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Abstract

Randomized Smoothing (RS) is currently a scal-
able certified defense method providing robust-
ness certification against adversarial examples.
Although significant progress has been achieved
in providing defenses against ℓp adversaries,
the interaction between the smoothing distribu-
tion and the robustness certification still remains
vague. In this work, we comprehensively study
the effect of two families of distributions, named
Exponential Standard Gaussian (ESG) and Ex-
ponential General Gaussian (EGG) distributions,
on Randomized Smoothing and Double Sampling
Randomized Smoothing (DSRS). We derive an
analytic formula for ESG’s certified radius, which
converges to the origin formula of RS as the di-
mension d increases. Additionally, we prove that
EGG can provide tighter constant factors than
DSRS in providing Ω(

√
d) lower bounds of ℓ2 cer-

tified radius, and thus further addresses the curse
of dimensionality in RS. Our experiments on real-
world datasets confirm our theoretical analysis of
the ESG distributions, that they provide almost
the same certification under different exponents η
for both RS and DSRS. In addition, EGG brings a
significant improvement to the DSRS certification,
but the mechanism can be different when the clas-
sifier properties are different. Compared to the
primitive DSRS, the increase in certified accuracy
provided by EGG is prominent, up to 6.4% on Im-
ageNet. Our code is available at https://gi
thub.com/tdano1/eg-on-smoothing.
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1. Introduction
Deep neural networks (DNNs) have achieved great success
in various applications. However, DNNs are susceptible to
adversarial perturbations in their inputs. To tackle the prob-
lem of adversarial attacks, a series of empirical defenses,
such as adversarial training (Goodfellow et al., 2015; Ku-
rakin et al., 2017; Madry et al., 2018), have been proposed.
Nevertheless, this strategy quickly evolved into an arms
race because no matter how robust the DNNs are, well-
crafted adversarial examples are capable of bypassing the
defenses (Carlini & Wagner, 2017; Athalye et al., 2018;
Uesato et al., 2018). Recently, researchers proposed and
developed certified defenses (Wong & Kolter, 2018; Wong
et al., 2018; Raghunathan et al., 2018), a series of method-
ologies that can output the bounds of perturbed inputs, and
provide provable robustness for classifiers. Aligned with
these exact certified defense methods, randomized smooth-
ing (RS) (Lécuyer et al., 2019; Li et al., 2019; Cohen et al.,
2019) appears as a certifying tool based on probability, and
gains in popularity since it can provide scalable robustness
certifications for black-box functions. Cohen et al. (2019)
first introduced the Neyman-Pearson (NP) lemma into the
certification, which provided tight ℓ2 certified radii for linear
classifiers. Later, a series of attempts further extended the
certification process of RS using functional optimization
frameworks (Zhang et al., 2020; Dvijotham et al., 2020).

However, current research on the distributions for random-
ized smoothing is far from sufficient. After Zhang et al.
(2020), Yang et al. (2020) and Li et al. (2022), this branch
of study seems to be dormant. Intuitively, investigating the
interrelationship of distribution and the RS method is not
only beneficial for understanding and solving the limit of
RS, but also liable to excavate the mathematical rules hidden
deep in RS. In this work, we systematically study the ESG
and EGG distributions in the RS framework, providing a
detailed theoretical analysis for both the new distribution
families. In addition, we conduct extensive experiments on
real-world datasets, testify our theory on ESG, and com-
plete the analysis for EGG. Overall, we conclude that the
ESG distributions share almost the same certification for
RS, and EGG’s certification can be significantly improved
using different exponents η, showing the better potential to
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Figure 1. Our analytic formula for ESG highly approximates Co-
hen et al. (2019)’s at a sufficiently large dimension. (Both σ = 1.0.
Left: d = 3072, Right: d = 150224.)

lessen the curse of dimensionality than the SOTA solution
(Li et al., 2022).

The ESG distributions are extensions of Gaussian by gener-
alizing the exponent η from 2 to R+. As shown by (Yang
et al., 2020), the Gaussian distribution provides the SOTA
certification for ℓ2 certified radius in RS. In this work, we
report that their views can be augmented because in addition
to Gaussian, the family of ESG distributions can provide al-
most identical certification compared to Gaussian. Namely,
we find that ESG can tie the SOTA distribution for RS in a
high-dimensional setting. Concretely, we comprehensively
analyze the computational method for the certified radius
in ESG. By reversing the traditional calculation procedure
and proposing two asymptotically mild assumptions, we
figure out the simple analytic relation between sampling
probability and certified radius, which is quite rare among
all the distributions. Our theoretical analysis is perfectly
enhanced by numerical simulations and experiments on real-
world datasets. Moreover, we find the analytic formula for
ESG converges to the results derived by Cohen et al. (2019),
which reveals a mathematical connection between the beta
distribution and the normal distribution.

Likewise, the EGG distributions are derivations of the Gen-
eral Gaussian distribution from the perspective of the expo-
nent η. General Gaussian was introduced by Zhang et al.
(2020), and exploited by DSRS (Li et al., 2022) to treat the
curse of dimensionality in randomized smoothing. In this
work, we further address the problem of the curse of dimen-
sionality by tightening the lower bounds offered by DSRS
via EGG. On the whole, the effect of EGG on RS certifica-
tion largely depends on whether the base classifier satisfies
a concentration property. In a more ideal case, where the
concentration property is almost completely satisfied, EGG
with a smaller η can provide tighter constant factors for the
lower bounds provided by DSRS, which further alleviates
the curse of dimensionality. But for more general cases,
especially when real classifiers do not satisfy the concentra-
tion property well, EGG with a larger η gives better certified
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Figure 2. Numerical simulations for EGG in DSRS. Left: the con-
centration property holds (B = 1), smaller η provides tighter
lower bounds. Right: the concentration property does not hold
(B < 1), larger η provides better certified radius. For definitions
of A and B, see Equation (5).

accuracy. To sum it up, despite different mechanisms, the
introduction of EGG comprehensively improves robustness
certifications provided by General Gaussian, both theoreti-
cally and practically.

Our main contributions include:

• For sufficiently large dimensions, we derive the ana-
lytic relation between certified radius and sampling
probability for ESG distributions in the RS frame-
work. The analytic formula obtained from ESG is
in essence convergent to the formula derived by Cohen
et al. (2019).

• Our theoretical analysis of EGG shows that the current
solution to the curse of dimensionality in RS can be
deepened: injecting some EGG into DSRS can tighten
the constant factors of the lower bound of the certified
radius.

