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ABSTRACT
Scene text image super-resolution (STISR) aims at simultaneously
increasing the resolution and readability of low-resolution scene
text images, thus boosting the performance of the downstream
recognition task. Two factors in scene text images, visual struc-
ture and semantic information, affect the recognition performance
significantly. To mitigate the effects from these factors, this paper
proposes a Prior-Enhanced Attention Network (PEAN). Specifi-
cally, an attention-based modulation module is leveraged to under-
stand scene text images by neatly perceiving the local and global
dependence of images, despite the shape of the text. Meanwhile,
a diffusion-based module is developed to enhance the text prior,
hence offering better guidance for the SR network to generate SR
images with higher semantic accuracy. Additionally, a multi-task
learning paradigm is employed to optimize the network, enabling
the model to generate legible SR images. As a result, PEAN estab-
lishes new SOTA results on the TextZoom benchmark. Experiments
are also conducted to analyze the importance of the enhanced text
prior as a means of improving the performance of the SR network.
Code is available at https://github.com/jdfxzzy/PEAN.
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1 INTRODUCTION
Scene text recognition (STR) focuses on extracting text from images,
which has been widely applied in automatic driving [46], intelli-
gent transportation [1], etc. However, in real-world applications, a
variety of reasons result in captured images being low-resolution
(LR), such as the quality of the lens, motion blur, and shaking when
capturing photos, leading to blurred text in images. To better read
text from such images, researchers formulate the STISR task to
reconstruct missing text details in LR images, as a pre-processing
step for STR.

For scene text images, two crucial factors determine whether
they could be correctly recognized, i.e., visual structure and se-
mantic information [14, 69]. Early attempts at STISR concentrate
on adequately recovering the visual structure of LR scene text
images [13, 62, 74]. Composed of several CNN-BiLSTM layers,
these methods can learn from paired LR-HR images to improve
the resolution and readability of scene text images simultaneously.
However, the performance is limited due to the fact that they ig-
nore the semantic information of scene text images. This factor
has been utilized in recent advancements. These works observe
that semantic information plays an important role in guiding the
restoration of correct visual structure, and propose numerous text
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Figure 1: Comparison between previous text prior-based
STISR methods (row (b, c)) and PEAN. The incorporation of
AMM enables PEAN to restore the visual structure of lengthy
text in images. However, its performance is limited by the
absence of semantic information (row (d)). The introduction
of TP-LR partially addresses this limitation, yet its efficacy
remains inadequate, leading to several failure cases (row (e)).
Considering that TP-HR is a robust alternative, we conduct
an exploratory experiment by substituting TP-HR with TP-
LR, resulting in superior performance (row (f)). This inspires
us to design a module for enhancing the TP-LR so as to ob-
tain the ETP, which demonstrates comparable effectiveness
to TP-HR in guiding the SR process (row (g)).

prior-based methods [19, 34, 35, 75]. That is, the text prior, gener-
ated by pre-trained STR models, is leveraged to facilitate the SR
process [19, 34, 35, 75], thereby generating correct characters of
text in SR images.

Despite improved performance achieved by these approaches,
the dominance of visual structure and semantic information per-
sists, as two critical issues in previous studies remain unresolved.
Firstly, previous STISR methods [5, 6, 35, 62, 74, 75] rely on Sequen-
tial Residual Blocks (SRB) to extract visual features. This module,
containing several CNN-BiLSTM layers, has difficulty in restoring
the complete visual structure of images containing long or deformed
text string due to its inherent demerits, i.e., the performance bottle-
neck of capturing long-range dependence [12, 44]. Secondly, the
introduction of the primary text prior, originating from the interfer-
ence of low-quality images on recognizers, prevents the SR network
from generating images that contain correct semantic information.
Recently, C3-STISR [75] has employed a language model [14] into
STISR, utilizing its learned linguistic knowledge to rectify the text
prior. Although the rectified prior demonstrates some effectiveness,
it lacks sufficient strength in guiding the SR network to produce
images with high semantic accuracy.

We propose a Prior-Enhanced Attention Network (PEAN) to
tackle issues caused by the two factors. To begin with, an Attention-
based Modulation Module (AMM) is proposed to substitute the
SRB, endowing the network with a larger receptive field to im-
ages, thereby restoring the visual structure of images with text
in various shapes and lengths (shown in Figure 1(d)). Horizontal

and vertical strip-wise attention mechanisms [11, 21, 58] are em-
ployed in AMM. Among them, the horizontal attention mechanism
can capture the dependence between characters while the verti-
cal attention mechanism can capture the structural information
within a character [74]. However, the lack of semantic information
limits the capability of such model. As demonstrated by previous
works [8, 10], leveraging strong prior information to restrict the
solution space plays a vital role in SR problems. Notably, the text
prior derived from high-resolution (HR) images is a robust choice
for STISR, in view of the high recognition accuracy of HR images.
Consequently, we conduct an exploratory experiment wherein we
substitute the text prior from LR images (TP-LR) with the text prior
from HR images (TP-HR) within such model, yielding superior
outcomes (see Figures 1(e) and (f) for comparison, details can be
found in § 4.4.1). This inspires the design of a module for enhancing
the primary text prior, resulting in the creation of the Enhanced
Text Prior (ETP), which is comparable in effectiveness to TP-HR
(shown in Figures 1(f) and (g)). The ETP provides valuable guid-
ance to the SR network, promoting the generation of SR images
with high semantic accuracy. Given the remarkable performance of
diffusion models [20, 56], we propose a diffusion-based Text Prior
Enhancement Module (TPEM) to obtain the ETP owing to their
ability to map complex distributions [67]. In addition, considering
that the goal of STISR is to increase the resolution and readability
of LR scene text images, we adopt the Multi-Task Learning (MTL)
paradigm in the training phase, where the image restoration task
aims at generating high-quality SR images, and the text recognition
task stimulates the model to generate more readable SR results. In
a nutshell, main contributions of our work are three-fold:

• We devise an AMM containing horizontal and vertical at-
tention mechanisms to model the long-range dependence in
scene text images, thereby recovering the visual structure of
images with long or deformed text.

• A diffusion-based TPEM is further proposed to enhance the
primary text prior. The resulting ETP guides the SR network
to generate SR images with improved semantic accuracy.

• Empirical studies show that PEAN attains the SOTA perfor-
mance on the TextZoom [62] benchmark. We also conduct
experiments to explore the reasons behind the performance
improvement of the SR network.

2 RELATEDWORK
2.1 Scene Text Image Super-Resolution
Scene text image super-resolution (STISR) has received surging
attention in the computer vision community. Different from the
classic single image super-resolution (SISR) task, STISR aims at in-
creasing the resolution and legibility of scene text images simultane-
ously [81], serving as a pre-processing method for the downstream
recognition task.

The milestone works in STISR are the TextZoom benchmark and
the TSRN model [62], which promote the development of follow-up
approaches. We roughly classify them into two categories. One
category of methods focuses on recovering the visual structure of
LR scene text images. Among them, TSRN [62] and PCAN [74] use
several CNN-BiLSTM blocks to complete the SR process. TSAN [82]
adopts a gradient-based graph attention method to extract more
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Figure 2: Overview of the architecture of our proposed Prior-Enhanced Attention Network (PEAN).

effective representations for STISR. Another category considers the
semantic information as the text prior to guide the SR process. In
this category, TPGSR [34] and TATT [35] utilize the pre-trained
recognizer to generate the text prior from LR images, boosting
the model to generate SR images with correct text. C3-STISR [75]
employs a language model [14] to rectify the text prior and uses
triple clues to realize STISR.

2.2 Scene Text Recognition
Scene text recognition (STR) aims at reading text contents from
natural images. The pioneering work CRNN [52] uses the CNN-
BiLSTM framework and the CTC [18] loss to perform STR for the
first time. ASTER [53] further exploits the Thin-Plate Spline (TPS)
transformation [22] to understand scene text images with deformed
or irregular layouts. The concurrent workMORAN [33] also handles
these cases via a multi-object rectification network.

Recently, language models have been integrated into STRmodels
and the fusion of vision and language features shows a great po-
tential to improve the scene text understanding. SRN [69] employs
an autoregressive language model to rectify the recognition results
generated by visual features. Additionally, ABINet [14] shows that
masked language models [9], capable of providing bidirectional
representations, constitute another effective option for rectification.
Furthermore, PARSeq [2] creatively adopts an internal language
model as a spell-checker, eliminating the need for the pre-training
process in ABINet [14].

2.3 Diffusion Models
In computer vision, diffusion models [20] emerge as robust proba-
bilistic generative models, facilitating tasks like image synthesis [17,
48], text-to-image synthesis [38, 50], image restoration [15, 67] and
image inpainting [80] through the iterative diffusion of information
among pixels. Recently, diffusion models have also been employed
in the super-resolution task. SR3 [51] is the pioneering work that
applies diffusion models to SISR. TextDiff [29] represents the initial
attempt at a diffusion-based model designed specifically for STISR,
focusing on enhancing the visual structure of text within images
by refining their contours for a more natural appearance.

In contrast to existing methods, the proposed PEAN uses the
diffusion-based TPEM to provide the SR network with enhanced

semantic guidance, further resulting in SR images with heightened
semantic accuracy.

