SeqGrasp: Sequential Multi-Object Dexterous Grasp Generation

Haofei Lu, Yifei Dong, Zehang Weng, Jens Lundell, Florian Pokorny, and Danica Kragic

Abstract— We introduce the sequential multi-object robotic
grasp sampling algorithm SeqGrasp that can robustly synthe-
size stable grasps on diverse objects using the robotic hand’s
partial Degrees of Freedom (DoF). We experimentally evaluate
SeqGrasp against the state-of-the-art non-sequential multi-
object grasp generation method MultiGrasp in simulation and
on a real robot. The experimental results demonstrate that
SeqGrasp reach an 8.71%-43.33% higher grasp success rate
than MultiGrasp.

I. INTRODUCTION

Generation of dexterous grasps has been studied for a long
time, both from a technical perspective on generating grasps
on robots [1]-[11] and understanding human grasping [12]—
[15]. Most of these methods rely on bringing the robotic hand
close to the object and then simultaneously enveloping it with
all fingers. While this strategy often results in efficient and
successful grasp generation, it simplifies dexterous grasping
to resemble parallel-jaw grasping, thereby underutilizing the
many DoF of multi-fingered robotic hands [10]. In contrast,
grasping multiple objects with a robotic hand, particularly
in a sequential manner that mirrors human-like dexterity, as
shown in is still an unsolved problem.

In this work, we introduce SeqGrasp, a novel hand-
agnostic algorithm for generating sequential multi-object
grasps. Our approach utilizes an optimization-based method
to sequentially determine single-object grasp poses using a
subset of the hand’s DoF. As the grasp sequence progresses,
the DoF engaged in previous grasps are frozen, leaving only
the remaining DoF available for subsequent object grasps.
To only engage a subset of the hand’s DoF for each grasp,
we propose an Opposition Space (OS) selection strategy that
enables stable grasping using only a pair of links.

We experimentally evaluate SeqGrasp, and the state-of-
the-art simultaneous multi-object grasping method Multi-
Grasp [16] in simulation and on physical hardware. The
simulation results revealed that SeqGrasp and SeqDiffuser
perform on par with MultiGrasp for picking one or two
objects while outperforming it when picking three to four
objects.

Our contributions can be summarized as follows:

o SeqGrasp, a novel hand-agnostic algorithm for sequen-
tial multi-object grasp generation.

« Extensive simulation experiments demonstrating the
performance of SeqGrasp.
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Fig. 1: Sequential multi-object grasping.

II. RELATED WORK
A. Analytical Dexterous Grasping

Early research in dexterous grasping generated stable
grasps by optimizing a grasp quality metric such as the
force-closure metric [17], [18]. Although these methods are
theoretically sound, they are computationally demanding
because (i) the many DoF dexterous hands cause high-
dimensional search spaces [19], and (ii) the quality metrics
are expensive to compute [20]. Consequently, some methods
have focused on reducing the search space by imposing
constraints on the hand [21], [22] or restricting it to joint
configuration subspaces [19]. Another line of work has pro-
posed a computationally cheap differentiable force-closure
estimator [10], [20], which has the advantage of being hand-
agnostic. This work extends the differentiable force-closure
measure from [10] to sequential multi-object grasping.

B. Multi-Object Grasping

Multi-object grasping presents unique challenges due
to the complex multi-object interactions and the high-
dimensional configuration space spanned by the hand and the
objects. A few works have addressed dexterous multi-object
grasping [16], [23], [24] where [16] targets simultaneous
multi-object grasping while [23], [24] targets sequential
multi-object grasping. Li et al. [16] proposed MultiGrasp
a two-stage simultaneous multi-object dexterous grasping
framework where a generative grasp sampler proposed poses
to simultaneously pick many objects, followed by a learned
policy for executing the pick. The main limitation of [16]
is that objects must be spatially close and of similar size
and shape. In comparison, our method can handle scattered
objects of different shapes and sizes by sequentially picking
one at a time. The other works that do sequential multi-object
grasping [23], [24] restrict the grasping to a maximum of two
objects [23] or to primitive object shapes such as cylinders



or spheres [24]. In comparison, our method can handle up
to four objects of complex shapes and sizes.

III. PROBLEM FORMULATION

The problem addressed in this work is sequential multi-
object grasping, which we define as follows:

Definition 1 (Sequential multi-object grasping). A sequential
multi-object grasp is a grasp where one object is grasped at
a time using a subset of the dexterous hand’s DoF, while
previously grasped objects, if any, remain fixed to the hand.

