
NeuralSolver: Learning Algorithms For Consistent
and Efficient Extrapolation Across General Tasks

Bernardo Esteves∗
INESC-ID,

Instituto Superior Técnico,
Universidade de Lisboa

Miguel Vasco
Department of Intelligent Systems

KTH Royal Institute of Technology
Stockholm, Sweden

Francisco S. Melo
INESC-ID,

Instituto Superior Técnico,
Universidade de Lisboa

Abstract

We contribute NeuralSolver, a novel recurrent solver that can efficiently and
consistently extrapolate, i.e., learn algorithms from smaller problems (in terms
of observation size) and execute those algorithms in large problems. Contrary
to previous recurrent solvers, NeuralSolver can be naturally applied in both
same-size problems, where the input and output sizes are the same, and in different-
size problems, where the size of the input and output differ. To allow for this
versatility, we design NeuralSolver with three main components: a recurrent
module, that iteratively processes input information at different scales, a processing
module, responsible for aggregating the previously processed information, and a
curriculum-based training scheme, that improves the extrapolation performance
of the method. To evaluate our method we introduce a set of novel different-size
tasks and we show that NeuralSolver consistently outperforms the prior state-of-
the-art recurrent solvers in extrapolating to larger problems, considering smaller
training problems and requiring less parameters than other approaches. Code
available at https://github.com/esteveste/NeuralSolver

1 Introduction

Humans can solve complex reasoning tasks by extrapolating: employing and combining elementary
logical components to build more elaborate strategies. Machine learning models excel at pattern
recognition, often outperforming humans in classification [1, 2], control [3] and prediction tasks [4].
However, these models still struggle at reasoning , which affects their ability to maintain their
performance for increasingly harder versions of the same task [5]. A particular type of difficulty
emerges from the increase in dimensionality of the input. Intuitively, learning algorithms to perform
tasks, e.g., finding the goal in a maze (Figure 1), becomes increasingly harder for larger problems.

We focus on designing learning algorithms that are able to efficiently extrapolate, i.e., are able to learn
algorithms to solve tasks over small problems (in terms of the dimensionality of the input) and execute
over arbitrarily large problems, without a significant loss in performance nor additional fine-tuning.
Recently, a novel class of methods, which we denote by recurrent solvers, have been proposed that
employ recurrent neural networks to extrapolate [5, 6]. Compared to feed-forward networks, which
have finite depth, recurrent networks can be iterated to an arbitrary depth at execution time. By doing
so, these models can extrapolate to significantly larger problems than the ones seen during training by
executing more recurrent steps. However, current recurrent solvers can only be applied to same-size
problems, such as the case of image generation, where the dimensionality of the input (e.g., image
size) is the same as the dimensionality of the output. This limitation inhibits the use of these methods
in a wide range of tasks, which we call different-size tasks, where the input and output dimensions
are different (e.g., classification and decision-making tasks).

∗Correspondence to: bernardo.esteves@tecnico.ulisboa.pt

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/esteveste/NeuralSolver

Figure 1: Observations of the 1S-Maze environment of sizes 7×7, 11×11, 33×33 and 129×129,
where the agent (green square) must go to the goal (red square). The light green arrow represents the
next target action that the model needs to predict, while the purple path represents the sequence of
actions required to solve the maze.

We address this limitation and propose a novel recurrent solver that is able to consistently and
efficiently extrapolate regardless of the size of the output and the type of problem. We name our
approach NeuralSolver, a novel architecture for general tasks (same-size and different-size). Our
approach introduces several architectural changes to recurrent solvers: a recurrent convolutional
block that, through multiple iterations, perceives information at different scales in the input image,
and a processing block (with an aggregation function) that merges information for the output of the
model. Furthermore, we introduce a curriculum-based training scheme to improve the extrapolation
abilities of our model. We train NeuralSolver on small observations (e.g., 15× 15 images) using
standard supervised learning techniques and apply the learned algorithm at test time with arbitrarily
large observations (e.g., 256× 256 images, or larger), with minimal loss in performance.

We evaluate NeuralSolver against prior recurrent solver in literature-standard same-size tasks and
in a novel set of different-size tasks. We show across all tasks that our model significantly outperforms
previous approaches in extrapolation capability, being able to execute learned algorithms in larger
problems without loss in performance; in training efficiency, being able to learn algorithms from
smaller problems; and in parameter efficiency, requiring 90% less parameters than similar approaches.

In summary, the contributions of our work are:

• NeuralSolver: We propose a novel recurrent solver that uses a recurrent convolutional
module, a processing module (with an aggregation function) and curriculum-learning to train
algorithms in small problems and extrapolate them to arbitrarily large problems. Contrary to
previous recurrent solver, our model can be used in same-size and different-size tasks;

• Different-size tasks: We contribute a novel set of different-size classification tasks for
recurrent solvers, with images of arbitrary size and label information;

• Consistent and efficient extrapolation: We show that NeuralSolver significantly outper-
forms the prior recurrent solvers regarding extrapolation capabilities, training efficiency and
parameter efficiency.

2 Related Work

Schwarzschild et al. [5] introduce a class of recurrent neural networks that can execute at test time
more iterations than the number of iterations used during training, to solve problems more complex
than the ones seen during training, which we denote by recurrent-solvers. To do so, they propose a
recurrent network architecture based on residual neural networks (ResNets) [2] that shows logical
extrapolation abilities across same-size tasks by leveraging the spatial invariances in the inputs.
However, these networks suffer from overthinking, where the network deteriorates in performance
when the number of iterations is extended beyond the training distribution. To solve the overthinking
problem Bansal et al. [6] introduces two new components to the previous architecture: (1) a recall
module, that integrates the input directly into specific layers of the recurrent network, safeguarding
against potential loss or corruption of deep features; and (2) a progressive loss (PL) training scheme
that incentivizes recurrent networks to iteratively refine the feature representation, preventing the
network from memorizing the number of recurrent module applications. The authors show that
their improved network is able to extrapolate to problems 16 times larger than the training size with

2

Observation Recurrent
Module

Processing
Module

Output

Same-size tasks

Observation Recurrent
Module

Processing
Module

Output

Different-size tasks

A

0.1
0.9
0.0
0.0

Figure 2: We design NeuralSolver with two fundamental components: (i) a recurrent module (pur-
ple), responsible for iteratively processing the input data regardless of its size; (ii) processing module
(green), with an optional aggregation layer (A), responsible for generating the output and allowing
our architecture to be used both in same-size and different-size tasks. Additionally, we employ a
curriculum-based training scheme to improve the extrapolation performance of our architecture.

more than 95% accuracy on the same-size benchmark. We use this method as a baseline against our
method. To address the problems of the computational efficiency and hyperparameter tuning of the
progressive loss, [7] propose replacing the progressive loss with a delta loss term [8] and achieve
similar performance to the original one. We propose a novel architecture that is able to outperform
Bansal et al. [6] without the need of any additional loss to counter the overthinking problem (as shown
in Appendix B.1). NeuralSolver is the first recurrent solver able to consistently and efficiently
extrapolate learned algorithms in both same-size and different-size tasks.

3 The NeuralSolver Architecture

We address the challenge of designing a model that is able to efficiently learn algorithms from small
problems that consistently extrapolate to larger problems. Contrary to previous recurrent solvers [5–
7] we want to apply our model to both same-size tasks, where the input and output have the same
dimensionality, and different-size tasks, where the input and output have different dimensionality. To
address these challenges, we contribute NeuralSolver, depicted in Figure 2.

3.1 Model Architecture

We design our model with three components: (i) we extract information from the input data using
a recurrent module, responsible for iteratively processing the input observation at different scales,
allowing our model to cope with arbitrarily large input data; (ii) information is then sent to a processing
module, responsible for aggregating (if necessary) the processed information and generating the
output of the network, allowing our model to be used in both same-size and different-size tasks; (iii) to
train our model we employ a curriculum-based scheme, that improves the extrapolation performance
of NeuralSolver to larger problems.

Recurrent Module: This module consists of a layer normalized convolutional LSTM [9–11], a
LSTM that uses convolutional layers instead of linear layers in its recurrent structure. The layer
normalization is used to normalize the output of the convolutional layers and the cell state. We always
provide the original input observations in the recurrent iterations of the LSTM, thus preventing the
network from forgetting the input information over time, similar to the recall module in [6]. We
maintain the dimensionality of the input and output of this module constant in order to perform
multiple iterations over the data, allowing our model to process arbitrarily large observations. We show
in Appendix B.1 that our recurrent module allows NeuralSolver to not suffer from overthinking,
despite not employing any progressive loss during training. Moreover, in Appendix C.5 we compare
the effect of different choices of recurrent architectures in the performance of our model.

Processing Module: This module consists of a block of three convolutional layers (following [6])
whose input is the last hidden state of the recurrent module. Their purpose is to reduce the number of
channels to a desired output number of channels. Additionally, we have an optional aggregation layer
(in our case a global max-pooling layer) that can be employed in different-size tasks to reduce the
variable input size of the network to a fixed output size. For example, for a two-dimensional input
observation, we first reduce the input to a 1× 1× o tensor, where o is the desired output number of
channels, and subsequently flatten the output tensor. This design allows our architecture to be used

3

Figure 3: Propagation of information in NeuralSolver in a maze-like environment: the goal is
for the agent (green) to find the goal position (red). Top: the difference between the value of the
internal state of the recurrent module at each iteration step and the value at the final iteration. Larger
differences are shown in dark blue and smaller differences in white. Bottom: additionally, we show
the action probabilities predicted by the processing module of the model at different iterations, where
the agent can move right (R), down (D), left (L), or up (U).

both in same-size and different-size tasks, with minimum changes. In Section 5.3 we compare the
performance of different aggregation layers.

