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Abstract

Large reasoning models (LRMs) have achieved
impressive performance in complex tasks, of-
ten outperforming conventional large language
models (LLMs). However, the prevalent issue
of overthinking severely limits their computa-
tional efficiency. Overthinking occurs when
models generate excessive and redundant to-
kens that contribute little to accurate outcomes,
especially in simple tasks, resulting in a signifi-
cant waste of computational resources. To sys-
tematically investigate this issue, we introduce
Think-Bench, a benchmark designed to evalu-
ate the reasoning efficiency of LRMs. We also
propose novel efficiency metrics and conduct
a comprehensive evaluation of various LRMs
across multiple dimensions, including the rea-
soning process, outcome quality, and chain-of-
thought (CoT) characteristics. Our analysis
reveals that most LRMs exhibit overthinking
in handling easy questions, generating unnec-
essarily lengthy reasoning chains. While many
LRMs demonstrate high CoT quality, several
suffer from low efficiency. We hope that Think-
Bench can serve as a robust foundation for ad-
vancing research into LRMs.

1 Introduction

In recent years, with the rapid advancement of arti-
ficial intelligence, LLMs have achieved remarkable
success in the field of natural language process-
ing (NLP), particularly excelling in tasks such as
text generation and question answering (Grattafiori
et al., 2024; Guo et al., 2025; Yang et al., 2024).
However, the reasoning capabilities of these mod-
els in solving multidisciplinary problems still face
significant challenges, such as insufficient integra-
tion of cross-disciplinary knowledge and weak logi-
cal chain reasoning ability (Wang et al., 2024; Chen
etal., 2025). To gain a deeper understanding and ef-
fectively enhance the efficiency and accuracy of the
reasoning capabilities of LLMs, constructing high-
quality multidisciplinary datasets and conducting
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Figure 1: The performance of various LRMs on
Think-Bench. The results suggest that these promi-
nent LRMs face a challenge of overthinking.

systematic evaluations has become critically impor-
tant (Chang et al., 2024; Xia et al., 2024).

Recent research have introduced several high-
quality multidisciplinary benchmarks, such as
MMLU (Hendrycks et al., 2020a) and GPQA (Rein
et al., 2024), to evaluate model performance across
diverse knowledge domains. However, these
datasets predominantly rely on the correctness of
the final answer as the sole evaluation metric. Such
outcome-oriented evaluation protocols are not di-
rectly applicable to the assessment of large reason-
ing models (LRMs), as they neglect the accuracy
and logical coherence of intermediate reasoning
steps during answer generation (Jiang et al., 2025;
Zheng et al., 2024). In reality, for complex tasks
spanning logical reasoning, mathematical problem-
solving, and multi-step decision-making, the qual-
ity of intermediate CoT processes not only deter-
mines final-answer accuracy but also serves as
a critical indicator of LRMs’ intrinsic reasoning
capabilities and operational reliability. Existing
evaluation paradigms that ignore CoT quality risk



Math

Question

Let $\omega$ be a complex number
such that $lomega™3 = 1.$ Find all
possible values of...

Answer 1

* Key Step

"stepl: ldentify that == 1 means »
is a cube root of unity.",

"'step2: The three cube roots of unity
are 1, e*(2ni/3), and eN(4ri/3).",
"step3: Calculate the sum S = 1/(1+®)
+ 1/(1+o3",

Dataset Overview

Physics

Question

How much work is required to
charge a 10 F capacitor to a
potential difference of 100 V ...

Answer C
* Key Step
"stepl: Recall the formula for work

required to charge a capacitor: W =
(1/2) xC xV=2,

"step2: Convert capacitance to farads:

C=10 hF =10 x<10°F",
“step3: Substitute the values into the
formula: W = (1/2) < (10 <10 F) x

Chemistry

Question

What is the mass of one molecule of
cholesterol (C27H460, molecular
mass = 386)? A:6.41 x10"-22 g ...
Answer A

* Key Step

"stepl: The molecular mass of
cholesterol (C27H460) is given as
386 g/mol"”,

"step2: Avogadro's number (the
number of molecules in 1 mole) is
6.022 x10723 molecules/mol",
"step3: To find the mass of one

"step4: Find a common denominator:
S = (I+toF/(1tw)(1toF+ (1tw)/
((Ho)(1+o3)."...

(100 V)=,

"step4: Calculate V(100 V)==...

molecule, divide the molecular mass
by Avogadro's number: ...

Figure 2: Overview of Think-Bench. Our benchmark contains a comprehensive efficiency evaluation framework

with curated datasets across three categories.

masking systemic deficiencies, such as erroneous
premises, logical fallacies, or context misinterpreta-
tions, which may propagate through the reasoning
chain. Consequently, establishing a holistic evalu-
ation framework that quantifies both intermediate-
step correctness and final-output accuracy emerges
as a pivotal yet understudied research direction.

Recently, several studies have begun to explore
the evaluation of the correctness of CoTs. Notable
works such as MME-CoT (Jiang et al., 2025) es-
tablish a comprehensive benchmark that system-
atically examines CoT's across three fundamental
dimensions: reasoning quality, robustness, and ef-
ficiency. Meanwhile, MiCEval (Zhou et al., 2024)
conducts a fine-grained evaluation of Multimodal
Chains of Thought (MCoT), focusing on aspects
such as the accuracy of image descriptions and
the correctness, relevance, and informativeness of
reasoning steps. Collectively, these benchmarks
represent a significant shift from solely outcome-
oriented evaluations to more process-aware assess-
ments that effectively capture the internal reasoning
dynamics of large models.

Despite these advances, existing benchmarks re-
main limited by their lack of a systematic frame-
work for evaluating both the efficiency and re-
liability of reasoning processes in LRMs. This
challenge is particularly prominent in multidisci-
plinary problem-solving scenarios (Wang et al.,
2025). Prior studies have demonstrated that rea-
soning models structurally similar to OpenAl-ol

often allocate computational resources inefficiently
when handling relatively simple problems, while
achieving only negligible performance improve-
ments in final outcomes (Chen et al., 2024; Guo
et al., 2025). These findings suggest that LRMs
may suffer from suboptimal resource distribution
during inference, consequently constraining their
overall performance optimization.

To bridge this critical research gap, we introduce
Think-Bench, a multidisciplinary dataset specifi-
cally designed for comprehensively evaluating the
reasoning efficiency and accuracy of LRMs. Our
benchmark features meticulously annotated key
reasoning steps for each problem instance, enabling
granular analysis of model-generated reasoning
processes. Additionally, we propose an evalua-
tion protocol that can measure the efficiency and
rationality of the reasoning process by analysing
the specific behaviours exhibited by LRMs during
their thinking process.