• Extensive experiments on real datasets and classifiers
verify our conclusion that the certification from ESG
remains almost unchanged with η, and EGG provides
comprehensively improved certifications compared to
General Gaussian. On ImageNet, the increase in certi-
fied accuracy brought about by EGG can reach up to
6.4% compared to the baseline.

2. Related work
Randomized smoothing was first proposed as an extension
for differential privacy, which provides a certified robustness
bound for classifiers (Lécuyer et al., 2019). Subsequently, a
series of improvements were made to obtain tighter ℓ2 norm
certificates through the Rényi divergence and the Neyman-
Pearson Lemma (Li et al., 2019; Cohen et al., 2019). Further-
more, there are methods modeling the certification process
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as functional optimization problems (Zhang et al., 2020;
Dvijotham et al., 2020).

A line of work focuses on extending the robustness certifica-
tion from ℓ2-only to certifications against adversaries with
other ℓp norms. ℓ0 radius certification was made possible
by constructing Neyman-Pearson sets for discrete random
variables (Lee et al., 2019; Jia et al., 2020). Different from
ℓ2 certified regions, the ℓ1 certified region is asymmetric in
the space, which poses a new challenge to the certification
algorithm. By perturbing input data under other noise dis-
tributions, such as Laplace and uniform distributions, the
previous works have obtained ℓ1 certificates (Teng et al.;
Yang et al., 2020; Levine & Feizi, 2021). In addition to the
asymmetry, some work discovered the phenomenon of the
curse of dimensionality when trying to certify against ℓp
adversaries whose p > 2 (Yang et al., 2020; Blum et al.,
2020; Kumar et al., 2020). To deal with this issue, a recent
work offered an Ω(1) bound w.r.t. the input dimension for
ℓ∞ certified radius by introducing a supplementary smooth-
ing distribution (Li et al., 2022), which breaks the curse
of dimensionality theoretically for the first time. Lately, a
study found that the computation of certified radius can be
improved by incorporating the geometric information from
adjacent decision domains of the same class (Cullen et al.,
2022).

There were also investigations using anisotropic or sample-
specific smoothing noise to improve the certification (Eiras
et al., 2022; Súkeník et al., 2022). In addition, a chain of
work focused on improving the performance of base clas-
sifiers through adopting better training techniques (Salman
et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong
et al., 2021), or introducing denoising modules (Salman
et al., 2020; Carlini et al., 2023; Wu et al., 2023). There
were also attempts to adapt RS to broader application sce-
narios. RS was extended into defenses against adversarial
patches (Levine & Feizi, 2020; Yatsura et al., 2023) and
semantic perturbations (Li et al., 2021; Hao et al., 2022;
Alfarra et al., 2022; Pautov et al., 2022). Moreover, RS has
been shown to be capable of providing provable guarantees
for tasks such as object detection, semantic segmentation,
and watermarking (Chiang et al., 2020; Fischer et al., 2021;
Bansal et al., 2022).

3. Preliminaries
Problem setup. We focus on the typical multi-class clas-
sification task in this work. Let xi ∈ Rd be the i-th d-
dimensional data point and yi ∈ Y = {1, 2, · · · , N} be its
corresponding ground-truth label. We assume a dataset J
contains data pairs (xi, yi), i ∈ N≤n that are i.i.d drawn
from the sample space Rd × Y . A N -way base classi-
fier (neural networks in this work) f : Rd → Y can be
trained to maximize the empirical classification accuracy

1
|J |
∑

(x,y)∈J 1f(x)=y on dataset J . Given an arbitrary
data point x and its label y, it is known that in practice,
most classifiers trained using standard training techniques
are susceptible to adversarial perturbations within a small
ϵ-ball.

Randomized smoothing. To mitigate adversarial perturba-
tions, RS has been employed as a certified defense method
that can provide a robustness guarantee on the correctness
of the classification results from classifiers. It provides
the robustness certification for the base classifier f by con-
structing its smoothed counterpart f̄ . Given a base classifier
f , an input x0 ∈ Rd and a smoothing distribution P , the
smoothed classifier is defined as follows:

f̄P(x0) = argmax
a∈Y

Pz∼P{f(x0 + z) = a}. (1)

With the definition of f̄ , we can evaluate its ℓp certified
robustness by ℓp certified radius defined below.

Definition 3.1. Given a base classifier f : Rd → Y , its
smoothed counterpart f̄P : Rd → Y under a distribution P
and a labeled example (x0, y0) ∈ Rd × Y . Then r is called
ℓp certified radius of f̄P if

∀x, ∥x− x0∥p < r, f̄P(x) = y0. (2)

To make the most conservative use of the information from
smoothed classifiers (e.g., sampling probability A), we can
consider a true binary classifier. Given a base classifier
f : Rd → Y , we call f̃x0 : Rd → {0, 1} a true binary
classifier of f if for (x0, y0) ∈ Rd × Y and random vector
z ∈ Rd:

f̃x0(z) = 1f(x0+z)=y0
. (3)

In short, we need to construct the worst true binary clas-
sifier to compute the certified radius in RS. For example,
Cohen et al. (2019) introduced the Neyman-Pearson lemma
and successfully found such a worst true binary classifier.
Given f̃x0 from the function space F = {h(x) | h(x) ∈
[0, 1],∀x ∈ Rd}, their idea can be formulated as

min
f̃x0

∈F
Ez∼P

(
f̃x0(δ + z)

)
,

s.t. Ez∼P

(
f̃x0(z)

)
= A.

(4)

Double sampling randomized smoothing. Essentially,
the DSRS framework is based on a generalization of the
Neyman-Pearson Lemma (Chernoff & Scheffe, 1952) that
introduces one more subjection into the system. More specif-
ically, DSRS provides a method to construct the worst true
binary classifier based on the sampling probabilities of the
base classifier under two different distributions. Like the
Neyman-Pearson lemma, the problem of DSRS can be for-
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Table 1. Properties and definitions of distributions.
Distribution PDF Notation Formal Variance

Standard Gaussian ∝ exp
(
− r2

2σ2

)
N (σ) σ

Exponential Standard Gaussian ∝ exp
(
− rη

2σ
η
s

)
S(σ, η) σs = 2

− 1
η

√
dΓ( d

η
)

Γ( d+2
η

)
σ

Truncated Exponential Standard Gaussian ∝ exp
(
− rη

2σ
η
s

)
1r≤T St(σ, η, T ) σs = 2

− 1
η

√
dΓ( d

η
)

Γ( d+2
η

)
σ

Exponential General Gaussian ∝ r−2k exp

(
− rη

2σ
η
g

)
G(σ, η, k) σg = 2

− 1
η

√
dΓ( d−2k

η
)

Γ( d−2k+2
η

)
σ

Truncated Exponential General Gaussian ∝ r−2k exp

(
− rη

2σ
η
g

)
1r≤T Gt(σ, η, k, T ) σg = 2

− 1
η

√
dΓ( d−2k

η
)

Γ( d−2k+2
η

)
σ

mulated as a functional optimization problem as below:

min
f̃x0∈F

Ez∼P

(
f̃x0(δ + z)

)
,

s.t. Ez∼P

(
f̃x0(z)

)
= A,

Ez∼Q

(
f̃x0(z)

)
= B.

