets categorized into eight families (Muennighoff et al., 2023). However, clas-
sification performance within MTEB is primarily assessed through linear probes trained on labeled
data atop frozen embeddings, thereby leaving the genuine zero-shot capabilities of embedding mod-
els untested (Muennighoff et al., 2023).

Another promising class of models, rerankers, originally cross-encoder or sequence-to-sequence ar-
chitectures designed to refine the ranking of query-document pairs (e.g., MonoT5 (Nogueira et al.,
2020)), can similarly be adapted for ZSC by treating textual inputs as queries and label descrip-
tions as retrievable documents. However, the comparative performance and potential advantages of
rerankers in zero-shot classification contexts remain underexplored.

Furthermore, the distinction between encoder-based and generative approaches is becoming increas-
ingly blurred, as modern embedding models frequently leverage distilled or instruction-tuned vari-
ants of generative LLMs (e.g., Sentence-T5 (Ni et al., 2021), E5 (Wang et al., 2024)). Given these
developments, a unified, controlled evaluation of all major model classes, NLI cross-encoders, em-
bedding models, rerankers, and instruction-tuned LLMs, under zero-shot conditions is still lacking.
Existing benchmarks either rely on supervised probes (as in MTEB (Enevoldsen et al., 2025)), fo-
cus exclusively on encoder architectures, or do not compare generative and non-generative methods
under a consistent protocol.

To address this gap, we present a comprehensive benchmark study spanning 22 datasets across four
major classification categories (sentiment, topic, intent, and emotion). This benchmark systemati-
cally explores the relative strengths, limitations, and transferability of these approaches, offering a
comparative analysis to guide future research directions in zero-shot text classification.

2 RELATED WORK

To our knowledge, the proposed benchmark, BTZSC is the first to jointly evaluate NLI cross-
encoders, embedding models, rerankers, and instruction-tuned LLMs under a consistent, zero-shot
classification protocol. Previous benchmarks for ZSC have typically been limited in scope, often
restricted to evaluating a single model family, a narrow task category, or a handful of datasets. For
instance, Yin et al. (2019) introduced a foundational NLI-based ZSC benchmark but evaluated ex-
clusively cross-encoder models on only three datasets. Chalkidis et al. (2020) examined zero-shot
learning specifically within multi-label classification but confined their analysis to three hierarchical
datasets. Gretz et al. (2023) proposed TTC23, evaluating prompt-based methods solely for topic
classification and omitted contemporary embedding and reranking models from their analysis. Lep-
agnol et al. (2024) further explored the performance of smaller language models (100M-1B param-
eters) across 15 datasets, yet their work excluded comparisons with embedding and reranker archi-
tectures. The Massive Text Embedding Benchmark (MTEB), alongside its multilingual counterpart,
has established a mature, broad-ranging evaluation platform covering numerous datasets. How-
ever, MTEB assesses classification performance via supervised linear probes trained atop frozen
embeddings, thereby leaving unanswered the question of embedding models’ genuine zero-shot ca-
pability (Muennighoff et al., 2023; Enevoldsen et al., 2025; Chung et al., 2025). Consequently,
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this fragmented state of evaluation has hindered a clear understanding of cross-family comparative
capabilities among these diverse model types.

2.1 ZERO-SHOT TEXT CLASSIFICATION

Zero-shot text classification fundamentally involves assigning labels unseen during training by as-
sessing semantic compatibility between input texts and candidate labels, typically expressed in nat-
ural language. Unlike supervised approaches, ZSC methods avoid task-specific fine-tuning by lever-
aging pretrained models’ semantic representations. A common parallel in vision tasks is zero-shot
image recognition with language-aligned models like CLIP (Radford et al., 2021), though textual
classification benefits directly from the intrinsic expressivity and flexibility of natural language doc-
uments.

NLI-based cross-encoders represent one of the earliest and most prominent paradigms for zero-
shot text classification. Such methods recast the classification problem into an entailment task,
where each candidate label is paired with the input text as a hypothesis-premise pair scored by an
NLI model (Yin et al., 2019). This approach has been operationalized effectively by public check-
points like facebook/bart-large-mnli (Lewis et al., 2020), which powers the widely used
zero-shot pipeline of Hugging Face Transformers (Wolf et al., 2020). More recent advances, includ-
ing stronger encoder backbones like DeBERTa-v3 (He et al., 2023) and improved label verbaliza-
tion techniques, have incrementally enhanced performance. Nonetheless, these improvements have
plateaued when compared with rapid advancements from increasingly large generative language
models (LLMs).

Text-embedding models have subsequently emerged as a highly active research domain, evolving
significantly from early sentence embedding techniques such as InferSent (Conneau et al., 2017) and
Google’s Universal Sentence Encoder (USE) (Cer et al., 2018). Contemporary embedding frame-
works, notably E5 (Wang et al., 2024), GTE (Li et al., 2023), BGE (Chen et al., 2024), and Qwen3-
Embedding (Zhang et al., 2025), have substantially raised performance standards. These models
integrate sophisticated training strategies including billion-scale contrastive pretraining, multilin-
gual supervision, multi-stage data scaling, and instruction fine-tuning. For example, E5 uses an
instruction-tuned approach with massive-scale contrastive learning, GTE emphasizes data-scale ex-
pansion over parameter scale, and BGE combines dense, sparse, and multi-vector encoding tech-
niques into a multilingual framework capable of handling extensive context lengths. Compared to
foundational architectures such as SBERT (Reimers & Gurevych, 2019), these advancements have
resulted in improvements on standard benchmarks such as MTEB, demonstrating enhanced perfor-
mance in semantic representation tasks (Muennighoff et al., 2023). Additionally, embedding models
increasingly incorporate distillation from or joint-training with large generative models, effectively
blurring distinctions between encoder-based and generative paradigms.

Reranker models, originally developed for information retrieval tasks, represent another promising
approach for ZSC. Early reranker architectures leveraged cross-encoder models like BERT (Devlin
et al., 2019), DPR’s combined bi-encoder and cross-encoder architecture (Karpukhin et al., 2020),
and late-interaction models such as ColBERT (Khattab & Zaharia, 2020). These methods typically
assign relevance scores to a set of candidate documents with respect to a given input query, en-
abling them to be ranked accordingly. Sequence-to-sequence reranker variants such as MonoT5
have further extended this paradigm by scoring pairs through generative token likelihood estima-
tion, demonstrating effective transferability to new tasks (Nogueira et al., 2020). Recent embedding
model families like BGE now provide integrated reranker checkpoints, inheriting their multi-stage
training procedures (Chen et al., 2024).

Instruction-tuned LLMs have emerged as a powerful paradigm for zero-shot classification, lever-
aging the general-purpose capabilities acquired through large-scale pretraining and subsequent in-
struction fine-tuning. Early work by Brown et al. (2020) demonstrated that sufficiently large au-
toregressive models could perform zero-shot classification via in-context prompting without task-
specific training. Subsequent instruction-tuning methods, including FLAN (Wei et al., 2022) and
InstructGPT (Ouyang et al., 2022), further enhanced zero-shot generalization by training models
to follow natural language instructions across diverse tasks. Recent open-weight models such as
LLaMA (Touvron et al., 2023), Mistral (Jiang et al., 2023), Qwen (Bai et al., 2023), and Gemma
(Mesnard et al., 2024) have democratized access to instruction-following capabilities, enabling sys-
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tematic evaluation across parameter scales. For zero-shot classification, these models are typically
prompted with the input text and candidate labels, either selecting the label with highest genera-
tion probability or parsing a generated response (Sun et al., 2023). While instruction-tuned LLMs
offer flexibility and strong performance on diverse tasks, they incur substantially higher computa-
tional costs compared to encoder-based alternatives, motivating research into efficient deployment
strategies and smaller-scale variants (Lepagnol et al., 2024).

3 BENCHMARK FOR TEXTUAL ZERO-SHOT CLASSIFICATION (BTZSC)

BTZSC presents a comprehensive, task-balanced evaluation suite for zero-shot text classification1,
aiming to serve as a benchmark for diverse model architectures. The datasets underpin five key crite-
ria to ensure robustness and real-world relevance. First, ensuring task diversity by including at least
two datasets for each of sentiment, topic, intent, and emotion classification, mirroring the four most
prominent application families. Second, to probe the impact of class granularity, BTZSC covers
binary, medium-sized (such as agnews with four labels), and high-cardinality settings (for instance,
banking77 with 77 labels). Third, we prioritized domain diversity, drawing from sources spanning
news, social media, product reviews, encyclopedic content, and political discourse to assess model
robustness under domain shift. Fourth, we incorporated a wide spectrum of document lengths, from
micro-texts (under 20 tokens) to longer articles (over 250 tokens). The benchmark is limited to En-
glish datasets; multilingual evaluation is left for future work. The datasets overlap to a large extent
with the datasets used by (Laurer et al., 2023) for transfer learning in zero-shot classification. Full
dataset details, including sources, licenses, and preprocessing, are provided in Appendix A.

BTZSC comprises 22 English datasets encompassing the aforementioned task types. As summa-
rized in Table 1, each dataset is characterized by its number of classes, average token length2, and
domain area (such as news, review, or social media). To quantify lexical overlap and domain simi-
larity between datasets, we follow (Thakur et al., 2021) and compute weighted Jaccard similarity by
measuring token distribution overlaps for each dataset pair. The resulting 22× 22 similarity matrix,
shown in Figure 1, highlights low overlap between different task types, reflecting strong lexical di-
versity across tasks. At the same time, we observe that datasets derived from similar sources tend
to cluster more together, for example, all Wikipedia-based datasets form a distinct group, as do the
biasframes-related datasets, demonstrating modest intra-source lexical similarity.

3.1 EVALUATION METRICS

To make results comparable across all BTZSC tasks and model families we adopt a single, task-
agnostic primary metric: macro F1. Macro averaging gives equal weight to every class irrespective
of its frequency, making it appropriate for both binary and multi-class datasets with varying label
set cardinalities (Sokolova & Lapalme, 2009). We additionally report (micro) accuracy, since it
remains the most common headline number in the classification literature and is straightforward
to interpret. For a more complete picture of model behavior across classes, we also report macro-
averaged precision and recall for all tasks in Appendix D.

Finally, to probe whether success on natural-language inference transfers to zero-shot classification,
we evaluate each model on standard NLI benchmarks and report the AUROC. AUROC is threshold-
free and does not require calibrated probabilities; because cosine-similarity scores lie in [−1, 1]
rather than representing probabilities, AUROC lets us test whether entailment pairs consistently
receive higher similarity than neutral/contradiction pairs.

1Throughout this paper, we use the term zero-shot to denote that no fine-tuning or labelled examples from
BTZSC tasks are used for training or model selection. Models are evaluated purely via document–label seman-
tic matching. A key limitation is that the public datasets used in BTZSC may appear in the pre-training corpora
of some models; as these corpora are often only partially documented, we cannot guarantee full corpus novelty.
We mitigated this by checking publicly documented pre-training and supervised training data and avoiding
models that explicitly list our datasets as supervised training targets, but undocumented overlap may still exist.
This limitation is shared with other contemporary benchmarks such as MTEB (Enevoldsen et al., 2025).

2computed with the answerdotai/ModernBERT tokenizer
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Domain Dataset Num Classes Avg Token Count

Emotion
dialogue empathetic 32 132
social-media dair ai emotion 6 20

Intent
banking banking77 77 13
social-media biasframes intent 2 27
assistant massive intent 59 8

Sentiment
apps appreviews 2 49
e-commerce amazonpolarity 2 103
finance financialphrasebank 3 29
local-business yelpreviews 2 164
movies imdb 2 293
movies rottentomatoes 2 26

Topic
education trueteacher 2 282
news agnews 4 54
politics capsotu 21 44
politics manifesto 56 45
qa-forum yahootopics 10 137
social-media biasframes offensive 2 27
social-media biasframes sex 2 28
wikipedia wikitoxic insult 2 93
wikipedia wikitoxic obscene 2 91
wikipedia wikitoxic threat 2 99
wikipedia wikitoxic toxicaggregated 2 86

Table 1: Summary statistics of BTZSC datasets.

3.2 MODEL TYPES

We categorize the models evaluated in this study according to their underlying architecture and
training strategies.

Transformer Base Models. As a baseline, we include transformer-based encoder models that have
not been further fine-tuned for any specific downstream task. For these models, the final [CLS] token
representation is extracted and cosine similarity is used to compute the relevance between the input
text and each candidate label. The base models considered in this category are the original BERT
(bert-large-uncased (Devlin et al., 2019)), the increasingly adopted ModernBERT (ModernBERT-
large (Warner et al., 2024)), and DeBERTa-v3 (deberta-v3-large (He et al., 2023)), a popular and
robust modification of BERT that has demonstrated strong performance on a variety of NLP bench-
marks.

NLI-based Cross-Encoders. These models are trained on NLI datasets and perform classification
by assessing the degree of entailment between an input text and each candidate label, formulated
as a premise-hypothesis pair. BART-Large-MNLI is included as the canonical representative, be-
ing the first widely used NLI-based cross-encoder for zero-shot classification. We also consider
NLI-RoBERTa-base as well as a set of custom-trained cross-encoders using BERT, DeBERTa-v3,
and ModernBERT backbones. Both base and large versions are evaluated to analyze the effect of
model scale, and two loss variants are tested to assess the impact of training objectives. In total,
11 NLI-based cross-encoders are benchmarked, covering the most widely used configurations in the
literature.

Embedding Models. This category comprises models optimized to produce fixed-size vector rep-
resentations of text for a range of downstream tasks, including classification. As a canonical em-
bedding model, all-MiniLM-L6-v2 (Reimers & Gurevych, 2019) serves as a baseline for this model

5
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Figure 1: Pairwise weighted Jaccard similarity between datasets.

family. Additionally, we evaluate both base and large variants of BGE, GTE, and E5, all of which
use variations of transformer encoders as backbones. To provide contrast, we also include em-
bedding models that leverage large language model architectures, such as Qwen3-Embedding and
e5-mistral-7b-instruct; for Qwen3-Embedding, both 0.6B and 8B parameter variants are tested to
study the effect of scale. Overall, the embedding model category comprises 11 distinct models.

Rerankers. Reranker models are typically employed in information retrieval, where they re-score
candidate documents for relevance to a given query. The ms-marco-MiniLM-L6-v2 model serves
as the reranker counterpart to all-MiniLM-L6-v2 and is used as the baseline for this group. Simi-
larly, gte-reranker-modernbert-base and bge-reranker-base/large serve as reranking counterparts to
their respective embedding models. We further include Qwen3-Reranker, a generative reranker that
scores document-query relevance by prompting the model to assess relevance. Both the 0.6B and
8B variants of Qwen3-Reranker are evaluated to analyze the impact of model size.

Instruction-tuned LLMs. This category comprises autoregressive language models that have un-
dergone instruction fine-tuning to follow natural language directives. For zero-shot classification,
we frame the task as a multiple-choice problem: the model is prompted with the input text and a
list of candidate labels, and classification is performed by computing the conditional probability of
each answer token given the prompt, selecting the answer with the highest probability. We eval-
uate models spanning a range of parameter scales to assess scaling behavior: Gemma-3-270m-it
and Gemma-3-1b-it (Mesnard et al., 2024) represent the smaller end of the spectrum, Llama-3.2-
3B-Instruct (Grattafiori et al., 2024), Phi-4-mini-instruct (Abdin et al., 2024) and Qwen3-4B (Yang
et al., 2025) provide mid-scale options, while Qwen3-8B, and Mistral-Nemo-Instruct-2407 (Mistral
AI, 2024) cover the larger parameter regime. We cap our evaluation at 12B parameters, as this study
focuses on models suitable for low-latency, scalable deployment scenarios where computational
efficiency remains a practical constraint.
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Table 4 in appendix B summarizes the models included in the experiments, listing their architecture,
training data, and parameter count. In total, the benchmark covers 38 models.

4 EXPERIMENTAL SETUP

To facilitate zero-shot classification, each class label is verbalized as a short, semantically clear,
and context-rich description. For example, in the Amazon Polarity dataset, the positive class is
verbalized as “The overall sentiment within the Amazon product review is {label},” where “label”
is substituted with either “positive” or “negative” depending on the ground truth.