2 Dataset Curation

2.1 Data Overview

As shown in Figure 2, Think-Bench is a dataset
specifically designed to evaluate the thinking ef-
ficiency and the quality of CoTs of LRMs in
complex reasoning tasks. This dataset comprises
1,375 carefully selected and organized data sam-
ples, covering three core subjects: mathemat-
ics, physics, and chemistry. Within each subject,
the number of simple questions is approximately
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Statistic Number
Total questions 1375
-Choice questions 929
-Free-form questions 446
-Math questions 293
-Physics questions 590
-Chemistry questions 492
Total key step annotation 13311
-Average inference step 9.68
Maximum question length 1893
Maximum answer length 372
Average question length 422.42
Average answer length 7.59

Table 1: Key Statistics of Think-Bench.

Figure 3: Category and Subcategory Distribution of Think-

Bench.

equal to the number of difficult questions. The
data sources are diverse, drawing from multiple
academic datasets, including MMLU (Hendrycks
et al., 2020a), Math500 (Hendrycks et al., 2020b),
AGIEval (Zhong et al., 2023), AIME (Veeraboina,
2023), GPQA (Rein et al., 2024), SciKnowE-
val (Feng et al., 2024), and UGPhysics (Xu et al.,
2025b).

2.2 Data Collection

During the construction of Think-Bench, we aggre-
gated questions from multiple authoritative, pub-
licly available datasets. The distribution of the
Think-Bench across different disciplines is shown
in Table 1. To ensure fairness, all samples were
selected randomly. After the selection process, we
conducted a systematic data cleaning and verifi-
cation procedure to remove duplicate and invalid
entries. The final dataset consists of 1,375 data
points, after which we carried out the data anno-
tation work. This benchmark covers the core dis-
ciplines of mathematics, physics, and chemistry,
which inherently require structured and multi-step
reasoning. Therefore, it provides a robust and rig-
orous foundation for evaluating the performance
of reasoning models. Detailed statistics regarding
the data composition can be found in Figure 3 and
Table 1.

2.3 Data Annotation and Review

To systematically evaluate the CoT reasoning capa-
bilities of LRMs on reasoning tasks, we implement
a fine-grained annotation framework for key rea-
soning steps across all questions. Key steps are
defined as essential logical components that must
be completed and cannot be omitted in the pro-
cess of achieving the correct answer. The annota-
tion process is implemented in the following steps:
First, we leverage Claude 3.7 Sonnet to generate
comprehensive reasoning chains for each question
(see Prompt 1 in Appendix D), which serve as base-
line references. Based on the generated reasoning
paths, we identify and extract the critical steps in-
volved. Since a single question may admit multiple
logically valid reasoning paths, all reasonable and
logically consistent solutions are considered and
included.

3 Evaluation Strategy

Recent studies have revealed that LRMs frequently
exhibit low reasoning efficiency (Sui et al., 2025;
Chen et al., 2024). However, there is currently a
lack of systematic benchmarks to evaluate this is-
sue comprehensively. A detailed analysis of LRMs’
reasoning processes is crucial for understanding
their efficiency limitations and underlying chal-
lenges. Furthermore, existing benchmarks primar-
ily assess the final answers to reasoning questions,
neglecting the intermediate CoT steps. To bridge



Question
If $a = 8%, what is the value of $\left(16\sqrt[3]{a"2}\right
W {\frac 13}$?
Answer: 4
&
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Tokens Efficiency = First Correct Tokens
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Thought
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First Correct
Tokens
Reflection
Tokens

Reflection Quality
Vv Reflection Stepl [Effective]

X Reflection Step2 [Invalid]
X Reflection Step3 [Invalid]
Reflection Quality = 1/4

Step Partition [{?1
Claude 3.7 aoa

Sonnet

( Key Steps
Step 1: Substitute $a = 8$ into the expression $\
left(16\sqrt[3]{a"2\right){\frac{1}{3}}$.
Step 2: Calculate $a"2 = 82 = 64$.
Step 3: Calculate $\sqrt[3]{a"2} = \sqrt[3]{64} = 4$.
Step 4: Calculate $16\sqrt[3]{a"2} = 16 \cdot 4 = 64$.
Step 5: Calculate $\left(16\sqrt[3]{a*2}\right)*{\
frac{1}{3}} = 64 {\frac{1}{3}} = \sqrt[3]{64} = 4%
\ J

Judging Model
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Vv Stepl [Match] Vv Stepl [Correct]
v/ Step2 [Match] X Step2 [Error]
X Step3 [Conflict] X Step3 [Error]
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X Step5 [Conflict] X Step5 [Error]
Recall = 3/5 Precision = 2/5 )

Figure 4: Illustration of Thinking Efficiency and CoT Quality Evaluation.

1+1+2=2? &
LRM Thinking

Okay, let's see. The problem here is 1 + 1 + 2. Let
me break it down step by step. First, I'll start with
the first two numbers: 1 and 1. If | add those
together, 1 plus 1 is 2. So now | have 2 from the
first addition. Next, | need to add the third number,
which is 2, to the result of the first addition. So
taking the 2 from before and adding another 2 to it.
2 plus 2 equals 4. First Correct Answer

Wait, is that correct?Let me count on my fingers to
be sure. One, two... and then two more. That's
three, four. Yep, that's 4. But just to double-check,
maybe | can approach it differently. Instead of
adding the first two 1s first, what if | add the
second 1 and the 2 first? Let's try that. 1 plus 2 is 3,
and then adding the first 1 would give me 1 plus 3,
which is 4. Same result. ...

Tokens = First Correct Tokens + Reflections Tokens

Figure 5: Example of Thinking Process Analysis in a
LRM.

this gap, we propose a novel benchmark that jointly
evaluates both the efficiency and quality of reason-
ing CoTs, thereby enabling a more holistic assess-
ment of LRMs’ reasoning capabilities.

3.1 Thinking Efficiency Evaluation

With the rapid development of LRMs, their ability
to handle complex multi-step reasoning has signifi-
cantly advanced (Xu et al., 2025a). Notable models
like OpenAl-ol (Zhong et al., 2024), DeepSeek-
R1 (Guo et al., 2025), and Qwen3 (Yang et al.,
2025a) have attracted growing interest for their
human-like capacity for extended, reflective rea-
soning. Through advanced long CoT and test-time
scaling methods, these models iteratively evalu-
ate multiple reasoning paths before finalizing an-
swers (Chen et al., 2025; Muennighoff et al., 2025).