Curriculum Learning Training: We train our model on a set of smaller-size observations and test
the performance of the model with larger dimensional observations (all belonging to the same task).
Additionally, we employ a curriculum learning approach in different-size tasks to counter the effect
of the reduced training signal (due to the smaller output dimensionality) [12, 13]: we initially train
the models on lower-dimensionality observations, and then gradually increase the dimensionality of
the observations every N epochs. To reduce the risk of catastrophic forgetting, we sample a minibatch
of observations with a previously seen dimensionality (chosen uniformly at random) with a 20%
chance, following previous work [12]. In Section 5.3 we show the importance of the curriculum-based
training scheme in the extrapolation performance of NeuralSolver.

We evaluate the role of each of these components in our overall performance in Section 5.3. For
additional details on the complete architecture of the method please refer to Appendix B.

3.2 Propagation of Information in NeuralSolver

To understand how information is processed in the recurrent module of our approach, we focus on
the value of the internal state of the convolutional LSTM as a function of the number of iteration
steps performed. In Figure 3, we show a maze-like environment at different iteration steps, where
the task is the find the next position in the optimal path between the current position (in green) and
the goal position (in red). We highlight the difference between the value of the internal state of the
convolutional LSTM at each iteration step and the value of the internal state at the final iteration step
(not shown in the figure). As the number of iterations increases, we observe that a larger number of
positions in the maze become white as, for those positions, the value of the recurrent state does not
change anymore. The speed of this convergence depends on the receptive field of the convolution: for
example, a single convolution with a kernel size of 3 can capture the information from the adjacent
pixels, propagating the information forward in one direction for a single pixel. As such, by using
a convolutional recurrent neural networks we can propagate information across the input image by
performing an appropriate number of iterations, regardless of the size of the problem.

This propagation of information also influences the output prediction. In Figure 3 (bottom), we
highlight that the prediction of the output label is uncertain before iteration #10. However, in this
iteration, the hidden state near the start goal (in green) has converged to the final value and the
algorithm becomes certain of the correct label (in this case, "Down"). We provide more examples of
learned algorithms in Appendix E.

4 Evaluation

We evaluate NeuralSolver to demonstrate how it ourperforms previous state-of-the-art recurrent
solvers accordingly to three main criteria: (i) extrapolation capability, the ability to execute learned

4

(a) GoTo (b) 1S-Maze (c) Pong (d) Doorkey

Figure 4: We introduce a set of different-size classification tasks to evaluate the performance of
recurrent solvers. In all tasks, the input is an image observation of the environment with arbitrary
size. The output is an n-dimensional one-hot vector with: a) n = 4; b) n = 4; c) n = 3; d) n = 4.

algorithms in larger problems; (ii) training efficiency, the ability to learn algorithms from smaller
problems and still maintain a high-level of extrapolation capability; and (iii) the higher parameter
efficiency of the model. We compare our approach against previous recurrent solver baselines
(Section 4.3), considering both same-size and different-size problems (Section 4.2). In Appendix B.3
we present the architecture of our model and training hyperparameters used in our evaluation.

4.1 Methods

Model Training: We apply NeuralSolver in supervised learning scenarios with datasets of input
images/features and output images/features, in the case of same-size tasks, or output labels, in the
case of different-size tasks. As such, we train our models using cross-entropy loss on datasets with
small image sizes and evaluate the classification performance of our models in datasets with larger
input images. In different-size tasks this approach is similar to typical imitation learning [14].

Model Checkpoint Selection: We consider a training and validation set split of 80% and 20%,
respectively. To select the model checkpoint to be used for evaluation, we use the one that has the
best performance on the validation set. In case of ties we select the later model checkpoint.

Evaluation Metrics: In our evaluation we run the model for a large number of iterations (detailed in
Appendix B.3) and consider the best accuracy obtained by the models at any iteration [6]. We present
the average best accuracy (in percentage) accompanied with the standard deviation. Additionally, we
use the Almost Stochastic Order (ASO) test for statistical significance [15, 16], using a significance
level of α = 0.05 and employing the Bonferroni correction [17] for multiple comparisons. For more
details on the ASO test and the statistical significance results, we refer the reader to Appendix D.

4.2 Scenarios

For same-size tasks we use the benchmark recently proposed by Schwarzschild et al. [5], consisting
of three tasks: a logical toy task (Prefix-Sum), a maze-solving task (Maze), and a chess puzzle task
(Chess). Additionally, we modify the Maze task to allow smaller size inputs, which we denote by
Thin-Maze. For a detailed description of these tasks we refer the reader to the original paper.

Due to the lack of a literature-standard set of different-size tasks for algorithm extrapolation, we
introduce four new classification scenarios. These new scenarios consider as input images of arbitrary
sizes and as output vectors of fixed dimensions (more details in Appendix A):

GoTo (Figure 4a): Inspired by the Minigrid environment [18], the goal of the task is to select the
action that moves the agent (in green) closer to the exit position (in red). The classification target is a
four-dimensional one-hot vector, corresponding to the available actions (up, down, left, right).

1S-Maze (Figure 4b): Inspired by the Maze environment from the same-size task benchmark, the
objective of the task is to select the action that moves the agent (in green) closer to the goal position
(in red). The classification target is a four-dimensional one-hot vector, corresponding to the available
actions (up, down, left, right). The name is an abbreviation of “1 Step Maze”.

Pong (Figure 4c): Inspired by the Atari Pong game, the goal of the task is to select the action
that moves the paddle horizontally to be underneath the ball. The classification target is a three-
dimensional one-hot vector, corresponding to the available actions (left, right, no action).

5

Table 1: Extrapolation accuracy on the same-size tasks benchmark proposed in Schwarzschild et al.
[5] and the Thin-Maze environment, with corresponding training and evaluation sizes (st, sT).
Higher is better. All results are averaged over 10 randomly-selected seeds. We highlight the best
average results. We use (†) to indicate stochastic dominance (ϵmin = 0) and (*) to indicate almost
stochastic dominance (ϵmin < 0.5) of NeuralSolver over the baseline. We evaluate Bansal et al. [6]
trained with progressive loss (PL) and without it.

Model Prefix-Sum Maze Thin-Maze Chess
(32, 512) (24, 124) (11, 61) (8, 8)

NeuralSolver 100.00 ±0.00 100.00 ± 0.00 99.97 ± 0.09 84.30 ±0.40

Bansal et al. [6] 99.78 ±0.78 * 86.63 ±28.21 * 46.78 ±37.49 † 79.99 ±3.27 †
Bansal et al. [6] + PL 100.00 ±0.01 * 91.13 ±27.37 * 42.76 ±37.56 † 82.96 ±0.19 †
FeedForward 0.00 ±0.00 † 0.00 ± 0.00 † 0.00 ± 0.00 † 76.95 ±0.35 †

Very Small Small Medium Large

48 128 256 5120%

50%

100%

A
cc

ur
ac

y

48 128 256 512 32 64 96 128 32 64 96 128

(a) NeuralSolver
Prefix-Sum

(b) Bansal et al. [6]
Prefix-Sum

(c) NeuralSolver
Mazes

(d) Bansal et al. [6]
Mazes

Figure 5: Training efficiency of NeuralSolver and Bansal et al. [6] on same-size tasks: we present
the accuracy of the learned algorithms on extrapolating to problems with different dimensionality
(columns). Each color represents a different training size, specific to each task, detailed in Ap-
pendix A.3 In the dashed line we show the upper-bound on the performance.

Doorkey (Figure 4d): Inspired by the Doorkey environment in Minigrid [18], the goal of this multi-
step task is to reach the goal position (red pixel on the bottom right) by first picking-up a key and using
it to open a lock door. The classification target is a four-dimensional one-hot vector, corresponding to
the available actions (forward, rotate right, grab, toggle).

4.3 Baselines

Bansal et al. [6]: The current state-of-the-art recurrent solver architecture, that combines a recurrent
Resnet network with a recall module and progressive loss. We employ the original source code from
the authors and suggested training hyperparameters (when available).

FeedForward: A non-recurrent feed-forward network, based on the ResNet architecture, that has
a fixed number of layers. This baseline is used to show the importance of the recurrent module for
extrapolation.

Random: A lower-bound baseline, that randomly samples a classification label. This model is used
to help understand the worst-case performance of the models in different-size tasks.

As the baseline models cannot be applied directly in different-size tasks, we modify them by intro-
ducing a global pooling layer similar to that of our model.

5 Results

5.1 Same-size Tasks

Extrapolation Capability: In Table 1 we present the extrapolation accuracy of NeuralSolver
against the baselines in same-size tasks [5]. NeuralSolver achieves state-of-the-art extrapolation

6

Table 2: Total parameter count of the used models on the same-size tasks benchmark proposed
in Schwarzschild et al. [5] and the Thin-Maze environment, in the scale of millions of parameters.