For our custom NLI-based cross-encoders, we follow the methodology of Laurer et al. (2023) and
train models on a mixture of MNLI (Williams et al., 2018), ANLI (Nie et al., 2020), WANLI (Liu
et al., 2022), FEVER-NLI (Thorne et al., 2018), and LingNLI (Parrish et al., 2021), datasets, deliber-
ately omitting SNLI due to concerns regarding data quality and label bias. Full details of the training
procedure are provided in section C.1 of the appendix. During inference we collect the entailment
logits and attribute the label with the highest logit as the predicted label. For embedding models,
we compute the cosine similarity between the text embedding and each label embedding, selecting
the label with the highest similarity score as the predicted label.3 For reranker models, the text to
be classified serves as the query, while the verbalized label descriptions are treated as candidate
”documents” to be reranked according to their predicted relevance. For generative rerankers such as
Qwen3-Reranker, the scoring mechanism is detailed in Appendix C.2. For instruction-tuned LLMs,
we frame zero-shot classification as a multiple-choice task, prompting the model with the input
text and enumerated verbalized label options, and selecting the option with the highest next-token
probability (see Appendix C.3 for details).

5 RESULTS AND ANALYSIS

In this section, we present and analyze the performance of all evaluated models on the BTZSC
benchmark. Table 2 summarizes results across all datasets, grouped by task type, and reports (macro)
F1 scores averaged within each task as well as overall, in addition to average (micro) accuracy.
Standard deviations are included in parentheses to reflect variability across datasets. Disaggregated
results with precision and recall analysis are provided in Appendix D. To verify that our findings
are not artifacts of BTZSC’s specific dataset composition, we replicate the evaluation on the eight
English classification tasks from MTEB v2; rankings are strongly correlated (τ = 0.69, p < 10−8)
and family-wise conclusions remain consistent; for more granular details see Appendix E.

Base Transformer Encoders. Models that are not further fine-tuned or trained on specific semantic
matching objectives perform poorly on zero-shot classification tasks. Their inability to align input
texts with candidate label descriptions underscores the necessity of explicit training for semantic
compatibility.

NLI-based Cross-Encoders. Models fine-tuned on NLI data exhibit clear benefits over their off-
the-shelf counterparts. Training on a diverse set of NLI datasets, including MNLI, ANLI, WANLI,
FEVERNLI, and LINGNLI, yields consistently stronger performance compared to models such as
bart-large-mnli and nli-roberta-base, with multi-dataset models achieving an average improvement
of +6 F1 points across all tasks. Scaling model size further enhances performance: large variants
outperform their base counterparts by an average of +3.5 F1 points. Figure 2(a) highlights this dif-
ference on a more granular level. Task difficulty remains a dominant factor: sentiment classification
is relatively easy (median F1 ≈ 0.88-0.9), topic and intent classification are of intermediate difficulty
(F1 ≈ 0.4-0.55), and emotion detection proves most challenging (F1 ≈ 0.25-0.35). Larger models
deliver the greatest benefit for more difficult tasks, with performance gains especially pronounced in
topic and intent classification. The choice of loss function, whether binary cross-entropy with neu-
tral collapsed or standard three-way cross-entropy, has minimal impact overall. The only systematic
deviation appears in topic classification, where the triplet variant shows degradation in performance,
though intent classification continues to improve under triplet training. Notably, within this family,
deberta-v3-large-nli-triplet achieves the highest overall performance, surpassing both the original

3For each embedding model family (E5, BGE, GTE, Qwen-Embedding), we follow the official instruction
templates and query/document prefixes recommended in the original papers and Hugging Face model cards.
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BERT and ModernBERT variants, corroborating findings from Warner et al. (2024), that deberta-v3
is still a challenging baseline for various NLP tasks.

Reranker Models. Among rerankers, the baseline ms-marco-MiniLM-L6-v2 does not match the
performance of NLI cross-encoders (average F1: 0.42), consistent with the historical view that
NLI fine-tuning is advantageous for zero-shot tasks. However, more recent rerankers close the gap
substantially. For example, gte-reranker-modernbert-base achieves an average F1 of 0.58, just two
points below the best NLI cross-encoder (deberta-v3-large-nli-triplet), and with lower variance. The
strongest reranker, Qwen3-Reranker-8B, achieves an average F1 of 0.72 and outperforms all other
models, including NLI cross-encoders, by significant margins (+12 F1 and +14 accuracy points).
This model is the top overall performer on the benchmark, ranking first in two out of four task cat-
egories and second in topic classification. It should be noted, however, that its size (8B parameters)
far exceeds that of NLI cross-encoders (typically around 300M parameters). Importantly, even the
much smaller Qwen3-Reranker-0.6B delivers competitive results, surpassing all NLI cross-encoders
in F1 and matching or exceeding their accuracy, underscoring the strength of the reranker approach
even at moderate scale.

Embedding Models. The canonical embedding baseline, all-MiniLM-L6-v2, attains an average F1
of 0.37, supporting prior observations that rerankers generally outperform embedding models in re-
trieval, albeit at higher computational cost. However, newer embedding models such as e5-large-v2,
gte-modernbert-base, and gte-large-en-v1.5 achieve substantially higher F1 scores (0.60, 0.59, and
0.62, respectively), placing them on par with or even surpassing the best NLI cross-encoders. No-
tably, these embedding models lack cross-attention between documents and label verbalizers yet still
deliver strong results at similar model sizes. For instance, gte-large-en-v1.5 surpasses all NLI cross-
encoders and all rerankers of comparable size, yet it still trails the top-performing Qwen3-Reranker-
8B by roughly 10 F1 points. Scaling up embedding models does not yield the same improvements
observed in rerankers; for example, Qwen3-Embedding-8B only marginally improves over its 0.6B
variant (F1: 0.59 vs. 0.58).

Instruction-tuned LLMs. Instruction-tuned LLMs form a fourth family, evaluated in a strictly zero-
shot setting with simple prompt templates. Their performance spans a wide range and reveals that
both scale and model family play critical roles. Small models such as gemma-3-270m-it and gemma-
3-1b-it perform comparably to base encoders (average F1 0.28 and 0.36, respectively), indicating
that sub-billion parameter LLMs struggle as zero-shot classifiers. At the 3–4B parameter range,
we observe substantial variation by model family: Llama-3.2-3B-Instruct and Phi-4-mini-instruct
achieve only mid-0.40s F1, roughly matching weaker NLI cross-encoders and embedding baselines,
whereas Qwen3-4B reaches 0.65 F1 despite comparable size. This performance gap suggests that
at moderate scales, instruction-tuning quality and base model design matter more than parameter
count alone. At 8B+ parameters, LLMs become consistently competitive: Qwen3-8B achieves 0.66
F1 with accuracy around 0.71. The strongest LLM, Mistral-Nemo-Instruct-2407 (12B), attains 0.67
F1 and 0.71 accuracy, surpassing all embedding models and NLI cross-encoders, though it remains
about 5 F1 points behind the specialized Qwen3-Reranker-8B. LLMs particularly excel on topic
classification (F1 up to 0.69), while lagging somewhat on intent and emotion relative to the best
rerankers and embedding models.

Figure 2(b) further elucidates scaling trends. All three families benefit from scaling, but with dis-
tinct regimes. Rerankers exhibit roughly monotonic gains with scale and form the top curve at all
sizes, culminating in Qwen3-Reranker-8B. Embedding models improve rapidly up to a few hundred
million parameters and then largely saturate around 0.60-0.62 F1. LLMs show the steepest scaling:
performance rises slowly at sub-billion scales and then sharply between 3B and 8B, where they
catch up with the best embeddings and approach the strongest reranker. Figure 3(a) plots model
F1 score against normalized inference speed (1/wall time) on a standard test set. The upper-right
quadrant, bounded by the medians of both metrics, highlights models that best balance accuracy
and efficiency. The majority of the models in this region are embedding models, indicating they
offer the most favorable trade-off between performance and latency for practical deployments, with
gte-reranker-modernbert-base as the only reranker achieving comparable efficiency. Large LLMs,
in contrast, tend to be accurate but slow: they cluster in the upper-left region of the plot, well outside
the Pareto-efficient quadrant.
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Figure 2: (a) Performance of NLI-based cross-encoders on BTZSC; points are individual datasets
and diamonds mark task-wise medians, comparing model size (base vs. large) and loss type (binary
vs. three-way). (b) Effect of scale on zero-shot performance: macro-F1 vs. parameter count (log
scale); bands show 95% CIs.

5.1 NLI PERFORMANCE AS A PROXY FOR ZERO-SHOT CLASSIFICATION

We also examine whether NLI task performance predicts zero-shot classification effectiveness. As
shown in Figure 3(b), the relationship is strongly model-family dependent. For NLI-tuned cross-
encoders, there is a clear, almost linear relationship: higher NLI AUROC consistently translates into
higher F1 on BTZSC, reflecting the direct transfer of entailment supervision to zero-shot classifi-
cation. Large LLMs follow a similar pattern, with models that perform better on NLI also achiev-
ing stronger BTZSC results, indicating that entailment-aligned reasoning capabilities in instruction-
tuned LLMs remain predictive of ZSC quality. Rerankers, although not explicitly fine-tuned on NLI,
still display a positive trend: better NLI AUROC is generally associated with higher BTZSC F1. At
the same time, several rerankers attain strong classification performance despite only moderate NLI
scores, suggesting that relevance-focused training captures discriminative task signals that standard
NLI benchmarks do not fully reflect. Embedding models, by contrast, show tightly clustered NLI
AUROC values but a wide spread in BTZSC F1. This lack of a clear monotonic relationship implies
that once a basic level of NLI competence is reached, NLI performance is no longer a good proxy
for zero-shot classification quality in embedding models. Instead, the structure of the embedding
space and its ability to encode fine-grained topical distinctions are hypothesized to be the dominant
factors.
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(a) Accuracy vs. latency trade-off.
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Figure 3: (a) Trade-off between model performance and inference speed. Macro-F1 score (BTZSC)
is plotted against normalized inference throughput (1/wall time) on a standard test set. The upper
right quadrant, defined by the medians of both metrics, highlights models with the best balance of
accuracy and efficiency. (b) Relationship between NLI ability and zero-shot classification. Each
dot represents one model; the x-axis shows AUROC on standard NLI benchmarks, while the y-axis
shows macro-F1 on BTZSC.
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Model Topic Sentiment Intent Emotion Avg F1 Avg Acc
Base encoders

bert-large-uncased 0.34 (0.22) 0.38 (0.06) 0.15 (0.24) 0.08 (0.11) 0.30 (0.20) 0.40 (0.26)
deberta-v3-large 0.30 (0.23) 0.34 (0.03) 0.16 (0.26) 0.05 (0.07) 0.27 (0.20) 0.36 (0.25)
ModernBERT-large 0.30 (0.24) 0.37 (0.06) 0.14 (0.21) 0.03 (0.04) 0.27 (0.21) 0.35 (0.24)

NLI cross-encoders
bart-large-mnli 0.37 (0.23) 0.84 (0.19) 0.43 (0.16) 0.41 (0.04) 0.51 (0.28) 0.53 (0.28)
nli-roberta-base 0.40 (0.25) 0.80 (0.15) 0.30 (0.22) 0.33 (0.02) 0.49 (0.28) 0.50 (0.28)
bert-base-uncased-nli 0.43 (0.27) 0.76 (0.17) 0.30 (0.28) 0.26 (0.15) 0.49 (0.29) 0.50 (0.28)
bert-large-uncased-nli 0.49 (0.27) 0.79 (0.10) 0.35 (0.26) 0.27 (0.21) 0.53 (0.28) 0.57 (0.28)
bert-large-uncased-nli-triplet 0.49 (0.27) 0.78 (0.12) 0.35 (0.27) 0.24 (0.06) 0.52 (0.28) 0.55 (0.26)
deberta-v3-base-nli 0.49 (0.26) 0.86 (0.10) 0.31 (0.17) 0.33 (0.06) 0.55 (0.28) 0.58 (0.26)
deberta-v3-large-nli 0.48 (0.26) 0.90 (0.06) 0.48 (0.17) 0.44 (0.00) 0.59 (0.27) 0.62 (0.25)
deberta-v3-large-nli-triplet 0.50 (0.28) 0.90 (0.07) 0.45 (0.23) 0.42 (0.01) 0.60 (0.28) 0.62 (0.27)
modernbert-base-nli 0.49 (0.26) 0.84 (0.14) 0.27 (0.18) 0.29 (0.01) 0.53 (0.29) 0.56 (0.29)
modernbert-large-nli 0.47 (0.25) 0.86 (0.16) 0.40 (0.21) 0.30 (0.00) 0.55 (0.28) 0.59 (0.27)
modernbert-large-nli-triplet 0.45 (0.26) 0.88 (0.12) 0.41 (0.19) 0.34 (0.04) 0.55 (0.29) 0.58 (0.27)

Rerankers
ms-marco-MiniLM-L6-v2 0.41 (0.14) 0.59 (0.16) 0.30 (0.29) 0.19 (0.01) 0.42 (0.20) 0.46 (0.21)
gte-reranker-modernbert-base 0.49 (0.14) 0.82 (0.17) 0.51 (0.15) 0.42 (0.04) 0.58 (0.20) 0.62 (0.19)
bge-reranker-base 0.42 (0.14) 0.62 (0.15) 0.47 (0.04) 0.29 (0.00) 0.47 (0.16) 0.49 (0.14)
bge-reranker-large 0.43 (0.19) 0.78 (0.15) 0.54 (0.07) 0.37 (0.03) 0.53 (0.22) 0.56 (0.21)
Qwen3-Reranker-0.6B 0.54 (0.24) 0.80 (0.20) 0.55 (0.07) 0.45 (0.06) 0.61 (0.23) 0.64 (0.21)
Qwen3-Reranker-8B 0.66 (0.19) 0.92 (0.06) 0.70 (0.03) 0.49 (0.00) 0.72 (0.19) 0.76 (0.15)

Embedding models
all-MiniLM-L6-v2 0.41 (0.12) 0.35 (0.04) 0.41 (0.07) 0.13 (0.03) 0.37 (0.12) 0.44 (0.14)
e5-base-v2 0.51 (0.20) 0.83 (0.19) 0.56 (0.08) 0.40 (0.04) 0.60 (0.23) 0.62 (0.21)
e5-large-v2 0.50 (0.17) 0.86 (0.17) 0.55 (0.04) 0.41 (0.04) 0.60 (0.22) 0.62 (0.20)
e5-mistral-7b-instruct 0.41 (0.21) 0.87 (0.13) 0.65 (0.02) 0.50 (0.00) 0.58 (0.26) 0.62 (0.24)
bge-base-en-v1.5 0.47 (0.20) 0.82 (0.20) 0.58 (0.05) 0.36 (0.09) 0.57 (0.24) 0.59 (0.22)
bge-large-en-v1.5 0.42 (0.19) 0.84 (0.19) 0.58 (0.09) 0.39 (0.06) 0.55 (0.25) 0.59 (0.24)
gte-base-en-v1.5 0.49 (0.23) 0.83 (0.18) 0.59 (0.07) 0.37 (0.07) 0.58 (0.24) 0.61 (0.23)
gte-large-en-v1.5 0.54 (0.22) 0.85 (0.18) 0.59 (0.04) 0.37 (0.04) 0.62 (0.23) 0.64 (0.22)
gte-modernbert-base 0.45 (0.20) 0.87 (0.12) 0.62 (0.01) 0.42 (0.04) 0.59 (0.24) 0.61 (0.23)
Qwen3-Embedding-0.6B 0.49 (0.14) 0.81 (0.17) 0.56 (0.10) 0.43 (0.07) 0.58 (0.20) 0.61 (0.18)
Qwen3-Embedding-8B 0.44 (0.16) 0.89 (0.09) 0.59 (0.17) 0.51 (0.05) 0.59 (0.23) 0.64 (0.20)

Instruction-tuned LLMs
gemma-3-270m-it 0.29 (0.21) 0.42 (0.11) 0.13 (0.22) 0.04 (0.04) 0.28 (0.21) 0.31 (0.21)
gemma-3-1b-it 0.34 (0.18) 0.52 (0.14) 0.24 (0.25) 0.14 (0.02) 0.36 (0.20) 0.40 (0.21)
Llama-3.2-3B-Instruct 0.44 (0.16) 0.46 (0.09) 0.41 (0.05) 0.35 (0.03) 0.43 (0.12) 0.46 (0.11)
Qwen3-4B 0.64 (0.23) 0.88 (0.11) 0.40 (0.04) 0.37 (0.08) 0.65 (0.25) 0.70 (0.22)
Phi-4-mini-instruct 0.44 (0.15) 0.49 (0.13) 0.37 (0.07) 0.30 (0.01) 0.43 (0.14) 0.47 (0.14)
Qwen3-8B 0.65 (0.23) 0.90 (0.08) 0.48 (0.17) 0.32 (0.11) 0.66 (0.25) 0.71 (0.23)
Mistral-Nemo-Instruct-2407 0.69 (0.24) 0.84 (0.17) 0.46 (0.17) 0.36 (0.10) 0.67 (0.25) 0.71 (0.23)

Table 2: Zero-shot classification results on BTZSC. We report macro F1 per task family, overall
macro F1 (Avg F1), and micro accuracy (Avg Acc), with standard deviations in parentheses. Bold
indicates the best and underline the second-best score per column; the best model within each family
is also underlined.