However, as test-time scaling consumes increas-
ing computational resources, a critical challenge
has emerged in LRMs’ inference behaviors: Over-
thinking. This refers to the model’s persistent
tendency to engage in excessive and repetitive rea-
soning, often producing reasoning chains that span
hundreds of tokens even for simple tasks. While
such elaborate verification is justified for complex
problems, test-time scaling amplifies this behavior,
causing unnecessary computational overhead and
inefficiency during inference for simple inputs.

As illustrated in Figures 4 and 5, we propose
six complementary metrics to systematically assess



reasoning efficiency across token usage, inference
dynamics, and reflective quality.

Tokens measure the total token count processed
before final prediction, representing reasoning
chain length and providing a fundamental basis
for computational cost estimation.

First Correct Tokens measures the token count
from reasoning initiation until the first occurrence
of a correct answer. This metric evaluates the
model’s speed in reaching a valid solution during
reasoning, where fewer tokens indicate faster cor-
rect convergence. The identification prompt is de-
tailed in Prompt 5.

Efficiency is a normalized metric that refers to
the ratio of first correct tokens to the total number
of reasoning tokens. Formally, it is defined as:

NS

. 1 T
Efficiency = N Z X (1)
=1

where T} denotes the number of tokens generated
by the model before the first occurrence of the
correct answer in its response, and let 7; represent
the total number of reasoning tokens for the i-th
instance. If the model fails to produce a correct
answer, we set Tz = (. A higher value of this
metric indicates more efficient reasoning behavior.
Concrete examples illustrating this calculation can
be found in Figure 7 in Appendix C.1.

Reflection Quality measures the efficacy of the
model’s self-reflective reasoning, particularly af-
ter producing a correct answer. Not all reflective
steps contribute meaningfully: some merely reiter-
ate prior conclusions, while others may introduce
erroneous revisions. We define a valid reflection
as one that either (i) accurately identifies a prior
error or (ii) provides new insights that confirm an
earlier conclusion. Let R represent the total set
of reflective steps, and Ry,jig denote the subset of
valid reflections. The metric is defined as follows:

|Rvalid’
|R|

This score quantifies the efficacy of the model’s
reflection process, where higher values indicate
more meaningful self-verification behavior as op-
posed to producing redundant or counterproductive
content. The prompt used to guide this reflection
process is provided in Prompt 6.

Reflection Tokens quantify the token count gen-
erated from the first correct answer to the con-
clusion of the reasoning process. This segment

Reflection Quality = )

typically encompasses verification steps, reflective
analysis, and conclusion restatements. Although
such content may provide valuable insights, exces-
sive length often signals reasoning inefficiency or
unnecessary repetition.

Thought Num measures how often the model
changes reasoning paths. This metric is estimated
by counting discourse markers like "alternatively,"
"on second thought,” and "wait a moment." A
higher count may indicate instability in reasoning
or a tendency toward exploratory behavior.

3.2 CoT Quality Evaluation

As LLMs increasingly adopt CoT reasoning strate-
gies, assessing the quality of their internal reason-
ing processes has emerged as a critical research
challenge (Jiang et al., 2025). Existing evalua-
tion approaches predominantly focus on final an-
swer accuracy (Wang et al., 2019; Hendrycks et al.,
2020b; Suzgun et al., 2022), while largely over-
looking the validity and robustness of intermedi-
ate reasoning steps. To bridge this gap, we adopt
a reference-based evaluation framework, inspired
by MME-CoT (Jiang et al., 2025). Our proposed
framework measures the reasoning quality from
two interpretable dimensions: Recall and Preci-
sion.

As illustrated in Figure 4, each CoT response is
decomposed into multiple reasoning steps through
the prompt detailed in Prompt 3.

R=A{ry,ro,...,r;}.

To evaluate its quality, R is compared against a
pre-annotated reference set containing key reason-
ing components.

S = {81,82, .. .,SN}.
Each r; is judged for semantic alignment with any
83, using Claude 3.7 Sonnet as a judge guided by
consistent prompting instructions. The prompt de-
signed to extract matching steps for computing
recall and precision is provided in Prompt 2 and
Prompt 3 of Appendix D. We define:

* Rmatch € R: the subset of reasoning steps in
R that correctly match at least one reference
step in S.

* Scovered C S: the subset of reference steps

that are successfully matched by at least one
step in R.



Reflection Thought Useful  Reflection

Model name Efficiency Recall Precision Accuracy Quality Num Tokens Tokens Tokens
Claude-3-7-sonnet 49.61%  81.29% 86.26%  94.25% 76.49% 0.28 942.82  446.09 496.73
Deepseek-rl-distill-qwen-1.5b  37.14%  47.10% 59.61%  62.91% 61.88% 8.00 3734.49 126836  2466.13
Deepseek-r1-distill-qwen-7b 49.53%  63.65% 7729%  68.51% 77.70% 9.42 350476 164191  1862.85
Deepseek-rl-distill-qwen-14b ~ 50.70%  61.04%  79.97%  70.18% 82.40% 7.04 2814.75 1413.09  1401.66
Deepseek-r1-distill-qwen-32b 52.62%  64.17%  83.76%  75.93% 84.46% 6.27 2697.70 1352.93  1344.77
Deepseek-rl 48.96%  80.80%  88.33% 88.80% 90.92% 9.17 3795.19 1912.12  1883.07
Ernie-x1-turbo-32k 47.02%  82.03% 88.67%  89.89% 90.97% 1275 469221 2221.32  2470.89
Grok-3-mini-beta 61.69% 81.56% 86.51%  91.85% 88.20% 0.38 1891.34 1169.05  722.29
Qwen3-235b-a22b 46.14%  85.80% 86.97%  94.91% 92.16% 1335  4969.05 244829  2520.76
Qwq-plus 44.58%  80.40%  85.08% 89.60% 89.67% 22.63 573837 2646.73  3091.64
Glm-z1-air 4741%  80.16%  83.18% 88.06% 89.17% 9.80 3678.68 1775.07  1903.61

Table 2: Evaluation of Nine Metrics on CoT and Efficiency in Think-Bench. Best performance in bold.