(5)

In the equations (5), A,B ∈ [0, 1] are probabilities that the
base classifier f outputs the right label y0 for example x0
under noise distributions P , Q, respectively. Practically,
they are usually estimated by the Monte Carlo sampling.
For an example x0 and a given combination of P , Q, A, B,
we are able to derive a unique f̃x0

. Finally, by finding the
maximum ∥δ∥2 that satisfies Pz∼P{f(x0+δ+z) = y0} >
0.5, we obtain the certified radius of x0.

4. Exponential Gaussian distributions
In this section, we show the definition of ESG and EGG
distributions used throughout the paper. In brief, ESG dis-
tributions are generalizations of the Gaussian distribution,
which provides the SOTA performance in providing ℓ2 cer-
tified radius for randomized smoothing (Cohen et al., 2019;
Yang et al., 2020). Likewise, EGG distributions are gener-
alizations of the General Gaussian distribution, which was
introduced into the DSRS framework to provide a theoret-
ical solution to the curse of dimensionality in randomized
smoothing (Li et al., 2022). To the best of our knowledge,
the EGG distributions belong to the Kotz-type distribution
(Kotz, 1975), and we are the first to investigate their perfor-
mance on randomized smoothing. In summary, our work
systematically studies the interaction between multivariate
distributions and (DS)RS through the lens of the exponent
of distributions.

For conventional randomized smoothing tasks, only ESG
or EGG distributions will be used. Additionally, under
the DSRS framework, when using ESG as the smoothing
distribution, the Truncated Exponential Standard Gaussian
(TESG) distribution is employed as the supplementary dis-
tribution. Similarly, Truncated Exponential General Gaus-

sian (TEGG) serves as the supplementary distribution when
adopting EGG as the smoothing distribution. We let S(σ, η)
and G(σ, η, k) be the probability density functions (PDFs)
of ESG and EGG, respectively. Table 1 shows the defini-
tions and basic properties of the distributions. In the table,
r, T, σ, η ∈ R+ and d ∈ N+. Γ(·) is the gamma function.
Following the settings in the previous studies (Yang et al.,
2020; Li et al., 2022), we set the formal variance to ensure
Er2 is a constant for all the smoothing distributions. We let
σs and σg be the formal variances of EGG and ESG, respec-
tively. The CDFs of the beta distribution Beta(α, α) and
the gamma distribution Γ(α, 1) are denoted respectively by
Ψα(·) and Λα(·). We write ϕs(r) and ϕg(r) corresponding
to the PDFs of S(σ, η) and G(σ, η, k) respectively. More
details for the distributions are deferred to Appendix A.

5. ESG’s certifications: hardly changes with
the exponent η

In this section, we provide an analysis of ESG’s certifica-
tions on randomized smoothing. Overall, for sufficiently
large dimensions d, the certified radius offered by ESG has
almost nothing to do with the exponent η, despite it being
a significant hyperparameter for ESG. In the end, we de-
rive a concise analytic formula that reveals the relationship
between sampling probability and certified radius for the
ESG distributions, which highly approximates the formula
derived by (Cohen et al., 2019) for the Gaussian distribution.

To begin with, we consider the dual problem of Problem
(28) for the ESG distributions. LetP = S(σ, η), p(x) be the
PDF of ESG, and denote V for {z | p(z − δ) + νp(z) < 0}
where ν ∈ R. Formally, to calculate the certified radius r,
we have

r = argmax
∥δ∥2

max
ν∈R

Pz∼P+δ{z ∈ V} ≥
1

2
, (6a)

s.t. Pz∼P{z ∈ V} = A. (6b)

The proof of duality is omitted since it was provided in
Zhang et al. (2020). Herein, we directly give the solution to
this problem in the following theorem and defer the deriva-
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tion to Appendix B.1.

Theorem 5.1. For δ ∈ Rd and ρ ∈ R+, letting δ =
(ρ, 0, · · · , 0)T , we have

Pz∼P+δ{z ∈ V} = Eu∼Γ( d
η ,1)ω♯(u, ν), (7a)

Pz∼P{z ∈ V} = Eu∼Γ( d
η ,1)ω♮(u, ν), (7b)

where

ω♯(u, ν) =


Ψ d−1

2

 2
2
η σ2

s(u + ln(−ν))
2
η − (σs(2u)

1
η − ρ)2

4ρσs(2u)
1
η

 ,

u + ln(−ν) ≥ 0,

0, u + ln(−ν) < 0.

(8a)

ω♮(u, ν) =


Ψ d−1

2

 (ρ + σs(2u)
1
η )2 − 2

2
η σ2

s(u − ln(−ν))
2
η

4ρσs(2u)
1
η

 ,

u − ln(−ν) ≥ 0,

1, u − ln(−ν) < 0.

(8b)

Conventionally, we obtain the certified radius r by known
sampling probability A. The procedure can be outlined as a
two-layer binary search, the outer one of which searches the
value of ∥δ∥2, and the inner one finds the maximum ν for
the specified ∥δ∥2. However, if we think about this problem
in reverse, the relationship between certified radius ρ and
sampling probability A can become very obvious. That is,
we do not consider calculating the certified radius r from A,
but get A from a given ρ. For ESG, we have the following
theorem:

Theorem 5.2. Let ω♯(u, ν) and ω♮(u, ν) be defined as in
Theorem 5.1. Then the sampling probability A can be cal-
culated from the certified radius ρ by

A =Eu∼Γ( d
η ,1)ω♮(u, ν), (9a)

s.t. Eu∼Γ( d
η ,1)ω♯(u, ν) =

1

2
. (9b)

In fact, Theorem 5.2 is still not succinct enough to demon-
strate the computation from ρ to A. To simplify it, we make
two assumptions, both of which are very mild.