To contrast, simultaneous multi-object grasping addresses
how to grasp multiple objects simultaneously, typically uti-
lizing all the DoF of the hand [16].

We formulate the sequential multi-object grasping problem
as generating a sequence of N grasps G = {g;}}V, for
picking a sequence of N objects O = {O;},, where each
gn € G is restricted to a specific subset OS,, of the hand’s
total DoF and N > 2. Mathematically, this can be described
as

g, = argmin F(g,, 0,,Gn_1, On_1,08,),
gn

Vn=1,...,N, (1)

where G,—1 = {gi}!'}', On1 = {0} G = 2,
and Oy = @. E in is a differentiable function that
quantifies how well grasp g, can pick object O,, with the
DoF OS,, given all previously generated grasps G,_1 and
objects O, _1.

In this work, we represent OS,, as an opposition space
(Section TV-A)), each object O € O as a triangular mesh, and
each grasp g € G as a vector g = [p,r, 0] € ROTX, where
p € R? is the hand’s base position, r € RS is the hand’s
base orientation in a 6D continuous reprsentation [25], and
0 € RX is the K-dimensional hand joint angles which are
16 for the Allegro Hand. We assume the shape of all objects
in O to be fully known. Next, we will introduce SeqGrasp
our algorithm for solving [Eq. T}

IV. SEQUENTIAL GRASP GENERATION

Here, we present for sequential grasp gener-

ation. It includes (i) an opposition space selection strategy
(Section IV-A)), (ii) an optimization-based grasp synthesis
method (Section IV-B)), and (iii) an energy-based cost func-
tion (Section [V-C).

A. Opposition Space Selection Strategy

The primary objective in sequential multi-object grasping
is to maximize the hand’s remaining DoF after each grasp.
For this purpose, we propose a grasp planning strategy
guided by OSes [14], [24], [26], [27]. An OS is a functional
subspace within the hand’s kinematic structure formed by
pairs of opposing surfaces (such as fingertips, lateral surfaces
of fingers, or palm surfaces) along with the joints that control
these surfaces [24]. It represents regions where opposing
forces can be applied to create stable grasps. The number of
OSes is hand-dependent and varies based on the kinematic

Algorithm 1: SeqGrasp
Input : Object sequence O, OSes OS, Niiep, and Paccept-
Output: The optimized grasp sequence G*,.

1 n=1;

2 while OS # @ and n < N do

3 OS, ~U(OS);

4 {Xj}?:l Nu(sn);

5 for s =1 to Nyep do

6 A=3E(gn,0n7gn717Onfh{xj}?:l)/agn;

7

8

9

gn < MALA(gn,Jn,A) ;
{Xj}?:1 ~ f(Sn, Paccept):
end

10 OS + OS\ OSy;
11 for OS; € OS do

12 Jj <—Jj@(1—.]n);
13 if J; = O then

14 OS + 0S8\ 0S8;;
15 end

16 end

17 n+=1;

18 end

structure. [Fig. 2al shows the seven different OSes for the

Allegro Hand.

Mathematically, each opposition space can be represented
as a pair OS; = {J;,S;}, where J; € {0,1}¥ is a binary
vector indicating which joints are involved in controlling the
opposition space, and S; € R**M: represents the 3D points
on the hand where opposing forces can be applied.
shown an example of two different S; for the Allegro Hand,
where palm and pad oppositions have contact points located
on the inner surfaces of fingers and palm and side oppositions
have contact points on the fingers’ lateral surfaces.

Let OS = {OS8;}£ , be the set of all OSes. Given this set,
samples a random OS from it and uses
it for subsequent grasp generation (Section IV-B)). Once grasp

generation is complete, the sampled OS can no longer be
used and is thus removed from the available OSes (Cine 10).
J; of all the remaining OSes are also updated by zeroing
out the joints used in OS, (Line 12). Subsequently, all
OSes with J = 0, meaning that no more controllable joints
exist, are removed (Line 14). For instance, in the case of the
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Fig. 2: (a) Grasps using all seven OSes. From left to right,
first row: middle-ring, index-middle, and thumb-index, sec-
ond row: ring-palm, middle-palm, index-palm, and thumb-
palm. (b) Visualization of contact point candidates on
Allegro Hand surface. Cyan and points denote palm
opposition and side opposition contacts, respectively.
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Fig. 3: (a) Initialization. The initial grasp configurations are
randomly sampled on the expanded convex hull of the object
( ) while the previously grasped object (ball) remains in
the hand. (b) Optimization. During optimization, the grasp
is incrementally refined, ultimately securing the target object
using the ring-palm OS.