Using Rmatch and Scovered, We compute the Re-
call and Precision metrics as follows:

S,
Recall = ’T;Tw' 3)
R
Precision = ||m}§t|0h| “4)

Recall measures the extent to which essential rea-
soning steps are accurately captured in the LRM’s
output, reflecting the informativeness and compre-
hensiveness of the generated reasoning chain. In
contrast, precision evaluates the correctness and
relevance of the reasoning steps, penalizing any
instance of inaccuracy or logical inconsistency.

4 Experiment

4.1 Experimental Setup

Evaluation Models To systematically evaluate
both the efficiency and quality of reasoning with
CoT in LRMs, we select eleven representative mod-
els spanning diverse architectures and parameter
scales. Our evaluation encompasses both propri-
etary and open-source LRMs. Specifically, we
include Claude 3.7 Sonnet (Anthropic, 2025), a
proprietary model widely recognized for its strong
performance in multi-turn reasoning tasks. We
also conduct a comprehensive assessment of the
DeepSeek-R1 family (Guo et al., 2025), includ-
ing the full-scale DeepSeek-R1 and its distilled
Qwen-1.5-based variants at 1.5B, 7B, 14B, and 32B
scales, all explicitly optimized for efficient multi-
step reasoning. Additionally, we evaluate Qwen3-
235B-A22B (Team, 2025b) and Qwq-Plus (Team,
2024), both equipped with reflection and alignment
mechanisms to support long-context inference. To
further explore model behavior under extended

reasoning conditions, we include Ernie-X1-Turbo-
32K (Team, 2025a), optimized for long input se-
quences, along with Grok-3-Mini-Beta (xAl, 2025)
and GLM-Z1-Air (GLM et al., 2024).

Implementation Details Throughout the eval-
uation process, we initially employed the tested
LRMs to generate responses to the entries from
Think-Bench. All other model hyperparameters
followed default settings unless otherwise specified.
Subsequently, Claude 3.7 Sonnet was utilized to an-
alyze the reasoning steps and underlying thinking
processes of these responses. The detailed prompt
used for the analysis with Claude 3.7 Sonnet is
provided in Appendix D. Finally, we computed our
proposed evaluation metrics to assess the thinking
efficiency and reliability of the tested LRMs.

4.2 Quantitative Results

We conduct a comprehensive evaluation of LRMs
using our proposed Think-Bench. The main re-
sults are presented in Tables 2 and Tables 3. We
begin with an analysis of the overall performance,
followed by an in-depth discussion of the key find-
ings.

Overall Performance To comprehensively eval-
uate the performance of LRMs, we report results
across two key dimensions: efficiency and CoT
quality, including our proposed efficiency metrics,
recall, precision and accuracy, as shown in Table 2.
Our analysis shows that while there exists a consis-
tent trade-off between token usage and reasoning
performance, different models exhibit significant
variability in their inference behaviors.

In terms of efficiency, Grok-3-mini-beta
achieves the highest score of 61.69%, followed
by Deepseek-rl-distill-qwen-32b at 52.62% and
Deepseek-r1-distill-qwen-14b at 50.70%, indicat-
ing a more economical use of tokens to reach cor-



Recall Precision Reflection Quality Tokens Efficiency
Model name Simple Difficult | Simple Difficult| Simple Difficult | Simple Difficult | Simple Difficult
Claude-3-7-sonnet 88.49% 74.05% |92.94% 79.56% |92.95% 90.29% | 673.24 1216.01 | 0.52 0.47
Deepseek-r1-distill-qwen-1.5b | 55.74% 38.42% | 69.35% 49.84% | 73.22% 68.55% |2149.94 532597 | 0.40 0.34
Deepseek-r1-distill-qwen-7b | 70.75% 51.30% | 88.84% 71.06% | 90.09% 83.64% |1575.27 4059.64 | 0.51 0.51
Deepseek-r1-distill-qwen-14b | 72.99% 55.31% | 92.55% 74.93% |91.43% 85.07% |1514.53 3886.05| 0.52 0.53
Deepseek-r1-distill-qwen-32b | 69.88% 57.39% | 85.79% 68.75% | 84.99% 78.91% |2074.32 4941.47 | 0.49 0.50
Deepseek-rl 88.80% 72.77% |95.54% 81.09% |95.15% 90.00% |2058.35 5539.63 | 0.46 0.52
Ernie-x1-turbo-32k 90.26% 73.76% | 95.44% 81.88% | 95.00% 89.09% [2679.32 671391 | 0.43 0.51
Grok-3-mini-beta 89.09% 74.01% |93.47% 79.51% |93.17% 88.78% |1242.27 2543.25| 0.60  0.63
Qwen3-235b-a22b 92.87% 78.70% | 95.33% 78.57% [96.29% 91.43% |2818.69 7128.80| 0.42 0.50
Qwq-plus 90.04% 70.72% | 94.89% 75.23% | 94.60% 87.42% |3289.45 8197.99| 0.41 0.48
GLM-Z1-Air 88.69% 71.60% |93.31% 72.99% | 94.79% 86.55% |1931.36 5433.63 | 0.45 0.49

Table 3: Evaluation Results of CoT and Efficiency in Think-Bench Classified by Difficulty Levels. Best performance

in bold.

rect answers. In contrast, larger models such as
Qwen3-235b-a22b and Qwq-plus exhibit lower ef-
ficiency, scoring 46.14% and 44.58% respectively.
This decrease in efficiency is attributed to their
prolonged reasoning chains, despite having strong
CoT quality.

Regarding CoT quality, Qwen3-235b-a22b and
Ernie-x1-turbo-32k stand out by achieving the high-
est reflection quality scores, with values of 92.16%
and 90.97%, respectively. They also demonstrate
top-tier precision at 86.97% and 88.67%, and re-
call rates of 85.80% and 82.03%. These impressive
results highlight the advantages of large-scale mod-
els with reflection-enhanced reasoning capabilities,
which not only lead to accurate conclusions but
also enable reliable verification and correction pro-
cesses. In contrast, smaller distilled models, such
as Deepseek-r1-distill-qwen-1.5b, perform poorly
across all quality metrics, particularly in precision
(59.61%) and recall (47.10%).

An important behavioral indicator is Thought
Num, reflecting how often the model switches or
reconsiders its CoT. Qwq-plus shows the highest
value (22.63), indicating frequent reflective itera-
tions. However, such reflections don’t always lead
to better performance and may reduce efficiency.
In contrast, models like Claude 3.7 Sonnet and
Grok-3-mini-beta maintain very low Thought Num
values (0.28 and 0.38) while still achieving a bal-
anced and high-quality reasoning process.