6 CONCLUSION AND FUTURE WORK

This paper introduces BTZSC, a unified benchmark for zero-shot text classification that jointly eval-
uates NLI cross-encoders, embedding models, rerankers, and instruction-tuned LLMs. Across 22
datasets, modern rerankers achieve the best overall performance, while strong embedding models of-
fer the most attractive accuracy-latency trade-off; NLI cross-encoders remain competitive but show
diminishing returns with scale, and NLI scores predict zero-shot quality only within this family
and for LLMs, not for embeddings. Instruction-tuned LLMs at 4-12B parameters form a fourth
regime: clearly better than base encoders and small LLMs and competitive with strong embeddings
and cross-encoders, yet still lagging behind the best rerankers at substantially higher cost. BTZSC,
together with our released code and models, provides a reproducible testbed for future work on mul-
tilingual extensions, improved label verbalizations and prompts, and scaling up instruction-tuned
and reranker models for realistic zero-shot deployment.
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REPRODUCIBILITY STATEMENT

To foster transparency and enable future work, we will release the complete evaluation benchmark,
including preprocessing and evaluation scripts, together with the full codebase under an MIT license.
Model checkpoints of our trained NLI-based cross-encoders will also be made publicly available in
Hugging Face format. All training configurations (optimizer, learning rate schedules, batch sizes,
and early stopping criteria) are documented in the appendix. For robustness, training results are
averaged over three independent runs with different random seeds. Evaluation was performed on a
compute cluster with NVIDIA A100 80GB GPUs, using parallelized execution across models. All
inference runs were carried out in bfloat16 precision, and training, where applicable, employed
mixed precision for efficiency. Pretrained checkpoints sourced from public libraries are properly
cited and referenced. To our knowledge, no restrictions prevent full reproducibility of the results
presented in this work.
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intent detection with dual sentence encoders. In Proceedings of the 28th International Conference
on Computational Linguistics, 2020.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, et al. Universal sentence
encoder. In Proceedings of EMNLP, 2018.

Ilias Chalkidis, Manos Fergadiotis, Sotiris Kotitsas, Prodromos Malakasiotis, Nikolaos Aletras, and
Ion Androutsopoulos. An empirical study on large-scale multi-label text classification including
few and zero-shot labels. In Proceedings of EMNLP, 2020.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. arXiv preprint arXiv:2402.03216, 2024.

Isaac Chung, Imene Kerboua, Marton Kardos, Roman Solomatin, and Kenneth Enevoldsen. Main-
taining mteb: Towards long term usability and reproducibility of embedding benchmarks. arXiv
preprint arXiv:2506.21182, 2025.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In Proceed-
ings of EMNLP, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, 2019.

Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, et al. Mmteb:
Massive multilingual text embedding benchmark. arXiv preprint arXiv:2502.13595, 2025.

Jack FitzGerald et al. Massive: A 1m-example multilingual nlu dataset with 51 typologically-diverse
languages. In EMNLP, 2022.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proc. EMNLP, pp. 6894–6910, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziv Gekhman et al. Trueteacher: Learning factual consistency evaluation with large language mod-
els. In EMNLP, 2023.

Giovanni Grano, Andrea Di Sorbo, Francesco Mercaldo, Corrado A. Visaggio, Gerardo Canfora,
and Sebastiano Panichella. Android apps and user feedback: A dataset for software evolution and
quality improvement. In Proceedings of the 2nd ACM SIGSOFT International Workshop on App
Market Analytics (WAMA), pp. 8–11, 2017. doi: 10.1145/3121264.3121266.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Shai Gretz, Alon Halfon, Ilya Shnayderman, Orith Toledo-Ronen, Artem Spector, Lena Dankin,
Yannis Katsis, Ofir Arviv, Yoav Katz, Noam Slonim, and Liat Ein-Dor. Zero-shot topical text
classification with llms – an experimental study. In Findings of EMNLP, pp. 9647–9676, 2023.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa using
ELECTRA-style pre-training with gradient-disentangled embedding sharing. In Proc. Interna-
tional Conference on Learning Representations (ICLR), 2023. URL https://openreview.
net/forum?id=sE7-XhLxHA. arXiv:2111.09543.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Bryan D. Jones, Frank R. Baumgartner, Sean M. Theriault, Derek A. Epp, Rebecca Eissler,
Cheyenne Lee, and Miranda E. Sullivan. Policy agendas project: State of the union
speeches. https://www.comparativeagendas.net/, 2023. Comparative Agendas
Project dataset.
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A DATASETS OVERVIEW

BTZSC comprises 22 English single-label classification datasets spanning topic, sentiment, intent,
and emotion, as described in Section 3 and Table 1. Each dataset is treated as a separate, single-
label task: we never merge examples or label spaces across datasets, and all metrics are computed
per dataset before aggregation.

All datasets are publicly available through Hugging Face Datasets4 and listed in Table 3 together
with their original sources and licenses. The datasets overlap substantially with those used by Laurer
et al. (2023) for zero-shot transfer learning, and we intentionally reuse their task definitions and label
verbalizers where possible.

A.1 INSTANCE FORMAT AND SPLITS

For every dataset D, we standardise the Hugging Face representation to a simple pair

(xi, yi) ∈ X × {0, . . . , LD − 1},

where xi is a single input text string and yi is a categorical label index.

Single text field. Each original dataset may expose one or more textual fields (e.g. text,
sentence, utterance, comment text). We map these to a single canonical text field as
follows:

• If there is a single obvious document field (e.g. text, review, comment text), we
use that field directly as xi.

• If relevant information is split across multiple short fields (e.g. title + body, question +
answer, or conversational context), we concatenate them in a fixed order with newline
separators to form one string xi. No dataset-specific prompts or instructions are injected.

This standardisation is performed once per dataset and then reused across all model families, so
every model sees exactly the same input text for a given example.

Single categorical label. Each example carries a single gold label. We map the dataset-specific
label field (e.g. label, sentiment, topic, intent, emotion) to an integer index yi ∈
{0, . . . , LD − 1}, where LD is the number of classes in dataset D. The mapping between origi-
nal label names and indices is fixed per dataset and shared across all models. Multi-label datasets
are not included in BTZSC.

Splits and zero-shot protocol. For each dataset we evaluate purely zero-shot on the designated
evaluation split. Whenever the Hugging Face dataset exposes an official test split, we use that split
as BTZSC’s test set. For datasets without a separate test split, we adopt the dev or validation
split as test. No remixing or re-partitioning of examples is performed.

No labelled examples from any BTZSC dataset are used for training, hyper-parameter tuning, or
model selection. All reported scores are computed on these test splits under the zero-shot protocol
defined in the main text: models are only allowed to use their pretrained parameters and generic
evaluation prompts/verbalizers, with no supervision from BTZSC labels.

4https://huggingface.co/datasets

15

https://huggingface.co/datasets


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 LABEL VERBALIZERS

Zero-shot classification is implemented via natural-language label descriptions. Following Laurer
et al. (2023), each dataset D is associated with:

• a set of class names (e.g. positive, negative, neutral, toxic, non-toxic), and

• a short, semantically informative verbalizer template describing how the label appears in
context.

Concretely, for each dataset we define a template such as

“The overall sentiment within the Amazon product review is {label}”

where {label} is replaced by the class name (e.g. positive or negative). The exact templates and
class names are inherited from the release of Laurer et al. (2023).

These verbalizers are shared across all model families:

• For NLI cross-encoders, the text xi acts as premise and each verbalized label as hypothesis.

• For embedding models, both xi and verbalized labels are encoded and compared via cosine
similarity.

• For rerankers, xi is the query and verbalized labels are candidate “documents”.

• For LLMs, verbalized labels appear as options in a multiple-choice prompt (Appendix C.3).

Crucially, we do not tune verbalizers per model or per dataset: the same set of label descriptions is
used for all runs to ensure strict comparability.

A.3 TOKENISATION AND TRUNCATION

All models use their own official tokenizer. For each batch, we determine a maximum sequence
length

Lbatch = min
(
Lmodel,max

i
|xi|

)
,

where Lmodel is the maximum context length supported by the model and |xi| is the tokenised length
of input xi in that batch.

Inputs longer than Lmodel are truncated at the model’s hard limit; otherwise no manual truncation
is applied. We use dynamic padding to the longest sequence in the batch and do not apply any
additional dataset-specific preprocessing.

A.4 EVALUATION AND AGGREGATION PROTOCOL

Evaluation proceeds in two stages.

Per-dataset evaluation. For every dataset D we compute:

• macro-averaged F1 over the LD classes,

• micro-averaged accuracy,

• macro-averaged recall, and

• macro-averaged precision

on the full test split of D. No labels or examples are shared across datasets, and there is no aggrega-
tion of label spaces.
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Aggregation across datasets. To obtain the summary scores reported in Table 2, we only ag-
gregate dataset-level metrics. For each task family F ∈ {topic, sentiment, intent, emotion}, we
compute the family-wise macro-F1 as the unweighted mean of macro-F1 over all datasets D ∈ F .
The same unweighted averaging is used for family-wise accuracy. Each dataset therefore contributes
equally, independent of its size or class cardinality. We never pool examples across datasets when
computing these aggregates: there is no global micro-averaging over all test instances. Instead,
BTZSC deliberately treats each dataset as an independent testbed and uses simple unweighted aver-
ages to summarise performance across this collection.

A.5 SOURCES AND LICENSES

Table 3 lists the original sources and licenses for all datasets used in BTZSC.

Domain Dataset Source License

Emotion
dialogue empathetic dialogues (Rashkin et al., 2019) CC BY-NC 4.0
social-media dair ai emotion (Saravia et al., 2018) Research/education only
Intent
banking banking77 (Casanueva et al., 2020) CC BY 4.0
social-media biasframes intent (Sap et al., 2020) CC BY 4.0
assistant massive intent (FitzGerald et al., 2022) CC BY 4.0
Sentiment
apps appreviews (Grano et al., 2017) Unknown
e-commerce amazonpolarity (Zhang et al., 2015a) Apache-2.0
finance financialphrasebank (Malo et al., 2014) CC BY-NC-SA 3.0
local-business yelpreviews (Zhang et al., 2015c) ToU (non-commercial)
movies imdb (Maas et al., 2011) IMDb Non-Commercial Terms
movies rottentomatoes (Pang & Lee, 2005) CC0 1.0
Topic
education trueteacher (Gekhman et al., 2023) CC BY-NC 4.0
news agnews (Zhang et al., 2015a) Non-commercial
politics capsotu (Jones et al., 2023; Laurer et al., 2023) CC BY-NC-SA 4.0
politics manifesto (Lehmann et al., 2024) Terms of Use
qa-forum yahootopics (Zhang et al., 2015b) Unknown
social-media biasframes offensive (Sap et al., 2020) CC BY 4.0
social-media biasframes sex (Sap et al., 2020) CC BY 4.0
wikipedia wikitoxic insult (Wulczyn et al., 2017) CC0 1.0
wikipedia wikitoxic obscene (Wulczyn et al., 2017) CC0 1.0
wikipedia wikitoxic threat (Wulczyn et al., 2017) CC0 1.0
wikipedia wikitoxic toxicaggregated (Wulczyn et al., 2017) CC0 1.0

Table 3: Sources and licenses for BTZSC datasets. All datasets are used as single-label classification
tasks and evaluated in a purely zero-shot setting on their respective test splits (Section A.1).

A.5.1 DATASET DESCRIPTIONS

Below we provide brief descriptions of each dataset included in BTZSC, outlining the source do-
main, annotation scheme, and classification task.

dialogue empathetic. EmpatheticDialogues is a corpus of multi-turn conversations in
which one speaker describes a personal situation and the other responds in an empathetic way. Each
dialogue turn is associated with one of several emotion categories (e.g., joy, sadness, fear), so the
dataset can be used for emotion or topic-style classification of conversational text.

dair ai emotion. The dair ai emotion dataset corresponds to the dair-ai/emotion
corpus, a collection of short English texts (originally social media posts) annotated with discrete
emotion labels. Each instance is labeled with one of six basic emotions (anger, fear, joy, love, sad-
ness, or surprise), making it a standard benchmark for single-label emotion classification in English.
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banking77. Banking77 is a dataset of short customer queries to an online banking assistant
(e.g., “I want to freeze my card”), each labeled with one of 77 fine-grained intent classes such as
card issues, transfers, or account information. It is designed for intent classification in the banking
and financial customer-support domain.

biasframes intent. These splits are derived from the Social Bias Frames dataset, which
contains English sentences about social groups (often from online platforms) annotated with rich
labels describing the speaker’s intent and implied meaning (e.g., whether they intend to offend, to
joke, to express hatred, etc.). The intent view focuses on predicting those communicative-intent
labels from the text alone.

appreviews. The app reviews dataset consists of user reviews from mobile app stores (e.g.,
Google Play / Apple App Store), where each review text is paired with a sentiment-style label that
reflects the user’s overall evaluation of the app (for example negative vs. positive, or star-based
ratings). It is used as a product-review sentiment classification benchmark.

amazonpolarity. Amazon Polarity is a large-scale sentiment dataset built from Amazon prod-
uct reviews. Each example is a review text labeled as either positive or negative, based on the original
star rating, and spans a wide range of product categories (books, electronics, etc.).

financialphrasebank. Financial PhraseBank contains short English snippets from financial
news and company press releases, each labeled according to the sentiment of the text with respect to
the target company’s future performance (positive, neutral, or negative). It is a standard benchmark
for fine-grained sentiment analysis in finance.

yelpreviews. The Yelp review datasets are collections of user-written reviews of local busi-
nesses (restaurants, shops, services) posted on Yelp. Depending on the variant, each review is la-
beled either with a binary polarity (positive vs. negative) or with one of several star-based rating
categories, making it a benchmark for review sentiment classification.

imdb. The IMDB sentiment dataset consists of movie reviews from the Internet Movie Database,
each labeled as positive or negative based on the overall opinion expressed. Reviews are relatively
long and varied in style, so the dataset is often used to test document-level sentiment classification.

rottentomatoes. The Rotten Tomatoes movie review dataset contains short snippets of film
reviews taken from the Rotten Tomatoes website, each annotated with a binary positive/negative
sentiment label (in some variants, a finer-grained rating). It is a classic benchmark for sentence-
level sentiment classification.

massive. MASSIVE (“Multilingual Amazon SLU Simulation for Slot filling, Intent classifi-
cation, and Virtual assistant Evaluation”) is a dataset of crowdsourced virtual-assistant utterances
spanning many languages. Each utterance is labeled with an intent class and slot annotations; in this
benchmark it is used for intent classification on assistant-style queries.

trueteacher. The TRUETEACHER dataset is a large collection of sentence pairs constructed
to study and improve factual consistency in summarization. It is built from news summarization
corpora where a powerful language model (FLAN-PaLM 540B) is used to generate candidate sum-
maries and then label them as factually consistent or inconsistent with their source articles. The
resulting pairs support training and evaluating models that distinguish faithful summaries from hal-
lucinated or unsupported content.

agnews. AG News is a topic-classification dataset of news headlines and short descriptions col-
lected from the AG’s News corpus. Each article is categorized into one of four high-level topics:
World, Sports, Business, or Sci/Tech.
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capsotu. The CAPSOTU dataset is derived from the Comparative Agendas Project’s State of
the Union (SOTU) data.5 The SOTU corpus breaks U.S. presidential State of the Union speeches
into short quasi-sentences and codes each segment with detailed policy content categories.

manifesto. The Manifesto dataset is derived from political party election manifestos compiled
by the Comparative Manifesto Project. Text segments (often sentences or quasi-sentences) are an-
notated with policy-topic categories such as economic policy, welfare, or foreign relations, enabling
multi-class classification of political positions.

yahootopics. The Yahoo Topics (Yahoo! Answers) dataset contains questions and accompany-
ing text from the Yahoo! Answers platform, each assigned to one of several broad topical categories
(e.g., Society & Culture, Science & Mathematics, Sports, Business & Finance). It is used as a
multi-class topic classification benchmark for user-generated Q&A text.

biasframes offensive. This split of the Social Bias Frames data focuses on labels describ-
ing whether an utterance is offensive or not, and to what degree. The underlying texts are short
statements about social groups, annotated for perceived offensiveness, so the task is to classify lan-
guage according to its offensive content.

biasframes sex. This variant of the Social Bias Frames dataset isolates labels related to sex-
ism or gender-based bias. The texts are again statements about people or groups, annotated for
whether they convey sexist stereotypes or implications, turning the task into detecting gender-related
bias in language.

wikitoxic insult. These splits are based on the Wikipedia Talk Labels toxicity datasets re-
leased in the Jigsaw toxicity challenges. The insult subset contains comments from Wikipedia
talk pages, each annotated for whether it includes insulting language, and is used as a binary classi-
fication task for the presence of insults.

wikitoxic obscene. The obscene split from the same Wikipedia toxicity data contains
comments annotated for obscene or vulgar language. The classification task is to determine whether
a given user comment uses obscene expressions or not.

wikitoxic threat. The threat split consists of Wikipedia talk-page comments labeled ac-
cording to whether they contain threats of violence or other threatening language. It is used to train
and evaluate models on detecting threatening content in online discussions.

wikitoxic toxicaggregated. The toxicaggregated variant combines several
toxicity-related labels (e.g., toxic, severe toxic, obscene, insult, threat, identity hate) from the
Wikipedia toxicity datasets into a single binary “toxic vs. non-toxic” label. This yields a broader
notion of toxicity for classifying harmful comments in online conversations.