Assumption 5.3. For the ESG distribution S(σ, η) defined
on Rd, assume d≫ η and σ ∈ (0, 1].

This assumption is reasonable in the high-dimensional ma-
chine learning setting. For instance, if we add Gaussian
noises to ImageNet, we have d = 150224, η = 2, and σ
is usually 0.5 or 1.0. Based on this, it is quite simple to
approximate the formal variance σs. We see the following
lemma:

Lemma 5.4. Under Assumption 5.3, let d be the dimen-
sion, and σs be defined as in Table 1, and we have σs =

Θ(d
1
2−

1
η ).

The proof is based on Stirling’s formula and we leave
it to Appendix B.2. With this property, talking σs =

(η2 )
1
η σd

1
2−

1
η will only introduce infinitesimal errors. Next,

another assumption we need is:

Assumption 5.5. Let ν be found by Equation (29b), and
we assume d

η ≫ ln(−ν).

Appendix B.3 has more on the mildness of the assumption
above. It helps us exploit the concentration property of the
gamma distributions:

Lemma 5.6. (Bilateral Concentration of the Gamma Dis-
tribution) Let X ∼ Γ( dη , 1) be a random variable, where
η ∈ R+, d ∈ N+. Let ι = η

ϵ2d , then for any ι ∈ (0, 1), the
following inequality holds:

P{(1− ϵ)d
η
< X < (1 + ϵ)

d

η
} ≥ 1− ι. (10)

The proof is very similar to that of Lemma D.5. We still
take Gaussian noises on ImageNet to illustrate Lemma 5.6.
In fact, the Gaussian distribution will lead u ∼ Γ(d2 , 1) in
Equation (9b), which satisfies P{0.99 · d

2 < u < 1.01 ·
d
2} > 0.9935. In other words, Assumption 5.5 essentially
guarantees P{u + ln(−v) < 0} and P{u − ln(−v) < 0}
are almost 0, thus we can omit these branches in Equations
(8a) and (8b) when estimating the integral. WLOG, we let
u be a constant value, and then let

Ψ d−1
2

(
2

2
η σ2

s(u+ ln(−ν))
2
η − (ρ− σs(2u)

1
η )2

4ρσs(2u)
1
η

)
=

1

2
.

(11)
Substituting σs = (η2 )

1
η σd

1
2−

1
η and u = d

η into the equation
above, we get

σ2d(1 + η ln(−ν)
d )

2
η − (ρ− σ

√
d)2

4ρσ
√
d

=
1

2
. (12)

By Assumption 5.5, recalling the equivalent infinitesimal
replacement (1 + x)a ∼ 1 + ax when x→ 0, we see

ln(−ν) ≈ ρ2

2σ2
. (13)

The solution for ln (−ν) also verifies the Assumption 5.5
that d

η ≫ ln(−ν) is mild, considering practically we sel-
dom see ℓ2 certified radius ρ > 5 in RS. WLOG, injecting
ln(−ν) = ρ2

2σ2 into Equation (9a), we finally obtain

A = Ψ d−1
2
(
1

2
+

ρ

2σ
√
d
). (14)

In fact, this estimation is convergent to Cohen et al. (2019)’s
formula when d is sufficiently large:

Ψ d−1
2
(
1

2
+

ρ

2σ
√
d
)

d→∞−−−→ Φ(
ρ

σ
), (15)
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whose differential case is shown by Ryder (2012). Inter-
estingly, though the exponent η is a significant parameter
for the derivation on ESG, this estimation (14) is irrelevant
to η. Furthermore, our experiments on real-world datasets
in Section 7 show that ESG’s certifications are highly inert
to η for both RS and DSRS, which corroborates our theo-
retical analysis, and indicates that there exist similar A(ρ)
relationships in DSRS. We show proof and more details for
this approximation in Appendix B.4.

6. EGG’s certifications: significantly improve
with the exponent η

It is proved that taking the General Gaussian distribution
as the smoothing distribution in DSRS provides an Ω(

√
d)

lower bound for the ℓ2 certified radius (Li et al., 2022).
This bound can be converted to an Ω(1) lower bound for
the ℓ∞ certified radius (Kumar et al., 2020), which breaks
the curse of dimensionality against ℓ∞ adversaries in high-
dimensional settings. Nevertheless, though Li et al. (2022)
proposed a theoretical solution to the curse of dimensionality
for the first time, the study on the curse of dimensionality
is still lacking. In this work, we investigate the further
alleviation of the curse of dimensionality on the basis of
DSRS, showing that theoretically, EGG can provide tighter
lower bounds for ℓ2 certified radius than the original DSRS.
Primarily, we define a (σ, p, η)-concentration property to
start our analysis:

Definition 6.1. ((σ, p, η)-Concentration Property) Let f :
Rd → Y be an arbitrarily determined base classifier,
(x0, y0) ∈ Rd × Y be a labeled example. We say f sat-
isfies (σ, p, η)-concentration assumption at (x0, y0) if for
p ∈ (0, 1) and T satisfying

Pz∼S(σ,η){∥z∥2 ≤ T} = p, (16)

f satisfies

Pz∼S(σ,η){f(x0 + z) = y0 | ∥z∥2 ≤ T} = 1. (17)

The concentration property essentially defines a partly ro-
bust classifier that makes few mistakes on examples per-
turbed by limited noises. For instance, letting η = 2, if
a classifier satisfies the (σ, p, 2)-concentration property on
example (x0, y0), it will predict almost entirely correctly on
perturbed examples with Gaussian noise z with ∥z∥2 < T .
Despite the assumption being seemingly strict, it is satis-
fied well in the light of observations from Li et al. (2022):
some robust classifiers provide almost perfect predictions
for some examples from ImageNet when the ℓ2 length
∥z∥2 < σ

√
d, but the accuracy intensely declines when

the noise is stronger.

Herein, we first let the base classifier f satisfy the (σ, p, 2)-
concentration property, the original assumption used in Li
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Figure 3. Tight factor µ grows as η shrinks, for most d − 2k ∈
[1, 30] ∩ N.

et al. (2022). Then we show a theorem that some EGG distri-
butions with their corresponding truncated counterparts can
certify the ℓ2 radius with Ω(

√
d) lower bounds by DSRS.

In other words, the current solution to the curse of dimen-
sionality provided by DSRS can be significantly augmented,
that all EGG with η ∈ (0, 2) have the potential to break the
curse with better lower bounds.