Regarding token consumption, Qwq-plus and
Qwen3-235b-a22b each use over 4,900 tokens per
response, with a substantial portion from reflec-
tion (3,091.64 and 2,520.76, respectively). This
suggests tendencies toward overthinking. In con-

trast, Claude-3-7-Sonnet completes its reasoning
in under 1,000 tokens, demonstrating concise and
effective inference with minimal redundancy.

Evaluation and Analysis Based on Difficulty
Levels of Questions The results in Table 3 show
that most LRMs demonstrate significantly lower
average efficiency on simple questions than on dif-
ficult ones. This suggests that when faced with
simple questions, these models tend to overthink
and generate unnecessary reasoning chains. In con-
trast, for high difficulty questions, the models focus
more effectively, eliminating redundant reasoning
steps and improving efficiency. Additionally, token
consumption for difficult questions is consistently
higher than for simple ones, due to the extra infer-
ential steps needed to tackle complex problems. As
reflection quality, recall, and precision all decline
slightly as task difficulty increases, this illustrates
that while difficult questions require more compu-
tational resources, they present greater challenges
to the model’s reasoning capabilities.

Evaluation and Analysis Based on Different Sub-
jects Asshown in Figure 6, the multi-disciplinary
evaluation in Think-Bench reveals notable perfor-
mance differences across chemistry, physics, and
mathematics. Mathematical tasks generally lead
to higher token consumption and lower reasoning
efficiency, even for strong models, suggesting a
reliance on lengthy CoTs and structured outputs.
In contrast, chemistry and physics tasks typically
exhibit better efficiency and lower token usage.
Regarding CoT quality evaluation, the recall and
precision generally show a positive correlation in
various disciplinary tasks within Think-Bench, but



The Recall performance of different models under three disciplines

The Precision performance of different models under three disciplines
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Figure 6: Comparative Performance of Models in Chemistry, Physics, and Math.

there are also obvious structural differences. Specif-
ically, in chemistry and physics tasks, the precision
rate of the model is often significantly better than
the recall rate. This phenomenon reflects that the
current LRMs’ strategy in generating answers for
reasoning questions is relatively conservative, such
that it is more inclined to output answers with high
confidence.

4.3 Error Analysis

During the evaluation experiment, we observed
that some models, particularly the distillation mod-
els from the DeepSeek series and the ERNIE-X1-
Turbo-32K, exhibited an unusual issue of generat-
ing empty outputs. This issue primarily manifested
in the model generating only intermediate reason-
ing content without producing a final answer for
certain questions. See Figure 8 in Appendix C.2
for a concrete example. Potential causes include
limitations in their inference mechanisms, context
processing capabilities, or deployment implemen-
tations. As the issue was sporadic and difficult to
reproduce systematically, we chose to automati-
cally skip any samples with invalid outputs to pre-
serve the integrity of the evaluation and ensure the
stability of subsequent analyses.

5 Conclusion

This paper presents the Think-Bench dataset, a
benchmark designed to systematically evaluate the
reasoning efficiency and CoT quality of LRMs.
The dataset consists of tasks from three disciplines:
mathematics, physics, and chemistry. Each task
is provided at two difficulty levels: Simple and
Difficult. Evaluation is conducted using nine met-
rics, including six efficiency indicators, two CoT
quality measures and accuracy. To verify the ef-
fectiveness of Think-Bench and to assess the rea-
soning efficiency and CoT quality of mainstream
LRMs, we conduct a comprehensive evaluation
of 11 representative models. Experimental results
show that most models exhibit overthinking be-
haviors on simple questions, generating excessive
reasoning tokens and leading to unnecessary com-
putational overhead. This study not only highlights
the limitations of current LRMs in their use of
computational resources in inference time, but also
offers insights that may inspire future research, in-
cluding designing dynamic reasoning pathways,
early exit mechanisms, and enhancing adaptability
across disciplines.



Limitations

The Think-Bench benchmark proposed in this
study currently covers only three disciplines: math-
ematics, physics, and chemistry, which limits its
effectiveness in evaluating models’ reasoning abili-
ties across a broader range of subjects or in more
complex real-world scenarios. Furthermore, the
evaluation process relies on large language models
to assess the reasoning steps of target models, intro-
ducing potential variability due to the performance
and stability of the judging models themselves. In
this study, Claude 3.7 Sonnet is utilized both as the
model being evaluated and as the judging model,
which may further enhance this issue by introduc-
ing bias in the assessment. In addition, although
the dataset annotation attempts to incorporate a va-
riety of valid reasoning paths, it is challenging to
exhaust all possible solution strategies, which may
lead to incomplete evaluations of models that adopt
reasonable but unannotated reasoning approaches.
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A Related Work

In recent years, evaluating the reasoning capa-
bilities of LLMs has become a pivotal research
focus within the field of natural language pro-
cessing(Chang et al., 2024). Existing evaluation
methodologies can be broadly categorized into
two approaches: outcome-oriented and process-
oriented assessments.

Outcome-oriented evaluations primarily empha-
size the accuracy of the model’s final output. Promi-
nent benchmarks in this category include Super-
GLUE (Wang et al., 2019), MMLU (Hendrycks
et al., 2020b), and BIG-bench (Suzgun et al., 2022).
These benchmarks encompass a wide array of tasks,
ranging from language comprehension to domain-
specific question answering, thereby standardizing
the performance assessment of LLMs. However,
such methods often overlook the interpretability
and rationality of the model’s reasoning process,
particularly in complex problem-solving scenarios
where the significance of intermediate steps is sub-
stantially undervalued.

To address these limitations, process-oriented
evaluation methodologies have been intro-
duced(Zheng et al., 2024; Jiang et al., 2025).
The CoT reasoning framework (Wei et al., 2022)
exemplifies this approach by explicitly guiding
models to generate intermediate reasoning steps,
thereby enhancing performance in mathematical
and logical tasks. Subsequent studies, such as
Auto-CoT (Zhang et al., 2022), Tree-of-Thought
(Yao et al., 2023a), and ReAct (Yao et al., 2023b),
have further augmented the flexibility and diversity
of reasoning pathways.

Furthermore, the evaluation of multidisciplinary
reasoning capabilities has become a focal point
in current research. Researchers have developed
various assessment benchmarks and methodolo-
gies to comprehensively measure the reasoning
abilities of LLMs across different academic dis-
ciplines. For instance, the Advanced Reasoning
Benchmark (ARB) is a comprehensive reasoning
benchmark that spans multiple domains, includ-
ing mathematics, physics, biology, chemistry, and
law, designed to evaluate the performance of LLMs
in complex reasoning tasks (Sawada et al., 2023).
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Multi-LogiEval is a dataset that provides an in-
tegrated evaluation of LLMs’ multi-step logical
reasoning abilities, covering multiple types of logic
such as propositional logic, first-order logic, and
non-monotonic logic (Patel et al., 2024).