B MODELS OVERVIEW

Table 4 provides a comprehensive overview of all 38 models evaluated in this study, including their
architecture, backbone, fine-tuning data, parameter count, and pooling strategy.

5See https://www.comparativeagendas.net/datasets_codebooks.
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Model Yr Arch. Backbone FT / train data # P Pool / dim

Base encoders
bert-large-uncased 2018 enc. BERT NA 340M -
deberta-v3-large 2021 enc. DeBERTa v3 NA 304M -
ModernBERT-large 2024 enc. ModernBERT NA 395M -

NLI cross-encoders
bart-large-mnli 2020 enc-dec. BART SNLI, MNLI 406M -
nli-roberta-base 2020 enc. RoBERTa SNLI, MNLI 125M -
bert-base-uncased-nli — enc. BERT MNLI, ANLI, WANLI, FEVERNLI, LINGNLI 110M -
bert-large-uncased-nli — enc. BERT same as above 340M -
bert-large-uncased-nli-triplet — enc. BERT same as above 340M -
deberta-v3-base-nli — enc. DeBERTa v3 same as above 184M -
deberta-v3-large-nli — enc. DeBERTa v3 same as above 304M -
deberta-v3-large-nli-triplet — enc. DeBERTa v3 same as above 304M -
modernbert-base-nli — enc. ModernBERT same as above 149M -
modernbert-large-nli — enc. ModernBERT same as above 395M -
modernbert-large-nli-triplet — enc. ModernBERT same as above 395M -

Rerankers
ms-marco-MiniLM-L6-v2 2021 enc. MiniLM MS MARCO 22.7M -
gte-reranker-modernbert-base 2024 enc. ModernBERT large multiling. pairs 149M -
bge-reranker-base 2023 enc. XLM-RoBERTa base large multiling. pairs 278M -
bge-reranker-large 2023 enc. XLM-RoBERTa large large multiling. pairs 560M -
Qwen3-Reranker-0.6B 2025 dec. Qwen3 synthetic yes/no ranking 0.6B -
Qwen3-Reranker-8B 2025 dec. Qwen3 synthetic yes/no ranking 8B -

Embedding models
all-MiniLM-L6-v2 2021 enc. MiniLM 1B paired sentences 22.7M mean / 384
e5-base-v2 2023 enc. E5 (BERT) 270M synthetic contrastive 110M mean / 768
e5-large-v2 2023 enc. E5 (BERT) same as above 335M mean / 1024
e5-mistral-7b-instruct 2024 dec. Mistral-7B synthetic multiling. contrastive 7B last / 4096
bge-base-en-v1.5 2023 enc. BGE (RoB.) 1.5B pair data, contrastive 137M CLS / 768
bge-large-en-v1.5 2023 enc. BGE (RoB.) same as above 434M CLS / 1024
gte-base-en-v1.5 2024 enc.+ GTE MLM + contrastive pre-train 137M CLS / 768
gte-large-en-v1.5 2024 enc.+ GTE same as above 434M CLS / 1024
gte-modernbert-base 2024 enc. ModernBERT same as above 149M CLS / 768
Qwen3-Embedding-0.6B 2025 dec. Qwen3 synthetic multiling. contrastive 0.6B last / 1024
Qwen3-Embedding-8B 2025 dec. Qwen3 synthetic multiling. contrastive 8B last / 4096

LLMs
gemma-3-270m-it 2025 dec. Gemma 3 NA 270M -
gemma-3-1b-it 2025 dec. Gemma 3 NA 1B -
Llama-3.2-3B-Instruct 2024 dec. Llama 3.2 NA 3.21B -
Qwen3-4B 2025 dec. Qwen3 NA 4.0B -
Phi-4-mini-instruct 2025 dec. Phi-4 NA 3.8B -
Qwen3-8B 2025 dec. Qwen3 NA 8.2B -
Mistral-Nemo-Instruct-2407 2024 dec. Mistral-Nemo NA 12.2B -

Table 4: Architectural and training overview of the 38 models evaluated. Columns list publication
year (Yr), encoder/decoder architecture (Arch.), backbone, principal fine-tuning data, parameter
count (#P), and pooling strategy with embedding dimensionality.

C EXPERIMENTAL SETUP

C.1 TRAINING PROCEDURE FOR NLI CROSS-ENCODERS

Let a paired input sequence (premise ∥ hypothesis) be tokenised as x = (x0 =
[CLS], x1, . . . , [SEP], . . . , xS−1) and encoded by a pre-trained Transformer backbone fθ : NS →
RS×E with hidden size E:

H = fθ(x) ∈ RS×E , h = H0 ∈ RE (CLS row).

A two-layer classification head with dropout p = 0.1 transforms h:

h̃ = Dropout0.1(h), (1)

u = GELU
(
W1h̃+ b1

)
, W1∈RE×E , b1∈RE , (2)

z = LayerNorm(u), (3)

ℓ = W2z + b2, W2∈RE×C , b2∈RC , (4)

where C is the number of label logits.
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Binary variant. Here C = 1 and ℓ ∈ R is an entailment logit. The probability of entailment is
σ(ℓ) =

(
1 + e−ℓ

)−1
and the model is optimised with binary cross-entropy:

LBCE(y, ℓ) = −y log σ(ℓ)− (1− y) log
(
1− σ(ℓ)

)
, y ∈ {0, 1}.

Three-way variant (triplet). Now C = 3 with logits ℓ = (ℓent, ℓneut, ℓcontra). During training the
standard multi-class cross-entropy is used:

LCE(y, ℓ) = − log
exp(ℓy)∑3
c=1 exp(ℓc)

, y ∈ {1, 2, 3}.

During evaluation the scalar entailment score is
s = ℓent − log

(
eℓneut + eℓcontra

)
,

which is the log-odds of ENTAILMENT versus the union of the other classes (with probability σ(s)).

Validation signal. Early stopping is triggered by the dev-set loss computed on an equal-sized,
balanced union
Ddev = MNLIm ∪MNLImm ∪ANLIr1 ∪ANLIr2 ∪ANLIr3 ∪WANLI∪ FEVERNLI∪LINGNLI.
At every evaluation step the loss is measured, and training stops when this loss fails to decrease for
10 consecutive evaluations, or 3 epochs, whichever comes first. Evaluation is performed every 1%
of total steps.

Optimiser and schedules. Fine-tuning uses the PyTorch AdamW (Loshchilov & Hutter, 2019)
optimiser with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8, weight-decay = 0.01). The
learning rate employs a linear warm-up for the first 10% of steps followed by cosine decay:

ηt =


η0

t

0.1T
, 0 ≤ t < 0.1T,

1
2η0

(
1 + cos

π(t− 0.1T )

0.9T

)
, 0.1T ≤ t ≤ T,

with separate initial rates for the backbone (ηenc) and classification head (ηhead).

• Large backbones: ηenc = 8× 10−6, ηhead = 4× 10−5.
• Base backbones: ηenc = 2× 10−5, ηhead = 1× 10−4.

All models train for E = 3 epochs with mini-batch size B = 32 and no layer freezing.

C.2 QWEN3 RERANKER

For every query-document pair we build a single decoder-only prompt of the form
P = prefix+ ⟨Instruct⟩: I + ⟨Query⟩: q + ⟨Document⟩: d+ suffix.

Fixed strings.

Prefix

<|im_start|>system
Judge whether the Document meets the requirements based on the Query
and the Instruct provided. Note that the answer can only be "yes" or "no".
<|im_end|>
<|im_start|>user

Suffix

<|im_end|>
<|im_start|>assistant
<think>

</think>
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Instructions I .

NLI retrieval

Given a piece of text, retrieve the passage that entails the text the best.

Label retrieval

Given a piece of text, retrieve relevant label descriptions
that best match the text.

C.2.1 BINARY DECISION VIA “YES/NO” TOKENS

Let τyes and τno be the token IDs that realise the strings “yes” and “no”. Denote the final-step logit
vector by v = LS−1 ∈ RV . We extract

vτyes , vτno

and compute the entailment probability as

pyes =
evτyes

evτyes + evτno

C.3 INSTRUCTION-TUNED LLMS

For zero-shot classification with instruction-tuned LLMs, we frame the task as a multiple-choice
problem. Each candidate label is assigned a unique single-token character option (e.g., “A”, “B”,
“C”, etc.). For every input text x and label set Y = {y1, . . . , yK}, we construct a prompt of the
form:

P = system instructions+ ⟨Text⟩: x+ ⟨Options⟩: O + suffix

where O enumerates each label verbalizer with its assigned character option.

Fixed strings.

System instructions

You are a text classifier.
You will be given a text and several mutually exclusive options.
Each option is prefixed by a single letter (e.g. A, b, ...).
Your task is to choose the single best option.

IMPORTANT:
- Answer with EXACTLY ONE LETTER used to prefix the options.
- Do NOT output any words, punctuation, or explanation.

Text and options format

TEXT:
{text}

OPTIONS:
A) {label_verbalizer_1}
B) {label_verbalizer_2}
...

Suffix

Answer: The correct option is letter
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C.3.1 CLASSIFICATION VIA NEXT-TOKEN PROBABILITIES

Let A = {a1, . . . , aK} be the set of single-token character options corresponding to the K candidate
labels. We tokenize each symbol ak to obtain its vocabulary index τak

.

Given the constructed prompt P , we perform a single forward pass through the decoder-only model
to obtain the logit vector at the final position:

v = LS−1 ∈ RV

where V is the vocabulary size and S is the sequence length.

We extract the logits corresponding to the option characters and compute a softmax over this re-
stricted set:

p(yk | x) =
exp(vτak

)∑K
j=1 exp(vτaj

)

The predicted label is then:
ŷ = argmax

k∈{1,...,K}
p(yk | x)

This approach requires only a single forward pass per unique input text (rather than one pass per
text–label pair), making it substantially more efficient than per-label scoring methods while still
leveraging the model’s instruction-following capabilities.

D DISAGGREGATED RESULTS

To better understand where different model families succeed or fail, we complement the main results
with disaggregated scores by dataset and metric. Tables 5–8 report macro-averaged F1, micro-
averaged accuracy, and macro-averaged recall and precision for each BTZSC dataset and model.

Overall, the disaggregated view confirms the aggregate picture from the main benchmark. Base
encoders perform poorly and inconsistently across datasets, with low F1 and systematically weak
recall and precision, especially on intent and emotion tasks. NLI-tuned cross-encoders and rerankers
form the strongest families: they attain uniformly high F1, recall, and precision on most topic and
sentiment tasks, and maintain relatively strong performance on more challenging intent datasets.
Embedding models and instruction-tuned LLMs sit in between: the best embeddings (e.g. GTE-,
BGE-, e5-, and Qwen3-based models) and stronger LLMs (Qwen3 and Nemo) reach competitive F1
scores, but the disaggregated metrics reveal systematic variation across domains.

For the embedding models, the hierarchy already visible in aggregate metrics becomes particularly
clear. The baseline all-MiniLM-L6-v2 underperforms with average recall around 0.45 and precision
around 0.50, and struggles notably on high-cardinality or nuanced datasets such as BANKING77,
BIASFRAMES-INTENT, EMOTIONDIARY, and EMPATHETICDIALOGUES. In contrast, mid-tier
models (e5-base/large, BGE-base, GTE-base, Qwen3-Embedding-0.6B) achieve average recall and
precision in the low-to-mid 0.60s and deliver very strong performance on classical sentiment tasks
(Amazon Polarity, IMDB, RottenTomatoes, Yelp, FinancialPhraseBank). Top-tier embeddings such
as gte-large-en-v1.5 and Qwen3-Embedding-8B further improve both recall and precision (Avg R/P
≈ 0.67–0.70) and show more stable behavior across topic, sentiment, and intent tasks. Their per-
formance on emotion and social-media intent remains clearly below that on standard sentiment, but
still outperforms weaker embeddings and base encoders.

The disaggregated scores also highlight dataset-level effects. Standard sentiment benchmarks (Ama-
zon Polarity, IMDB, RottenTomatoes, Yelp, FinancialPhraseBank) are close to saturated for all
strong models: NLI cross-encoders, rerankers, top embeddings, and strong LLMs all reach recall and
precision around 0.9 or higher, indicating that these tasks are no longer particularly discriminative
for modern architectures. In contrast, several BTZSC datasets expose sharp differences. The Mani-
festo dataset is consistently hard across families, with markedly lower recall and precision even for
the strongest models, reflecting the difficulty of multi-class political text classification. BiasFrames
(offensive/sex/intent) and WikiToxic variants likewise reveal non-trivial gaps: while top rerankers
and embeddings achieve good performance, smaller or weaker models often show pronounced
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asymmetries (e.g. reasonable recall but poor precision, or vice versa), especially on BIASFRAMES-
INTENT. For intent classification, BANKING77 and MASSIVE again favour rerankers and strong
embeddings, with instruction-tuned LLMs performing competitively but not surpassing them. Fi-
nally, the emotion datasets (EMOTIONDIARY, EMPATHETICDIALOGUES) are the most challenging
slice for all families, with recall and precision typically 0.1–0.2 points lower than on sentiment and
topic tasks, even for the strongest models.