3 METHODOLOGY
This section first gives an overview of the Prior-Enhanced Atten-
tion Network (PEAN). Then we present the proposed Text Prior
Enhancement Module (TPEM), Attention-based Modulation Mod-
ule (AMM) and the Multi-Task Learning (MTL) paradigm.

3.1 Overall Architecture
The pipeline of our proposed PEAN is shown in Figure 2. Given one
LR image 𝐼 lr ∈ R𝐻×𝑊 ×𝐶 , the Text Prior Generator (TPG) outputs
the recognition probability sequence as the primary text prior 𝑃 l.
Then, the diffusion-based TPEM refines it to obtain the ETP denoted
as 𝑃e, which can assist the SR network to generate SR images with
improved semantic accuracy. Concurrently, a convolutional layer
is adopted to extract the shallow visual feature 𝐹 s from 𝐼 lr, which
is then aligned with the refined text prior by a Feature Alignment
Module (FAM). Then an AMM with 𝑁 blocks is introduced to mine
the internal dependence between characters in the image, thereby
facilitating the SR process. For the 𝑖th block of AMM (i.e., 𝐵𝑖 ), its
output 𝐹o

𝑖
is firstly concatenated with the aligned feature (i.e., 𝐹 a)

in the channel dimension to get 𝐹 c
𝑖+1. The fusion feature is then sent

into 𝐵𝑖+1 for further processing. Finally, a Super-Resolution Module
(SRM) containing several convolutional and batch normalization
layers, receives 𝐹o

𝑁
as input and utilizes a PixelShuffle [54] operation

to generate the SR image 𝐼 sr ∈ R2𝐻×2𝑊 ×𝐶 . Notably, in the training
phase, 𝐹o

𝑁
is also sent into an Auxiliary Recognition Module (ARM),

which outputs the recognition probability sequence of the SR image.
The outputs of TPEM, SRM and ARM enable the optimization of
the model in an Multi-Task Learning (MTL) paradigm, steering the
model to generate plausible and readable SR images.

3.2 Text Prior Enhancement Module
As demonstrated by previousworks [8, 10], strong prior information
plays a pivotal role in solving SR problems, while the primary text
prior applied in previous works is not powerful enough because it
originates from LR scene text images. Our exploratory experiments,
detailed in § 4.4.1, also underline the influential role of TP-HR in
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Figure 3: Overview of the architecture of the FAM and the strip-wise attention mechanism inside LAM and GAM.

guiding the SR network to generate images with improved semantic
accuracy for the model. Therefore, we introduce the TPEM to obtain
the ETP, which can effectively guide the SR network, similarly to
the efficacy of TP-HR. The core component of TPEM is the denoiser,
denoted as 𝑓𝜃 , which leverages the reverse diffusion process [20]
to estimate the enhanced prior, providing substantial semantic
guidance to the SR network.

3.2.1 Forward Diffusion Process. In the training phase, with a
given HR image, denoted as 𝐼hr ∈ R2𝐻×2𝑊 ×𝐶 , the TPG generates a
sequence of recognition probabilities, referred to as 𝑃h ∈ R𝐿×|A| ,
serving as our ground truth. 𝐿 is the length of the sequence and |A|
is the cardinality of the recognizable letter set. Consequently, in
line with Ho et al. [20], we incrementally introduce Gaussian noise
denoted as 𝜖 to the initial variable 𝑥0 = 𝑃h based on the timestamp,
as follows:

𝑞 (𝑥𝑡 | 𝑥𝑡−1) = N
(
𝑥𝑡 ;

√
𝛼𝑡𝑥𝑡−1, (1 − 𝛼𝑡 ) 𝑰

)
, (1)

Here, 𝛼𝑡 is a hyperparameter that controls the variance of the added
Gaussian noise at each time step. Leveraging the reparameterization
trick [24], we can express 𝑥𝑡 as:

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝑰 ), (2)

where 𝛼𝑖 ∈ [0, 1], 𝛼𝑡 =
∏𝑡

𝑖=0 𝛼𝑖 , 𝑡 = 1, 2, · · · ,𝑇 . As 𝑇 → ∞, 𝑥𝑇
converges to an isotropic Gaussian distribution. Consequently, dur-
ing the inference phase, the forward diffusion process simplifies to
initializing 𝑥𝑇 ∼ N(0, 𝑰 ).

3.2.2 Reverse Diffusion Process. In the reverse diffusion pro-
cess, Gaussian noise gradually transforms into the ETP, denoted as
𝑃e ∈ R𝐿×|A| , conditioned on the primary text prior 𝑃 l ∈ R𝐿×|A| .
The latter is the output recognition probability sequence of the
TPG, with 𝐼 lr as input. This process can be formulated as follows:

𝑝𝜃

(
𝑥𝑡−1 | 𝑥𝑡 , 𝑃 l

)
= 𝑞

(
𝑥𝑡−1 | 𝑥𝑡 , 𝑓𝜃

(
𝑥𝑡 , 𝑃

l, 𝑡
))

, (3)

where 𝑓𝜃 is an MLP-based denoising network, the architecture of
which can be found in § A of the Supplementary Material. Similar to
previousworks [29, 67, 68, 76], we opt to directly estimate 𝑃e instead
of 𝜖 for performance improvement. Experiments in § 4.4.1 verifies
the effectiveness of this design. The whole process is supervised by
the MAE and CTC loss [18], given by:

Ldiff = 𝜆1
������𝑃h − 𝑃e

������
1︸       ︷︷       ︸

Lmae

+ 𝜆2Lt
ctc, (4)

where 𝜆1 and 𝜆2 are theweight of the two losses. During the training
phase, this reverse sampling process is a Markov process contain-
ing 𝑇 steps, which is computationally intensive. Therefore, in the
inference phase, we adopt the sampling strategy of DDIM [56] with
𝑆 steps (𝑆 ≪ 𝑇 ) following previous works [80]. Experiments in the
Supplementary Material validate the effectiveness and efficiency of
this design.

Besides, a feature alignment process between the shallow visual
feature and the ETP is required to facilitate the SR process. We
design a Feature Alignment Module (FAM) to obtain the aligned
feature 𝐹 a ∈ R𝐻×𝑊 ×𝐶1 , where 𝐶1 is the dimension of the shallow
visual feature. The architecture of the FAM is shown in Figure 3(a).

3.3 Attention-Based Modulation Module
We design an Attention-based Modulation Module (AMM) to cap-
ture long-range dependence, thereby effectively restoring the visual
structure of images with long or deformed text. As can be seen in
Figure 2, AMM contains 𝑁 blocks, each block (i.e., 𝐵𝑖 ) including a
simple convolutional layer, a Local Attention Module (LAM) and
a Global Attention Module (GAM). For 𝐵𝑖 , it receives the output
of 𝐵𝑖−1, which is then concatenated with 𝐹 a channel-wisely to get
𝐹 c
𝑖
, serving as the input of this block. Since the dimension of 𝐹𝑐

𝑖
is

located in R𝐻×𝑊 ×2𝐶1 , a convolutional layer is adopted to project
it to the same space as 𝐹o

𝑖−1, as:

𝐹 loc
𝑖 = Conv

(
Concat

(
𝐹o
𝑖−1, 𝐹

a) ) ∈ R𝐻×𝑊 ×𝐶1 . (5)

Firstly, a LAM is adopted to model the local similarity between
intra- and inter-character features. Considering that for a scene
text image, the horizontal contexts contain correlation information
between characters while the vertical contexts contain internal fea-
tures inside a character, such as the stroke information [62, 74], we
propose to perform the strip-wise attention mechanism [11, 21, 58]
on the fusion feature to capture long-range dependence. Taking the
horizontal attention as an example. As shown in Figure 3(b), 𝐹 loc

𝑖
is

split into𝑊 strips in the width dimension and the attention mecha-
nism is applied to each of the𝑊 strips. The resulting feature is then
concatenated to form the horizontal feature 𝐹 loc(h)

𝑖
∈ R𝐻×𝑊 ×𝐶1 .

Likewise, the vertical attention mechanism can also result in the
vertical feature 𝐹

loc(v)
𝑖

∈ R𝐻×𝑊 ×𝐶1 . 𝐹 loc(h)
𝑖

and 𝐹
loc(v)
𝑖

are con-
catenated in the channel dimension and a convolutional layer is
used to fuse them. Then the FFN with residual connection is intro-
duced to perform non-linear transformation, given by:

𝐹
glo
𝑖

= 𝐹 loc
𝑖 + Conv

(
Concat

(
𝐹

loc(h)
𝑖

, 𝐹
loc(v)
𝑖

))
, (6)
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𝐹
glo
𝑖

= 𝐹
glo
𝑖

+ FFN
(
𝐹

glo
𝑖

)
∈ R𝐻×𝑊 ×𝐶1 . (7)

However, the interaction between character-level features is
limited in a local manner [79]. To encourage global interaction, we
employ the strip-wise GAM as the complementation of the LAM,
thus further modeling the global similarity between intra- and
inter-character features. Specifically, the width dimension of 𝐹glo

𝑖
is mer-ged with the channel dimension, leading to a feature map
located in R𝐻×𝐶1𝑊 , as can be seen in Figure 3(c). The strip-wise
attention mechanism is imposed on it to capture the global inter-
character dependence, resulting in the feature 𝐹glo(h)

𝑖
∈ R𝐻×𝐶1𝑊 .