Theorem 6.2 (EGG with η ∈ (0, 2) can certify Ω(
√
d)

lower bounds). Let d ∈ N+ be a sufficiently large input
dimension, (x0, y0) ∈ Rd × Y be a labeled example and
f : Rd → Y be a base classifier that satisfies the (σ, p, 2)-
concentration property w.r.t. (x0, y0). For the DSRS method,
let P = G(σ, η, k) be the smoothing distribution to give
a smoothed classifier f̄P , and Q = Gt(σ, η, k, T ) be the
supplementary distribution with T = σ

√
2Λ−1

d
2

(p), d −
2k ∈ [1, 30] ∩ N and η ∈ {1, 12 ,

1
3 , · · · ,

1
50}. Then for the

smoothed classifier f̄P(x), the certified ℓ2 radius satisfies

rDSRS ≥ 0.02σ
√
d. (18)

We briefly summarize the proof here and leave the details in
Appendix D. In essence, Theorem 1 is generalizing Theorem
2 of Li et al. (2022) to EGG. Practically, it is intractable to
derive an analytic solution for the certified radius rDSRS for
EGG. Therefore, the problem is simplified by introducing
the concentration assumption, whereupon we solve Prob-
lem (5) only considering the truncated distribution Q. The
derivation is very similar to the solution of Problem (5), and
the certification of the radius ρ for EGG is finally dependent
on the discriminant

Eu∼Γ( d−2k
η ,1)Ψ d−1

2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
≥ 1

2
.

(19)
With this formulation, whether a radius ρ can be certified
can be directly judged since the LHS of Equation (19) is a
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Figure 4. Illustration for experiments.

function of ρ. For Theorem 6.2, we just need to substitute
ρ = 0.02σ

√
d into Equation (19), and check whether the

inequality holds. If true, then ρ = 0.02σ
√
d is certified, and

vice versa. For the detailed derivation, please see the proof
of Lemma D.3 in the appendix.

Plus, we explore the effects of EGG under the (σ, p, η)-
concentration assumption, where we can construct Ω(d1/η)
lower bounds for the certified radius. However, though it
is formally tighter than Ω(

√
d), we find these two lower

bounds are fundamentally equivalent. See Theorem D.7 in
Appendix D.3.

Tighter constant factors of lower bounds. Besides certify-
ing the lower bound radius 0.02σ

√
d, the proof of Theorem

6.2 naturally contains an approach to determining tight con-
stant factors for each EGG distribution (Algorithm 1). In
fact, the value of the LHS of Equation (19) monotonically
decreases with ρ, meaning that performing a simple binary
search on ρ can provide the accurate certified radius. There-
fore, we consider parameterizing the radius ρ into µσ

√
d,

thus binary searching on the constant factor will derive the
tight constant factor µ for the Ω(

√
d) lower bound (Algo-

rithm 1). We report computational results for µ in Figure
3, where for values of d − 2k except 1, the tight constant
factor µ increases monotonically as the η decreases. Essen-
tially, these results demonstrate that the solution to the curse
of dimensionality provided by Li et al. (2022) (with Gen-
eral Gaussian, namely η = 2 in EGG) can be improved by
choosing smaller η ∈ (0, 2), for most d− 2k ∈ [1, 30] ∩ N.

Overall, the theoretical analysis shows that when the base
classifier satisfies the concentration property, EGG with
η ∈ (0, 2) brings significant enhancement for the lower
bound of the certified radius offered by DSRS (Li et al.,
2022). Obviously, it is hard for the realistic model to be
perfectly concentrated, thus EGG takes different effects
under real classifiers. However, what remains unchanged is
that EGG also comprehensively improves the certification
of DSRS. See Section 7 for details.

7. Experiments
In this section, we report the effects of ESG and EGG distri-
butions on the certified radius. Figure 4 sketches the outline
of our experiments. Here, we only focused on real-world
datasets and leave details for numerical simulation experi-
ments in Appendix F. For the case of real-world datasets,
A and B in Problem (57) are initially from Monte Carlo
sampling results on a given base classifier, then reduced to
respective Clopper-Pearson confidence intervals (Clopper
& Pearson, 1934), and finally determined by a conservative
algorithm (Li et al., 2022). The procedure for real-world
datasets can also be seen in Algorithm 2 in Appendix E.1.

Experimental setups. All base classifiers used in this
work are trained by CIFAR-10 (Krizhevsky et al., 2009)
or ImageNet (Russakovsky et al., 2015), taking EGG with
η = 2 as the noise distribution.

We choose NP certification as the baseline since it is the
state-of-the-art method for single distribution certification.
The sampling distribution for the NP method is P = S(σ, η)
for ESG, and P = G(σ, η, k) for EGG. For fairness, the
sampling number N is set to 100000, with the significance
level α = 0.001.

In the double-sampling process, we set k = 1530 and
k = 75260 for CIFAR-10 and ImageNet, respectively, in
consistent with base classifiers. The threshold parameter T
for Q is determined by a heuristic algorithm from Li et al.
(2022). Specifically, we set

TS = σs(2Λ
−1
d
η

(κ))
1
η = σ

√√√√ dΓ( dη )

Γ(d+2
η )

(Λ−1
d
η

(κ))
1
η ,

TG = σg(2Λ
−1
d−2k

η

(κ))
1
η = σ

√√√√ dΓ(d−2k
η )

Γ(d−2k+2
η )

(Λ−1
d−2k

η

(κ))
1
η ,

(20)
where κ is determined by the heuristic algorithm (Li et al.,
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Table 2. Certified radius at r for standardly augmented models, certified by ESG under DSRS

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

ESG, η = 1.0 57.6% 42.6% 31.3% 21.5% 15.8% 12.8% 8.6% 6.8% 4.3% 2.3% 1.3% 0.8% 0.3% 0.1%
ESG, η = 2.0 (Gaussian) 57.6% 42.6% 31.6% 21.5% 15.8% 12.7% 8.8% 6.8% 4.5% 2.4% 1.3% 0.7% 0.2% 0.2%

ESG, η = 4.0 57.6% 42.6% 31.3% 21.5% 15.9% 12.9% 8.6% 6.9% 4.3% 2.4% 1.3% 0.8% 0.2% 0.1%
ESG, η = 8.0 57.8% 42.6% 31.6% 21.6% 15.9% 12.9% 8.9% 6.7% 4.2% 2.4% 1.3% 0.9% 0.2% 0.1%