Model Prefix-Sum Maze Thin-Maze Chess

NeuralSolver 0.168 0.053 0.053 0.699
Bansal et al. [6] 3.124 0.784 0.784 12.057
FeedForward 58.804 17.888 17.888 285.735

Table 3: Extrapolation accuracy on the different-size tasks with training and evaluation sizes (st, sT).
We employ curriculum learning to train all methods, with training sizes indicated in the table. Higher
is better. All results are averaged over 10 randomly-selected seeds. We highlight the best average
results. We use (†) to indicate stochastic dominance (ϵmin = 0) of NeuralSolver over the baseline.

Model 1S-Maze GoTo Pong DoorKey
([7, 15]], 129) ([6, 20], 128) ([6, 20], 128) ([6, 20], 128)

NeuralSolver 100.00 ±0.00 100.00 ±0.00 100.00 ± 0.00 100.00 ± 0.00

Bansal et al. [6] 74.14 ±2.60 † 64.32 ±8.86 † 71.97 ±10.70 † 97.13 ± 1.46 †
FeedForward 72.47 ±0.85 † 56.82 ±3.74 † 48.99 ±11.25 † 79.22 ±11.86 †
Random 29.74 ±0.41 † 29.46 ±0.40 † 37.87 ± 0.47 † 29.52 ± 0.58 †

performance on same-size tasks. In particular, our approach is able to achieve a 100% accuracy on the
Prefix-Sum and Maze tasks, when evaluated on a scenario with observations 16 and 5 times bigger,
respectively, than during training. On the more complex Chess task, our model still outperforms
the other baselines, achieving an average accuracy of 84.30%. In Appendix B.1 we show that
NeuralSolver also does not suffer from overthinking.

Training Efficiency: In Figure 5 we show the accuracy performance of the learned algorithm with our
model when trained with different problem sizes. The results show that NeuralSolver outperforms
Bansal et al. [6] in extrapolating when trained with smaller input observations, achieving consistent
upper-bound performance when trained in problems with only 8-dimensional (Prefix-Sum) and 16-
dimensional (Mazes) input observatons. The results for the other environments are in Appendix C.1.

Parameter Efficiency: In Table 2 we present the total parameter count of NeuralSolver against
the baselines in same-size tasks [5]. The results show that our model requires less than 10% of the
total parameters of the baselines.

5.2 Different-size Tasks

Extrapolation capabilities: In Table 3 we present the extrapolation performance of NeuralSolver
against the baselines in different-size tasks. Our model also outperforms prior state-of-the-art recurrent
solvers across all different-size tasks: our approach is able to achieve upper-bound performance when
extrapolating to observation sizes 9 (1S-Maze) and 6 (GoTo, Pong, Doorkey) times larger than the
ones provided during training. In Appendix C.7, we explore the setting of extreme extrapolation,
evaluating our model on very large image sizes (256× 256 and 512× 512). The results show that,
even in such challenging conditions, NeuralSolver is able to consistently extrapolate without losing
performance, while the baselines fail to do so.

Training Efficiency: In Figure 6 we show the performance of our model against the Bansal et al.
[6] model with different training sizes. The results show that, while the previous state-of-the-art
consistently under performs across most tasks on bigger test sizes, NeuralSolver is still able to learn
algorithms with suitable extrapolation abilities (often close to the upper-bound performance) when
trained with smaller observations. The observed gap of our method to upper-bound performance also
highlights that the novel set of different-size tasks can be employed to benchmark the extrapolation
performance of future recurrent solvers when training using only extremely small problems.

Parameter Efficiency: NeuralSolver employs the same architecture across all different-size tasks,
with 0.23 million total parameters. This corresponds to a 92% reduction in the number of parameters

7

Table 4: Extrapolation accuracy of different ablated versions of NeuralSolver in the proposed
different-size tasks. Higher is better. All results are averaged over 10 randomly-selected seeds. We
highlight the best average results. We use (†) to indicate stochastic dominance (ϵmin = 0) and (*) to
indicate almost stochastic dominance (ϵmin < 0.5) of our default model over the ablated versions.

Model 1S-Maze GoTo Pong DoorKey

NeuralSolver 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Use AvgPool 81.96 ±28.50 † 97.00 ± 3.87 † 92.86 ±14.66 † 51.86 ±38.98 †
Use 5L 78.00 ± 5.73 † 84.16 ±16.39 † 100.00 ± 0.00 92.99 ± 7.62 †
No CL 95.26 ± 7.29 † 64.12 ±23.50 † 100.00 ± 0.00 97.23 ± 4.73 *
No LSTM 81.87 ±10.09 † 67.28 ±14.51 † 76.12 ±17.63 † 93.68 ± 7.88 †

Very Small Small Medium Large

33 65 97 1290%

50%

100%

A
cc

ur
ac

y

32 64 96 128 32 64 96 128 32 64 96 128

N
euralSolver

33 65 97 1290%

50%

100%

A
cc

ur
ac

y

(a) 1S-Maze

32 64 96 128

(b) GoTo

32 64 96 128

(c) Pong

32 64 96 128

Bansal et al.

(d) Doorkey

Figure 6: Training efficiency of NeuralSolver and Bansal et al. [6] on different-size tasks: we
present the accuracy of the learned algorithms on extrapolating to problems with different dimen-
sionality (columns). Each color represents a different training size, specific to each task, detailed in
Appendix A.3. In the dashed line we show the upper-bound on the performance.

against Bansal et al. [6] (3.15 million parameters) and a reduction of 99.6% against the FeedForward
baseline (71.57 million parameters).

5.3 Ablation Study

In Table 4 we perform an ablation study on the components of NeuralSolver, particularly on the
role of: (i) the aggregation function, (ii) the depth of recurrent convolutional block, (iii) the training
method and (iv) the type of recurrent layer in the convolutional block . For (i), we replace the global
max-pooling layer of the processing module with an average-pooling layer (Use AvgPool). For (ii),
we use 5 convolutional layers in the recurrent module (similar to Bansal et al. [6]) instead of the
single convolutional layer (Use 5L). For (iii), we remove the curriculum-based training scheme (No
CL). For (iv), we replace the LSTM with a ResNet block (No LSTM).

The results show that every component of NeuralSolver contributes to the overall extrapolation
performance of the method. The use of an LSTM layer instead of a ResNet block in the recurrent
convolutional module results in a significant improvement in performance. This result is aligned with
previous works that have shown that gated-based recurrent neural networks empirically learn and
generalize better than recurrent ResNets [19]. The use of max pooling as the aggregation function
results in better performance than average pooling. Removing curriculum learning also results in a
decrease in extrapolation performance of the method in some tasks (e.g., GoTo), highlighting the need
to consider multiple (small) image sizes to extract relevant information during the training procedure.

8

Table 5: Average reward returns on the Minigrid Doorkey environment, with different sizes during
execution. We show the average reward multiplied by 102. We employ curriculum learning with sizes
([6, 20]) to train all models. Higher is better. We highlight the best average results. We use (†) to
indicate stochastic dominance (ϵmin = 0) and (*) to indicate almost stochastic dominance (ϵmin < 0.5)
of NeuralSolver over the baseline. All results are averaged over 10 randomly-selected seeds.

Model 20×20 32×32 64×64 128×128

Oracle 98.92 ±0.02 99.35 ± 0.01 99.69 ± 0.00 99.85 ± 0.00

NeuralSolver 98.82 ±0.26 99.12 ± 0.57 98.69 ± 2.44 98.02 ± 2.54

Bansal et al. [6] 98.47 ±0.48 * 91.41 ±10.64 † 43.09 ±31.18 † 24.71 ±31.76 †
FeedForward 96.14 ±1.63 † 63.51 ± 7.63 † 23.53 ± 7.34 † 7.19 ± 3.18 †

(a) Oracle (b) NeuralSolver (c) Bansal et al. [6] (d) FeedForward

Figure 7: Example trajectories of the different methods when extrapolating to a Minigrid Doorkey
environment with an image observation of size 64×64. The trajectory of the agents follows the
gradient of the line (from darker to brighter). Additional examples in Appendix F.

We also observe a performance gain in using a single convolutional layer over a module composed of
five layers (as used in [6]), despite requiring five times more the number of iterations to compensate.

5.4 NeuralSolver Allows Extrapolation on Sequential Decision-Making Tasks

We highlight the versatility of NeuralSolver by exploring visual imitation learning problems, in
which, at each time-step, the algorithm is provided with an image of arbitrary size, and needs to output
an action. These tasks can be solved through modern reinforcement learning methods [14, 20–26].
However, these methods lack the ability to extrapolate, i.e., are unable to learn algorithms (policies)
on small problems, with lower-dimensional observations, and execute on larger problems, with
higher-dimensional observations. We consider the DoorKey environment and train an imitation-
learning policy algorithm using NeuralSolver with a dataset collected by a pretrained oracle agent.
Subsequently, we employ the learned algorithm in the Minigrid DoorKey environment [18], directly
as the agent’s policy: at each time-step, mapping the observations of the agent (image of arbitrary
size) into actions. We evaluate the performance of our method in extrapolating at execution time to
larger observations against oracle policies specifically trained on each observation size.

The results in Table 5 highlight how NeuralSolver can achieve oracle-level performances in
scenarios with larger observation sizes despite never being trained on such conditions. Moreover, the
prior baselines struggle to maintain their performance for larger observations due to the accumulation
of errors during task-execution, resulting in sub-optimal trajectories as shown in Figure 7.