Likewise, the height dimension of 𝐹glo
𝑖

is merged with the channel
dimension, and the attention mechanism is applied to this feature
map, leading to the feature 𝐹

glo(v)
𝑖

∈ R𝑊 ×𝐶1𝐻 . With the aid of
them, the horizontal and vertical attention mechanisms can work
globally to promote global-level interaction of character features.
Similar workflow as Eq. (6) and (7) is adopted to get the final feature
of 𝐵𝑖 , namely 𝐹o

𝑖
∈ R𝐻×𝑊 ×𝐶1 .

3.4 Multi-Task Learning
While previous researches [19, 34, 35, 70, 75] adopt the MTL para-
digm by incorporating an additional text prior loss [35] to fine-tune
the TPG for better text priors, our approach differs in the utilization
of the MTL paradigm. We employ this paradigm not only to ensure
image quality but also to facilitate text recognition. This distinction
arises from the fact that STISR aims to simultaneously enhance the
resolution and legibility of scene text images [81].

3.4.1 Image Restoration Task. To begin with, we employ an
image restoration task to generate high-quality SR images. As can
be seen in Figure 3, the output of the last block of AMM, i.e., 𝐹o

𝑁
,

is sent into a Super-Resolution Module (SRM) to get the SR im-
age 𝐼 sr ∈ R2𝐻×2𝑊 ×𝐶 . It uses several convolutional layers with
batch normalization and Mish [37] activation function for feature
refinement and adopts a PixelShuffle [54] operation to increase the
resolution. To ensure the pixel-level and structure-level coherence
between 𝐼 sr and 𝐼hr, the Mean-Square-Error (MSE) loss and the
Stroke-Focused Module (SFM) loss [6] are applied between the two
images, formulated as:

Limg = 𝜆3
������𝐼hr − 𝐼 sr

������2
2︸        ︷︷        ︸

Lmse

+ 𝜆4
������𝐴hr −𝐴sr

������
1︸          ︷︷          ︸

Lsfm

, (8)

where 𝐴 is the attention map fetched from a Transformer-based
recognizer [6]. 𝜆3 and 𝜆4 are the weights of the MSE and SFM loss
respectively.

3.4.2 Text Recognition Task. Considering that high image qual-
ity may not be equal to superior recognition results [19, 29], we
introduce an Auxiliary Recognition Module (ARM), steering the
model to generate SR images with promising legibility. In the infer-
ence phase, this module is abandoned, causing no extra computation
complexity.

We exploit the classic and effective CNN-BiLSTM architecture
applied in the STR task to design the ARM for simplicity [52]. Its
output is a recognition probability sequence on the basis of 𝐹o

𝑁

and we denote it as 𝑃a ∈ R𝐿×|A| , where 𝐿 is the length of the

sequence and |A| is the cardinality of the recognizable letter set.
The CTC [18] loss denoted as La

ctc is imposed between 𝑃a and the
ground truth for better optimization. In a word, the total loss of the
text recognition task is:

Ltxt = 𝜆5La
ctc, (9)

where 𝜆5 is the weight of the CTC [18] loss for the text recognition
task. In the training phase, we optimize the parameters of PEAN.
The total loss is:

L = Ldiff + Limg + Ltxt . (10)

4 EXPERIMENTS
In this section, we first introduce the datasets and evaluation met-
rics. Then the implementation details are thoroughly described.
Subsequently, comprehensive experiments are conducted to demon-
strate that our proposed PEAN is an effective alternative for STISR.

4.1 Datasets and Evaluation Metrics
We conduct experiments on the TextZoom [62] benchmark. How-
ever, due to some inherent drawbacks of it, these experiments
are not enough to reflect that PEAN surely has the ability to re-
store the complete visual structure. Therefore, we select 651 images
with the resolution no greater than 16 × 64 as LR images from
the IIIT5K [36], SVTP [42] and IC15 [23] datasets for evaluation.
Details of the datasets and drawbacks of TextZoom can be found
in § B.2 of the Supplementary Material. For TextZoom, following
previous works [5, 6, 19, 34, 35, 62, 70, 75], we adopt ASTER [53],
MORAN [33] and CRNN [52] for evaluation. In § B.1 of the Supple-
mentary Material, we also adopt three recent Transformer-based
recognizers, i.e., MGP-STR [61], ABINet [14] and VisionLAN [64]
for evaluation. For the constructed dataset, PSNR and SSIM [65]
are selected as metrics to evaluate the image quality.

4.2 Implementation Details
Our model is implemented with the Pytorch 1.10 deep learning
library [41]. All of the experiments are conducted on 1 NVIDIA
TITAN RTX GPU. In the training phase, the model is trained for 200
epochs and optimized by the AdamW [31] optimizer. The learning
rate and the size of the mini-batch are set as 0.001 and 32 respec-
tively. The weight of each loss is set as 𝜆1 = 1, 𝜆2 = 1, 𝜆3 = 0.8,
𝜆4 = 75, 𝜆5 = 1. In terms of the network architecture, the number of
blocks in AMM is 6. The sampling timestep in the TPEM is set as 1.
Following CRNN [52], the number of convolutional layers applied in
the ARM is 6. We first drop the TPEM and pre-train the model with
TP-HR, then the TPEM is introduced and weights of parameters
obtained by pre-training are initialized to continue the fine-tuning
process of the model. Of note, if this setting is abandoned, PEAN
can still achieve SOTA performance on the TextZoom [62] dataset.
Ablation studies about the weight of loss functions and the pre-
training and fine-tuning setting can be found in § B.3.5 and § B.3.6
of the Supplementary Material respectively. In the main paper, we
study our method on top of PARSeq [2] as the TPG. In § B.3.6 of the
Supplementary Material, we also study the cases when CRNN [52]
and ABINet [14] are adopted as the TPG.
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Table 1: The recognition accuracy of some mainstream STISR methods on the three subsets of TextZoom. Best scores are bold.

Methods Accuracy of ASTER [53] (%) Accuracy of MORAN [33] (%) Accuracy of CRNN [52] (%)
Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

LR 62.4 42.7 31.6 46.6 59.4 36.0 28.2 42.3 37.5 21.2 21.4 27.3
SRCNN [10] 69.4 43.4 32.2 49.5 63.2 39.0 30.2 45.3 38.7 21.6 20.9 27.7
SRResNet [27] 69.6 47.6 34.3 51.3 60.7 42.9 32.6 46.3 39.7 27.6 22.7 30.6
RDN [73] 70.0 47.0 34.0 51.5 61.7 42.0 31.6 46.1 41.6 24.4 23.5 30.5
RRDB [63] 70.9 44.4 32.5 50.6 63.9 41.0 30.8 46.3 40.6 22.1 21.9 28.9
LapSRN [26] 71.5 48.6 35.2 53.0 64.6 44.9 32.2 48.3 46.1 27.9 23.6 33.3
ESRT [10] 69.8 49.1 35.2 52.5 61.9 41.7 32.2 46.3 48.2 27.9 25.8 34.8

Omni-SR [60] 71.2 52.3 38.1 54.9 66.7 47.9 36.5 51.4 54.8 37.4 29.4 41.4
SRFormer [78] 69.0 45.1 32.8 50.2 61.3 39.6 29.9 44.7 41.0 22.8 22.9 29.6
TSRN [62] 75.1 56.3 40.1 58.3 70.1 53.3 37.9 54.8 52.5 38.2 31.4 41.4
TBSRN [5] 75.7 59.9 41.6 60.1 74.1 57.0 40.8 58.4 59.6 47.1 35.3 48.1
PCAN [74] 77.5 60.7 43.1 61.5 73.7 57.6 41.0 58.5 59.6 45.4 34.8 47.4
TG [6] 77.9 60.2 42.4 61.3 75.8 57.8 41.4 59.4 61.2 47.6 35.5 48.9

SGENet [57] 75.8 60.7 45.0 61.4 71.5 56.2 41.4 57.3 59.4 47.9 37.7 49.0
TPGSR [34] 78.9 62.7 44.5 62.8 74.9 60.5 44.1 60.5 63.1 52.0 38.6 51.8
TATT [35] 78.9 63.4 45.4 63.6 72.5 60.2 43.1 59.5 62.6 53.4 39.8 52.6

C3-STISR [75] 79.1 63.3 46.8 64.1 74.2 61.0 43.2 60.5 65.2 53.6 39.8 53.7
TATT + DPMN [81] 79.3 64.1 45.2 63.9 73.3 61.5 43.9 60.4 64.4 54.2 39.2 53.4

TSAN [82] 79.6 64.1 45.3 64.1 78.4 61.3 45.1 62.7 64.6 53.3 38.8 53.0
TEAN [55] 80.4 64.5 45.6 64.6 76.8 60.8 43.4 61.4 63.7 52.5 38.1 52.2
MSPIE [83] 80.4 63.4 46.3 64.4 74.0 61.4 44.4 60.8 64.5 54.2 39.6 53.5
TCDM [39] 81.3 65.1 50.1 65.5 77.6 62.9 45.9 62.2 67.3 57.3 42.7 55.7
LEMMA [19] 81.1 66.3 47.4 66.0 77.7 64.4 44.6 63.2 67.1 58.8 40.6 56.3
RTSRN [70] 80.4 66.1 49.1 66.2 77.1 63.3 46.5 63.2 67.0 59.2 42.6 57.0
RGDiffSR [77] 81.1 65.4 49.1 66.2 78.6 62.1 45.4 63.1 67.6 56.5 42.7 56.4
TextDiff [29] 80.8 66.5 48.7 66.4 77.7 62.5 44.6 62.7 64.8 55.4 39.9 54.2

PEAN 84.5 71.4 52.9 70.6 79.4 67.0 49.1 66.1 68.9 60.2 45.9 59.0
HR 94.2 87.7 76.2 86.6 91.2 85.3 74.2 84.1 76.4 75.1 64.6 72.4

Figure 4: Statistics on the performance of different text prior-
based models with publicly available weights on images con-
taining text of different lengths.