Additionally, large reasoning models tend to
exhibit overthinking behavior during chain-of-
thought reasoning, where excessively long and un-
necessary reasoning steps are generated even for
simple or ill-posed problems (Sui et al., 2025; Chen
et al., 2024; Fan et al., 2025; Pu et al., 2025). This
phenomenon is often attributed to the models’ lack
of proper termination mechanisms and insufficient
confidence estimation, leading to inefficient infer-
ence and degraded accuracy. It has been observed
that the issue becomes more pronounced when es-
sential premises are missing from the input (Fan
et al., 2025). To address this, several approaches
have been proposed, including the introduction of
new reasoning efficiency metrics and self-training
strategies that encourage concise reasoning (Chen
et al., 2024), as well as dynamic early-exit mech-
anisms that halt inference when sufficient confi-
dence is reached (Yang et al., 2025b). Additionally,
path scoring methods have been developed to prefer
less redundant reasoning paths, thereby improving
performance while reducing computational cost
(Cuadron et al., 2025).

B More experimental results

The comparative analysis of Tables 4 and Tables 5
highlights the trade-offs between reasoning quality
and efficiency across various disciplines. In math-
ematics, top-performing models, such as Qwen3-
235b-a22b and Qwq-plus, achieve high quality of
reflection and precision but require a large number
of tokens. In contrast, Grok-3-mini-beta strikes a
balance between conciseness and accuracy, achiev-
ing a precision of 88.2% in physics and a recall of
84.9% in chemistry while using fewer tokens. Fur-
thermore, smaller distilled variants, like Deepseek-
rl-distill-qwen-1.5b, demonstrate significant limi-
tations in domain-specific reasoning, particularly
in physics and chemistry, where both recall and
precision fall below 50%.

As shown in Table 6. On simple tasks, Grok-3-
mini-beta demonstrates efficient and focused rea-
soning, producing only 0.54 thoughts and consum-
ing 1,574.26 tokens. In contrast, when tackling
difficult questions, larger models such as Qwen3-
235b-a22b and Ernie-x1-turbo-32k generate over



Recall Precision Reflection Quality Tokens

Model name Chemistry Physics Math |Chemistry Physics Math |Chemistry Physics Math |Chemistry Physics Math

C-3-7-sonnet 81.83% 82.97% 76.97%| 84.92% 86.94% 87.16% | 87.89% 90.39% 95.25% | 74421 836.63 1494.49
Ds-rl-distill-qwen-1.5b| 34.43% 46.11% 70.37% | 47.91% 58.86% 80.78% | 59.37% 70.18% 89.20% | 2807.87 4236.72 4279.11
Ds-r1-distill-qwen-7b 54.11% 59.42% 75.95% | 75.55% 78.93% 89.49% | 80.16% 87.28% 95.58% | 2800.44 2742.55 2984.15
Ds-rl-distill-qwen-14b | 56.21% 65.16% 75.54% | 77.07% 85.76% 90.95% | 80.56% 90.89% 96.36% | 2729.47 2654.41 2731.53
Ds-rl-distill-qwen-32b | 57.75% 62.24% 76.39%| 68.02% 78.67% 90.09% | 72.12% 83.86% 94.46% | 3525.06 34429 3595.26

Ds-rl 81.39% 81.41% 78.59%| 83.34% 89.63% 94.09% | 87.79% 93.32% 98.05% | 4082.93 3331.74 4245.25
Es-x1-turbo-32k 82.25% 83.44% 78.82%| 83.92% 90.00% 94.00% | 87.95% 92.75% 97.00% | 4762.48 4588.33 4783.4
G-3-mini-beta 84.86% 83.34% 72.45%| 82.79% 88.22% 89.30% | 86.04% 91.69% 96.53% | 1742.1 1690.57 2546.22
Q3-235b-a22b 84.88% 87.27% 84.37%| 83.39% 87.36% 92.18% | 90.29% 94.55% 98.05% | 5022.55 459291 5636.6
Qwgq-plus 78.38% 81.92% 80.73% | 78.87% 86.42% 92.80% | 84.76% 92.29% 98.11% | 5795.2 5460.61 6202.25
Glm-z1-air 79.93% 81.09% 78.66% | 78.37% 84.49% 88.66% | 84.51% 91.84% 96.97% | 39929 4013.77 3250.19

Table 4: Comparative Performance of Models in Different Category. C-3-7-sonnet: claude 3.7 sonnet; Ds-
rl-distill-qwen-1.5b: deepseek-r1-distill-qwen-1.5b; Ds-r1-distill-qwen-7b: deepseek-r1-distill-qwen-14b; Ds-
rl-distill-qwen-14b: deepseek-r1-distill-qwen-32b; Ds-r1-distill-qwen-32b: deepseek-r1-distill-qwen-7b; Ds-rl:
deepseek-reasoner; Es-x1-turbo-32k: ernie-x1-turbo-32k; G-3-mini-beta: grok-3-mini-beta; Q3-235b-a22b: qwen3-
235b-a22b.

Thought Num Efficiency Useful Tokens Reflection Tokens
Model name Chemistry Physics Math | Chemistry Physics Math | Chemistry Physics Math | Chemistry Physics Math
C-3-7-sonnet 0.16 023  0.58 0.47 052 0.5 | 33985 411.6 69593 | 40435 425.03 798.55

Ds-rl-distill-qwen-1.5b 8.2 8.65 6.35 0.31 035 0.53 | 842.08 1243.98 2033.23| 1965.79 2992.74 2245.88
Ds-rl-distill-qwen-7b 9.76 6.13 43 0.48 048 0.61 | 1367.99 1243.05 1831.2 | 1432.45 1499.5 1152.94
Ds-rl-distill-qwen-14b 8.24 5.75 4 0.49 0.51  0.63 | 1270.29 1226.93 1745.42| 1459.18 1427.48 986.11
Ds-r1-distill-qwen-32b 12.49 8.43 6.25 0.45 047 0.62 | 1535.14 1480.06 2147.1 | 1989.91 1962.84 1448.16