ImageNet

ESG, η = 1.0 59.6% 51.5% 43.2% 37.9% 33.0% 26.8% 23.1% 21.5% 19.9% 17.4% 13.8% 11.5% 10.3% 7.7%
ESG, η = 2.0, (Gaussian) 59.6% 51.6% 43.1% 38.0% 32.9% 26.9% 23.1% 21.5% 19.7% 17.4% 13.6% 11.4% 10.1% 8.3%

ESG, η = 4.0 59.6% 51.5% 43.2% 38.0% 32.9% 27.2% 23.1% 21.6% 19.9% 17.2% 13.6% 11.4% 10.2% 8.0%
ESG, η = 8.0 59.6% 51.5% 43.2% 38.0% 33.0% 26.8% 23.1% 21.6% 19.7% 17.3% 13.6% 11.5% 10.1% 8.4%

Table 3. Certified radius at r for standardly augmented models, certified by EGG under DSRS

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

EGG, η = 0.25 54.2% 37.6% 23.5% 16.5% 9.4% 4.5% 0.5% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
EGG, η = 0.5 55.5% 40.4% 25.2% 19.1% 13.4% 8.5% 5.5% 2.0% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
EGG, η = 1.0 56.3% 41.7% 28.2% 20.0% 15.1% 10.5% 7.1% 4.2% 1.9% 0.9% 0.1% 0.0% 0.0% 0.0%

DSRS (Li et al., 2022) (EGG, η = 2.0) 56.7% 42.4% 29.3% 20.2% 15.7% 11.5% 8.0% 5.5% 2.6% 1.5% 0.6% 0.1% 0.0% 0.0%
EGG, η = 4.0 57.5% 42.5% 30.0% 20.2% 15.9% 12.2% 8.5% 6.5% 3.4% 1.8% 0.9% 0.4% 0.0% 0.0%

Ours (EGG, η = 8.0) 57.6% 42.5% 30.9% 20.6% 15.8% 12.3% 8.6% 6.6% 3.7% 2.1% 1.1% 0.5% 0.2% 0.0%

ImageNet

EGG, η = 0.25 53.8% 41.4% 28.4% 20.1% 7.1% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
EGG, η = 0.5 54.9% 46.3% 36.4% 26.3% 22.1% 15.2% 8.7% 3.1% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0%
EGG, η = 1.0 57.0% 47.8% 39.9% 32.8% 24.9% 22.0% 18.5% 13.1% 9.2% 5.0% 2.1% 0.5% 0.0% 0.0%

DSRS (Li et al., 2022) (EGG, η = 2.0) 58.4% 48.5% 41.5% 35.2% 28.9% 23.3% 21.3% 18.8% 14.1% 11.1% 8.9% 6.1% 2.2% 1.4%
EGG, η = 4.0 58.7% 49.9% 42.6% 36.4% 31.0% 23.9% 22.3% 20.2% 17.3% 13.2% 10.7% 9.2% 6.8% 4.0%

Ours (EGG, η = 8.0) 59.1% 50.8% 42.9% 36.8% 31.8% 24.6% 22.6% 20.7% 18.9% 14.5% 11.7% 10.1% 8.6% 5.2%

2022), a simple function of Monte Carlo sampling probabil-
ity from P . The sampling numbers N1, N2 are 50000, and
the significance levels α1, α2 are 0.0005 for Monte Carlo
sampling, equal for P andQ. The error bound e for certified
radius is set at 1× 10−6.

The settings of the exponent η for ESG and EGG are slightly
different. We choose η ∈ {1.0, 2.0, 4.0, 8.0} as the expo-
nent of ESG distributions. For EGG, we takeP = G(σ, η, k)
and Q = Gt(σ, η, k, T ). To display the increasing trends
more clearly, we choose η ∈ {0.25, 0.5, 1.0, 2.0, 4.0, 8.0}
for them. For the convenience of comparison, we fix the
base classifier for each group of experiments, and all the
sampling distributions keep Er2 the same with the base clas-
sifier following the setting of the previous work (Yang et al.,
2020; Li et al., 2022).

Evaluation metrics. We consider the ℓ2 certified ra-
dius in all experiments. To evaluate the certified robust-
ness of smoothed classifiers, we take certified accuracy
≜ CA(r,J ) at radius r on test dataset J as the basic met-
ric (Cohen et al., 2019; Zhang et al., 2020; Li et al., 2022).
For (xi, yi) in J , if the certified radius computed by a cer-
tification method (e.g. NP, DSRS) is ri, and the output for
xi through the smoothed classifier is yi, we say (xi, yi) is
certified accurate at radius ri for the smoothed classifier. On
this basis, CA(r,J ) is the ratio of examples in J whose
certified radius ri ≥ r. Defined on the certified accuracy,
Average Certified Radius (ACR) (Zhai et al., 2020; Jeong
& Shin, 2020) is another main metric that we use to show
results of different distributions for real-world datasets. For-
mally, we have ACR ≜

∫
r≥0

CA(r,J ) · dr.

Integral methods. The scipy package loses precision

when calculating integrals for the Γ(a, 1) distribution with
large parameters (say, a > 500 ) on infinite intervals. To
solve this problem, we implement a Linear Numerical Inte-
gration (LNI) method to compute the expectations fast and
accurately based on Lemma 5.6. With this great property,
we can compute the integral for the gamma distribution by
only considering 1 − ι total mass. Though primitive, we
find the LNI method that uniformly segments the integra-
tion interval provides good precision for certifications on
CIFAR-10 and ImageNet. For all the ESG experiments, we
set the number of segments to 256, and ι = 10−4. We il-
lustrate the effect of the segment number on CIFAR-10 and
ImageNet in Figure 6. For EGG distributions, we inherit the
integral method from Li et al. (2022), where we compute the
integrals on the interval (0,+∞) by the scipy package.
The computational methods for ESG and EGG are left to
Appendix C.

Experimental results. We only discuss the effect of ESG
and EGG in DSRS, since their influence on NP is similar.
Table 2 and Table 3 report the maximum certified accuracy
among base classifiers with σ ∈ {0.25, 0.50, 1.00}, which
is widely adopted by previous work to show experimental
results of certified robustness. To show the universality of
our results, we provide experimental results on Consistency
(Jeong & Shin, 2020) and SmoothMix (Jeong et al., 2021)
models in Appendix H.1. We leave the detailed results on
NP and DSRS in Appendix H.2.