Comparing recall and precision directly, we do not observe a systematic family-wide recall–
precision trade-off. Top embeddings, rerankers, and LLMs tend to be reasonably balanced, with
a mild tendency for the best embeddings and LLMs to exhibit slightly higher precision than recall
on the hardest tasks. Rerankers, in particular, are recall-preserving on toxicity and social-media
intent datasets, while maintaining acceptable precision, which is desirable for high-recall applica-
tions such as safety filtering. Taken together, these disaggregated results show that BTZSC can be
used not only to rank models by a single headline metric, but also to characterise their error profiles
across domains (news, political text, product reviews, social media, dialogue) and task types (topic,
sentiment, intent, emotion). In this sense, BTZSC provides a nuanced testbed for analysing how
different model families trade off recall and precision across a diverse classification landscape.
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Task Topic Sentiment Intent Emotion

Model AGN BF-Off BF-Sex CAPS MAN TT WT-Ins WT-Obs WT-Thr WT-Agg YT AmzPol AppR FPB IMDB RT Yelp B77 BF-Int MASS EmoD Emp Avg F1

Base encoders
bert-large-uncased 0.17 0.48 0.48 0.03 0.01 0.33 0.51 0.58 0.49 0.53 0.08 0.42 0.36 0.28 0.38 0.47 0.36 0.02 0.42 0.00 0.16 0.00 0.30
deberta-v3-large 0.18 0.49 0.12 0.01 0.01 0.34 0.55 0.56 0.51 0.53 0.03 0.33 0.37 0.30 0.33 0.35 0.37 0.01 0.45 0.00 0.10 0.00 0.27
ModernBERT-large 0.10 0.53 0.46 0.01 0.01 0.36 0.46 0.58 0.13 0.60 0.08 0.33 0.44 0.30 0.34 0.36 0.43 0.02 0.38 0.02 0.06 0.01 0.27

NLI cross-encoders
bart-large-mnli 0.71 0.37 0.07 0.33 0.09 0.51 0.33 0.69 0.08 0.55 0.27 0.93 0.92 0.47 0.93 0.83 0.96 0.28 0.60 0.41 0.44 0.38 0.51
nli-roberta-base 0.69 0.47 0.18 0.14 0.02 0.46 0.54 0.71 0.14 0.70 0.35 0.89 0.89 0.50 0.83 0.80 0.89 0.07 0.51 0.32 0.34 0.32 0.49
bert-base-uncased-nli 0.68 0.57 0.43 0.01 0.00 0.34 0.76 0.75 0.26 0.61 0.34 0.86 0.84 0.43 0.79 0.75 0.89 0.01 0.56 0.32 0.36 0.15 0.49
bert-large-uncased-nli 0.74 0.54 0.58 0.13 0.02 0.39 0.81 0.78 0.55 0.64 0.21 0.84 0.85 0.64 0.80 0.71 0.90 0.08 0.61 0.38 0.42 0.12 0.53
bert-large-uncased-nli-triplet 0.73 0.64 0.43 0.13 0.02 0.36 0.73 0.83 0.39 0.77 0.33 0.84 0.85 0.58 0.78 0.72 0.90 0.06 0.60 0.37 0.28 0.20 0.52
deberta-v3-base-nli 0.76 0.50 0.44 0.17 0.04 0.33 0.68 0.83 0.37 0.78 0.46 0.90 0.91 0.68 0.91 0.82 0.93 0.12 0.46 0.34 0.38 0.29 0.55
deberta-v3-large-nli 0.81 0.54 0.27 0.21 0.06 0.34 0.60 0.82 0.32 0.80 0.53 0.92 0.93 0.80 0.90 0.85 0.98 0.35 0.66 0.42 0.44 0.44 0.59
deberta-v3-large-nli-triplet 0.83 0.64 0.27 0.25 0.06 0.41 0.69 0.84 0.44 0.82 0.28 0.93 0.93 0.79 0.93 0.84 0.98 0.24 0.70 0.40 0.42 0.41 0.60
modernbert-base-nli 0.74 0.55 0.64 0.12 0.02 0.42 0.75 0.68 0.29 0.75 0.40 0.91 0.91 0.60 0.89 0.74 0.96 0.10 0.46 0.25 0.28 0.30 0.53
modernbert-large-nli 0.76 0.42 0.44 0.04 0.09 0.37 0.59 0.81 0.45 0.72 0.48 0.93 0.92 0.54 0.91 0.86 0.98 0.21 0.63 0.36 0.30 0.30 0.55
modernbert-large-nli-triplet 0.71 0.45 0.34 0.05 0.06 0.41 0.67 0.80 0.42 0.73 0.25 0.93 0.92 0.65 0.91 0.87 0.98 0.21 0.60 0.42 0.37 0.31 0.55

Rerankers
ms-marco-MiniLM-L6-v2 0.40 0.62 0.47 0.30 0.07 0.39 0.50 0.51 0.45 0.47 0.30 0.68 0.71 0.28 0.62 0.58 0.65 0.24 0.61 0.05 0.20 0.18 0.42
gte-reranker-modernbert-base 0.68 0.52 0.60 0.42 0.17 0.58 0.53 0.56 0.43 0.55 0.37 0.91 0.92 0.50 0.84 0.80 0.96 0.65 0.36 0.54 0.45 0.39 0.58
bge-reranker-base 0.63 0.47 0.30 0.40 0.16 0.47 0.41 0.55 0.27 0.57 0.41 0.66 0.79 0.35 0.69 0.57 0.65 0.48 0.50 0.43 0.30 0.29 0.47
bge-reranker-large 0.73 0.53 0.20 0.48 0.16 0.44 0.38 0.53 0.15 0.60 0.53 0.87 0.89 0.49 0.80 0.76 0.88 0.57 0.59 0.45 0.39 0.34 0.53
Qwen3-Reranker-0.6B 0.79 0.57 0.08 0.53 0.27 0.34 0.74 0.80 0.50 0.79 0.55 0.91 0.89 0.41 0.88 0.78 0.95 0.63 0.50 0.53 0.49 0.41 0.61
Qwen3-Reranker-8B 0.79 0.77 0.64 0.66 0.33 0.36 0.82 0.88 0.58 0.86 0.61 0.96 0.93 0.82 0.95 0.90 0.98 0.69 0.74 0.67 0.49 0.48 0.72

Embedding models
all-MiniLM-L6-v2 0.49 0.48 0.51 0.48 0.15 0.40 0.32 0.50 0.26 0.51 0.36 0.35 0.41 0.31 0.34 0.34 0.33 0.43 0.47 0.33 0.11 0.15 0.37
e5-base-v2 0.76 0.59 0.20 0.53 0.21 0.44 0.74 0.64 0.31 0.67 0.55 0.93 0.93 0.46 0.90 0.84 0.95 0.62 0.60 0.47 0.43 0.37 0.60
e5-large-v2 0.79 0.52 0.39 0.50 0.22 0.47 0.51 0.66 0.29 0.69 0.52 0.94 0.91 0.52 0.93 0.85 0.98 0.58 0.54 0.51 0.44 0.38 0.60
e5-mistral-7b-instruct 0.77 0.47 0.08 0.62 0.30 0.42 0.40 0.33 0.09 0.37 0.64 0.94 0.93 0.62 0.91 0.84 0.98 0.65 0.67 0.63 0.50 0.50 0.58
bge-base-en-v1.5 0.63 0.57 0.16 0.54 0.20 0.48 0.46 0.68 0.17 0.72 0.51 0.93 0.90 0.43 0.90 0.81 0.94 0.64 0.57 0.53 0.43 0.30 0.57
bge-large-en-v1.5 0.77 0.46 0.13 0.56 0.26 0.40 0.44 0.44 0.11 0.50 0.57 0.95 0.92 0.46 0.93 0.82 0.95 0.68 0.54 0.53 0.44 0.35 0.55
gte-base-en-v1.5 0.75 0.63 0.10 0.57 0.21 0.35 0.61 0.74 0.22 0.65 0.56 0.90 0.93 0.47 0.85 0.84 0.97 0.66 0.60 0.51 0.42 0.32 0.58
gte-large-en-v1.5 0.74 0.47 0.21 0.55 0.28 0.40 0.75 0.82 0.38 0.82 0.56 0.95 0.91 0.49 0.94 0.87 0.93 0.63 0.56 0.57 0.40 0.34 0.62
gte-modernbert-base 0.76 0.59 0.13 0.48 0.24 0.47 0.63 0.52 0.15 0.48 0.54 0.95 0.92 0.64 0.91 0.82 0.96 0.64 0.63 0.61 0.44 0.39 0.59
Qwen3-Embedding-0.6B 0.66 0.52 0.32 0.53 0.24 0.47 0.52 0.54 0.32 0.66 0.55 0.90 0.87 0.49 0.88 0.76 0.96 0.64 0.45 0.59 0.48 0.38 0.58
Qwen3-Embedding-8B 0.77 0.54 0.26 0.55 0.32 0.41 0.31 0.39 0.27 0.47 0.59 0.94 0.92 0.72 0.95 0.86 0.96 0.71 0.40 0.65 0.54 0.47 0.59

Instruction-tuned LLMs
gemma-3-270m-it 0.18 0.54 0.26 0.03 0.00 0.44 0.47 0.49 0.20 0.51 0.03 0.46 0.48 0.21 0.47 0.47 0.43 0.00 0.38 0.00 0.06 0.01 0.28
gemma-3-1b-it 0.36 0.48 0.44 0.16 0.01 0.39 0.50 0.55 0.21 0.52 0.17 0.52 0.68 0.25 0.56 0.57 0.53 0.10 0.52 0.08 0.13 0.16 0.36
Llama-3.2-3B-Instruct 0.67 0.57 0.30 0.44 0.10 0.46 0.50 0.52 0.25 0.53 0.46 0.51 0.51 0.28 0.51 0.49 0.44 0.39 0.46 0.37 0.33 0.37 0.43
Qwen3-4B 0.82 0.69 0.64 0.55 0.17 0.34 0.85 0.89 0.67 0.87 0.52 0.94 0.92 0.66 0.92 0.87 0.98 0.37 0.45 0.38 0.43 0.32 0.65
Phi-4-mini-instruct 0.57 0.58 0.26 0.46 0.15 0.47 0.53 0.53 0.25 0.56 0.47 0.56 0.55 0.23 0.56 0.53 0.52 0.42 0.41 0.28 0.30 0.30 0.43
Qwen3-8B 0.85 0.72 0.67 0.53 0.18 0.34 0.84 0.89 0.72 0.86 0.55 0.94 0.92 0.75 0.94 0.86 0.98 0.39 0.67 0.39 0.40 0.24 0.66
Mistral-Nemo-Instruct-2407 0.84 0.79 0.81 0.51 0.18 0.41 0.88 0.91 0.83 0.85 0.59 0.94 0.90 0.75 0.95 0.54 0.97 0.35 0.65 0.36 0.44 0.29 0.67

Table 5: Zero-shot classification results on BTZSC by dataset (macro-averaged F1). Abbreviations: AGN = AGNEWS, BF-Off / BF-Sex = BiasFrames (offensive /
sex), CAPS = CAPSOTU, MAN = Manifesto, TT = TrueTeacher, WT-Ins / WT-Obs / WT-Thr / WT-Agg = WikiToxic (insult / obscene / threat / toxic aggregated),
YT = Yahoo Topics, AmzPol = Amazon Polarity, AppR = AppReviews, FPB = FinancialPhraseBank, RT = RottenTomatoes, Yelp = YelpReviews, B77 = Banking77,
BF-Int = BiasFrames (intent), MASS = MASSIVE (intent), EmoD = EmotionDiary, Emp = EmpatheticDialogues.
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Model AGN BF-Off BF-Sex CAPS MAN TT WT-Ins WT-Obs WT-Thr WT-Agg YT AmzPol AppR FPB IMDB RT Yelp B77 BF-Int MASS EmoD Emp Avg Acc

Base encoders
bert-large-uncased 0.26 0.57 0.91 0.09 0.02 0.49 0.58 0.58 0.78 0.55 0.13 0.48 0.51 0.56 0.52 0.52 0.52 0.03 0.44 0.01 0.20 0.03 0.40
deberta-v3-large 0.28 0.58 0.12 0.01 0.04 0.51 0.65 0.64 0.86 0.58 0.11 0.49 0.51 0.40 0.49 0.50 0.52 0.03 0.47 0.00 0.20 0.03 0.36
ModernBERT-large 0.24 0.53 0.72 0.03 0.01 0.51 0.46 0.59 0.14 0.60 0.15 0.49 0.50 0.57 0.51 0.50 0.51 0.03 0.48 0.02 0.14 0.02 0.35

NLI cross-encoders
bart-large-mnli 0.73 0.57 0.08 0.39 0.09 0.51 0.42 0.69 0.08 0.61 0.30 0.93 0.92 0.42 0.93 0.83 0.96 0.29 0.63 0.43 0.50 0.39 0.53
nli-roberta-base 0.70 0.58 0.19 0.23 0.02 0.48 0.56 0.71 0.14 0.70 0.41 0.89 0.89 0.45 0.83 0.80 0.89 0.08 0.51 0.36 0.34 0.32 0.50
bert-base-uncased-nli 0.69 0.57 0.53 0.02 0.02 0.49 0.76 0.77 0.29 0.65 0.38 0.86 0.84 0.40 0.79 0.76 0.89 0.02 0.56 0.28 0.39 0.15 0.50
bert-large-uncased-nli 0.75 0.60 0.76 0.22 0.02 0.49 0.81 0.79 0.75 0.67 0.25 0.84 0.86 0.65 0.81 0.72 0.90 0.08 0.61 0.35 0.55 0.13 0.57
bert-large-uncased-nli-triplet 0.73 0.67 0.53 0.24 0.02 0.49 0.73 0.83 0.50 0.78 0.42 0.84 0.85 0.59 0.79 0.73 0.90 0.07 0.60 0.37 0.30 0.21 0.55
deberta-v3-base-nli 0.76 0.60 0.55 0.23 0.05 0.49 0.68 0.83 0.46 0.78 0.53 0.90 0.91 0.67 0.91 0.82 0.93 0.13 0.51 0.33 0.38 0.32 0.58
deberta-v3-large-nli 0.81 0.63 0.30 0.23 0.11 0.50 0.61 0.82 0.37 0.80 0.60 0.92 0.93 0.82 0.90 0.85 0.98 0.36 0.67 0.44 0.49 0.46 0.62
deberta-v3-large-nli-triplet 0.83 0.67 0.30 0.27 0.09 0.51 0.69 0.84 0.57 0.82 0.37 0.93 0.93 0.82 0.93 0.84 0.98 0.24 0.70 0.42 0.44 0.42 0.62
modernbert-base-nli 0.75 0.62 0.84 0.18 0.03 0.50 0.75 0.71 0.33 0.75 0.44 0.91 0.91 0.61 0.89 0.75 0.96 0.09 0.52 0.28 0.28 0.29 0.56
modernbert-large-nli 0.76 0.59 0.55 0.09 0.10 0.52 0.61 0.81 0.59 0.73 0.54 0.93 0.92 0.70 0.91 0.86 0.98 0.24 0.63 0.39 0.28 0.31 0.59
modernbert-large-nli-triplet 0.72 0.60 0.40 0.13 0.08 0.51 0.67 0.80 0.54 0.74 0.29 0.93 0.92 0.73 0.91 0.87 0.98 0.22 0.60 0.44 0.37 0.34 0.58

Rerankers
ms-marco-MiniLM-L6-v2 0.42 0.62 0.75 0.32 0.14 0.52 0.53 0.55 0.65 0.50 0.33 0.69 0.71 0.29 0.62 0.58 0.65 0.22 0.62 0.04 0.20 0.18 0.46
gte-reranker-modernbert-base 0.71 0.52 0.85 0.48 0.26 0.60 0.55 0.57 0.60 0.55 0.39 0.91 0.92 0.47 0.84 0.80 0.96 0.63 0.47 0.57 0.52 0.39 0.62
bge-reranker-base 0.65 0.48 0.35 0.44 0.27 0.47 0.46 0.55 0.31 0.57 0.47 0.66 0.79 0.35 0.69 0.58 0.65 0.49 0.50 0.45 0.35 0.28 0.49
bge-reranker-large 0.74 0.58 0.21 0.52 0.32 0.45 0.44 0.56 0.16 0.62 0.59 0.87 0.89 0.48 0.80 0.76 0.88 0.56 0.60 0.47 0.41 0.34 0.56
Qwen3-Reranker-0.6B 0.80 0.64 0.08 0.59 0.40 0.50 0.75 0.81 0.70 0.79 0.61 0.91 0.89 0.38 0.88 0.78 0.95 0.62 0.56 0.52 0.55 0.42 0.64
Qwen3-Reranker-8B 0.80 0.78 0.82 0.68 0.46 0.52 0.82 0.88 0.78 0.86 0.67 0.96 0.93 0.84 0.95 0.90 0.98 0.67 0.75 0.72 0.56 0.49 0.76

Embedding models
all-MiniLM-L6-v2 0.50 0.50 0.77 0.53 0.30 0.49 0.41 0.50 0.30 0.53 0.38 0.49 0.53 0.42 0.49 0.50 0.49 0.44 0.53 0.34 0.11 0.17 0.44
e5-base-v2 0.77 0.62 0.21 0.59 0.36 0.49 0.74 0.65 0.36 0.68 0.62 0.93 0.93 0.43 0.90 0.84 0.95 0.62 0.62 0.49 0.51 0.41 0.62
e5-large-v2 0.79 0.52 0.50 0.55 0.34 0.48 0.54 0.66 0.33 0.69 0.56 0.94 0.91 0.45 0.93 0.85 0.98 0.56 0.54 0.51 0.49 0.43 0.62
e5-mistral-7b-instruct 0.78 0.60 0.08 0.62 0.50 0.48 0.46 0.43 0.09 0.51 0.71 0.94 0.93 0.57 0.92 0.84 0.98 0.65 0.68 0.67 0.55 0.54 0.62
bge-base-en-v1.5 0.65 0.60 0.17 0.58 0.34 0.48 0.50 0.68 0.17 0.73 0.59 0.93 0.90 0.39 0.90 0.81 0.94 0.64 0.58 0.56 0.52 0.35 0.59
bge-large-en-v1.5 0.77 0.57 0.13 0.61 0.43 0.47 0.49 0.50 0.11 0.57 0.63 0.95 0.92 0.41 0.94 0.82 0.95 0.68 0.58 0.52 0.55 0.39 0.59
gte-base-en-v1.5 0.76 0.64 0.10 0.59 0.36 0.48 0.62 0.74 0.23 0.67 0.62 0.90 0.93 0.41 0.85 0.84 0.97 0.65 0.60 0.54 0.50 0.36 0.61
gte-large-en-v1.5 0.75 0.48 0.22 0.59 0.39 0.45 0.75 0.82 0.47 0.82 0.62 0.95 0.91 0.47 0.94 0.87 0.93 0.63 0.56 0.58 0.45 0.36 0.64
gte-modernbert-base 0.76 0.63 0.13 0.52 0.38 0.47 0.63 0.55 0.16 0.55 0.60 0.95 0.92 0.64 0.91 0.82 0.96 0.63 0.63 0.65 0.50 0.40 0.61
Qwen3-Embedding-0.6B 0.68 0.56 0.38 0.55 0.40 0.47 0.55 0.55 0.38 0.67 0.60 0.90 0.87 0.45 0.88 0.76 0.96 0.64 0.53 0.63 0.53 0.40 0.61
Qwen3-Embedding-8B 0.78 0.64 0.30 0.52 0.47 0.51 0.41 0.47 0.30 0.56 0.64 0.94 0.92 0.69 0.95 0.86 0.96 0.70 0.56 0.71 0.59 0.50 0.64