Ds-rl 13.13 6.96 6.97 0.49 0.45 0.55| 2087.08 1521.81 2404.29| 1995.86 1809.93 1840.97
Es-x1-turbo-32k 17.14 11.15 8.62 0.48 044 0.5 | 231551 2031.88 2444.63| 2446.98 2556.44 2338.77
G-3-mini-beta 0.45 024 052 0.59 0.59 0.71 | 1049.76 98593 1738.09| 692.34 704.65 808.13
Q3-235b-a22b 16.95 1121 11.62| 0.49 044 0.46 | 2547.58 2087.76 3007.54| 2474.97 2505.15 2629.06
Qwq-plus 30.98 1824 17.44| 046 042 0.46 | 2664.93 2351.91 3209.83| 3130.26 3108.69 2992.42
Glm-z1-air 14.11 6.99 17.61 0.48 046 050 | 1887.16 1483.43 2174.12| 2105.78 1766.76 1839.66

Table 5: Comparative Performance of Models in Different Category. C-3-7-sonnet: claude 3.7 sonnet; Ds-
rl-distill-qwen-1.5b: deepseek-r1-distill-qwen-1.5b; Ds-r1-distill-qwen-7b: deepseek-r1-distill-qwen-14b; Ds-
rl-distill-qwen-14b: deepseek-r1-distill-qwen-32b; Ds-r1-distill-qwen-32b: deepseek-r1-distill-qwen-7b; Ds-rl:
deepseek-reasoner; Es-x1-turbo-32k: ernie-x1-turbo-32k; G-3-mini-beta: grok-3-mini-beta; Q3-235b-a22b: qwen3-
235b-a22b.

Thought Num Useful Tokens |Reflection Tokens
Model name Simple Difficult| Simple Difficult| Simple Difficult

Claude-3-7-sonnet 0.17 0.39 | 340.05 553.55 | 333.19 662.46
Deepseek-r1-distill-qwen-1.5b| 4.10  11.91 | 818.28 1720.40|1331.65 3605.56
Deepseek-r1-distill-qwen-7b 3.05 11.04 | 825.64 2003.10| 749.63 2056.54
Deepseek-r1-distill-qwen-14b | 2.86 9.70 | 777.32 1931.06 | 737.21 1954.99
Deepseek-rl-distill-qwen-32b | 4.68  14.18 | 960.86 2325.93 |1113.45 2615.53

Deepseek-rl 426  14.11 | 950.72 2877.72|1107.63 2661.91
Ernie-x1-turbo-32k 6.75 1878 |1144.62 3302.73|1534.70 3411.17
Grok-3-mini-beta 0.22 0.54 | 765.60 1574.26| 476.67 968.99
Qwen3-235b-a22b 7.93  18.80 |1245.45 3656.38|1573.24 3472.42
Qwq-plus 11.09 34.21 |1328.11 3971.12 |1961.34 4226.88
Glm-z1-air 427 1536 | 876.64 2677.43|1054.72 2756.20

Table 6: Effect of question difficulty on other efficiency measures.

12



3,600 tokens on average while achieving high re-
flection quality, reaching 92.16% and 94.00% re-
spectively. However, this increase in quality comes
with reduced efficiency. For example, Qwq-plus
achieves only 44.58% efficiency due to its high
reflection token count after the answer, totalling
4,226.88 tokens.
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C More Qualitative Examples

C.1 Example of Computational Efficiency

In Figure 7, we illustrate an example of efficient reasoning by an LRM.

Three pencils and a jumbo eraser cost $\\$1.24%. Five pencils and a
jumbo eraser cost $\\$1.82%$. No prices include tax. In cents, what is
the cost of a pencil?

Answer 29

Question

D T T ——

(&) Deepseek R1

Solution 1

Solution 2

Solution 3

Solution 4

Efficiency = 278/819=33.9%

Figure 7: Examples of Efficiency Evaluation.
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C.2 Error Example

We present an example of an LRM output error in Figure 8.

Let $A$ be an acute angle such that $\\tan A =2 \\cos A.$ Find the
number of positive integers $n$ less than or equal to $1000$ such that
$\\sec™n A +\\tan”n A$ is a positive integer whose units digit is $9.$

LRM

s N

Okay, so | have this problem where | need to find the number of positive
integers \\( n \\) less than or equal to 1000 such that \\( \\sec*n A + \\tan"n
A\\) is a positive integer whose units digit is 9. The angle \\( A \\) is acute
and satisfies \\( \\tan A =2 \\cos A \\).\n\nFirst, I think | need to find \\( \\
sec A \\) and \\( \\tan A \\) because they are involved in the expression \\
(\\sec™n A + \\tann A'\\). Let me start by using the given equation \\('\\
tan A = 2 \\cos A \\).\n\nl know that \\( \\tan A = \\frac{\\sin A}{\\cos

A} \\), so substituting that into the equation gives...

None

Figure 8: Failure Case Example in the Deepseek-r1-distill-qwen-32b Answering Process.

D Evaluation Prompts

Key Steps Extraction Prompt

You are an expert system that gives you a question and a corresponding answer, please list in detail
the key reasoning steps from the question to the answer, make sure that the reasoning steps are
clear and complete, and include all possible solutions. You should pretend not to know the basic
truth answer beforehand.

Input: Question:

{question}

Answer:

{answer}

Output requirements:

1. Only include the essential key steps, and don’t output unnecessary words

2. For each solution, record:

-logical_conclusion: The set of each key step of the solution, from Step 1 all the way to the answer
3. A problem may contain more than one way of reasoning, so make sure you don’t miss any
possible solutions.

4. Important: Output only JSON array with no additional information.

5. Don’t add useless words to the process

Here is the json output format:

## Output format
L
{{
"solutionl”: {{
\ J
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"logical_conclusion”: ["stepl1:","step2:","step3:",...]
13

13
]

Recall Evaluation Prompt

# Task Overview

You are an expert system for verifying solutions to text-based problems. Your task is to match the
ground truth middle steps with the provided solution.

# INPUT FORMAT:

1. Problem: The original question/task

2. A Solution of a model

3. Ground Truth: Essential steps required for a correct answer

# MATCHING PROCESS:
You need to evaluate each ground truth middle step against the solution, following these criteria:

## Match Criteria:

- **Exact Match or Equivalent Logical Step**: A ground truth step is considered **Matched** if:
- It appears exactly in the solution **QOR**

- The same logical reasoning or idea is clearly expressed, even if wording or format differs.

- **Numerical and Conceptual Consistency**: All key numbers, equations, or transformations
should align conceptually with the ground truth.