The exponent of ESG has little impact on the certification.
As shown in Table 2, on both CIFAR10 and ImageNet, the
certification provided by ESG distributions is highly insen-
sitive to the alternation of η, which echos our theoretical
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Figure 5. ACR results on real-world datasets. (a). ACR monotonically increases with η in EGG. (b). The ACR growth gain from DSRS
relative to NP shrinks with η in EGG. (c). ACR stays almost constant in ESG. (d). The ACR growth gain from DSRS remains almost
constant in ESG. For (a) and (c), solid lines represent results from DSRS, and dotted lines represent results from NP.
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Figure 6. Results for the ℓ2 certified radius under different numbers
of segment settings of LNI, both base clasifiers are standardly
augmented by General Gaussian with σ = 0.50. Left: For CIFAR-
10, the curves show segs ≥ 128 is enough for CIFAR-10. Right:
on ImageNet. The curves of Cohen’s formula and segs = 256 are
almost overlapped.

analysis in Section 5. Currently, the mainstream view be-
lieves Gaussian is the best distribution to provide the ℓ2
certified radius for RS, and our results show many ESG can
provide the best as well.

The larger the exponent in EGG, the better the certification
on real classifiers. Table 3 reveals the phenomenon that
certified accuracy at r increases with the η of EGG. On both
CIFAR10 and ImageNet, our strategy to use EGG with a
larger η (8.0 in the tables) performs obviously better than
General Gaussian (EGG with η = 2.0) used in DSRS (Li
et al., 2022). This is different from our theoretical analysis
in 6, because real classifiers do not perfectly satisfy the
concentration property. Our Figure 10b has more details on
this.

Better sampling probability + better probability utilization
⇒ better certification. The certified accuracy provided by
(DS)RS is decided by two steps: sampling and certifying.
For ESG, the stable results under changing η indicate differ-
ent ESG noise gives almost the same prediction accuracy
on classifiers. Moreover, our results show that the larger η
in EGG offers both higher sampling accuracy and a better
ability to use the probability.

The improvement brought by EGG is finite. For EGG, though
the certification improves with η, Figure 5b reveals the
growth brought by DSRS relative to NP shrinks with η,
despite the fact that certified accuracy provided by DSRS
keeps increasing. Furthermore, we see there is likely to
be an upper bound for the DSRS certification: Gaussian’s
certification (in this work, η = 2 for ESG). Additionally, the
right of Figure 5 also implies the convergence. Therefore,
chances are high that the growth of EGG’s certification is
not endless, and it is hard for EGG to challenge ESG’s
position as the optimal distribution in (DS)RS.

8. Conclusion
We report in this paper that the exponent η in ESG is almost
unable to affect the certification in RS and DSRS, from both
theoretical and experimental perspectives. We derive the
analytic sampling probability-certified radius relation under
high-dimensional assumptions, creatively bridging the beta
distribution and the normal distribution, and broadening the
current optimal distribution in RS from Gaussian to many
of ESG. In addition, we find EGG distributions provide sig-
nificant amelioration on the current solution to the curse of
dimensionality on RS, and they can improve the ℓ2 certified
radii of smoothed classifiers on real datasets. The working
mechanism of EGG can be quite different, depending on
whether the classifier satisfies a concentration property.
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Appendix
A. Supplementary for definitions of distributions
A.1. Derivation for PDFs

Let ϕs(r), ϕs(r, T ) be PDFs of S(σ, η) and St(σ, η, T ) respectively. Given S(σ, η) ∝ exp
(
− rη

2ση
s

)
, we have

ϕs(r) =
η

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

Γ( dη )
exp(−1

2
(
r

σs
)η), (21a)

ϕ−1
s (r) = σs

(
−2 ln

(
Γ( dη )

Γ(d2 )
2

d
η+1σd

sπ
d
2
r

η

)) 1
η

, (21b)

ϕs(r, T ) =
η

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

γ( dη ,
Tη

2ση
s
)
exp(−1

2
(
r

σs
)η), (21c)

and the ratio constant
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Similarly, since ϕg(r) ∝ r−2k exp
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, we have
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In the equations above, W (·) is the principal branch of the Lambert W function. Let ϕg(r, T ) be PDF of Gt(σ, η, k, T ), then
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where γ(·) is the lower incomplete gamma function. We see
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A.2. Visualization for distributions

We show the distributions for r in the space by setting

y = ϕs(r) · Vd(r) =
η

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

Γ( dη )
exp(−1

2
(
r

σs
)η) · dπ

d
2

Γ(d2 + 1)
rd−1 (26)

for ESG, and

y = ϕg(r) · Vd(r) =
η
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for EGG. See the definition of Vd(r) in Lemma B.1. We provide a simple demonstration for ESG and EGG in Figure 7.
Overall, under high-dimensional settings, the difference between ϕ(r) of exponential Gaussian distributions can be huge,
we thus suggest using ϕ(r) · Vd(r) to assist in observing the properties of the distributions. As shown in Figure 7b, ESG
tends to concentrate on a thin shell in the space, while the r−2k term in EGG alleviates that property.
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Figure 7. Demonstration for ESG and EGG.

B. Supplementary for the theoretical analysis of ESG
B.1. Proof of Theorem 5.1

The ESG distributions inherit the ℓ2-symmetry of the Gaussian distribution in high-dimensional space, thus the certified
radius can be derived by the level-set method (Yang et al., 2020; Li et al., 2022). To begin with, we consider the problem for
the Neyman-Pearson certification. Consider example (x0, y0) ∈ Rd × Y . Let f̃x0

: Rd → {0, 1} be a true binary classifier
of base classifier f : Rd → Y with respect to input x0:

min
f̃x0∈F

Ez∼S(σ,η)

(
f̃x0

(δ + z)
)
,

s.t. Ez∼S(σ,η)

(
f̃x0(z)

)
= A.

(28)

We usually solve the problem above by transforming it into its dual problem:

max
ν∈R

Pz∼S(σ,η)+δ{p(z − δ) + νp(z) < 0}, (29a)

s.t. Pz∼S(σ,η)
{p(z − δ) + νp(z) < 0} = A. (29b)

Unlike the DSRS case, the invariant set in Neyman-pearson certification is {z | p(z − δ) + νp(z) < 0}, and we denote it as
V . We have the following lemma to calculate the volume of d− 1 dimensional hypersphere.

Lemma B.1. (Equation (16) in Li et al. (2022), Volume of Hypersphere, restated) Let r ∈ R+, d ∈ N+. The volume Vd(r)
of d− 1 dimensional hypersphere with radius r is

Vd(r) =
dπ

d
2

Γ(d2 + 1)
rd−1. (30)

For all integrals in this paper, WLOG we let d be an even number.