Instruction-tuned LLMs
gemma-3-270m-it 0.24 0.59 0.29 0.09 0.00 0.50 0.49 0.51 0.22 0.54 0.08 0.51 0.51 0.27 0.52 0.50 0.47 0.01 0.41 0.01 0.11 0.04 0.31
gemma-3-1b-it 0.39 0.52 0.58 0.20 0.04 0.46 0.52 0.57 0.22 0.56 0.19 0.59 0.69 0.25 0.61 0.60 0.60 0.14 0.56 0.09 0.19 0.22 0.40
Llama-3.2-3B-Instruct 0.68 0.60 0.35 0.50 0.17 0.50 0.50 0.53 0.29 0.56 0.50 0.54 0.54 0.30 0.54 0.51 0.48 0.41 0.47 0.37 0.46 0.40 0.46
Qwen3-4B 0.82 0.71 0.83 0.60 0.29 0.51 0.86 0.89 0.88 0.87 0.56 0.94 0.92 0.62 0.92 0.87 0.98 0.40 0.58 0.40 0.54 0.34 0.70
Phi-4-mini-instruct 0.56 0.64 0.28 0.45 0.30 0.50 0.55 0.55 0.28 0.60 0.45 0.62 0.60 0.22 0.61 0.58 0.60 0.43 0.44 0.31 0.34 0.31 0.47
Qwen3-8B 0.85 0.75 0.86 0.57 0.29 0.51 0.84 0.89 0.91 0.86 0.58 0.94 0.92 0.76 0.94 0.86 0.98 0.40 0.70 0.41 0.54 0.26 0.71
Mistral-Nemo-Instruct-2407 0.84 0.79 0.95 0.60 0.26 0.54 0.89 0.91 0.96 0.85 0.65 0.94 0.90 0.71 0.95 0.61 0.97 0.39 0.69 0.39 0.55 0.32 0.71

Table 6: Zero-shot classification results on BTZSC by dataset (micro-averaged accuracy). Abbreviations: AGN = AGNEWS, BF-Off / BF-Sex = BiasFrames
(offensive / sex), CAPS = CAPSOTU, MAN = Manifesto, TT = TrueTeacher, WT-Ins / WT-Obs / WT-Thr / WT-Agg = WikiToxic (insult / obscene / threat / toxic
aggregated), YT = Yahoo Topics, AmzPol = Amazon Polarity, AppR = AppReviews, FPB = FinancialPhraseBank, RT = RottenTomatoes, Yelp = YelpReviews,
B77 = Banking77, BF-Int = BiasFrames (intent), MASS = MASSIVE (intent), EmoD = EmotionDiary, Emp = EmpatheticDialogues.

26



1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394

U
nderreview

as
a

conference
paperatIC

L
R

2026

Task Topic / toxicity Sentiment Intent Emotion

Model AGN BF-Off BF-Sex CAPS MAN TT WT-Ins WT-Obs WT-Thr WT-Agg YT AmzPol AppR FPB IMDB RT Yelp B77 BF-Int MASS EmoD Emp Avg R

Base encoders
bert-large-uncased 0.26 0.53 0.49 0.10 0.02 0.50 0.52 0.58 0.55 0.55 0.12 0.47 0.51 0.33 0.51 0.52 0.51 0.03 0.46 0.03 0.18 0.03 0.35
deberta-v3-large 0.27 0.53 0.50 0.04 0.02 0.50 0.58 0.58 0.52 0.57 0.09 0.50 0.51 0.39 0.50 0.50 0.51 0.03 0.49 0.00 0.18 0.03 0.36
ModernBERT-large 0.25 0.55 0.50 0.07 0.01 0.50 0.47 0.59 0.49 0.61 0.14 0.50 0.50 0.33 0.50 0.50 0.52 0.04 0.52 0.03 0.18 0.02 0.36

NLI cross-encoders
bart-large-mnli 0.73 0.50 0.51 0.37 0.10 0.52 0.52 0.73 0.52 0.62 0.28 0.93 0.92 0.67 0.93 0.83 0.96 0.30 0.61 0.43 0.48 0.38 0.58
nli-roberta-base 0.71 0.53 0.56 0.18 0.02 0.48 0.63 0.72 0.55 0.71 0.36 0.89 0.89 0.65 0.83 0.80 0.89 0.07 0.53 0.33 0.46 0.32 0.55
bert-base-uncased-nli 0.69 0.58 0.73 0.05 0.02 0.50 0.79 0.75 0.62 0.64 0.34 0.86 0.84 0.60 0.79 0.76 0.89 0.01 0.57 0.31 0.42 0.15 0.54
bert-large-uncased-nli 0.75 0.56 0.82 0.17 0.04 0.50 0.84 0.78 0.85 0.67 0.22 0.84 0.85 0.76 0.81 0.72 0.90 0.08 0.61 0.36 0.43 0.13 0.58
bert-large-uncased-nli-triplet 0.74 0.64 0.73 0.19 0.04 0.50 0.77 0.84 0.74 0.78 0.37 0.84 0.85 0.71 0.78 0.73 0.90 0.07 0.61 0.43 0.35 0.20 0.58
deberta-v3-base-nli 0.77 0.55 0.74 0.19 0.08 0.50 0.73 0.83 0.72 0.79 0.47 0.90 0.91 0.80 0.91 0.82 0.93 0.13 0.54 0.34 0.42 0.31 0.61
deberta-v3-large-nli 0.82 0.59 0.63 0.23 0.11 0.50 0.68 0.84 0.67 0.80 0.54 0.92 0.93 0.84 0.90 0.85 0.98 0.38 0.69 0.44 0.48 0.45 0.65
deberta-v3-large-nli-triplet 0.83 0.64 0.63 0.30 0.09 0.52 0.74 0.85 0.77 0.82 0.33 0.93 0.93 0.80 0.93 0.84 0.98 0.26 0.70 0.44 0.47 0.42 0.65
modernbert-base-nli 0.75 0.58 0.85 0.19 0.05 0.50 0.78 0.68 0.65 0.75 0.40 0.91 0.91 0.64 0.89 0.75 0.96 0.09 0.55 0.26 0.34 0.28 0.58
modernbert-large-nli 0.76 0.52 0.75 0.08 0.14 0.51 0.67 0.81 0.79 0.74 0.49 0.93 0.92 0.51 0.91 0.86 0.98 0.24 0.64 0.38 0.35 0.30 0.60
modernbert-large-nli-triplet 0.72 0.54 0.67 0.08 0.08 0.51 0.73 0.81 0.75 0.75 0.26 0.93 0.92 0.61 0.91 0.87 0.98 0.22 0.61 0.45 0.42 0.32 0.60

Rerankers
ms-marco-MiniLM-L6-v2 0.42 0.64 0.49 0.36 0.10 0.51 0.50 0.52 0.60 0.50 0.30 0.69 0.71 0.49 0.63 0.58 0.66 0.22 0.61 0.06 0.27 0.18 0.46
gte-reranker-modernbert-base 0.71 0.52 0.69 0.48 0.21 0.60 0.54 0.56 0.62 0.55 0.39 0.91 0.92 0.65 0.84 0.80 0.96 0.67 0.50 0.57 0.48 0.39 0.62
bge-reranker-base 0.66 0.47 0.59 0.52 0.19 0.47 0.54 0.57 0.60 0.58 0.42 0.66 0.79 0.50 0.70 0.58 0.65 0.51 0.50 0.53 0.34 0.27 0.53
bge-reranker-large 0.74 0.55 0.58 0.57 0.17 0.45 0.53 0.61 0.56 0.62 0.53 0.87 0.89 0.58 0.81 0.76 0.88 0.58 0.59 0.57 0.48 0.33 0.60
Qwen3-Reranker-0.6B 0.79 0.60 0.50 0.59 0.31 0.50 0.75 0.80 0.75 0.79 0.54 0.91 0.89 0.62 0.88 0.78 0.95 0.66 0.54 0.61 0.52 0.42 0.67
Qwen3-Reranker-8B 0.80 0.76 0.88 0.69 0.35 0.51 0.85 0.88 0.88 0.86 0.60 0.96 0.93 0.80 0.95 0.90 0.98 0.72 0.74 0.74 0.51 0.49 0.76

Embedding models
all-MiniLM-L6-v2 0.51 0.55 0.58 0.50 0.17 0.49 0.50 0.51 0.58 0.54 0.35 0.50 0.54 0.32 0.51 0.50 0.50 0.44 0.56 0.39 0.23 0.16 0.45
e5-base-v2 0.77 0.59 0.51 0.64 0.25 0.49 0.75 0.68 0.63 0.68 0.56 0.93 0.93 0.60 0.90 0.84 0.95 0.65 0.61 0.58 0.45 0.41 0.65
e5-large-v2 0.79 0.52 0.57 0.56 0.25 0.48 0.61 0.70 0.64 0.70 0.56 0.94 0.91 0.68 0.93 0.85 0.98 0.59 0.55 0.60 0.50 0.42 0.65
e5-mistral-7b-instruct 0.78 0.54 0.51 0.69 0.32 0.48 0.55 0.51 0.53 0.52 0.64 0.94 0.93 0.75 0.91 0.84 0.98 0.69 0.67 0.70 0.54 0.54 0.66
bge-base-en-v1.5 0.65 0.57 0.51 0.64 0.23 0.48 0.58 0.72 0.56 0.73 0.59 0.93 0.90 0.65 0.90 0.81 0.94 0.67 0.57 0.64 0.47 0.34 0.64
bge-large-en-v1.5 0.77 0.52 0.52 0.66 0.31 0.48 0.57 0.56 0.51 0.58 0.58 0.95 0.92 0.64 0.93 0.82 0.95 0.70 0.56 0.62 0.48 0.39 0.64
gte-base-en-v1.5 0.76 0.63 0.51 0.64 0.25 0.49 0.68 0.77 0.59 0.68 0.56 0.90 0.93 0.63 0.85 0.84 0.97 0.68 0.60 0.61 0.45 0.36 0.65
gte-large-en-v1.5 0.75 0.50 0.58 0.64 0.33 0.45 0.79 0.84 0.72 0.83 0.55 0.95 0.91 0.69 0.94 0.87 0.93 0.65 0.57 0.66 0.45 0.36 0.68
gte-modernbert-base 0.76 0.60 0.52 0.61 0.29 0.48 0.69 0.60 0.56 0.56 0.54 0.95 0.92 0.66 0.91 0.82 0.96 0.66 0.63 0.69 0.49 0.40 0.65
Qwen3-Embedding-0.6B 0.68 0.53 0.56 0.65 0.28 0.47 0.62 0.59 0.68 0.68 0.54 0.90 0.87 0.65 0.88 0.76 0.96 0.67 0.50 0.67 0.55 0.41 0.64
Qwen3-Embedding-8B 0.78 0.59 0.46 0.65 0.40 0.50 0.51 0.54 0.63 0.57 0.58 0.94 0.92 0.78 0.95 0.86 0.96 0.74 0.52 0.72 0.60 0.50 0.67

Instruction-tuned LLMs
gemma-3-270m-it 0.23 0.55 0.48 0.05 0.02 0.50 0.54 0.56 0.47 0.55 0.07 0.50 0.51 0.33 0.52 0.50 0.47 0.01 0.43 0.01 0.14 0.04 0.34
gemma-3-1b-it 0.38 0.49 0.65 0.15 0.03 0.46 0.59 0.62 0.56 0.57 0.23 0.58 0.69 0.46 0.60 0.60 0.59 0.15 0.54 0.11 0.20 0.21 0.43
Llama-3.2-3B-Instruct 0.68 0.57 0.52 0.48 0.12 0.49 0.55 0.57 0.50 0.56 0.46 0.54 0.54 0.37 0.53 0.51 0.47 0.44 0.48 0.40 0.35 0.39 0.48
Qwen3-4B 0.82 0.69 0.86 0.58 0.21 0.50 0.87 0.89 0.91 0.87 0.51 0.94 0.92 0.74 0.92 0.87 0.98 0.42 0.54 0.43 0.40 0.34 0.69
Phi-4-mini-instruct 0.56 0.60 0.51 0.48 0.17 0.50 0.62 0.60 0.60 0.61 0.46 0.61 0.60 0.41 0.60 0.58 0.59 0.45 0.46 0.29 0.32 0.32 0.50
Qwen3-8B 0.85 0.72 0.90 0.55 0.22 0.50 0.86 0.89 0.92 0.86 0.53 0.94 0.92 0.84 0.94 0.86 0.98 0.43 0.68 0.43 0.39 0.26 0.70
Mistral-Nemo-Instruct-2407 0.84 0.79 0.85 0.52 0.20 0.53 0.88 0.92 0.93 0.85 0.60 0.94 0.90 0.79 0.95 0.61 0.97 0.40 0.67 0.40 0.43 0.30 0.69

Table 7: Zero-shot classification results on BTZSC by dataset (macro-averaged recall). Abbreviations: AGN = AGNEWS, BF-Off / BF-Sex = BiasFrames (offensive
/ sex), CAPS = CAPSOTU, MAN = Manifesto, TT = TrueTeacher, WT-Ins / WT-Obs / WT-Thr / WT-Agg = WikiToxic (insult / obscene / threat / toxic aggregated),
YT = Yahoo Topics, AmzPol = Amazon Polarity, AppR = AppReviews, FPB = FinancialPhraseBank, RT = RottenTomatoes, Yelp = YelpReviews, B77 = Banking77,
BF-Int = BiasFrames (intent), MASS = MASSIVE (intent), EmoD = EmotionDiary, Emp = EmpatheticDialogues.
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Model AGN BF-Off BF-Sex CAPS MAN TT WT-Ins WT-Obs WT-Thr WT-Agg YT AmzPol AppR FPB IMDB RT Yelp B77 BF-Int MASS EmoD Emp Avg P

Base encoders
bert-large-uncased 0.18 0.55 0.47 0.04 0.03 0.25 0.53 0.58 0.51 0.56 0.11 0.45 0.67 0.38 0.55 0.53 0.58 0.02 0.45 0.00 0.19 0.02 0.35
deberta-v3-large 0.38 0.56 0.50 0.01 0.02 0.25 0.66 0.66 0.51 0.62 0.04 0.24 0.58 0.32 0.24 0.53 0.58 0.02 0.49 0.00 0.10 0.00 0.33
ModernBERT-large 0.06 0.55 0.50 0.02 0.02 0.53 0.47 0.58 0.50 0.61 0.07 0.24 0.49 0.29 0.26 0.50 0.56 0.05 0.59 0.04 0.07 0.01 0.32