4.3 Comparing with State-of-the-Art Methods
We evaluate our proposed PEAN on the TextZoom benchmark [62]
and compare its performance with several typical STISR methods.
The results are presented in Table 1. It is evident that our proposed
PEAN achieves new SOTA performance with significant improve-
ments. For instance, when considering the recognition accuracy
of ASTER [53], our model shows an average improvement of +4.2

compared with the existing SOTA model, namely, TextDiff [29].
Furthermore, we provide statistics on the performance of different
text prior-based models [19, 35, 75] on images containing text of
different lengths. For a fair comparison, all selected models use
publicly available weights. As illustrated in Figure 4, PEAN outper-
forms other models across nearly every text length. It is particularly
superior to previous works with images containing lengthy text,
establishing itself as the first model capable of processing images
containing text with up to 15 letters.

In addition, we provide some visualizations of samples from
TextZoom recovered by several representative STISR models, as
shown in Figure 5. With the assistance of the ETP, PEAN is able to
generate SR images with improved semantic accuracy compared
with previous text prior-based methods [19, 35, 75]. Although early
methods such as TSRN [62] can generate SR images with correct
semantic information for words like “cooking”, it is obvious that
the visual structure of the text in images is disastrous.

Additionally, we perform experiments on the dataset we built
without retraining the models. Improved performance on PSNR and
SSIM in Table 2 shows that compared with previous representative
STISR methods, PEAN is better at recovering the visual structure
of the text in images.
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Figure 5: Visualization of SR images and their recognition results by ASTER. Red characters indicate wrong recognition results.

Table 2: The performance of representative STISR models on
the dataset we built.

Methods PSNR SSIM
TSRN [62] 21.48 0.7743
TBSRN [5] 23.01 0.7967
TG [6] 21.84 0.7116

TATT [35] 23.31 0.8012
C3-STISR [75] 21.03 0.7602
LEMMA [19] 22.09 0.7549

PEAN 24.24 0.8021

4.4 Ablation Study
Here we conduct ablation studies to demonstrate the effectiveness
of components in our model. All the experiments are conducted on
TextZoom and we report the recognition accuracy of ASTER [53].

4.4.1 Text Prior and the Enhancement Module. We conduct
experiments to verify the importance of incorporating the text prior
and the enhancement module into our model. The results shown in
Table 3 justify that the introduction of the text prior can improve
the performance of the SR process. However, this primary text
prior from LR images is not robust enough to guide the SR network
to generate SR images with high semantic accuracy. Considering
that TP-HR can serve as a powerful alternative for guidance, we
conduct an exploratory experiment wherein we substitute TP-LR

with TP-HR. Results shown in the last row of the table demonstrate
that leveraging the powerful prior information from HR images
can significantly boost the performance of text prior-based STISR
methods. This observationmotivates us to design amodule aimed at
enhancing the primary text prior from LR images, thereby providing
further guidance to the SR network for generating images with high
semantic accuracy. Results displayed in the table indicate that our
proposed TPEM is able to produce the ETP, which significantly
improves the performance over the model with TP-LR among all
subsets by +6.8 on average.

Table 3: Analysis of the impact of the text prior and the TPEM.
The last row shows the results of the exploratory experiment
as illustrated in Figure 1(f).

TP-LR TPEM TP-HR Easy Medium Hard Average
75.7 60.2 42.1 60.4

✓ 79.7 62.3 46.1 63.8
✓ ✓ 84.5 71.4 52.9 70.6

✓ 88.4 75.5 61.3 75.9

4.4.2 Impact of the AMM. Here we perform experiments to
justify the superiority of the AMM adopted in our model. As pre-
sented in Table 4, the comparison reveals the following points: (1)
Our proposed AMM handles the STISR task in a more effective
way than the CNN-BiLSTM-based SRB [62]. The local inductive
bias of the CNN [12, 44] and the rigid nature of BiLSTM [59, 81]
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limit its performance in recovering the visual structure of images
with long or deformed text [5, 35], while the AMM can solve this
problem. (2) The typical ViT-based architectures [11, 12, 30] show
trivial performance, as a result of the tendentious design for high-
level vision tasks, which neglects the inherent characteristic of
STISR. (3) Although employing the strip-wise attention mechanism,
Stripformer [58], which also leverages the conditional positional
encodings [7] and several residual blocks for the image deblurring
task, fails in the STISR task. On average, PEAN obtains an improve-
ment of the performance of +5.9 from the AMM. Experiments in
§ B.3.4 of the Supplementary Material show that even without the
MTL paradigm, the AMM still outperforms the SRB [62].

Table 4: Ablation study on the impact of the AMM.

Methods Easy Medium Hard Average
SRB [62] 80.1 64.4 46.4 64.7
ViT [12] 81.8 65.7 49.5 66.7
Swin [30] 73.8 55.1 39.0 57.1
CSWin [11] 70.2 52.9 37.2 54.5

Stripformer [58] 72.9 53.6 37.3 55.7
AMM 84.5 71.4 52.9 70.6

4.4.3 Effect of the MTL Paradigm. In this part, we conduct
experiments to show the effect of the MTL paradigm introduced in
our work. The results shown in Table 5 indicate that: (1) The stroke-
based SFM loss [6] provides an average contribution of +4.6 for the
improved performance, which convinces us that the preservation of
visual structure plays a vital role in STISR. (2) The text recognition
task employed in our work is also indispensable. The CTC [18]
loss applied on the output of ARM (La

ctc) brings correct semantic
constraint for the AMM. Besides, the CTC loss imposed on the ETP
(Lt

ctc) ensures the coherence between the text prior and the ground
truth text label, guiding the training of the enhancement module
in a precise way. We provide more detailed experiments in § B.3.4
of the Supplementary Material.

Table 5: Ablation study on the effect of MTL.

Loss Functions Easy Medium Hard Average
Lmse 76.2 58.8 41.5 59.9
+Lsfm 79.2 64.3 47.0 64.5
+Lmae 79.6 65.1 47.1 64.9
+Lt

ctc 81.4 68.8 50.7 67.9
+La

ctc 84.5 71.4 52.9 70.6

4.5 Representation Analysis
In this section, we delve into the reasons about the ability of the ETP
that guides the SR network in generating images with improved
semantic accuracy. In Table 3, we observe superior performance
for PEAN with TP-HR, while PEAN with TP-LR exhibits poorer
results compared to PEAN with ETP, as demonstrated in Table 3.
To further investigate these observations, following the common
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Figure 6: Results of representation comparison by CKA [25].

analysis setting on Vision Transformers [40, 44], we employ the
linear centered kernel alignment (CKA) [25] to assess the similarity
of representations among these three models.

As depicted in Figure 2, the introduction of the text prior influ-
ences the representations of the AMMand SRMduring the inference
phase. Therefore, we focus on comparing the representational sim-
ilarity of the layers in these two modules. We categorize the 22
layers into two groups for analysis: layers of AMM (0th∼11th layer)
and layers of SRM (12th∼21st layer). As shown in the diagonal sec-
tion of Figure 6, distinct differences in representations are evident
across all layers of AMM when comparing PEAN (w/ ETP) and
PEAN (w/ TP-LR). Conversely, a consistently high similarity is ob-
served between PEAN (w/ ETP) and PEAN (w/ TP-HR). Regarding
the layers of SRM, variations in representational similarity mainly
exists in the shallow layers (12th∼14th layer).

Consequently, we can conclude that the power of the ETP lies
in its ability to make the representations learned by AMM and SRM
more similar to those learned by the corresponding modules in PEAN
(w/ TP-HR), which is known for its superior performance. This study
further justifies that the combination of our proposed TPEM and
AMM brings out powerful capabilities.

5 CONCLUSION
In this paper, we propose a Prior-Enhanced Attention Network
(PEAN) for scene text image super-resolution (STISR). Specifically,
we design a Text Prior Enhancement Module (TPEM) to provide
the ETP for the subsequent SR process, enabling SR images to
contain accurate semantic information. Moreover, an Attention-
based Modulation Module (AMM) is devised to obtain local and
global coherence in scene text images, which can recover the visual
structure of images with text in various sizes and deformations.
Additionally, we introduce theMulti-Task Learning (MTL) paradigm
to improve the legibility of LR images. Experiments demonstrate
that our proposed PEAN achieves SOTA performance through the
interaction of these designs. We believe our work will serve as a
strong baseline for future works, and will push forward the research
of STISR as well as other sub-fields of scene text images.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (Nos. 62076062 and 62306070) and the Social Devel-
opment Science and Technology Project of Jiangsu Province (No.
BE2022811). Furthermore, the work was also supported by the Big
Data Computing Center of Southeast University.