6 Conclusion

We proposed NeuralSolver, a simple architecture that learns algorithms that can perform ex-
trapolation across general tasks. We showed that our architecture consistently outperforms prior
state-of-the-art recurrent solvers in regard to extrapolation performance, training efficiency and
parameter efficiency. In future work, we plan on further improving the training efficiency of our
method and explore it as an architecture for reinforcement learning to learn to perform sequential
decision-making tasks in an online manner, while maintaining the ability to extrapolate.

9

Acknowledgements

This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia
(FCT) with ref. UIDB/50021/2020 and the project RELEvaNT, ref. PTDC/CCI-COM/5060/2021.
The first author acknowledges the FCT PhD grant 2023.02298.BD. This work has also been supported
by the Swedish Research Council, Knut and Alice Wallenberg Foundation and the European Research
Council (ERC-BIRD).

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 1026–1034. IEEE Computer Society,
2015. doi: 10.1109/ICCV.2015.123.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
Atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[4] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

[5] Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, and Tom
Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with recurrent networks.
In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 6695–6706,
2021.

[6] Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, and Tom
Goldstein. End-to-end algorithm synthesis with recurrent networks: Extrapolation without overthinking.
In NeurIPS, 2022.

[7] Alexandre Salle and Shervin Malmasi. A simple loss function for convergent algorithm synthesis using
rnns. In Krystal Maughan, Rosanne Liu, and Thomas F. Burns, editors, The First Tiny Papers Track at
ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023. OpenReview.net, 2023.

[8] Alexandre Salle and Marcelo O. R. Prates. Think again networks and the delta loss. CoRR, abs/1904.11816,
2019.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

[10] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convo-
lutional LSTM network: A machine learning approach for precipitation nowcasting. In Corinna Cortes,
Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 802–810, 2015.

[11] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016. doi: 10.48550/arxiv.1607.06450.

[12] Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In Yoshua Bengio and Yann LeCun,
editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016.

[13] Wojciech Zaremba and Ilya Sutskever. Learning to execute. CoRR, abs/1410.4615, 2014. doi: 10.48550/
arxiv.1410.4615.

[14] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

10

[15] Rotem Dror, Segev Shlomov, and Roi Reichart. Deep dominance - how to properly compare deep neural
models. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 2773–2785. Association for Computational Linguistics, 2019. doi:
10.18653/V1/P19-1266.

[16] Eustasio Del Barrio, Juan A Cuesta-Albertos, and Carlos Matrán. An optimal transportation approach for
assessing almost stochastic order. The Mathematics of the Uncertain: A Tribute to Pedro Gil, pages 33–44,
2018.

[17] C.E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R. Istituto
superiore di scienze economiche e commerciali di Firenze. Seeber, 1936.

[18] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem Lahlou,
Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

[19] Eric Price, Wojciech Zaremba, and Ilya Sutskever. Extensions and limitations of the neural GPU. CoRR,
abs/1611.00736, 2016. doi: 10.48550/arxiv.1611.00736.

[20] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas J
Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Outracing champion
gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–228, 2022.

[21] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

[22] Volodymyr Mnih et al. reinforcement learning." nature 518.7540 (2015): 529-533. Nature, 518:529–533,
2015.

[23] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604–609, 2020.

[24] Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang Miao.
Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks and Learning Systems,
2022.

[25] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

[26] Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances in Neural
Information Processing Systems, 36, 2024.

[27] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural
networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 1019–1027, 2016.

[28] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[29] Vijay Veerabadran, Srinivas Ravishankar, Yuan Tang, Ritik Raina, and Virginia de Sa. Adaptive recurrent
vision performs zero-shot computation scaling to unseen difficulty levels. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_
files/paper/2023/hash/3a40e042c66e84659249f3254460c123-Abstract-Conference.html.

[30] Dennis Ulmer, Christian Hardmeier, and Jes Frellsen. deep-significance - easy and meaningful statistical
significance testing in the age of neural networks. CoRR, abs/2204.06815, 2022. doi: 10.48550/ARXIV.
2204.06815.

11

http://papers.nips.cc/paper_files/paper/2023/hash/3a40e042c66e84659249f3254460c123-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3a40e042c66e84659249f3254460c123-Abstract-Conference.html

Table 6: Additional details on the datasets used in the evaluation of NeuralSolver. For the different-
size tasks we show the dimensionality of the training examples used for curriculum learning.

Task Train size Test Size Training examples Test examples

GoTo [6,8,10,12,15,17,20] 128 50,000 10,000
1S-Maze [5,7,9,11,13] 121 50,000 10,000
Pong [6,8,10,12,15,17,20] 128 50,000 10,000
Doorkey [6,8,10,12,15,17,20] 128 50,000 10,000

Prefix-Sum 32 512 50,000 10,000
Maze 24 124 50,000 10,000
Thin-Maze 11 61 50,000 10,000
Chess 8 8 600,000 100,000

A Additional Details on the Evaluation Scenarios

We evaluate NeuralSolver on the same-size tasks benchmark introduced in Schwarzschild et al.
[5] and on a novel set of different-size tasks. In Table 6 we show the training and test sizes for each
task, as well as the number of training and test examples. For the different-size tasks, we employ
curriculum learning during training and show the dimensionality of the training examples in the table.

A.1 Different-size Tasks

Due to the lack of a benchmark for different-size tasks, we introduce a set of four classification
tasks with arbitrary input (image) observation dimensionality and fixed output size (classification
labels). For each task we generate a dataset, consisting of 50,000 training examples, with 80% used
for training and 20% for validation. Additionally, we include 10,000 test examples for evaluation
purposes, containing observations with a larger dimensionality than the training examples.

GoTo: Inspired by the Minigrid Environment [18], the GoTo task is a simple grid setting, with a
1-pixel white border, and 1-pixel green player, and a 1-pixel red goal, as shown in Figure 4a. The
classification target is a one-hot vector of 4 dimensions, corresponding to the next-step actions
available to the agent: up, down, left, right. To generate the dataset we use a simple path-finding
algorithm from the player to the goal, where the agent starts by minimizing the vertical distance to
the goal until it reaches the same vertical position, and then minimizes the horizontal distance until it
reaches the goal.

1S-Maze: This task is based on the Maze task from [5]. The input is a maze with the player and goal
positions, and the objective is to move the player (in green) to the goal (in red) position by solving
the maze. We use the official dataset from the original paper, where we made the green player have a
random start position so that it does not become trivial to solve. We also changed the thickness of the
walls and the border to 1 pixel, as shown in Figure 4b. The classification target is a one-hot vector of
4 dimensions, corresponding to the next-step actions available to the agent: up, down, left, right. The
dataset is generated using a depth-first search algorithm, where the label is the next action to take to
reach the goal.

Pong: Inspired by the Atari game, the Pong task is a simplified version of the game, where the
objective is to move the paddle horizontally to the ball position, as seen in Figure 4c. The classification
target is a one-hot vector of 3 dimensions, corresponding to the next-step actions available to the
agent: left, right, no action. The dataset is generated by a simple agent that follows the ball, keeping
the paddle centered on the ball.

Doorkey: This task is inspired by the Minigrid Doorkey environment [18]. The goal is to move the
player (red pixel on top) to the goal (red pixel on bottom right) through a sequence of steps, as seen
in Figure 4d: moving to the key (yellow pixel), grabbing it, moving to the door (different color pixel
on middle separator), opening it and finally moving to the goal. The classification target is a one-hot
vector of 4 dimensions, corresponding to the next-step actions available to the agent: forward, rotate
right, grab, toggle. We generate the targets using a simple oracle agent that solves the task. In the

12

NeuralSolver

0 200 400
0

50

100
A

cc
ur

ac
y

0 500 1000 0 500 1000 0 100 200

(a) Prefix-Sum (b) Maze (c) Thin-Maze (d) Chess

Figure 8: Extrapolation accuracy of the different methods as a function of the number of iterations in
the same-size task benchmark. All results are averaged over 10 randomly-selected seeds.

original reinforcement learning environment, upon reaching the goal the agent receives a reward
of r = 1− 0.9 ∗ (t

T), where t is the number of steps of the agent and T is the maximum episode
length (if t > T the agent receives no reward and the episode restarts). In conjunction with the oracle
agent, we use this environment to evaluate the performance of the learned algorithm in the original
environment.

A.2 Same-size Tasks

We employ the same-size task benchmark introduced in [5]. We present a short description of the
tasks used in the benchmark. For a more detailed description of the tasks, please refer to the original
paper.

Prefix-Sum: This task consists of computing the prefix-sum module two of an input binary array,
where the in bit of the output is the module two sum of the current and the previous n bits of the
input.

Maze: This is a maze-solving task where the output is the path from the player to the goal. The
training is done on mazes of size 24×24 pixels, and tested on mazes of size 124×124. While on
the original paper, it is referred that the mazes have a training size of 9 and a test size of 59, each
maze has a border of 3 pixels and the paths have a width of 2 pixels, thus 9× 2 + 3× 2 = 24 and
59× 2 + 3× 2 = 124.

Thin-Maze: Similar to the 1S-Maze different-size task, this task adapts the previous scenario and
modifies the thickness of the walls and the border to 1 pixel. Thus the training and test sizes are
11×11 and 61×61, respectively.

Chess: The chess task comprises of chess puzzles, where the input is an 8×8×12 array indicating
the position of the pieces on the board, and the output is an 8×8 binary array indicating the optimal
move origin and position to solve the puzzle. Using the original dataset, the training involves 600,000
puzzles below a rating of 1,385, while testing employs 100,000 examples above this threshold.