Allegro Hand, if the thumb-index OS is selected, then both
the thumb-palm and index-palm OSes become unavailable
due to shared joint constraints.

B. Optimization-based Grasp Generation

The next step in the algorithm (Lines [5}j9) is to generate
a stable, physically plausible, and collision-free grasp that
respects the sampled OS,,. To achieve this, we formulate £
in [Eq. T] as an energy function (Section TV-C) and numer-
ically optimize it using the Metropolis-Adjusted Langevin
Algorithm (MALA) [28] (Cine 7).

In robotic grasping, MALA has been used to optimize
single object grasps g,, by iteratively refining p,, r, and
6,, according to Langevin dynamics [10], [20]. However, we
must adapt MALA to sequential multi-object grasping. To
this end, we propose a new grasp as &,, < g,—7 [1,J,]OA,
where « is the step size, 1 € RY is a padding vector to
align the length of J with g, A = JF/0g,, is the energy
gradient, and ® is the element-wise (Hadamard) product. g,
is accepted if o > w, where u ~ U([0, 1]) and

o E(&n, 00, Gn—1,0n—1,{x;}3_1)
E(gnv 0,,6n-1,0n_1, {Xj}izl)'

The above procedure is repeated for a fixed number
of steps where, at each step, {x;}7_, is re-sampled with
probability paccepr (Line 8). This resampling process helps
accelerate convergence and escape from local minimas [10],
[20].

We initialize g,, at a randomly sampled position on the
expanded convex hull of the target object O,, as exemplified
in [Fig. 3a. If n = 1, then 64 is set to a natural open-hand
and collision-free posture, while for n > 2, 8,, = 0,,_1. A
visual example of the optimization process when grasping a

second object is shown in
C. Energy Function

2

Numerically optimizing the energy function in [Eq. 1]
should result in stable, collision-free, joint-respecting, and
OS-respecting grasps. We design the following energy func-
tion to capture all of these behaviors

T
E=w" [Efc Egis Ehop Ehsp Ejoint Eoop} , (3

where w € RS is a weight vector controlling the relative
importance of the force-closure Fy, contact distance Fji,
hand-object penetration Ejop, hand self-penetration FEjgp,
joint limits Ejoin, and object-object penetration Eyop energy
terms.

The force-closure term (E¥.) encourages the grasp to be in
force-closure equilibrium [29]. Following [10] and assuming
zero friction and uniform contact force magnitudes, we
define it as

Er({x;};=1) = [ Gel?, )

where ¢ = [cT,c2]T € R6*! represents the concatenated

contact normals at each contact point {x; }]221. G is defined
as:

&= |t o) ®

where I represents the identity matrix, and [x;]x (1 < j < 2)
denotes the skew-symmetric matrix formed from the contact
point x;.

The contact distance and penetration terms (Egis & Fhop)
encourage the hand-object contacts to occur close to the
object surface without penetrating it. The contact distance
is mathematically defined as

2

Eas({x;}32,,00) = Y _d(x;,0,), (6)
j=1

where d(x;,0,) = minyco, ||x; — V||, is the shortest
point-mesh distance. Similarly, the hand-object penetration
term is defined as:

Ehnp(gn7 On) = d(va On)a (7
VEVhop(Hg,On)

where d(v, O,) = miny, co, ||V — V1|, and Viep(Hg, O5,)
is the set of points on the hand surface pointcloud
Hg € R3*Mn that penetrate the object O,,.

The self-collision and joint limit terms (Ehsgy & FEioint)
encourage physical feasibility. We define these as

Ehsp (gn) = Z

v1,v2EVhp (Hg), V17V
E‘oint(gn) - ||(0 _ guPPer)+” + ||(010wer _
! 1

max(|[vi — va[5,0), ()

O, O

where Vygp(Hg) denotes all surface points of the hand that
are self-penetrating, (-)* denotes the element-wise operation
max(-,0), and 8PP" and §'°V" denote the upper and lower
limits of all joints.