PEAN: A Diffusion-Based Prior-Enhanced Attention Network for Scene Text Image Super-Resolution MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

SUPPLEMENTARY MATERIAL
In this Supplementary Material, we provide:

• More details about the MLP-based denoising network, de-
noted as 𝑓𝜃 , in the TPEM. This is mentioned in the “Method-
ology” part (§ 3.2.2) of the main paper.

• More experiments and ablation studies on the TextZoom
Dataset. This is mentioned in the “Experiments” part (§ 4.4)
of the main paper.

• More visualization results on the dataset we built. This is
also mentioned in the “Experiments” part (§ 4.1, 4.2) of the
main paper.

A DETAILS OF THE DENOISING NETWORK
In this section, we present a detailed description of the denoising
network, denoted as 𝑓𝜃 , employed in the TPEM. In prevalent diffu-
sion models applied to tasks such as Single Image Super-Resolution
(SISR) [16, 51] and image deblurring [47, 66], where the network
is designed to process images, researchers often opt for the U-Net
architecture [49] as the denoising network. However, in our work,
the TPEM is designed to enhance the primary text prior, which is
a recognition probability sequence. To achieve this objective, we
introduce an MLP-based architecture. The input to 𝑓𝜃 consists of
three components: the noisy text prior at timestep 𝑡 (denoted as 𝑥𝑡 ),
the primary text prior extracted from low-resolution (LR) images
(denoted as 𝑃 l), and the timestep (denoted as 𝑡 ). Of these inputs, 𝑃 l

is concatenated with 𝑥𝑡 along the second dimension, serving as a
conditioning factor for the denoising process. To reduce the dimen-
sion and obtain the fused feature 𝑥0

𝑡 , we employ a 1D convolutional
layer with a kernel size of 1 × 1. Simultaneously, the timestep 𝑡 is
encoded into a time embedding (denoted as 𝑡𝑒 ) using a positional
encoding module [59]. Subsequently, we utilize four MLP blocks to
refine the feature based on the time embedding, with the output of
the final MLP layer representing the denoised feature at timestep
𝑡 , which is also the input for timestep 𝑡 − 1. For a comprehensive
overview of the architecture of 𝑓𝜃 , please refer to Table I.

B MORE EXPERIMENTS ON TEXTZOOM
In this section, we conduct more experiments and ablation studies
on the TextZoom benchmark [62] to further demonstrate that our
proposed Prior-Enhanced Attention Network (PEAN) can serve
as an effective alternative for scene text image super-resolution
(STISR). TextZoom [62] is a common benchmark for STISR, con-
taining 17367 and 4373 paired LR-HR images collected in natural
scenarios for training and testing, respectively. According to the
degree of blurriness, the testing set is divided into three subsets,
namely easy (1619 pairs), medium (1411 pairs) and hard (1343 pairs).
The sizes of LR and HR images are 16× 64 and 32× 128 respectively.
Noteworthy, following the common practice in existing works, in
this paper, the reported “Average” results are the weighted average
on the three subsets of TextZoom, which is formulated as:

Accavg =
Acc𝑒 · 𝑁𝑒 + Acc𝑚 · 𝑁𝑚 + Accℎ · 𝑁ℎ

𝑁𝑒 + 𝑁𝑚 + 𝑁ℎ

, (11)

where Acc𝑒 , Acc𝑚 and Accℎ denote the recognition accuracy on
the “easy”, “medium” and “hard” subsets respectively. 𝑁𝑒 , 𝑁𝑚 and

Table I: Architecture of the MLP-based denoising network. 𝑁
is the size of themini-batch. Grey rows show the components
of MLP Block 1, similar to MLP Block 2, 3 and 4.

Input Input size Output Output size Module / Operation
𝑥𝑡 [𝑁 , 26, 37]

𝑥0
𝑡 [𝑁 , 52, 37] Concatenate

𝑃 l [𝑁 , 26, 37]
𝑥0
𝑡 [𝑁 , 52, 37] 𝑥0

𝑡 [𝑁 , 26, 37] Convolution
𝑡 [𝑁 , 1] 𝑡𝑒 [𝑁 , 1, 26] Positional Encoding
𝑥0
𝑡 [𝑁 , 26, 37] 𝑥0

𝑡 [𝑁 , 26, 37] Batch Normalization
𝑥0
𝑡 [𝑁 , 26, 37] 𝑥0

𝑡 [𝑁 , 26, 148] Linear
𝑥0
𝑡 [𝑁 , 26, 148] 𝑥0

𝑡 [𝑁 , 26, 148] Swish [45] Function
𝑡𝑒 [𝑁 , 1, 26] 𝑡𝑒 [𝑁 , 26, 1] Linear & Reshape
𝑥0
𝑡 [𝑁 , 26, 148]
𝑡𝑒 [𝑁 , 26, 1] 𝑥1

𝑡 [𝑁 , 26, 148] Repeat & Add

𝑥1
𝑡 [𝑁 , 26, 148]

𝑥2
𝑡 [𝑁 , 26, 296] MLP Block 2

𝑡𝑒 [𝑁 , 1, 26]
𝑥2
𝑡 [𝑁 , 26, 296]

𝑥3
𝑡 [𝑁 , 26, 148] MLP Block 3

𝑡𝑒 [𝑁 , 1, 26]
𝑥3
𝑡 [𝑁 , 26, 148]

𝑥𝑡−1 [𝑁 , 26, 37] MLP Block 4
𝑡𝑒 [𝑁 , 1, 26]

𝑁ℎ denote the number of images in the corresponding subset. For
TextZoom, 𝑁𝑒 = 1619, 𝑁𝑚 = 1411, 𝑁ℎ = 1343.

B.1 Recognition Accuracy of SOTA Recognizers
Following the common practice of existing works, in § 4.3 of the
main paper, we introduce the recognition accuracy of SR images on
three classic scene text recognizers, i.e., ASTER [53], MORAN [33]
and CRNN [52] for evaluation, and our proposed PEAN achieves
new SOTA results with substantial performance improvement. Here
we employ three recent Transformer-based recognizers, i.e., MGP-
STR [61], ABINet [14] and VisionLAN [64] for further evaluation
to demonstrate the robustness of PEAN. The results are shown in
Table II, fromwhichwe can conclude that PEAN can still achieve the
SOTA performance under the evaluation of recent recognizers. This
further justifies that PEAN can surely increase both the resolution
and readability of scene text images, regardless of which recognizer
we choose for evaluation.

B.2 Quality of SR Images
Following the common practice of previous works, we use the
Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity
Index Measure (SSIM) [65] metrics, which are widely utilized in the
classic SISR task, to evaluate the quality of SR images. The results
presented in Table III shows that the quality of SR images generated
by our proposed PEAN is comparable to existing works.

Different from SISR, which aims at improving the image quality
of LR natural images, STISR concentrates more on increasing the
readability of scene text images [62, 81]. Therefore, PSNR and SSIM
areNOT the most suitable metrics for STISR because we empirically
find that readability is not closely related to image quality. Firstly,
as shown in Figure I, it is common that LR images have higher
PSNR or SSIM than SR images. However, it is very difficult for
us to distinguish text in images if we are given such LR images,
but SR images generated by our proposed PEAN make this task



MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Zuoyan Zhao, Hui Xue, Pengfei Fang, and Shipeng Zhu

Table II: The recognition accuracy of some mainstream STISR methods by three recent scene text recognizers on the three
subsets of TextZoom. The best scores are shown in bold. Note that as to methods used for comparison, we adopt the pre-trained
model released by their authors for evaluation.

Methods Accuracy of MGP-STR [61] (%) Accuracy of ABINet [14] (%) Accuracy of VisionLAN [64] (%)
Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

LR 73.4 59.9 45.9 60.6 77.4 58.4 43.5 60.9 74.6 53.3 39.5 56.9
TSRN [62] 67.3 58.7 42.7 57.0 76.2 61.4 44.8 61.8 75.2 58.3 42.7 59.8
TBSRN [5] 72.3 62.9 45.9 61.2 80.2 65.6 48.3 65.7 78.1 62.7 45.3 63.1
TG [6] 71.7 64.7 46.3 61.6 79.8 67.1 49.1 66.3 78.2 63.9 44.3 63.2

TATT [35] 71.3 61.7 45.9 60.4 81.0 65.8 50.0 66.6 79.7 63.9 47.8 64.8
C3-STISR [75] 73.6 63.3 47.8 62.4 81.4 66.2 49.9 66.8 81.0 65.0 47.2 65.5
LEMMA [19] 73.8 65.8 48.6 63.5 83.3 69.5 52.7 69.4 81.7 68.3 49.9 67.6

PEAN 76.5 68.4 52.2 66.4 86.3 73.1 56.5 72.9 83.9 71.3 53.2 70.4
HR 85.2 81.8 76.1 81.3 94.9 90.6 82.7 89.8 94.7 88.8 80.0 88.3

P: 21.89 / S: 0.2931

P: 21.02 / S: 0.1632

LR

SR

HR

P: 20.24 / S: 0.2876

P: 17.41 / S: 0.1400

P: 21.06 / S: 0.3029

P: 18.80 / S: 0.1657

P: 18.47 / S: 0.3343

P: 17.54 / S: 0.2661

Figure I: Visualizations about cases where SR images have
lower PSNR and SSIM than LR images. “P” and “S” stand for
“PSNR” and “SSIM” respectively.

easier. Therefore, methods with high PSNR or SSIM values do not
necessarily produce readable images, and vice versa.