NLI cross-encoders
bart-large-mnli 0.77 0.78 0.53 0.59 0.22 0.52 0.62 0.76 0.52 0.74 0.53 0.93 0.92 0.64 0.93 0.84 0.96 0.47 0.65 0.56 0.48 0.48 0.66
nli-roberta-base 0.72 0.58 0.53 0.26 0.09 0.48 0.70 0.72 0.52 0.73 0.46 0.89 0.89 0.61 0.83 0.80 0.89 0.13 0.53 0.47 0.47 0.43 0.58
bert-base-uncased-nli 0.73 0.58 0.55 0.06 0.01 0.45 0.78 0.77 0.53 0.71 0.45 0.87 0.84 0.61 0.80 0.77 0.89 0.03 0.57 0.54 0.45 0.36 0.56
bert-large-uncased-nli 0.76 0.59 0.59 0.32 0.07 0.50 0.82 0.80 0.57 0.75 0.49 0.85 0.86 0.63 0.84 0.76 0.90 0.17 0.61 0.53 0.46 0.33 0.60
bert-large-uncased-nli-triplet 0.75 0.68 0.55 0.18 0.06 0.48 0.79 0.83 0.54 0.79 0.41 0.86 0.85 0.61 0.82 0.77 0.90 0.11 0.61 0.45 0.40 0.34 0.58
deberta-v3-base-nli 0.76 0.61 0.55 0.38 0.13 0.39 0.77 0.83 0.54 0.79 0.51 0.90 0.91 0.68 0.91 0.82 0.93 0.23 0.58 0.49 0.46 0.46 0.62
deberta-v3-large-nli 0.81 0.70 0.54 0.41 0.11 0.66 0.74 0.83 0.53 0.81 0.56 0.93 0.93 0.78 0.91 0.86 0.98 0.45 0.71 0.57 0.47 0.56 0.67
deberta-v3-large-nli-triplet 0.83 0.67 0.54 0.48 0.18 0.56 0.78 0.84 0.55 0.83 0.39 0.93 0.93 0.78 0.93 0.84 0.98 0.35 0.70 0.55 0.50 0.54 0.67
modernbert-base-nli 0.77 0.64 0.62 0.29 0.08 0.51 0.78 0.71 0.53 0.75 0.52 0.91 0.91 0.63 0.89 0.80 0.96 0.20 0.60 0.39 0.44 0.44 0.61
modernbert-large-nli 0.77 0.68 0.56 0.18 0.14 0.62 0.74 0.81 0.55 0.78 0.53 0.94 0.93 0.76 0.92 0.88 0.98 0.29 0.64 0.47 0.47 0.47 0.64
modernbert-large-nli-triplet 0.77 0.70 0.54 0.17 0.21 0.52 0.76 0.81 0.54 0.80 0.41 0.93 0.92 0.72 0.92 0.88 0.98 0.36 0.63 0.53 0.49 0.45 0.64

Rerankers
ms-marco-MiniLM-L6-v2 0.50 0.64 0.50 0.36 0.13 0.57 0.50 0.52 0.52 0.49 0.33 0.71 0.72 0.43 0.64 0.58 0.67 0.44 0.61 0.14 0.33 0.35 0.49
gte-reranker-modernbert-base 0.76 0.52 0.58 0.46 0.24 0.61 0.54 0.56 0.52 0.55 0.56 0.92 0.93 0.62 0.86 0.83 0.96 0.68 0.53 0.58 0.45 0.49 0.63
bge-reranker-base 0.67 0.47 0.52 0.41 0.18 0.47 0.61 0.58 0.52 0.58 0.45 0.66 0.79 0.44 0.70 0.58 0.65 0.57 0.50 0.44 0.32 0.40 0.52
bge-reranker-large 0.77 0.56 0.53 0.51 0.24 0.45 0.62 0.68 0.52 0.64 0.54 0.87 0.89 0.51 0.81 0.76 0.89 0.66 0.59 0.44 0.44 0.49 0.61
Qwen3-Reranker-0.6B 0.82 0.69 0.51 0.55 0.31 0.25 0.74 0.80 0.55 0.79 0.58 0.91 0.89 0.63 0.88 0.78 0.95 0.66 0.57 0.56 0.49 0.47 0.65
Qwen3-Reranker-8B 0.84 0.78 0.62 0.71 0.40 0.76 0.84 0.88 0.58 0.86 0.65 0.96 0.93 0.85 0.95 0.91 0.98 0.74 0.79 0.71 0.50 0.58 0.76

Embedding models
all-MiniLM-L6-v2 0.63 0.57 0.53 0.52 0.19 0.46 0.53 0.51 0.52 0.55 0.55 0.51 0.70 0.35 0.74 0.46 0.24 0.56 0.64 0.42 0.46 0.36 0.50
e5-base-v2 0.78 0.61 0.50 0.51 0.25 0.49 0.74 0.71 0.53 0.70 0.57 0.93 0.93 0.53 0.90 0.84 0.95 0.65 0.62 0.50 0.45 0.50 0.64
e5-large-v2 0.80 0.52 0.52 0.52 0.28 0.48 0.69 0.73 0.53 0.72 0.57 0.94 0.91 0.65 0.93 0.85 0.98 0.70 0.55 0.55 0.47 0.48 0.65
e5-mistral-7b-instruct 0.82 0.68 0.53 0.62 0.36 0.46 0.70 0.66 0.52 0.72 0.66 0.94 0.93 0.67 0.92 0.84 0.98 0.70 0.68 0.65 0.53 0.59 0.69
bge-base-en-v1.5 0.68 0.59 0.51 0.53 0.25 0.48 0.69 0.74 0.52 0.75 0.56 0.93 0.91 0.60 0.90 0.82 0.95 0.68 0.58 0.54 0.50 0.40 0.64
bge-large-en-v1.5 0.77 0.54 0.52 0.55 0.29 0.45 0.70 0.68 0.51 0.68 0.60 0.95 0.92 0.61 0.93 0.83 0.95 0.74 0.58 0.54 0.51 0.48 0.65
gte-base-en-v1.5 0.76 0.63 0.52 0.58 0.24 0.43 0.73 0.78 0.52 0.74 0.58 0.91 0.93 0.60 0.88 0.85 0.97 0.68 0.60 0.54 0.43 0.37 0.65
gte-large-en-v1.5 0.78 0.51 0.53 0.56 0.36 0.43 0.80 0.83 0.54 0.85 0.59 0.95 0.91 0.57 0.94 0.88 0.94 0.68 0.57 0.59 0.47 0.43 0.67
gte-modernbert-base 0.76 0.63 0.51 0.49 0.29 0.48 0.73 0.67 0.52 0.67 0.56 0.95 0.92 0.67 0.91 0.83 0.96 0.69 0.63 0.62 0.48 0.45 0.66
Qwen3-Embedding-0.6B 0.68 0.54 0.52 0.54 0.28 0.47 0.71 0.61 0.53 0.74 0.57 0.90 0.87 0.60 0.89 0.77 0.96 0.68 0.51 0.59 0.48 0.43 0.63
Qwen3-Embedding-8B 0.81 0.72 0.49 0.59 0.35 0.51 0.70 0.71 0.53 0.76 0.64 0.94 0.92 0.72 0.95 0.86 0.96 0.76 0.71 0.65 0.55 0.55 0.70

Instruction-tuned LLMs
gemma-3-270m-it 0.25 0.57 0.49 0.04 0.00 0.50 0.56 0.58 0.49 0.57 0.12 0.50 0.52 0.36 0.53 0.50 0.45 0.00 0.41 0.00 0.04 0.01 0.34
gemma-3-1b-it 0.50 0.49 0.53 0.29 0.02 0.43 0.65 0.66 0.52 0.62 0.30 0.70 0.72 0.43 0.67 0.64 0.71 0.18 0.55 0.20 0.20 0.24 0.46
Llama-3.2-3B-Instruct 0.73 0.59 0.50 0.49 0.24 0.49 0.56 0.58 0.50 0.58 0.51 0.55 0.55 0.36 0.54 0.51 0.46 0.54 0.48 0.46 0.42 0.48 0.51
Qwen3-4B 0.85 0.72 0.62 0.62 0.22 0.75 0.86 0.89 0.63 0.87 0.64 0.95 0.92 0.71 0.93 0.87 0.98 0.48 0.69 0.46 0.57 0.40 0.71
Phi-4-mini-instruct 0.74 0.67 0.50 0.55 0.24 0.50 0.70 0.63 0.52 0.69 0.58 0.71 0.70 0.38 0.69 0.66 0.71 0.53 0.44 0.40 0.39 0.41 0.56
Qwen3-8B 0.86 0.79 0.64 0.61 0.23 0.25 0.85 0.89 0.66 0.87 0.64 0.95 0.93 0.73 0.94 0.88 0.98 0.52 0.73 0.48 0.56 0.42 0.70
Mistral-Nemo-Instruct-2407 0.85 0.78 0.79 0.61 0.25 0.70 0.88 0.91 0.77 0.85 0.64 0.94 0.90 0.79 0.95 0.77 0.97 0.45 0.76 0.47 0.55 0.40 0.73

Table 8: Zero-shot classification results on BTZSC by dataset (macro-averaged precision). Abbreviations: AGN = AGNEWS, BF-Off / BF-Sex = BiasFrames
(offensive / sex), CAPS = CAPSOTU, MAN = Manifesto, TT = TrueTeacher, WT-Ins / WT-Obs / WT-Thr / WT-Agg = WikiToxic (insult / obscene / threat / toxic
aggregated), YT = Yahoo Topics, AmzPol = Amazon Polarity, AppR = AppReviews, FPB = FinancialPhraseBank, RT = RottenTomatoes, Yelp = YelpReviews,
B77 = Banking77, BF-Int = BiasFrames (intent), MASS = MASSIVE (intent), EmoD = EmotionDiary, Emp = EmpatheticDialogues.
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E COMPARISON WITH MTEB

To assess whether our conclusions depend on the specific dataset composition of BTZSC, we re-
evaluate the same set of models on the English classification tasks from MTEB v2 (Enevoldsen
et al., 2025) (Amazon Counterfactual, MASSIVE Sentiment, MTOP Domain, ToxicConversations,
IMDB, TweetSentiment Extraction, Banking77, MASSIVE Intent). Table 9 reports macro-F1 scores,
Table 10 accuracies, Table 11 recall, and Table 12 precision. We treat BTZSC and MTEB as two
independent evaluators that induce rankings over the same models and compare their behavior both
in terms of average performance and the resulting rank orderings.

Global agreement. Across all models, macro-F1 on BTZSC and MTEB is strongly aligned. The
Kendall rank correlation coefficient (Kendall & Gibbons, 1990) between the BTZSC and MTEB
Avg-F1 rankings is high and positive (τ = 0.69, p ≈ 1.3× 10−9), indicating substantial agreement
in how the two benchmarks order models. The family-wise picture mirrors our main BTZSC re-
sults: base encoders perform worst, NLI cross-encoders substantially improve over them, modern
rerankers and instruction-tuned LLMs are competitive, and contemporary embedding models attain
the highest average macro-F1 across both benchmarks. The top reranker, Qwen3-Reranker-8B, is the
single best model on both BTZSC and MTEB, while smaller rerankers such as Qwen3-Reranker-
0.6B already outperform all NLI cross-encoders in macro-F1 on both suites.

Rank consistency within model families. When restricting the correlation analysis to individual
families, we still observe substantial agreement. For NLI cross-encoders, the BTZSC–MTEB rank
correlation is τ = 0.64 (p ≈ 0.0057), showing that models that are strong on BTZSC tend to
remain strong on MTEB. Rerankers show almost perfect concordance (τ ≈ 1.0, p ≈ 0.0028),
with both benchmarks inducing essentially the same ordering from the older ms-marco-MiniLM-
L6-v2 up to Qwen3-Reranker-8B. Instruction-tuned LLMs also exhibit a sizable positive correlation
(τ = 0.62, p ≈ 0.069), reflecting a consistent picture where very small LLMs perform poorly,
and 4–8B models are competitive but do not surpass the best reranker. For embedding models, the
correlation is positive but more moderate (τ = 0.31, p ≈ 0.22): both benchmarks clearly favour
modern embeddings (e5, BGE, GTE, Qwen-Embedding) over older baselines, but the fine-grained
ordering within this family is somewhat benchmark-dependent.

Embedding models and dataset composition. The embedding family illustrates well how dataset
mix shapes absolute scores while leaving the main qualitative conclusions intact. Averaged over
the eleven embedding models evaluated on both benchmarks, the family-level macro-F1 is 0.57
on BTZSC and 0.63 on MTEB, i.e. MTEB is systematically more “forgiving” to embeddings by
roughly six F1 points. This gap is largely explained by task composition.

On BTZSC, embedding models achieve mean task-wise macro-F1 of 0.47 on topic classification,
0.80 on sentiment, 0.57 on intent, and 0.39 on emotion. On MTEB, grouping the eight datasets
into sentiment-like tasks (Amazon Counterfactual, MASSIVE Sentiment, IMDB, TweetSentiment
Extraction), intent-like tasks (Banking77, MASSIVE Intent), and topic-like tasks (MTOP Domain,
ToxicConversations), the same embedding models reach on average 0.59 macro-F1 on sentiment,
0.58 on intent, and 0.74 on topic. Thus, relative to BTZSC, MTEB exposes embeddings to (i)
much easier topic-style problems (mid 0.70s vs. mid 0.40s) and (ii) no emotion tasks at all. Emo-
tion classification is consistently difficult for all families on BTZSC (embeddings around 0.39; NLI
cross-encoders and rerankers around 0.33-0.37), and the absence of this label family in MTEB re-
moves a systematic downward pull on the macro averages. Conversely, MTEB’s topic-style datasets
(MTOP Domain and ToxicConversations) appear particularly well aligned with embedding-based
semantic similarity, yielding high scores that boost the family’s average.

Importantly, BTZSC does not uniquely penalise embeddings: on BTZSC they are the strongest
family on intent and emotion and competitive on topic and sentiment; MTEB simply provides a
task mix—easier topic-style classification, no emotion—in which their strengths are accentuated.
The fact that modern embeddings outperform NLI cross-encoders on average and remain a few
points below the best reranker holds on both BTZSC and MTEB. What differs is primarily the
absolute level at which they plateau (high-0.50s on BTZSC vs. low- to mid-0.60s on MTEB) and
the precise ordering among closely matched embedding architectures. These observations indicate
that BTZSC not only yields findings that are consistent with MTEBs classification suite, but also
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provides a richer testbed for more nuanced performance analysis across tasks and domains, thanks
to its explicit coverage of sentiment, topic, intent, and emotion with varying granularities.

Model AmzCf MASS-S MTOP-D ToxicConv IMDB TweetSentExt B77 MASS-I Avg F1
Base encoders

bert-large-uncased 0.25 0.03 0.08 0.44 0.38 0.41 0.02 0.00 0.20
deberta-v3-large 0.51 0.02 0.07 0.49 0.33 0.31 0.01 0.00 0.22
ModernBERT-large 0.45 0.07 0.11 0.43 0.34 0.16 0.02 0.02 0.20

NLI cross-encoders
bart-large-mnli 0.15 0.54 0.84 0.50 0.93 0.54 0.28 0.41 0.52
nli-roberta-base 0.22 0.25 0.41 0.66 0.83 0.52 0.07 0.32 0.41
bert-base-uncased-nli 0.20 0.23 0.64 0.52 0.79 0.59 0.01 0.32 0.41
bert-large-uncased-nli 0.42 0.40 0.42 0.47 0.80 0.61 0.08 0.38 0.45
bert-large-uncased-nli-triplet 0.38 0.31 0.49 0.53 0.78 0.61 0.06 0.37 0.44
deberta-v3-base-nli 0.15 0.48 0.68 0.69 0.91 0.54 0.12 0.34 0.49
deberta-v3-large-nli 0.16 0.51 0.74 0.73 0.90 0.62 0.35 0.42 0.55
deberta-v3-large-nli-triplet 0.34 0.56 0.49 0.72 0.93 0.58 0.24 0.40 0.53
modernbert-base-nli 0.61 0.35 0.45 0.68 0.89 0.54 0.10 0.25 0.48
modernbert-large-nli 0.42 0.42 0.59 0.69 0.91 0.64 0.21 0.36 0.53
modernbert-large-nli-triplet 0.39 0.50 0.64 0.70 0.91 0.66 0.21 0.42 0.56

Rerankers
ms-marco-MiniLM-L6-v2 0.53 0.08 0.19 0.53 0.62 0.32 0.24 0.05 0.32
gte-reranker-modernbert-base 0.56 0.53 0.59 0.54 0.84 0.53 0.65 0.54 0.60
bge-reranker-base 0.39 0.44 0.73 0.56 0.69 0.53 0.48 0.43 0.53
bge-reranker-large 0.46 0.48 0.81 0.63 0.80 0.52 0.57 0.45 0.59
Qwen3-Reranker-0.6B 0.26 0.66 0.79 0.64 0.88 0.51 0.63 0.53 0.61
Qwen3-Reranker-8B 0.46 0.77 0.80 0.74 0.95 0.62 0.69 0.67 0.71