Finally, the term (£,,p) minimizes object-object penetra-
tion. It is defined as

n—1
Em({Odi)=> %
i=1 vEVyp(04,04)

where d(v, 0,,) = miny, co, ||V — Vill5, and Voep(O;, Oy)
are the inter-penetrating surface points between the previ-
ously grasped object O; and the current object O,,.

d(v,0,), (10)
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Fig. 4: Qualitative results. For SeqGrasp, we only show consumed grasps, that is, when OS = (). For SeqGrasp, the grasp
sequences are visually indicated by a color gradient, transitioning from lighter to darker shades. In contrast, for MultiGrasp,

the color gradient is only used to differentiate the objects.

V. EXPERIMENTS

We compare our method to the optimization-based sam-
pler MultiGrasp from [16], which generates simultaneous
grasps on clustered objects. As such, for MultiGrasp, we
must first sample clustered object configurations and then
generate multi-object grasps directly on the object cluster. In
contrast, SeqGrasp do not require objects to be spatially close
as they generate grasps sequentially based on previously
successful ones. While this comparison is not entirely fair, we
still believe comparing these two strategies offers valuable
insights.

We evaluated all generated grasps in the simulation exper-
iments in Isaac Gym [30]. We used two object sets: (1) all
eight objects from Grasp’Em [16] and (2) a random selection
of eight validation objects from DexGraspNet [10] object set.
We randomly generated ten four-object sequences for each
object set, and, per object, we generated 256 grasps, resulting
in 10,240 grasps per method.

We used the following metrics to assess the quality of the
generated grasps:

1) Success rate (SR) in percent: Following the experi-
ment setup in [10], a grasp is considered as successful
if all objects within the hand can resist an acceleration
of 9.8 m/s? in all six orthogonal directions for 100
consecutive simulation steps.

SR 1 Pene. | Div. 1
Method SData G’Em SData G’Em Avg.
MulG-1 66.84 65.39 1.14 1.27 0.284
SeqG-1 50.04 40.78 1.73 2.16 0.332
MulG-2 22.46 16.48 2.30 2.83 0.347
SeqG-2 21.21 32.03 2.14 1.78 0.367
MulG-3 10.78 3.55 3.39 4.04 0.340
SeqG-3 19.49 21.05 2.23 2.23 0.349
MulG-4 0.90 0.47 5.17 6.27 0.329
SeqG-4 2.93 5.04 2.70 2.62 0.312

TABLE I: Simulation results. MulG, SeqG, G’Em, and
SData are short the MultiGrasp, SeqGrasp, Grasp’Em, and
SeqgDataset, respectively. The —i following the method name
denotes the number of objects used for grasp generation.
1({), the higher (lower), the better.

2) Maximum penetration depth (Pene.) in mm: The
maximum interpenetration distance between the hand
and all grasped objects.

3) Diversity (Div.) in radian: Grasp diversity is deter-
mined by calculating the standard deviation of g across
all successful grasps.

The quantitative results are presented in while
qualitatively illustrates a few grasps. The results
demonstrate that SeqGrasp achieves the higher success rate
and the lower penetration depth when grasping two or more
objects. MultiGrasp performs well for one- and two-object
grasps, as it utilizes all of the hand’s available DoF to grasp
the objects. However, because MultiGrasp requires all objects
to be initialized nearby, the success rate of the generated
grasps is susceptible to the initial object placements. In
contrast, SeqGrasp do not suffer from this limitation.

We observe a significant performance drop when tran-
sitioning from three-object to four-object grasps across all
methods. We hypothesize that this decline occurs because
the three previously grasped objects occupy substantial space
within the Allegro Hand, pushing the fourth object grasp to
the limits of the hand’s kinematic redundancy. Additionally,
as the number of grasped objects increases, object-object
interactions grow exponentially, making the task consid-
erably more challenging, a finding also reported in [16].
Nevertheless, SeqGrasp demonstrates superior performance
in scenarios involving three or more objects.

VI. CONCLUSION

We proposed SeqGrasp, an algorithm for sequentially
grasping multiple objects with a dexterous hand. SeqGrasp
combines OSes and differentiable-force closure to generate
stable grasps that maximize the hand’s remaining DoF after
each grasp. The experimental evaluations demonstrated that
SeqGrasp outperformed the simultaneous multi-object grasp-
ing baseline MultiGrasp, achieving a higher average success
rate when grasping three to four objects. In conclusion, this
work demonstrated a stable sequential multi-object grasp
generation solution, which we hope can pave the way for
more research in multi-object grasping.
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