Secondly, some inherent drawbacks of TextZoom [62] make it
unreasonable to adopt PSNR and SSIM for evaluation if we conduct
experiments on this dataset. We roughly divide them into three cat-
egories, i.e., difference of the background color, low-quality HR im-
ages and cutting out of position, as presented in Figure II. Figure II(a)
is a representative example of the “difference of the background
color” drawback, because it is evident that the background color of
LR images is quite different from that of HR images, which further
results in SR images with different backgrounds than HR images.
Since PSNR and SSIM are full-reference image quality assessment
metrics [3], and HR images are used for reference, this difference
has a huge negative impact on the values of PSNR and SSIM for SR
images. Figure II(b) shows another drawback, i.e., “low-quality HR
images”. We can find that for these image pairs, the quality of the
HR image is even worse than that of the LR image. Therefore, PSNR
and SSIM cannot serve as appropriate evaluation metrics because,
for these images, higher PSNR and SSIM mean poorer SR results.

Another common drawback of TextZoom, namely “cutting out
of position”, is illustrated in Figure II(c, d). According to Wang et
al. [62], TextZoom is constructed by cutting scene text images of
different resolutions from the RealSR [4] and SRRAW [71] datasets.
This manual process inevitably causes misalignment as shown in
Figure II(c, d). Since HR images are used as reference images, and
PSNR and SSIM are only calculated at the pixel level, their values
will not be high regardless of the clarity of the SR results.

Aside from our analysis, some recent works [19, 29] on STISR
also find the same issue. Guo et al. [19] state that their proposed LEM

LR

SR

HR

(a) (b) (c) (d)

Figure II: Visualizations of drawbacks of TextZoom.

concentrates more on the restoration of the character areas instead
of the background areas, which occupies most of a scene text image,
so there will be a reduction of PSNR and SSIM. Liu et al. [29] also
draw a conclusion that PSNR and SSIM are only partially aligned
with human perception when evaluating the quality of scene text
images. In a word, we claim that the recognition accuracy of scene
text recognizers is the most suitable evaluation metric for STISR.
PSNR and SSIM are not reliable due to their inherent full-reference
property and the intrinsic drawbacks of the TextZoom dataset.
Thus, values of PSNR and SSIM are only provided for reference.
Low PSNR and SSIM do not necessarily mean the model is not
powerful enough in STISR.

B.3 Additional Ablation Study
We provide more ablation studies to thoroughly analyze the effec-
tiveness of each module we propose, thereby demonstrating the rea-
sonableness and superiority of our proposed PEAN. Consistent with
themain paper, all the experiments are conducted on TextZoom [62]
and we report the recognition accuracy of ASTER [53].

B.3.1 Ablation Study on the TPEM.
Paradigm and Network Architecture. Our proposed TPEM

is a diffusion-based module that employs an MLP-based denois-
ing network, denoted as 𝑓𝜃 . In contrast, many researchers in this
field tend to utilize the U-Net architecture [49] as the denoising
network in mainstream diffusion models [16, 47, 51, 66]. Therefore,
we conduct experiments to demonstrate the suitability of the MLP
architecture for processing the recognition probability sequence.
Additionally, we compare the diffusion-based paradigm with the
traditional regression-based paradigm. In the regression-based ap-
proach, the denoising network takes the primary text prior, denoted
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Table III: The PSNR and SSIM of some mainstream STISR methods on the three subsets of TextZoom. Best scores are bold.

Methods PSNR SSIM
Easy Medium Hard Average Easy Medium Hard Average

TSRN [62] 25.07 18.86 19.71 21.42 0.8897 0.6676 0.7302 0.7690
TSRGAN [13] 24.22 19.17 19.99 21.29 0.8791 0.6770 0.7420 0.7718
TBSRN [5] 23.82 19.17 19.68 21.05 0.8660 0.6533 0.7490 0.7614
PCAN [74] 24.57 19.14 20.26 21.49 0.8830 0.6781 0.7475 0.7752
TG [6] 23.34 19.66 19.90 21.10 0.8369 0.6499 0.6986 0.7341

TPGSR [34] 24.35 18.73 19.93 21.18 0.8860 0.6784 0.7507 0.7774
TATT [35] 24.72 19.02 20.31 21.52 0.9006 0.6911 0.7703 0.7930

C3-STISR† [75] 21.78 18.49 19.60 20.05 0.8529 0.6465 0.7125 0.7432
LEMMA† [19] 23.56 18.94 19.63 20.86 0.8748 0.6869 0.7486 0.7754

PEAN 23.76 19.53 20.20 21.30 0.8655 0.6795 0.7287 0.7635

as 𝑃 l, as input and generates the ETP, denoted as 𝑃e. The archi-
tectures of networks used in both paradigms are similar, with the
key difference being that the only input of the network is 𝑃 l under
the regression-based paradigm. The results presented in Table IV
indicate the following: (1) For both diffusion-based and regression-
based methods, the MLP is more suitable than the U-Net for process-
ing the recognition probability sequence. (2) The diffusion-based
method outperforms the regression-based method, especially when
employing MLP as the denoising network. This superiority can
be attributed to the powerful distribution mapping capabilities of
diffusion models [67].

Table IV: Ablation study about the paradigm and network
architecture of TPEM.

Methods Easy Medium Hard Average
Regression (U-Net) 80.0 64.9 46.5 64.8
Regression (MLP) 80.9 65.5 47.2 65.6
Diffusion (U-Net) 79.6 65.3 46.9 64.9
Diffusion (MLP) 84.5 71.4 52.9 70.6

B.3.2 Optimization Objective for Training the TPEM. Re-
garding to most of the diffusion-based models [16, 47, 48, 51], re-
searchers typically constrain the estimated noise (denoted as 𝜖)
through the loss function, as supported by Ho et al. [20], for the
sake of improving sample quality. However, as discussed in § 3.2.2,
in the context of the TPEM, we choose to directly estimate the
ETP (denoted as 𝑃e) instead of focusing on the noise for enhanced
performance. In this regard, we conduct experiments with both
optimization objectives, and the results are presented in Table V.
We argue that selecting 𝑃e as the optimization target can yield supe-
rior performance in our proposed PEAN because it encourages the
network to concentrate on the enhancement of the text prior itself.
This approach also opens the possibility of introducing additional
constraints on the ETP, such as the CTC loss [18] denoted as Lt

ctc.

†Considering that the paper of C3-STISR [75] and LEMMA [19] only offers the average
value, we measure the PSNR and SSIM of the publicly available pre-trained models to
report values on the three subsets.

Table V: Ablation study about the objective of optimization.

Objectives Easy Medium Hard Average
𝜖 80.0 65.6 46.3 65.0
𝑃e 84.5 71.4 52.9 70.6

Loss Functions. As demonstrated in § 3.2.2 of the main paper,
the optimization process in the TPEM is supervised through the
utilization of the MAE and CTC loss [18]. In this part, we conduct
experiments to validate the choice of the loss functions. In addition
to the aforementioned losses, we also introduce the Kullback-Leibler
(KL) divergence loss in this experiment. Its purpose is to minimize
the discrepancy between the ETP (referred to as 𝑃e) and TP-HR
(denoted as 𝑃h). The results, as presented in Table VI, reveal the
following insights: (1) The MAE loss, a fundamental component
introduced in the pioneering work of diffusion models [20], proves
to be essential. Combining the MAE loss with either the KL diver-
gence loss or the CTC loss leads to an improvement in performance.
(2) In our work, the introduction of the CTC loss provides an im-
provement in performance with +4.8 compared with employing
the MAE loss only. This combined loss results in a more refined
𝑃e, which in turn plays a pivotal role in guiding the SR network to
generate images with enhanced semantic accuracy.

Table VI: Ablation study about the loss function for TPEM.

Loss Functions Easy Medium Hard Average
MAE 80.5 65.8 48.0 65.8
KL 79.9 65.2 47.0 65.1

CTC [18] 82.0 69.0 51.5 68.4
MAE + KL 83.9 70.0 51.2 69.4

MAE + CTC [18] 84.5 71.4 52.9 70.6

Sampling Strategy and Timestep. To strike a balance between
performance and efficiency, we exploit the sampling strategy pro-
posed in DDIM [56] in the sampling process of the TPEM, with
a timestep value of 𝑆 = 1. As demonstrated by Song et al. [56],
the traditional sampling strategy of the DDPM [20] with a large
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number of steps (𝑇 steps, where 𝑇 ≫ 𝑆) can be exceedingly time-
consuming. In this section, we conduct experiments to validate the
effectiveness and efficiency of our proposed PEAN with the chosen
sampling strategy and timestep.

Table VII: The performance of PEANwith the sampling strat-
egy of the DDPM [20] under different sampling timesteps.
“Duration” is the time the model takes to process an image.