Embedding models
all-MiniLM-L6-v2 0.15 0.48 0.63 0.42 0.34 0.40 0.43 0.33 0.40
e5-base-v2 0.33 0.55 0.81 0.64 0.90 0.54 0.62 0.47 0.61
e5-large-v2 0.57 0.58 0.80 0.57 0.93 0.51 0.58 0.51 0.63
e5-mistral-7b-instruct 0.23 0.70 0.87 0.64 0.91 0.60 0.65 0.63 0.65
bge-base-en-v1.5 0.47 0.54 0.82 0.61 0.90 0.58 0.64 0.53 0.64
bge-large-en-v1.5 0.39 0.56 0.86 0.69 0.93 0.57 0.68 0.53 0.65
gte-base-en-v1.5 0.43 0.61 0.88 0.69 0.85 0.56 0.66 0.51 0.65
gte-large-en-v1.5 0.34 0.62 0.85 0.81 0.94 0.61 0.63 0.57 0.67
gte-modernbert-base 0.32 0.60 0.86 0.74 0.91 0.65 0.64 0.61 0.67
Qwen3-Embedding-0.6B 0.50 0.57 0.85 0.69 0.88 0.55 0.64 0.59 0.66
Qwen3-Embedding-8B 0.23 0.70 0.91 0.72 0.95 0.50 0.71 0.65 0.67

Instruction-tuned LLMs
gemma-3-270m-it 0.34 0.03 0.05 0.47 0.47 0.24 0.00 0.00 0.20
gemma-3-1b-it 0.32 0.18 0.23 0.52 0.56 0.37 0.10 0.08 0.30
Llama-3.2-3B-Instruct 0.35 0.53 0.55 0.50 0.51 0.36 0.39 0.37 0.44
Qwen3-4B 0.80 0.65 0.78 0.46 0.92 0.61 0.37 0.38 0.62
Phi-4-mini-instruct 0.35 0.53 0.56 0.47 0.56 0.35 0.42 0.28 0.44
Qwen3-8B 0.66 0.66 0.82 0.46 0.94 0.62 0.39 0.39 0.62
Mistral-Nemo-Instruct-2407 0.73 0.64 0.75 0.49 0.95 0.61 0.35 0.36 0.61

Table 9: Zero-shot classification results (macro-averaged F1) on eight English classification datasets
from MTEB v2 plus their average (Avg F1). Bold denotes the best and underlining the second-best
score in each column. Best model in each family is underlined.
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Model AmzCf MASS-S MTOP-D ToxicConv IMDB TweetSE B77 MASS-I Avg Acc
Base encoders

bert-large-uncased 0.25 0.05 0.15 0.53 0.52 0.41 0.03 0.01 0.25
deberta-v3-large 0.66 0.03 0.09 0.50 0.49 0.32 0.03 0.00 0.27
ModernBERT-large 0.83 0.09 0.13 0.50 0.51 0.33 0.03 0.02 0.30

NLI cross-encoders
bart-large-mnli 0.18 0.52 0.84 0.57 0.93 0.62 0.29 0.43 0.55
nli-roberta-base 0.23 0.28 0.43 0.66 0.83 0.61 0.08 0.36 0.43
bert-base-uncased-nli 0.21 0.21 0.62 0.58 0.79 0.64 0.02 0.28 0.42
bert-large-uncased-nli 0.43 0.38 0.41 0.55 0.81 0.65 0.08 0.35 0.46
bert-large-uncased-nli-triplet 0.39 0.30 0.46 0.59 0.79 0.65 0.07 0.37 0.45
deberta-v3-base-nli 0.17 0.49 0.65 0.69 0.91 0.63 0.13 0.33 0.50
deberta-v3-large-nli 0.18 0.54 0.75 0.73 0.90 0.67 0.36 0.44 0.57
deberta-v3-large-nli-triplet 0.34 0.57 0.51 0.72 0.93 0.64 0.24 0.42 0.55
modernbert-base-nli 0.68 0.36 0.47 0.68 0.89 0.62 0.09 0.28 0.51
modernbert-large-nli 0.43 0.40 0.59 0.69 0.91 0.66 0.24 0.39 0.54
modernbert-large-nli-triplet 0.40 0.48 0.67 0.70 0.91 0.68 0.22 0.44 0.56

Rerankers
ms-marco-MiniLM-L6-v2 0.76 0.08 0.23 0.53 0.62 0.42 0.22 0.04 0.36
gte-reranker-modernbert-base 0.67 0.54 0.60 0.59 0.84 0.62 0.63 0.57 0.63
bge-reranker-base 0.42 0.46 0.77 0.57 0.69 0.59 0.49 0.45 0.55
bge-reranker-large 0.50 0.50 0.82 0.64 0.80 0.61 0.56 0.47 0.61
Qwen3-Reranker-0.6B 0.26 0.66 0.80 0.65 0.88 0.62 0.62 0.52 0.63
Qwen3-Reranker-8B 0.47 0.75 0.81 0.74 0.95 0.65 0.67 0.72 0.72

Embedding models
all-MiniLM-L6-v2 0.17 0.47 0.66 0.49 0.49 0.40 0.44 0.34 0.43
e5-base-v2 0.33 0.55 0.84 0.65 0.90 0.60 0.62 0.49 0.62
e5-large-v2 0.66 0.58 0.83 0.61 0.93 0.59 0.56 0.51 0.66
e5-mistral-7b-instruct 0.24 0.71 0.88 0.66 0.92 0.64 0.65 0.67 0.67
bge-base-en-v1.5 0.51 0.54 0.83 0.64 0.90 0.61 0.64 0.56 0.66
bge-large-en-v1.5 0.39 0.58 0.88 0.69 0.94 0.62 0.68 0.52 0.66
gte-base-en-v1.5 0.43 0.62 0.89 0.71 0.85 0.63 0.65 0.54 0.66
gte-large-en-v1.5 0.34 0.63 0.86 0.81 0.94 0.66 0.63 0.58 0.68
gte-modernbert-base 0.32 0.61 0.88 0.74 0.91 0.67 0.63 0.65 0.68
Qwen3-Embedding-0.6B 0.54 0.60 0.87 0.69 0.88 0.58 0.64 0.63 0.68
Qwen3-Embedding-8B 0.24 0.69 0.91 0.73 0.95 0.53 0.70 0.71 0.68

Instruction-tuned LLMs
gemma-3-270m-it 0.34 0.07 0.07 0.50 0.52 0.32 0.01 0.01 0.23
gemma-3-1b-it 0.33 0.20 0.27 0.54 0.61 0.43 0.14 0.09 0.33
Llama-3.2-3B-Instruct 0.35 0.54 0.55 0.52 0.54 0.44 0.41 0.37 0.46
Qwen3-4B 0.87 0.65 0.79 0.56 0.92 0.66 0.40 0.40 0.66
Phi-4-mini-instruct 0.35 0.51 0.52 0.50 0.61 0.44 0.43 0.31 0.46
Qwen3-8B 0.71 0.65 0.82 0.56 0.94 0.67 0.40 0.41 0.65
Mistral-Nemo-Instruct-2407 0.85 0.66 0.76 0.58 0.95 0.65 0.39 0.39 0.65

Table 10: Zero-shot classification results (micro accuracy) on the 8 English MTEB-v2 classification
tasks. Bold denotes the best and underlining the second-best score in each column. Best model in
each family is underlined.
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Model AmzCf MASS-S MTOP-D ToxicConv IMDB TweetSE B77 MASS-I Avg Acc
Base encoders

bert-large-uncased 0.49 0.06 0.11 0.53 0.51 0.42 0.03 0.03 0.27
deberta-v3-large 0.52 0.05 0.08 0.50 0.50 0.32 0.03 0.00 0.25
ModernBERT-large 0.50 0.10 0.15 0.50 0.50 0.33 0.04 0.03 0.27

NLI cross-encoders
bart-large-mnli 0.50 0.55 0.84 0.57 0.93 0.62 0.30 0.43 0.59
nli-roberta-base 0.51 0.28 0.44 0.66 0.83 0.61 0.07 0.33 0.47
bert-base-uncased-nli 0.51 0.29 0.62 0.58 0.79 0.63 0.01 0.31 0.47
bert-large-uncased-nli 0.57 0.39 0.43 0.55 0.81 0.65 0.08 0.36 0.48
bert-large-uncased-nli-triplet 0.60 0.33 0.48 0.59 0.78 0.65 0.07 0.43 0.49
deberta-v3-base-nli 0.50 0.50 0.67 0.69 0.91 0.62 0.13 0.34 0.55
deberta-v3-large-nli 0.51 0.57 0.77 0.73 0.90 0.66 0.38 0.44 0.62
deberta-v3-large-nli-triplet 0.59 0.62 0.52 0.72 0.93 0.64 0.26 0.44 0.59
modernbert-base-nli 0.71 0.44 0.47 0.68 0.89 0.61 0.09 0.26 0.52
modernbert-large-nli 0.57 0.44 0.56 0.69 0.91 0.66 0.24 0.38 0.56
modernbert-large-nli-triplet 0.57 0.52 0.64 0.70 0.91 0.68 0.22 0.45 0.59

Rerankers
ms-marco-MiniLM-L6-v2 0.52 0.13 0.23 0.53 0.63 0.41 0.22 0.06 0.34
gte-reranker-modernbert-base 0.60 0.61 0.60 0.59 0.84 0.61 0.67 0.57 0.64
bge-reranker-base 0.49 0.54 0.75 0.57 0.70 0.58 0.51 0.53 0.58
bge-reranker-large 0.55 0.58 0.82 0.64 0.81 0.61 0.58 0.57 0.64
Qwen3-Reranker-0.6B 0.55 0.71 0.80 0.65 0.88 0.61 0.66 0.61 0.68
Qwen3-Reranker-8B 0.67 0.80 0.82 0.74 0.95 0.65 0.72 0.74 0.76

Embedding models
all-MiniLM-L6-v2 0.50 0.58 0.66 0.49 0.51 0.40 0.44 0.39 0.50
e5-base-v2 0.56 0.63 0.83 0.65 0.90 0.59 0.65 0.58 0.67
e5-large-v2 0.63 0.66 0.81 0.61 0.93 0.59 0.59 0.60 0.68
e5-mistral-7b-instruct 0.53 0.75 0.88 0.66 0.91 0.64 0.69 0.70 0.72
bge-base-en-v1.5 0.56 0.64 0.83 0.64 0.90 0.61 0.67 0.64 0.69
bge-large-en-v1.5 0.62 0.66 0.87 0.69 0.93 0.62 0.70 0.62 0.72
gte-base-en-v1.5 0.65 0.68 0.89 0.71 0.85 0.62 0.68 0.61 0.71
gte-large-en-v1.5 0.59 0.71 0.86 0.81 0.94 0.66 0.65 0.66 0.74
gte-modernbert-base 0.54 0.69 0.88 0.74 0.91 0.67 0.66 0.69 0.72
Qwen3-Embedding-0.6B 0.62 0.68 0.86 0.69 0.88 0.58 0.67 0.67 0.71
Qwen3-Embedding-8B 0.54 0.78 0.92 0.73 0.95 0.53 0.74 0.72 0.74

Instruction-tuned LLMs
gemma-3-270m-it 0.49 0.07 0.08 0.50 0.52 0.31 0.01 0.01 0.25
gemma-3-1b-it 0.54 0.19 0.27 0.53 0.60 0.43 0.15 0.11 0.35
Llama-3.2-3B-Instruct 0.51 0.58 0.58 0.52 0.53 0.44 0.44 0.40 0.50
Qwen3-4B 0.85 0.69 0.80 0.56 0.92 0.65 0.42 0.43 0.67
Phi-4-mini-instruct 0.54 0.54 0.52 0.50 0.60 0.43 0.45 0.29 0.49
Qwen3-8B 0.79 0.69 0.83 0.56 0.94 0.66 0.43 0.43 0.67
Mistral-Nemo-Instruct-2407 0.71 0.65 0.77 0.58 0.95 0.64 0.40 0.40 0.64

Table 11: Zero-shot classification results (macro-averaged recall) on the 8 MTEB (English, v2)
classification datasets and their average (Avg Recall). Bold denotes the best and underlining the
second-best score in each column. Best model in each family is underlined.
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Model Amazon C. Massive S. MTOP Toxic IMDB Tweet S. Banking77 Massive I. Avg Prec
Base encoders

bert-large-uncased 0.49 0.04 0.11 0.60 0.55 0.46 0.02 0.00 0.28
deberta-v3-large 0.51 0.08 0.07 0.51 0.24 0.32 0.02 0.00 0.22
ModernBERT-large 0.41 0.08 0.22 0.49 0.26 0.11 0.05 0.04 0.21

NLI cross-encoders
bart-large-mnli 0.59 0.67 0.84 0.68 0.93 0.64 0.47 0.56 0.67
nli-roberta-base 0.53 0.44 0.46 0.66 0.83 0.61 0.13 0.47 0.52
bert-base-uncased-nli 0.53 0.34 0.76 0.65 0.80 0.67 0.03 0.54 0.54
bert-large-uncased-nli 0.55 0.61 0.65 0.65 0.84 0.66 0.17 0.53 0.58
bert-large-uncased-nli-triplet 0.57 0.57 0.70 0.67 0.82 0.66 0.11 0.45 0.57
deberta-v3-base-nli 0.09 0.62 0.79 0.69 0.91 0.65 0.23 0.49 0.56
deberta-v3-large-nli 0.59 0.61 0.79 0.74 0.91 0.69 0.45 0.57 0.67
deberta-v3-large-nli-triplet 0.59 0.65 0.64 0.72 0.93 0.68 0.35 0.55 0.64
modernbert-base-nli 0.63 0.37 0.63 0.69 0.89 0.64 0.20 0.39 0.55
modernbert-large-nli 0.55 0.64 0.67 0.69 0.92 0.68 0.29 0.47 0.61
modernbert-large-nli-triplet 0.55 0.64 0.73 0.70 0.92 0.69 0.36 0.53 0.64

Rerankers
ms-marco-MiniLM-L6-v2 0.53 0.21 0.50 0.53 0.64 0.48 0.44 0.14 0.43
gte-reranker-modernbert-base 0.56 0.59 0.72 0.65 0.86 0.64 0.68 0.58 0.66
bge-reranker-base 0.50 0.44 0.74 0.57 0.70 0.56 0.57 0.44 0.56
bge-reranker-large 0.53 0.50 0.82 0.65 0.81 0.58 0.66 0.44 0.63
Qwen3-Reranker-0.6B 0.58 0.67 0.82 0.66 0.88 0.67 0.66 0.56 0.69
Qwen3-Reranker-8B 0.62 0.79 0.84 0.74 0.95 0.65 0.74 0.71 0.76

Embedding models
all-MiniLM-L6-v2 0.09 0.55 0.69 0.48 0.74 0.45 0.56 0.42 0.50
e5-base-v2 0.56 0.59 0.82 0.68 0.90 0.59 0.65 0.50 0.66
e5-large-v2 0.58 0.61 0.82 0.67 0.93 0.57 0.70 0.55 0.68
e5-mistral-7b-instruct 0.57 0.72 0.87 0.71 0.92 0.64 0.70 0.65 0.72
bge-base-en-v1.5 0.54 0.60 0.83 0.71 0.90 0.59 0.68 0.54 0.67
bge-large-en-v1.5 0.60 0.62 0.87 0.69 0.93 0.61 0.74 0.54 0.70
gte-base-en-v1.5 0.61 0.64 0.89 0.75 0.88 0.63 0.68 0.54 0.70
gte-large-en-v1.5 0.59 0.66 0.86 0.81 0.94 0.67 0.68 0.59 0.73
gte-modernbert-base 0.53 0.60 0.86 0.74 0.91 0.66 0.69 0.62 0.70
Qwen3-Embedding-0.6B 0.57 0.59 0.85 0.71 0.89 0.60 0.68 0.65 0.68
Qwen3-Embedding-8B 0.59 0.72 0.90 0.76 0.95 0.74 0.76 0.65 0.76

Instruction-tuned LLMs
gemma-3-270m-it 0.50 0.02 0.04 0.50 0.53 0.21 0.00 0.00 0.23
gemma-3-1b-it 0.53 0.25 0.40 0.54 0.67 0.41 0.18 0.20 0.40
Llama-3.2-3B-Instruct 0.50 0.56 0.59 0.52 0.54 0.43 0.54 0.46 0.52
Qwen3-4B 0.78 0.67 0.80 0.73 0.93 0.67 0.74 0.46 0.69
Phi-4-mini-instruct 0.53 0.62 0.65 0.50 0.69 0.49 0.53 0.40 0.55
Qwen3-8B 0.67 0.68 0.83 0.73 0.94 0.70 0.52 0.48 0.69
Mistral-Nemo-Instruct-2407 0.75 0.69 0.79 0.72 0.95 0.65 0.45 0.47 0.68

Table 12: Zero-shot classification results (macro-averaged precision) on BTZSC for the eight MTEB
(EN, v2) classification datasets. We report per-dataset precision and overall average precision (Avg
Prec). Bold denotes the best and underlining the second-best score in each column. Best model in
each family is underlined.
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