A.3 Training Efficiency Task Sizes

To simplify the interpretation, we omitted the training sizes of each task used in Figure 5 and Figure 6.
In Table 7 we detail the training sizes of each task.

Table 7: Training sizes of each task used for the training efficiency evaluation
Task Very Small Small Medium Large
Prefix-Sum 4 8 16 32
Maze 16 20 24 28
1S-Maze 9 11 13 15
GoTo, Pong, Doorkey 8 12 15 20

13

NeuralSolver

0 1000 2000
25

50

75

100
A

cc
ur

ac
y

0 500 1000 0 200 400 0 500 1000

(a) 1S-Maze (b) GoTo (c) Pong (d) Doorkey

Figure 9: Extrapolation accuracy of the different methods as a function of the number of iterations in
the different-size tasks. All results are averaged over 10 randomly-selected seeds.

B Additional Details on NeuralSolver

B.1 NeuralSolver Does Not Suffer From Overthinking

We evaluate the accuracy performance of our model and the baseline models across all same-size
(Figure 8) and different-size (Figure 9) tasks as a function of the number of iterations performed. The
results show that NeuralSolver does not suffer from overthinking: the performance of the model
remains constant as we increase the number of iterations.

B.2 Changes We Tried That Did Not Improve NeuralSolver

We present a list of architectural changes we explored for NeuralSolver that did not bring any
substantial improvement to the extrapolation performance of our method:

• Using batch normalization in the ResNet blocks of the recurrent module;
• Increasing or decreasing the warming up period of the training;
• Reducing the kernel sizes of the final output head;
• Having in the ResNet block one convolutional layer with 1 × 1 filters and the remaining

ones with 3× 3 filters;
• Reducing the amount of ResNet blocks in the original Bansal et al. [6] architecture from

two to one;
• Removing the ResNet block, and using just a single recall convolution;
• Using an Tanh regularization in the output of the recurrent module, to avoid the drift or

explosion of the recurrent memory;
• Using the progressive loss to improve overthinking problem in different-size tasks (did not

help in standard Bansal et al. [6] and initial experiments with LSTMs)

B.3 Model Implementation and Training Hyperparameters

In Table 8 we present the model implementation used across all tasks. In Table 9 we present the
hyperparameters used for each task. In the same-size tasks we employ the same hyperparameters as
in Bansal et al. [6], with the exception of the Maze task, where we increase the training to 150 epochs
and keeping the decay schedule at epoch number 100, as present in the source code. We also removed
the warm-up for all our models, since they brought no performance improvement to the models.

B.4 Computational Complexity

We evaluate the computational complexity of the models, by computing the amount of Multiply-Add
Operations (MACs) for a single training example across all tasks in Table 10, in the scale of billions
or gigaMACs. The results show that NeuralSolver is more computationally efficient than Bansal
et al. [6], requiring less than 30% of the operations per training example.

14

Table 8: Model implementation details of NeuralSolver across all tasks. For different-size tasks, the
output size o is variable. We employ the same architecture in the Maze and Thin-Maze environments.

Dataset Width # Channels in Hidden Layers

Different-size Tasks 64 64, 64, o
Prefix-Sum 100 400, 200, 2
Maze 32 32, 8, 2
Chess 128 32, 8, 2

Table 9: Training hyperparameter values for NeuralSolver across all tasks.
Hyperparamter 1S-Maze Pong GoTo Doorkey Prefix-Sum Maze Chess

Optim. Adam Adam Adam Adam Adam Adam SGD
Learning Rate 1e-3 2.5e-4 1e-3 1e-3 1e-3 1e-3 1e-2
Decay Schedule [100] - - - [60, 100] [100] [100, 110]
Decay Factor 0.1 - - - 0.01 0.1 0.01
Warm-Up 0 0 0 0 10 10 3
Epochs 150 50 50 50 150 150 120
Clip 2.0 2.0 2.0 2.0 1.0 - -
Curriculum Epochs 8 4 4 4 - - -
Weight Decay 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
Std Dropout (LSTM) 0.3 0.3 0.3 0.3 0.3 0.3 0
Gal Dropout [27] (LSTM) 0.4 0.4 0.4 0.4 0.4 0.4 0
Eval Iterations 2000 1000 500 1000 500 1000 200
Extreme Eval Iterations 20000 2000 2000 2000 - - -

B.5 Computational Resources

All experiments were executed on workstations with Nvidia RTX 3090 and RTX 4090 with 24GB of
vram each. Training and evaluating (with a maximum size of 128) a single run takes less than 1 day
to run in all tasks, with the exception of the chess task, where each run takes around 58 hours for the
Bansal et al. [6] model and 26 hours for NeuralSolver.

B.6 Comparison with Bansal et al. [6]

In this section we highlight the major differences between NeuralSolver and Bansal et al. [6],
shown in Figure 10. The main architectural differences between our model and the prior Bansal et al.
[6] architecture are: (i) the recurrent module used; (ii) the removal of the initial projection layer; and
the design processing module(iii).

Recurrent Module: The recurrent module in NeuralSolver is a layernorm convolutional LSTM
(Figure 11) where x is the input, h is the hidden state, c is the cell state of the LSTM. All convolutional
layers in all models use the same length-three filters and padding scheme, without bias terms except
for the convolutional layers in the LSTM block. Since the input is always the same across recurrent
iterations, we pre-compute the convolution and layernorm passes, so that at each iteration we only
sum the pre-computed value.

Removal of Projection Layer: We observed a small negative impact in extrapolation when using
an initial projection layer for the recurrent module, and as such we removed it from the architecture.
This results can be seen in Table 18 of Section C.6.

Processing Module: The processing module consists of three convolutional layers with widths
specified in Table 8, with ReLU activations applied after the first two layers. The last convolutional
layer produces two-channel outputs used for binary pixel classification in the case of the same input
and output size tasks, or N channel outputs in the case of fixed output size tasks, where N is the
number of possible outputs. Our contribution introduces an aggregation layer at the end of the model,

15

Table 10: Computational complexity (in gigaMACs) of different models across all tasks, measured in
terms of the amount of Multiply-Add Operations necessary to run a single training example.

Model 1S-Maze GoTo Pong Doorkey Prefix-Sum Maze Thin-Maze Chess

NeuralSolver 4.12 9.76 9.76 9.76 0.62 3.39 0.71 5.74
Bansal et al. [6] 15.93 37.71 37.71 37.71 3.00 13.48 2.83 23.05
FeedForward 15.93 37.71 37.71 37.71 3.00 13.48 2.83 23.05

x
Recurrent

Block
(ResNet)

Processing
Block

yProjection
Layer

x
Recurrent

Block
(LSTM)

Processing
Block

yAggregation
Layer

NeuralSolverBansal et al.

Figure 10: Simplified comparison of the architectural differences between NeuralSolver and Bansal
et al. [6].

used for tasks with a different a target size from the training size. The aggregation layer consists of
an adaptive max pooling that reduces the entire input size to 1, with exception for the input channels
that are kept the same.

A complete description of the final architecture can be described as follows: for same-size tasks,
given an input image o, we pass the input through a single layer ConvLSTM (q) to obtain the next
hidden state (h1 and cell state (c1), h1, c1 = q(o, h0, c0). The initial hidden (h0) and cell (c0) states
are initialized at zeros. The recurrent process is given by feeding back the previous hidden and cell
states to the LSTM, ht, ct = q(o, ht−1, ct−1). After a fixed size of recurrent iterations, we can obtain
the model prediction at timestep t by passing the hidden state ht through the processing module.
The processing module is composed of three convolutional layers with 3x3 kernels denoted by
W1,W2,W3 and ReLU activation γ. As such, we perform pt = W3 ∗γ(W2 ∗γ(W1 ∗ht)), and a final
softmax activation (σ), ŷt = σ(pt). For different size tasks, before the softmax we perform a global
maxpool operation (G) that reduces the processing output height and width to 1, ŷt = σ(G(pt)).

C Additional Results

C.1 Extended Training Efficiency on Same-size Tasks

In Figure 12 we show the performance of the learned algorithm with our model when trained with
different training sizes on the Thin Maze and Chess tasks. The results show that only NeuralSolver
outperforms Bansal et al. [6] in extrapolating when trained with smaller input observations on Thin
Mazes. On the other hand, in the chess task, both models perform very similarly, with Bansal et al.
[6] being slightly more performant on easier puzzle data, and NeuralSolver being slightly better
with more data.

C.2 Training and Validation Accuracy on Different-size Tasks

In Table 11 and Table 12 we show the training and validation accuracy for all models in the different-
size tasks. The results show that all models are trained to optimal performance.

C.3 Fine-tuning of the Progressive Loss Parameter

The Bansal et al. [6] model introduces a progressive loss term to help the model extrapolate. However,
this term has an alpha (α) parameter that needs to be tuned to each individual task. In Table 13
we show the results of the fine tuning of the alpha parameter for the different-size tasks. For each
different-size task we select and present the best-performing alpha value (in bold). For the Thin-Maze
task, we selected both the α = 0 and the α = 0.1 for the same-size benchmark comparison. For the
remaining same-size tasks, we employ the author’s suggested values for α.