Timesteps Easy Medium Hard Average Duration (s)
𝑇 = 200 80.2 66.2 48.8 66.0 0.29
𝑇 = 500 82.4 66.3 47.9 66.6 0.66
𝑇 = 1000 80.0 65.7 48.3 65.7 1.11
𝑇 = 2000 80.7 66.1 49.1 66.3 2.15

Initially, we perform experiments using the sampling strategy
of DDPM [20] while varying the timestep, selecting four different
values for our experiments. The results presented in Table VII re-
veal that this sampling strategy is not efficient. Subsequently, we
substitute such sampling strategy with the one proposed in [56].
As demonstrated by Song et al. [56], with this strategy, smaller
timesteps will result in equal or even superior performance, prompt-
ing us to explore five different timesteps in this set of experiments.
The results showcased in Table VIII verify that this modified sam-
pling strategy speeds up the inference phase of the model. Addi-
tionally, compared with𝑇 = 500, which yields the best performance
for DDPM in our experiments, PEAN exhibits an improvement in
performance by approximately +4.0 in average with this kind of
sampling strategy.

Table VIII: The performance of PEAN with the sampling
strategy of theDDIM [56] under different sampling timesteps.
“Duration” is the time the model takes to process an image.

Timesteps Easy Medium Hard Average Duration (s)
𝑆 = 1 84.5 71.4 52.9 70.6 0.04
𝑆 = 5 79.7 65.9 46.8 65.1 0.09
𝑆 = 10 81.7 69.4 50.6 68.2 0.10
𝑆 = 100 83.2 69.0 50.7 68.6 0.19
𝑆 = 500 82.4 68.5 50.5 68.1 0.68

Furthermore, we compare the efficiency of our proposed PEAN
with other mainstream text prior-based STISR methods [19, 34, 35,
70, 75]. The results displayed in Table IX demonstrate that PEAN is
on par with TPGSR [34], TATT [35] and C3-STISR [75] in terms of
speed, while achieving an average performance improvement of
+6.5. It even outperforms the two recent works, i.e., LEMMA [19]
and RTSRN [70], in both speed and performance. In summary, our
proposed PEAN stands as an effective and efficient solution when
compared to previous works.

B.3.3 Ablation Study on the AMM.
Necessity of LAM and GAM. Strip-wise attention and its

variants have found application across various computer vision
tasks [11, 21, 58]. However, many of these approaches focus solely

Table IX: The performance of the mainstream text prior-
based STISRmethods. “Duration” is the time the model takes
to process an image.

Methods Easy Medium Hard Average Duration (s)
TPGSR [34] 78.9 62.7 44.5 62.8 0.03
TATT [35] 78.9 63.4 45.4 63.6 0.02

C3-STISR [75] 79.1 63.3 46.8 64.1 0.03
LEMMA [19] 81.1 66.3 47.4 66.0 0.07
RTSRN [70] 80.4 66.1 49.1 66.2 0.10

PEAN 84.5 71.4 52.9 70.6 0.04

on local horizontal and vertical attention, neglecting the incorpora-
tion of global contextual information. This study aims at justifying
the indispensability of simultaneously employing both LAM and
GAM in the STISR task. Table X illustrates the following key obser-
vations: (1) Upon removing both LAM and GAM, the model exhibits
trivial performance. Notably, the addition of LAM improves net-
work performance by +1.9, while the inclusion of GAM results in a
further +3.0 improvement. This underscores the effectiveness of
the self-attention mechanism as a component of the feature extrac-
tor. (2) Utilizing LAM or GAM alone yields limited performance
gains. However, the combination of LAM and GAM results in a
substantial performance improvement of +10.1. This underlines
the complementary nature of signals brought by LAM and GAM to
the feature extractor. The reason is that LAM can effectively extract
features on a per-character basis, while GAM facilitates interaction
between characters, enhancing the ability of the model to learn the
semantics of text in images.

Table X: Analysis on the necessity of LAM and GAM.

LAM GAM Easy Medium Hard Average
75.5 60.4 42.5 60.5

✓ 76.8 62.7 44.6 62.4
✓ 78.5 63.0 45.8 63.5

✓ ✓ 84.5 71.4 52.9 70.6

Number of Blocks. In this part, we evaluate how the number of
blocks in the AMM affects the performance of our model. According
to results illustrated in Table XI, we find that when𝑁 = 6, the model
achieves overall the best performance. Therefore, we empirically
choose 𝑁 = 6 as the default setting for all the experiments in the
main paper and this Supplementary Material.

B.3.4 Ablation Study on the MTL Paradigm.
Features Serving as the Input of the ARM. As shown in

Figure 2 of the main paper, in the training phase, the output feature
of the AMM, i.e., the output of the 𝑁 th block (𝑁 = 6 in our paper)
is sent to the ARM. Then the ARM extracts features to perform
the text recognition task in the MTL paradigm. In this part, we
investigate the most proper input feature for the ARM. As presented
in Table XII, we can find that: (1) Even without the ARM and the
MLT paradigm, our proposed PEAN can attain the performance
of 67.9 on average, surpassing the current SOTA method [29] by
+1.5. This reveals that the ARM and the MTL paradigm employed
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Table XI: Analysis on the number of blocks in the AMM.

𝑁 Easy Medium Hard Average
1 81.9 67.4 48.0 66.8
2 82.8 67.9 50.6 68.1
3 83.4 68.0 50.3 68.3
4 83.8 70.5 53.1 70.1
5 84.3 70.4 53.3 70.3
6 84.5 71.4 52.9 70.6
7 84.2 71.0 52.9 70.3
8 83.1 69.1 51.2 68.8

in our proposed PEAN are not the sole components contribute to
the SOTA performance. (2) The adoption of the ARM can truly
facilitate the training process, bringing an additional improvement
in performance by +2.7. (3) However, if the inappropriate feature
is sent into the ARM, the performance is even worse than that
without the ARM. Our experiments show that sending the output
of the 6th block into the ARM is the best choice.

Table XII: Ablation study on features for the input of the
ARM. The first line indicates the case that we do not employ
the ARM for assistance. 𝐵𝑖 denotes the 𝑖th block of the AMM.

Input of ARM Easy Medium Hard Average
w/o ARM 81.4 68.8 50.7 67.9
𝐵1 output 79.1 64.6 47.4 64.7
𝐵2 output 84.2 69.9 51.5 69.5
𝐵3 output 80.1 65.9 45.4 64.9
𝐵4 output 79.2 64.3 47.1 64.5
𝐵5 output 80.1 64.7 45.1 64.4
𝐵6 output 84.5 71.4 52.9 70.6
SRM output 79.6 64.4 46.5 64.5

PerformanceGain from theMTLParadigm.Herewe provide
a more comprehensive comparison between the AMM and the
SRB [62]. While Table 4 in our main paper primarily compares
the AMM and the SRB under the MTL paradigm, we conduct an
additional comparison by excluding such paradigm. The results
are presented in Table XIII. Our findings indicate the following: (1)
Without the MTL paradigm, the AMM still outperforms the SRB
by an average of +4.2. The introduction of it leads to an additional
improvement of +1.7. (2) The utilization of the MTL paradigm
contributes to an improvement of performance for both the AMM
and the SRB. Notably, the combination of the AMM and the MTL
paradigm yields superior performance.

Given that the MTL paradigm can potentially enhance other
STISRmethods, we introduce it into previous text prior-based STISR
methods [19, 34, 35, 70, 75]. This exploration aims to validate the
uniqueness of PEAN, as simply integrating the MTL paradigm with
existing approaches cannot yield significant performance improve-
ments. In line with our proposed PEAN, we input the output of the
last block of the SRB (or MSRB for RTSRN [70]) from these models
into the ARM and apply the MTL paradigm during training.

Table XIII: Comparison between the AMM and the SRB.

Modules MTL Easy Medium Hard Average

SRB [62] 79.1 62.7 46.1 63.7
✓ 80.1 64.4 46.4 64.7

AMM 81.4 68.8 50.7 67.9
✓ 84.5 71.4 52.9 70.6

The results presented in Table XIV highlight a distinctive pat-
tern: the ARM does not consistently improve the performance of
other text prior-based STISR methods. In certain instances, the
inclusion of the MTL paradigm even leads to a degradation in per-
formance. This observation underscores the idea that the MTL par-
adigm, which is integral to the optimization phase of our proposed
PEAN, are not universally beneficial components for achieving su-
perior performance across all the STISR methods. Its effectiveness
in boosting STISR performance is realized specifically when used
in conjunction with our proposed PEAN.

Table XIV: Performance of other mainstream text prior-
based models when they are equipped with the MTL par-
adigm.

Methods MTL Easy Medium Hard Average

TPGSR [34] 78.9 62.7 44.5 62.8
✓ 0.01 0.03 0.01 0.02

TATT [35] 78.9 63.4 45.4 63.6
✓ 78.9 63.3 44.7 63.4

C3-STISR [75] 79.1 63.3 46.8 64.1
✓ 79.9 63.4 46.4 64.3

LEMMA [19] 81.1 66.3 47.4 66.0
✓ 76.2 59.0 43.9 60.7

RTSRN [70] 80.4 66.1 49.1 66.2
✓ 73.0 56.3 36.9 56.5

B.3.5 Ablation Study on the Loss Functions.
Performance Gain from the SFM Loss. In the optimization

phase of PEAN, we incorporate the SFM loss [6], a loss function
not utilized by previous text prior-based methods. To assess the
efficacy of it, we conduct experiments by introducing it into the
optimization phase of established text prior-based STISR meth-
ods [19, 34, 35, 70, 75]. This analysis aims to demonstrate that the
SFM loss alone is insufficient to achieve superior performance, un-
derscoring the necessity of developing PEAN. Considering that
LEMMA [19] and RTSRN [70] employ the text-focus loss [5], a
loss function working similar with the SFM loss, we deliberately
abandon the text-focus loss when training these two models dur-
ing our experiments. The results presented in Table XV confirm
our argument, showing that simply introducing the SFM loss into
existing methods does not yield significant performance improve-
ments. Additionally, our experiments demonstrate the rationality
of incorporating the SFM loss into the optimization of PEAN. This
integration proves beneficial, contributing to an observable perfor-
mance boost for PEAN.
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Figure III: Ablation study on the weight of five loss functions. We report the average recognition accuracy calculated by Eq. (11).