- **Step-by-Step Evaluation**: Each ground truth step must be assessed individually and

sequentially.
- **Final Answer Check**: Determine if the overall reasoning process leads to the correct final
answer.
# OUTPUT FORMAT:
L
18t
"step_index": <integer>,
"judgment”: "Matched” | "Unmatched”,
"correct_answer": "true"” | "false"
13
]
# ADDITIONAL RULES:

1. *#*Strict JSON Output**: Output only the JSON array with no additional text or explanations.
2. **No Omitted Steps**: Every step in ‘Ground Truth‘ must be evaluated.

# EDGE CASE HANDLING:

- If a step is conceptually equivalent but reworded, it is still considered **Matched**.

- If numerical transformations are equivalent (e.g., same formula in a different form), it is
**Matched**.

- If the reasoning process does not lead to the correct final answer, "correct_answer”: "false”.

Here is the problem, answer, solution, and the ground truth middle steps:

[Problem]
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{question}

[Answer]

{answer}

[Solution]

{solution}

[Ground Truth Information]
{gt_annotation}

Precision Evaluation Prompt

# Task Overview

Given a solution with multiple reasoning steps for a text problem, reformat it into well-structured
steps and evaluate their correctness.

# Step 1: Reformatting the Solution

Convert the unstructured solution into distinct reasoning steps while:

- Preserving all original content and order

- Not adding new interpretations

- Not omitting any steps

## Step Types

1. Logical Inference Steps

- Contains exactly one logical deduction

- Must produce a new derived conclusion
- Cannot be just a summary or observation

2. Background Information Steps
- External knowledge or question context
- No inference process involved

## Step Requirements

- Each step must be atomic (one conclusion per step)

- No content duplication across steps

- Initial analysis counts as background information

- Final answer determination counts as logical inference

# Step 2: Evaluating Correctness
Evaluate each step against:

## Ground Truth Matching
For logical inferences:
- Conclusion must EXACTLY match or be DIRECTLY entailed by ground truth

## Reasonableness Check (if no direct match)

Step must:

- Premises must not contradict any ground truth or correct answer
- Logic is valid

- Conclusion must not contradict any ground truth

- Conclusion must support or be neutral to correct answer

\_ J

17



## Judgement Categories

- "Match": Aligns with ground truth

- "Reasonable": Valid but not in ground truth
- "Wrong": Invalid or contradictory

- "N/A": For background information steps

# Output Requirements

1. The output format MUST be in valid JSON format without ANY other content.

2. For highly repetitive patterns, output it as a single step.

3. Output maximum 35 steps. Always include the final step that contains the answer.
4. correct_answer: Whether the whole reasoning process produces the right answer.

Here is the json output format:

## Output Format
L
{{
"step_type": "logical inference|background information”,
"premise”: "Evidence”,
"conclusion”: "Step result”,
"judgment”: "Match|Reasonable|Wrong|N/A"
"correct_answer”: "true|false”
1}
]

Here is the problem, and the solution that needs to be reformatted to steps:

[Problem]

{question}

[Solution]

{solution}

[Correct Answer]

{answer}

[Ground Truth Information]
{gt_annotation}

J

Model Output Reformat Prompt

I will present you with a solution to a problem. Unfortunately, the solution lacks proper paragraph-
ing, making it hard to read. Your task is to improve readability by reformatting the solution into
well-structured paragraphs. Follow these specific guidelines:

* Insert \n\n for paragraph breaks within the original solution. Do **NOT** alter any content of
the original solution (the only exception is for itemized lists; see below).

- Each paragraph should represent a distinct, concise reasoning step that logically advances the
solution.

- Reasoning steps can include case discussions, formula simplifications, or formula derivations.
Each of these should be treated as an individual reasoning step and paragraphed accordingly.

- If an introductory analysis exists in the original solution, treat it as an initial reasoning step and
place it as the first paragraph.

- Do **NOT** place any formulas in their own separate paragraphs; instead, include them within

the same paragraph as the preceding text to form a cohesive reasoning step.
\ J
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4 )
* For any itemized lists (ordered or unordered), convert them into a written format, such as
"First/Second/Third." This is the **ONLY ** content modification allowed.

* Avoid making paragraphs too lengthy, as long paragraphs might contain multiple reasoning steps
that should be paragraphed separately.

* Disregard the accuracy of the solution content. Do **NOT** alter any of the original solution’s
content; focus solely on structuring it into logical, readable paragraphs.

* Reply with the reformatted solution directly.

Here is the problem, and the solution that needs to be reformatted:
[Problem]
{problem}
[Solution]
{response}

J
First Correct Answer Extraction Prompt

The following is a problem and a solution (split into paragraphs, enclosed with tags and indexed
from 0):

[Problem]

{problem}

[Correct Answer]

{answer}

[Solution]

{tagged_response}

Your task is to review and critique the solution paragraph by paragraph. Once you identify an
correct answer in a paragraph, return the index of the paragraph where the earliest correct answer
occurs. Otherwise, return the index of -1 (which typically denotes "not found").

Please put your final answer (i.e., the index) in

N boxed.

J
Reflection Quality Prompt

Here’s a refined prompt that improves clarity and structure:

# Task Evaluate reflection steps in a problem-solving solutions, where reflections are self-
corrections or reconsiderations of previous statements.

# Reflection Step Identification

Reflections typically begin with phrases like:

- "But xxx"

- "Alternatively, xxx"

- "Maybe I should"

- "Let me double-check"

- "Wait xxx"

- "Perhaps xxx"

It will throw an doubt of its previously reached conclusion or raise a new thought.

# Evaluation Criteria

Correct reflections must:

1. Reach accurate conclusions aligned with ground truth

2. Use new insights to find the mistake of the previous conclusion or verify its correctness.




Invalid reflections include:

1. Repetition - Restating previous content or method without new insights
2. Wrong Conclusion - Reaching incorrect conclusions vs ground truth

3. Incompleteness - Proposing but not executing new analysis methods

4. Other - Additional error types

# Input Format

[Problem]

{question}

[Think Content]

{think_content}

[Ground Truth]

{gt_annotation}

# Output Requirements

1. The output format must be in valid JSON format without any other content.
2. Output maximum 30 reflection steps.

Here is the json output format:

## Output Format
L
{{
"conclusion”: "One-sentence summary of reflection outcome”,
"judgment”: "Correct|Wrong"”,
"error_type": "N/A|Repetition|Wrong Conclusion|Incompleteness|Other”
1}
]

# Rules 1. Preserve original content and order
2. No new interpretations

3. Include ALL reflection steps

4. Empty list if no reflections found

5. Direct JSON output without any other output

20
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