16

x Convolution Layernorm

Convolution Layernorm

pre-computed

+

LSTM
gate
logic

Layernorm

ht

ct

Dropout

ct+1

ht+1

Processing
Block

Figure 11: Diagram of layernorm convolutional LSTM used in NeuralSolver. After a desired
amount of recurrent iterations, we use the hidden state h as input to the processing module, to obtain
the output.

7/100k 9/200k 11/400k 13/600k

33 65 97 1290%

50%

100%

A
cc

ur
ac

y

33 65 97 129 700000 700000

(a) NeuralSolver
Thin-Maze

(b) Bansal et al. [6]
Thin Maze

(c) NeuralSolver
Chess

(d) Bansal et al. [6]
Chess

Figure 12: Training efficiency of NeuralSolver and Bansal et al. [6] on same-size tasks: we present
the accuracy of the learned algorithms on extrapolating to problems with different dimensionality
(columns). Each color represents a different training size, specific to each task (Thin Maze, Chess).
In the dashed line we show the upper-bound on the performance.

C.4 Ablation on Model Size of NeuralSolver

We conducted an additional evaluation of the extrapolation performance of our method, as done in
Section 5.2, for different sizes of the LSTM’s output channel in the different-size tasks. As expected,
we can observe a reduction in the performance of our method across most tasks as we reduce the
capacity of our LSTM. However, we point out that our smallest model still achieves competitive
performances against Bansal et al. [6], as shown in Table 3.

C.5 Ablation on the Recurrent Module for NeuralSolver

We compare the performance of our model with two different recurrent modules: LSTM (our default
method), GRU [28] and LocRNN [29]. In Table 15, we present the results of this comparison,
following the same procedure of Section 5.2. The results show that our LSTM module consistently
outperforms the other alternatives. We also show the number of parameters and computational
complexity in Table 16 and Table 17, respectively.

C.6 Extended Ablation Results

In Table 18, we performed additional ablation on the extrapolation abilities when we removed the
layer norm component of the recurrent neural network (No LN) and when we disabled the standard
PyTorch dropout and Gal Dropout [27]. The results show that both components help improve
extrapolation, especially in the 1S-Maze task. We explored the use of a projection layer of the input
like used in the Bansal et al. [6] baseline [6], and noticed a slight negative impact on the extrapolation.

C.7 Extreme Extrapolation Results

We evaluate the performance of NeuralSolver and Bansal et al. [6] on extrapolating to very high-
dimensional input observations. In particular, we evaluate the performance of the methods on

17

Table 11: Train classification accuracy of all models in the different-size tasks.

Model 1S-Maze GoTo Pong Doorkey

NeuralSolver 99.99 ±0.00 99.99 ±0.01 100.00 ±0.00 99.69 ±0.03

Bansal et al. [6] 100.00 ±0.00 99.99 ±0.01 100.00 ±0.00 99.97 ±0.02

FeedForward 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 99.85 ±0.05

Table 12: Validation classification accuracy of all models in the different-size tasks.
Model 1S-Maze GoTo Pong Doorkey
NeuralSolver 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

Bansal et al. [6] 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

FeedForward 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 99.94 ±0.04

extrapolating to 256 × 256 (Table 19) and 512 × 512 (Table 20) observations. Due to the large
dimensionality of the tasks and the large number of iterations required to solve the tasks, we only
consider 100 testing examples2The results show that only NeuralSolver is able to maintain perfect
accuracy across all tasks. Moreover, our model does not suffer from overthinking, as shown in
Figure 13.

C.8 Hyperparameter Scan

In Fig. 14 we perform a small hyperparameter scan on the choosen default values in Table 9.

2Each test on the 1S-Maze task with observations of size 512× 512 took on average 28 hours on a Nvidia
4090 GPU.

18

Table 13: Extrapolation accuracy for different values of α on the different-size tasks and in the
Thin-Maze task.

α 1S-Maze GoTo Pong Doorkey Thin-Maze

0.00 67.16 ± 5.80 62.98 ±12.21 69.24 ± 7.60 93.81 ±6.84 46.78 ±37.49

0.01 63.47 ±12.73 64.69 ± 9.23 71.97 ±10.70 97.13 ±1.46 42.76 ±37.56

0.10 73.36 ± 7.56 62.09 ±13.38 62.53 ±10.11 93.44 ±4.71 22.26 ±27.65

0.50 74.14 ± 2.60 58.45 ± 5.81 68.13 ±13.27 93.19 ±8.70 0.22 ± 0.17

1.00 66.55 ±13.75 60.52 ±11.75 71.48 ±14.83 94.71 ±2.96 5.32 ± 5.84

Table 14: Extrapolation performance NeuralSolver in the proposed different-size tasks with
different number of channels in the LSTM’s output and hidden state (model width). Higher is better.

Model Width 1S-Maze GoTo Pong Doorkey

64 (Default) 100.00 ±0.00 100.00 ± 0.00 100.00 ±0.00 100.00 ± 0.00

48 98.79 ±3.82 99.94 ± 0.20 100.00 ±0.00 99.76 ± 0.63

32 78.75 ±3.82 96.56 ±10.13 100.00 ±0.00 98.65 ± 2.89

24 80.05 ±3.31 96.96 ± 7.91 100.00 ±0.00 91.21 ±17.69

Table 15: Extrapolation accuracy of NeuralSolver with different recurrent modules in the proposed
different-size tasks. Higher is better.

Model 1S-Maze GoTo Pong Doorkey

LSTM (Default) 100.00 ±0.00 100.00 ± 0.00 100.00 ±0.00 100.00 ± 0.00

GRU [28] 83.24 ±10.09 99.94 ± 0.13 100.00 ±0.00 95.85 ± 4.34

LocRNN [29] 87.65 ±9.13 82.56 ±17.73 94.08 ±8.81 86.02 ±11.75

Table 16: Total parameter count of NeuralSolver with different recurrent modules in the proposed
different-size tasks, in the scale of millions of parameters. Lower is better.

Model 1S-Maze GoTo Pong Doorkey

LSTM (Default) 0.231 0.231 0.230 0.231
GRU [28] 0.192 0.192 0.192 0.192
LocRNN [29] 0.236 0.236 0.236 0.236

Table 17: Computational complexity (in gigaMACs) of NeuralSolver with different recurrent
modules in the proposed different-size tasks. Lower is better.

Model 1S-Maze GoTo Pong Doorkey

LSTM (Default) 4.12 9.76 9.76 9.76
GRU [28] 3.19 7.55 7.54 7.55
LocRNN [29] 4.33 10.25 10.25 10.25

19

Table 18: Extended extrapolation accuracy of different ablated versions of NeuralSolver in the
proposed different-size tasks. Higher is better.

Model 1S-Maze GoTo Pong DoorKey

NeuralSolver 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

No LN 75.53 ± 0.87 99.55 ±1.49 100.00 ±0.00 97.11 ±1.99

No Dropout 90.61 ±11.23 98.48 ±3.05 100.00 ±0.00 99.65 ±0.89

With Projection 97.24 ± 8.25 99.93 ±0.21 100.00 ±0.00 99.45 ±1.02

Table 19: Extrapolation accuracy on different-size tasks considering 256× 256 observation size.

Model 1S-Maze GoTo Pong Doorkey

NeuralSolver 100.00 ±0.00 100.00 ± 0.00 100.00 ±0.00 100.00 ±0.00

Bansal et al. [6] 77.20 ±2.48 60.33 ±12.38 65.00 ±9.01 100.00 ±0.00

Table 20: Extrapolation accuracy on different-size tasks considering 512× 512 observation size.

Model 1S-Maze GoTo Pong Doorkey

NeuralSolver 100.00 ±0.00 100.00 ± 0.00 100.00 ±0.00 100.00 ±0.00

Bansal et al. [6] 79.20 ±5.81 57.22 ±10.15 63.60 ±2.42 99.71 ±0.45

GoTo 1S-Maze Pong DoorKey

0 500 1000 1500 2000
0

20

40

60

80

100

A
cc

ur
ac

y

0 500 1000 1500 2000
0

20

40

60

80

100

(a) NeuralSolver (b) Bansal et al. [6]

Figure 13: Accuracy results of extrapolation to large observation sizes (512×512). All results are
averaged over 10 randomly-selected seeds. In the 1S-Maze environment, the real number of iterations
is 10x larger. Higher is better.

20

AdaGrad Adam AdamW RMSProp SGD

60

70

80

90

100

M
ea

n
V

al
ue

Optimizer

2.5e-4 1e-3 3e-3 1e-2

70

75

80

85

90

95

100
Learning Rate

0 3 10

70

80

90

100
Warm-Up

25 50 100 150

99.90

99.92

99.94

99.96

99.98

100.00

M
ea

n
V

al
ue

Epochs

1 2 3 5 10 100 no clip

70

80

90

100
Clip

joint train 2 4 8

80

85

90

95

100
Curriculum Learning Epochs

0 1e-4 2e-4 1e-3 1e-2

85

90

95

100

M
ea

n
V

al
ue

Weight Decay

0 0.1 0.3 0.5 0.75

97

98

99

100
Standard Pytorch Dropout

0 0.1 0.2 0.4 0.5 0.75

97.5

98.0

98.5

99.0

99.5

100.0
Gal Dropout

Figure 14: Hyperparameter scan of NeuralSolver on the GoTo task. Each plot makes a single
change from the hyperparameters in Table 9. The blue whiskers represent the confidence intervals
at 95%. The green and red arrows represent the maximum and minimum values of the bootstrap
distribution, respectively.