Table XV: Performance of other mainstream text prior-based
models when they are equipped with the SFM loss [6].

Methods SFM Loss Easy Medium Hard Average

TPGSR [34] 78.9 62.7 44.5 62.8
✓ 74.9 60.1 41.3 59.8

TATT [35] 78.9 63.4 45.4 63.6
✓ 78.3 62.3 46.3 63.3

C3-STISR [75] 79.1 63.3 46.8 64.1
✓ 79.6 63.9 46.5 64.4

LEMMA [19] 81.1 66.3 47.4 66.0
✓ 76.2 62.4 43.8 61.8

RTSRN [70] 80.4 66.1 49.1 66.2
✓ 1.1 2.8 1.9 1.9

Weights of the Loss Functions. In this part, we conduct ex-
periments to find out the best values of weights of the five loss
functions, i.e., 𝜆1 to 𝜆5 in the main paper. Taking weights in pre-
vious works into account [6, 62, 75], we select 𝜆3 in [0, 1] with an
interval of 0.2. Similarly, 𝜆4 is selected in [0, 100] with an interval
of 25. 𝜆1, 𝜆2 and 𝜆5 are selected in [0, 2] with an interval of 0.5. The
results are presented in Figure III, from which we can find that the
best combination of the weight of each loss is 𝜆1 = 1.0, 𝜆2 = 1.0,
𝜆3 = 0.8, 𝜆4 = 75 and 𝜆5 = 1.0. Too low or too high weights will
lead to trivial performance. Therefore, we choose 𝜆1 = 1.0, 𝜆2 = 1.0,
𝜆3 = 0.8, 𝜆4 = 75 and 𝜆5 = 1.0 as the default setting of weights of
the losses in the main paper and this Supplementary Material.

B.3.6 Ablation Study on Other Modules and Settings.
Kind of Shallow Feature Extractor. As shown in Figure 2 of

the main paper, a single convolutional layer is applied to extract
the shallow feature 𝐹 s. Recently, CNN-Transformer-based archi-
tecture is widely adopted in SISR [28, 32, 72], so here we perform
experiments to adopt CNN-Transformer-based modules as Shallow
Feature Extractors. As presented in Table XVI, it is surprising to
find that a single convolutional layer is enough for shallow feature
extraction. Redundant ViT layers only make the model difficult
to optimize and degrade the SR performance. Therefore, we use a
single convolutional layer as the shallow feature extractor.

Comparison with Other Enhancement Modules. Since pre-
vious works such as Zhao et al. [75] introduce a Language Model
(LM) [14] to rectify the text prior, here we compare the TPEM with

Table XVI: Analysis on kind of the shallow feature extractor.

Extractors Easy Medium Hard Average
Conv only 84.5 71.4 52.9 70.6

Conv + ViT [12] 77.9 62.4 43.7 62.4
Conv + Swin [30] 76.5 62.1 44.0 61.9

several LMs used in other tasks of scene text images. Among them,
GSRM is an autoregressive-based LM proposed by SRN [69], while
PD is the parallel Transformer decoder in PIMNet [43] based on an
easy-first decoding strategy. BCN [14] is the autoencoding-based
LM applied in C3-STISR [75], proposed in ABINet [14]. Experimen-
tal results are shown in Table XVII, from which we can conclude
that the employment of the diffusion-based TPEM brings more per-
formance gain compared with other variants. This can be attributed
to the powerful distribution mapping capability [67] of diffusion
models.

Table XVII: Comparison with other enhancement modules.

Methods Easy Medium Hard Average
GSRM [69] 76.3 58.8 40.7 59.7
PD [43] 78.1 61.6 43.4 62.1
BCN [14] 79.6 61.9 44.8 63.2
PEAN 84.5 71.4 52.9 70.6

Performance Gain from the Pre-training Process. As dis-
cussed in § 4.2 of the main paper, our proposed PEAN involves
an initial phase where we exclude the TPEM and pre-train the
model using TP-HR. Subsequently, the TPEM is introduced, and the
weights of parameters obtained from the pre-training phase are ini-
tialized for the ongoing fine-tuning process. In this part, we conduct
experiments aimed at investigating the impact of this configuration.
We also extend this approach to established text prior-based STISR
methods [19, 34, 35, 70, 75] to demonstrate that the pre-training
process alone does not result in a substantial performance improve-
ment for these methods, highlighting the necessity of proposing
PEAN. The results shown in Table XIX affirm our argument. No-
tably, even without the pre-training process, our proposed PEAN
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Table XVIII: Performance of the mainstream text prior-based models when they are equipped with different TPGs.

Methods CRNN [52] ABINet [14] PARSeq [2] Easy Medium Hard Average

TPGSR [34]
✓ 78.9 62.7 44.5 62.8

✓ 73.0 55.4 39.5 57.0
✓ 72.3 55.3 38.9 56.6

TATT [35]
✓ 78.9 63.4 45.4 63.6

✓ 75.4 56.6 40.5 58.6
✓ 74.1 56.6 40.6 58.2

C3-STISR [74]
✓ 79.1 63.3 46.8 64.1

✓ 72.5 54.2 38.8 56.2
✓ 75.5 56.7 38.5 58.1

LEMMA [19]
✓ 76.1 58.8 42.7 60.3

✓ 81.1 66.3 47.4 66.0
✓ 77.6 60.5 44.7 62.0

RTSRN [70]
✓ 80.4 66.1 49.1 66.2

✓ 3.3 2.9 2.2 2.9
✓ 80.2 67.5 46.3 65.7

✓ 80.8 66.1 48.6 66.2
✓ 82.2 66.0 47.7 66.4PEAN

✓ 84.5 71.4 52.9 70.6

outperforms the SOTA STISR method, i.e., TextDiff [29], by an aver-
age of +1.1. The inclusion of the pre-training process setting leads
to an additional improvement of +3.1.

Table XIX: Performance of the mainstream text prior-based
models when equipped with the pre-training process.

Methods Pre-training Easy Medium Hard Average

TPGSR [34] 78.9 62.7 44.5 62.8
✓ 77.6 61.4 43.6 61.9

TATT [35] 78.9 63.4 45.4 63.6
✓ 79.5 63.4 45.9 64.0

C3-STISR [75] 79.1 63.3 46.8 64.1
✓ 77.8 60.5 43.4 61.7

LEMMA [19] 81.1 66.3 47.4 66.0
✓ 81.7 67.3 48.5 66.9

RTSRN [70] 80.4 66.1 49.1 66.2
✓ 79.1 62.9 45.9 63.7

82.5 67.8 49.0 67.5PEAN
✓ 84.5 71.4 52.9 70.6

Compatibility with different TPGs.We adopt the pre-trained
PARSeq [2] as the TPG, which is stronger than the CRNN [52]
applied in [34, 35, 70, 75] and the ABINet [14] employed in [19].
For a fair comparison, we conduct experiments wherein CRNN,
ABINet and PARSeq are introduced as the TPG respectively in
these works. Notably, as depicted in Figure 2 of Guo et al. [19],
LEMMA relies on the attention map sequence generated by the
TPG for character location enhancement. However, CRNN is not
an attention-based TPG and is unsuitable for LEMMA. To address
this, we treat the output of the last convolutional layer in CRNN as
the pseudo attention map and apply several linear layers to adjust
its dimensions.

The results presented in Table XVIII demonstrates that our pro-
posed PEAN exhibits compatibility with the text prior generated by
CRNN, ABINet, and PARSeq. Although PARSeq [2] is more power-
ful than CRNN [52] and ABINet [14], previous works fail to benefit
a lot from the text prior generated by it. However, with the pre-
trained PARSeq as the TPG, our proposed PEAN outperforms the
current SOTA text prior-based STISR method, i.e., RTSRN [70] by
+4.9 on average. When ABINet is used as the TPG, RTSRN exhibits
trivial performance, whereas PEAN continues to demonstrate supe-
rior performance. This indicates that our proposed PEAN has good
adaptability to the text prior generated by all the three TPGs.

C VISUALIZATIONS ON OTHER DATASETS
In this section, we provide more visualization results on the dataset
we built to show the generalization of our proposed PEAN and
display it ability to restore visual structure. As mentioned in the
main paper, we employ IIIT5K [36], SVTP [42] and IC15 [23] for
evaluation. We select 651 images whose resolution is no greater
than 16 × 64 as LR images and input them directly into the PEAN
trained on TextZoom. The results are shown in Figure IV, from
which we can conclude that: (1) Previous works result in artifacts,
while our proposed PEAN can address this issue. (2) Our proposed
PEAN works well in terms of images with long or deformed text,
while existing works tend to generate incorrect SR results.
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