21

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

 +
 P

L

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

FeedForward

Bansal et al. + PL

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.00 1.00 0.51 1.00

0.00 1.00 1.00 1.00

0.00 0.41 0.28 1.00

Prefix-Sum

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

 +
 P

L

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

FeedForward

Bansal et al. + PL

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.00 1.00 0.85 1.00

0.00 1.00 1.00 1.00

0.00 0.03 0.03 1.00

Maze

0.0

0.2

0.4

0.6

0.8

1.0

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

 +
 P

L

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

FeedForward

Bansal et al. + PL

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00

0.00 0.78 1.00 1.00

0.00 0.00 0.00 1.00

Thin-Maze

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

 +
 P

L

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

FeedForward

Bansal et al. + PL

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.00 1.00 0.03 1.00

0.35 1.00 1.00 1.00

0.00 0.00 0.00 1.00

Chess

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Almost Stochastic Order scores of the same-size task results presented in Section 5.1.
ASO scores are expressed in ϵmin, with a significance level α = 0.05 that is adjusted accordingly by
using the Bonferroni correction [17]. Read from row to column: e.g., NeuralSolver (row) is almost
stochastically dominant over Bansal et al. [6] (column) in the Prefix-Sum task with ϵmin of 0.28.

D Statistical Significance

The Almost Stochastic Order test (ASO; [15, 16]) was recently introduced to assess statistical
significance in Deep Neural Networks across multiple runs. The ASO test measures the presence of a
stochastic order between two models or algorithms based on their respective sets of evaluation scores.
Using the individual scores of algorithm A and B across various random seeds, the method calculates
a test-specific value (ϵmin), representing how far algorithm A is from being significantly superior to
algorithm B. The lower the value of ϵmin, the more likely it is that A is better than B. For ϵmin < 0.5, A
is said to be almost stochastically dominant over B in most cases than vice versa, and thus A could be
considered superior to B, although with less confidence. We claim that A is stochastically dominant
over B with a predefined significance level when ϵmin = 0.0. We use the implementation by [30] to
perform these statistical tests. We present the comparison of all pairs of models using ASO with a
confidence level of α = 0.05 (before adjusting for all pair-wise comparisons using the Bonferroni
correction [17]).

22

R
a
n

d
o
m

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

Random

FeedForward

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00

0.00 0.38 1.00 1.00

0.00 0.00 0.00 1.00

1S-Maze

R
a
n

d
o
m

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

Random

FeedForward

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00

0.00 0.19 1.00 1.00

0.00 0.00 0.00 1.00

GoTo

0.0

0.2

0.4

0.6

0.8

1.0

R
a
n

d
o
m

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

Random

FeedForward

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.44 1.00 1.00 1.00

0.00 0.00 1.00 1.00

0.00 0.00 0.00 1.00

Pong

R
a
n

d
o
m

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

Random

FeedForward

Bansal et al.

NeuralSolver

1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00

0.00 0.00 1.00 1.00

0.00 0.00 0.00 1.00

Doorkey

0.0

0.2

0.4

0.6

0.8

1.0

Figure 16: Almost Stochastic Order scores of the different-size task results presented in Section 5.2.
ASO scores are expressed in ϵmin, with a significance level α = 0.05 that is adjusted accordingly
by using the Bonferroni correction [17]. Read from row to column: e.g., NeuralSolver (row) is
stochastically dominant over Bansal et al. [6] (column) in the 1S-Maze task with ϵmin of 0.00.

23

N
o
 L

S
T

M

N
o
 C

L

U
se

 5
L

U
se

 A
vg

P
o
o
l

N
e
u

ra
lS

o
lv

e
r

No LSTM

No CL

Use 5L

Use AvgPool

NeuralSolver

1.00 1.00 0.50 0.75 1.00

0.06 1.00 0.00 0.37 1.00

1.00 1.00 1.00 0.81 1.00

1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 1.00

1S-Maze

N
o
 L

S
T

M

N
o
 C

L

U
se

 5
L

U
se

 A
vg

P
o
o
l

N
e
u

ra
lS

o
lv

e
r

No LSTM

No CL

Use 5L

Use AvgPool

NeuralSolver

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

0.14 0.22 1.00 1.00 1.00

0.00 0.00 0.08 1.00 1.00

0.00 0.00 0.00 0.00 1.00

GoTo

0.0

0.2

0.4

0.6

0.8

1.0

N
o
 L

S
T

M

N
o
 C

L

U
se

 5
L

U
se

 A
vg

P
o
o
l

N
e
u

ra
lS

o
lv

e
r

No LSTM

No CL

Use 5L

Use AvgPool

NeuralSolver

1.00 1.00 1.00 1.00 1.00

0.00 1.00 0.50 0.07 0.50

0.00 0.50 1.00 0.07 0.50

0.25 0.97 0.97 1.00 1.00

0.00 0.50 0.50 0.00 1.00

Pong

N
o
 L

S
T

M

N
o
 C

L

U
se

 5
L

U
se

 A
vg

P
o
o
l

N
e
u

ra
lS

o
lv

e
r

No LSTM

No CL

Use 5L

Use AvgPool

NeuralSolver

1.00 1.00 0.87 0.02 1.00

0.59 1.00 0.36 0.02 1.00

1.00 1.00 1.00 0.02 1.00

1.00 1.00 1.00 1.00 1.00

0.00 0.03 0.00 0.00 1.00

Doorkey

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17: Almost Stochastic Order scores of the ablation study on the different-size tasks presented
in Section 5.3. ASO scores are expressed in ϵmin, with a significance level α = 0.05 that is adjusted
accordingly by using the Bonferroni correction [17]. Read from row to column: e.g., NeuralSolver
(row) is stochastically dominant over No LSTM (column) in the 1S-Maze task with ϵmin of 0.00.

24

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

O
ra

cl
e

FeedForward

Bansal et al.

NeuralSolver

Oracle

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

0.80 0.49 1.00 1.00

0.06 0.02 0.06 1.00

Size 8

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

O
ra

cl
e

FeedForward

Bansal et al.

NeuralSolver

Oracle

1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00

0.00 0.30 1.00 1.00

0.00 0.02 0.06 1.00

Size 20

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

O
ra

cl
e

FeedForward

Bansal et al.

NeuralSolver

Oracle

1.00 1.00 1.00 1.00

0.55 1.00 1.00 1.00

0.00 0.00 1.00 1.00

0.00 0.00 0.36 1.00

Size 32

0.0

0.2

0.4

0.6

0.8

1.0

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

O
ra

cl
e

FeedForward

Bansal et al.

NeuralSolver

Oracle

1.00 1.00 1.00 1.00

0.35 1.00 1.00 1.00

0.00 0.00 1.00 1.00

0.00 0.00 0.22 1.00

Size 64

F
e
e
d

F
o
rw

a
rd

B
a
n

sa
l

e
t

a
l.

N
e
u

ra
lS

o
lv

e
r

O
ra

cl
e

FeedForward

Bansal et al.

NeuralSolver

Oracle

1.00 1.00 1.00 1.00

0.29 1.00 1.00 1.00

0.00 0.00 1.00 1.00

0.00 0.00 0.00 1.00

Size 128

0.0

0.2

0.4

0.6

0.8

1.0

Figure 18: Almost Stochastic Order scores of the Doorkey sequential decision-making task results
presented in Section 5.4. ASO scores are expressed in ϵmin, with a significance level α = 0.05 that
is adjusted accordingly by using the Bonferroni correction [17]. Read from row to column: e.g.,
NeuralSolver (row) is stochastically dominant over Bansal et al. [6] (column) starting at scenarios
with observations of size 32 with an ϵmin of 0.00.

1.00 0.50 0.10 0.01 0.00

1.
00

0.
50

0.
10

0.
01

0.
00

1.00 1.00 1.00 0.71 1.00

0.23 1.00 0.80 0.06 0.02

0.44 1.00 1.00 0.24 0.36

1.00 1.00 1.00 1.00 1.00

0.67 1.00 1.00 0.44 1.00

1S-Maze

1.00 0.50 0.10 0.01 0.00

1.
00

0.
50

0.
10

0.
01

0.
00

1.00 0.66 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

0.74 0.60 1.00 1.00 1.00

0.90 0.30 1.00 1.00 1.00

0.70 0.35 1.00 0.98 1.00

Goto

1.00 0.50 0.10 0.01 0.00

1.
00

0.
50

0.
10

0.
01

0.
00

1.00 0.65 0.34 1.00 0.70

1.00 1.00 0.49 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 0.58 0.28 1.00 0.58

1.00 1.00 0.38 1.00 1.00

Pong

0.0

0.2

0.4

0.6

0.8

1.0

1.00 0.50 0.10 0.01 0.00

1.
00

0.
50

0.
10

0.
01

0.
00

1.00 0.75 0.59 1.00 0.76

1.00 1.00 1.00 1.00 1.00

1.00 0.83 1.00 1.00 1.00

0.09 0.21 0.07 1.00 0.35

1.00 0.88 1.00 1.00 1.00

Doorkey

1.00 0.50 0.10 0.01 0.00

1.
00

0.
50

0.
10

0.
01

0.
00

1.00 0.10 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

0.42 0.16 1.00 1.00 1.00

0.01 0.00 0.43 1.00 1.00

0.01 0.00 0.39 0.76 1.00

Thin-Maze

0.0

0.2

0.4

0.6

0.8

1.0

Figure 19: Almost Stochastic Order scores of the fine tuning progressive loss results presented in
Appendix C.3. ASO scores are expressed in ϵmin, with a significance level α = 0.05 that is adjusted
accordingly by using the Bonferroni correction [17]. Read from row to column: e.g., a progressive
loss alpha value of 0.5 (row) is almost stochastically dominant over the value of 1. (column) in the
1S-Maze task with ϵmin of 0.23.

25

Figure 20: Propagation of information in NeuralSolver for the 1S-Maze task: Top: we highlight
the difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 35× 35 environment. The white pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
where the agent can move right (R), down (D), left (L), or up (U).

E Learned Algorithms with NeuralSolver

Similar to Section 3.2, we show visualizations of the recurrent space of NeuralSolver while solving
the different-size tasks. More specifically, we visualize the difference between the current recurrent
state of the LSTM and the last recurrent state, for each iteration. The following figures show two
plots per iteration: the one on top shows the difference between the recurrent states in a certain color
superimposed over the input image, while the one below shows the predicted action probabilities
outputted by the model.

With these visualizations we notice how the information propagates through the input problems,
giving a hint of the algorithm that the model is performing. An interesting observation across these
visualizations is how the final prediction of the model only converges to the correct action after the
recurrent iterations have converged to a fixed state around the player position.

E.1 1S-Maze

By looking at how the information propagates through the maze paths in Figure 20 and 21, the model
appears to learn a parallel algorithm that starts with the dead ends until finding the optimal path
between the player (green) and the goal (red). At iteration #90 in Figure 20, the visible difference
between the current and last recurrent states actually represents the optimal path between the player
and the goal. The algorithm converges to the optimal task after the difference of the state converges
near the player. Figure 21 shows that finding the optimal path is not necessary to predict the next
action.

26

Figure 21: Propagation of information in NeuralSolver for the 1S-Maze task: Top: we highlight
the difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 61× 61 environment. The white pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
where the agent can move right (R), down (D), left (L), or up (U).

Figure 22: Propagation of information in NeuralSolver for the GoTo task: Top: we highlight the
difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 64× 64 environment. The black pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
where the agent can move right (R), down (D), left (L), or up (U).

E.2 GoTo

We highlight three examples of possible player and goal positions that influence the final predicted
action. Namely, if the player (green) is above the goal (red), below the goal, or at the same level in
height.

In Figure 22, we can notice that the model chooses by default the up action, while across the iterations
a signal is sent from the goal position to the positions above, propagating in a circular/oval shape.
Thus the model appears to learn an algorithm that attempts to signal the player if it should go down.
Similarly, in Figure 23 the recurrent state does not change near the player, as such the predicted action
remains the same.

In Figure 24 we see a case in which the player is on the left of the goal. In this setting, the horizontal
line with a slightly different contrast ranging from the goal position appears to communicate across
that line the player should go left or right to reach the goal.

27

Figure 23: Propagation of information in NeuralSolver for the GoTo task: Top: we highlight the
difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 64× 64 environment. The black pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
where the agent can move right (R), down (D), left (L), or up (U).

Figure 24: Propagation of information in NeuralSolver for the GoTo task: Top: we highlight the
difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 64× 64 environment. The black pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
where the agent can move right (R), down (D), left (L), or up (U).

E.3 Pong

We present two examples our learned algorithms solving the simplified game of Pong: one when
the ball is on the left of the paddle, and the other when on the right. We can notice that the model
learns a similar algorithm to the model in the GoTo task. In both cases the model starts by predicting
that the paddle should move right. In Figure 25, the model prediction changes once the information
propagation reaches the paddle, changing it to the left action. In Figure 26, we see that this propagation
of information does not reach the paddle, and as such the action remains unchanged.

We can also see a line with a slightly different contrast leaving the center of the ball, thus signaling
that the model should instead predict the stay action. This could indicate that different contrasts
might represent different algorithms running simultaneously.

28

Figure 25: Propagation of information in NeuralSolver for the Pong task: Top: we highlight the
difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 64× 64 environment. The black pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
where the agent can move left (L), stay (S) and right (R).

E.4 Doorkey

We provide two examples of learned algorithms in Doorkey: in Figure 27 we show a case when the
player is almost reaching the goal, and in Figure 28 a case when it already captured the key and is
reaching for the door.

These visualizations are harder to interpret than the other ones. This phenomenon might occur since,
to solve this task, the agent needs to follow a complex sequence of tasks, thus requiring multiple
algorithms to find where the positions of the objects are and which action to do next. We can notice
this in Figure 28, where there is a line that shoots vertically from the door position that is not present in
Figure 27. This shows that for more complex tasks, better visualization and interpretation techniques
of the recurrent states are required.

29

Figure 26: Propagation of information in NeuralSolver for the Pong task: Top: we highlight the
difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 64× 64 environment. The black pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
where the agent can move left (L), stay (S) and right (R).

Figure 27: Propagation of information in NeuralSolver for the DoorKey task: Top: we highlight
the difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 64× 64 environment. The black pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
namely Forward (L), Rotate Right (R), Pickup (P), and Toggle (T).

30

Figure 28: Propagation of information in NeuralSolver for the DoorKey task: Top: we highlight
the difference between the current iteration and last iteration (not represented) of the internal state of
the recurrent module of our model in a 64× 64 environment. The black pixels represent the pixel
positions of the recurrent state that converged to a fixed final state. Larger differences are represented
in deep blue color. Bottom: the predicted action probabilities by the model at different iterations,
namely Forward (L), Rotate Right (R), Pickup (P), and Toggle (T).

31

F Additional Example Trajectories

In Figure 29 we present additional trajectories of agents that execute policies learned using
NeuralSolver and other baselines, following the same procedure as in Section 5.4.

Oracle NeuralSolver Bansal et al. FeedForward

Figure 29: Visualization of the trajectories of NeuralSolver, Bansal et al. [6], and FeedForward
models against the Oracle trajectory. The first row is a task of size 32 × 32, second and third of
64×64, and fourth and fifth of 128×128.

32

G Examples of tasks with observations of size 512× 512

We present additional visualizations of examples of tasks with large observations (512× 512).

Figure 30: Example of a 1S-Maze task with 512× 512 observations.

33

Figure 31: Example of a DoorKey task with 512× 512 observations.

34

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are properly justified through the paper, with experimental support
in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Even though we did not provide a specific section to discuss the limitations,
through the article our experiments show possible improvements in the extrapolating from
smaller training sizes, Section 5.1 and Section 5.2, as well slightly worse performance when
training on fewer training examples, Section C.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

35

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include in the appendix all the details necessary to successfully implement
the NeuralSolver architecture and different-size tasks, even without the provided code. In
Section B.3 we provided the hyperparameters used in the training of all tasks and in Sec-
tion B.6 we highlight the main differences between the Bansal et al. [6] and NeuralSolver
implementations that allow also to faithfully implement our model based on the available
Bansal et al. [6] descriptions and available code. In Section A we give the details on how to
implement the different-size tasks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

36

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a GitHub repository with the code, the data, and a Readme file
detailing how to perform the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide complete details of the training and test details in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments are accompanied with standard deviation errors and with
the ASO[15, 16] significance test described in Section D.

Guidelines:

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section B.4 and Section B.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human participants. As this is an empirical work
that studies the extrapolation abilities of deep learning models when learning algorithms we
do not have direct negative society impacts. Our training tasks and use of previous datasets
do not contain any personally identifiable information, do not use or refer to any sort of real
people information, as well respect the previous task licenses.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

38

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As this is an empirical work that studies the extrapolation abilities of deep
learning models when learning algorithms we do not have direct negative society impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our models and tasks are based on previous work that are all properly cited
and referenced.
Guidelines:

39

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: In Section A we give the details on how to implement the different-size tasks.
We also provide the code and description to create these tasks.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

40

paperswithcode.com/datasets

Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41

	Introduction
	Related Work
	The NeuralSolver Architecture
	Model Architecture
	Propagation of Information in NeuralSolver

	Evaluation
	Methods
	Scenarios
	Baselines

	Results
	Same-size Tasks
	Different-size Tasks
	Ablation Study
	NeuralSolver Allows Extrapolation on Sequential Decision-Making Tasks

	Conclusion
	Additional Details on the Evaluation Scenarios
	Different-size Tasks
	Same-size Tasks
	Training Efficiency Task Sizes

	Additional Details on NeuralSolver
	NeuralSolver Does Not Suffer From Overthinking
	Changes We Tried That Did Not Improve NeuralSolver
	Model Implementation and Training Hyperparameters
	Computational Complexity
	Computational Resources
	Comparison with Bansal2022endtoendalgorithmsynthesis

	Additional Results
	Extended Training Efficiency on Same-size Tasks
	Training and Validation Accuracy on Different-size Tasks
	Fine-tuning of the Progressive Loss Parameter
	Ablation on Model Size of NeuralSolver
	Ablation on the Recurrent Module for NeuralSolver
	Extended Ablation Results
	Extreme Extrapolation Results
	Hyperparameter Scan

	Statistical Significance
	Learned Algorithms with NeuralSolver
	1S-Maze
	GoTo
	Pong
	Doorkey

	Additional Example Trajectories
	Examples of tasks with observations of size 512512