For Equation (29b), we have
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(31)

Next, we consider ω♮(u, ν) = P{p(x−δ)+νp(x) < 0 | ∥x∥2 = σs(2u)
1
η }. Obviously, ϕs(r) is a monotonically decreasing

function with respect to r. Since all PDFs of S(σ, η) are bounded functions, we set the upper bound to be U for convenience.
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Let r = 0, we have

U =
η
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d
η π
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Γ( dη )
(32)

for ϕs(r). Namely, ∀x ∈ [0,∞), p(x) ∈ (0, U ], where U < +∞ is a constant for any determined distribution. As a result,
if for a specific x, we have −νp(x) > U , the probability P{p(x− δ) + νp(x) < 0 | ∥x∥2 = σs(2u)

1
η } will always be 1.

Next, we suppose −νp(x) ∈ (0, U ], otherwise −νp(x) is outside the domain of ϕ−1
s (x). When ∥x∥2 = σs(2u)

1
η , we have

p(x− δ) + νp(x) < 0
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s (−νU exp(−u)).
(33)

Then we are ready to solve
0 < −νU exp(−u) ≤ U, (34)

where u ≥ 0. Since ν is always negative, the left side 0 < −νU exp(−u) always holds. For the right side, we notice

−νU exp(−u) ≤ U ⇐⇒ exp(−u) ≤ −1

ν
⇐⇒ u− ln(−ν) ≥ 0. (35)

Now we know for ν < 0,
u− ln(−ν) ≥ 0⇐⇒ −νp(x) ∈ (0, U ], (36)

and
u− ln(−ν) < 0⇐⇒ −νp(x) ∈ (U,∞], (37)

which means P{p(x− δ) + νp(x) < 0 | ∥x∥2 = σs(2u)
1
η } = 1 when u− ln(−ν) < 0. Therefore,
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For Equation (29a), we have
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We write ω♯ for P{p(x) + νp(x+ δ) < 0 | ∥x∥2 = σg(2u)
1
η }. When − 1

ν p(x) ∈ (0, U ], we have
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⇐⇒p(x) ≤ −νp(x+ δ)
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Injecting ∥x∥2 = σs(2u)
1
η into inequalities above, we get

−1

ν
p(x) ∈ (0, U ]⇐⇒ u+ ln(−ν) ≥ 0, (41)

which is the boundary condition for ω♯. Though looks similar, it differs significantly from ω♮. Let − 1
νϕs(∥x∥2) ∈ (U,+∞],

then
p(x) + νp(x+ δ) < 0⇐⇒ ϕs(∥x+ δ∥2) ≥ U, (42)
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which means P{p(x) + νp(x+ δ) < 0 | ∥x∥2 = σg(2u)
1
η } = 0 under u+ ln(−ν) < 0. Finally, we have

ω♯(u, ν) =
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0 , u+ ln(−ν) < 0.

(43)

Calculation of ϕ−1
s (r). Appearing in both ω♮ and ω♯ functions above, ϕ−1

s (r) is an indispensable value in the system. Here
we consider the case of ω♮. Let ξ be ϕ−1

s (−νϕs(σs(2u)
1
η ) when −νϕs(σs(2u)

1
η ∈ (0, U ], then
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We thus have
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(45)

Obviously ξ ≥ 0, then exp(− 1
2 (

ξ
σs
)η) ∈ (0, 1]. When Equation (45) has a solution, we need

0 < −ν exp(−u) ≤ 1. (46)

Therefore, we get the boundary condition for ν < 0:

u ≥ ln(−ν). (47)

Under Equation (47), Equation (44) can be solved:

ξ = 2
1
η σs(u− ln(−ν))

1
η . (48)

Substituting Equation (48) into Equation (38) gives Equation (8b), and the case of ω♯ can be derived similarly.

B.2. Mildness of Assumption 5.3

We first provide the proof for Lemma 5.4.

Proof. By Stirling’s approximation, we see

lim
d→∞
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which by definition means σs = Θ(d
1
2−

1
η ).

Lemma 5.4 provides a simple but very accurate approximation for computing integrals in Theorem 5.1. Moreover, when
d≫ η and σ is small, the constant factor above is rather accurate. Let absolute error be |σs − (η2 )

1
η σd

1
2−

1
η |, and relative

error be |σs−( η
2 )

1
η σd

1
2
− 1

η |
σs

. Table 4 and Table 5 show the errors for the approximation. From the tables, we observe that
under common settings of variance and dimension for randomized smoothing, the approximation shows great accuracy. On
CIFAR10, the maximum absolute error is 2.95× 10−3, and the maximum relative error is 4.88× 10−4. Furthermore, the
errors are even lower on ImageNet, as we see that the maximum absolute error is 2.59× 10−4 and the maximum relative
error is no more than 9.99× 10−6. It is reasonable that a larger dimension ensures less error for approximation since there
are only two sources for the error: one is Stirling’s approximation, which demands large d to be precise, and another is that
d should be far greater than η, since larger d benefits more since we fix η ∈ {1.0, 2.0, 4.0, 8.0} in our work.
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Table 4. Errors for the approximation of σs, d = 3072

σ
η = 0.5 η = 1.0 η = 2.0 η = 4.0 η = 8.0

AE RE AE RE AE RE AE RE AE RE

0.12 2.15e-11 4.88e-04 1.76e-07 1.63e-04 9.88e-14 8.23e-13 8.65e-05 8.14e-05 3.54e-04 1.22e-04
0.25 4.48e-11 4.88e-04 3.67e-07 1.63e-04 2.06e-13 8.23e-13 1.80e-04 8.14e-05 7.37e-04 1.22e-04
0.50 8.96e-11 4.88e-04 7.34e-07 1.63e-04 4.12e-13 8.23e-13 3.60e-04 8.14e-05 1.47e-03 1.22e-04
1.00 1.79e-10 4.88e-04 1.47e-06 1.63e-04 8.23e-13 8.23e-13 7.21e-04 8.14e-05 2.95e-03 1.22e-04

Table 5. Errors for the approximation of σs, d = 150224

σ
η = 0.5 η = 1.0 η = 2.0 η = 4.0 η = 8.0

AE RE AE RE AE RE AE RE AE RE

0.12 1.29e-15 9.99e-06 5.15e-10 3.33e-06 4.46e-12 3.72e-11 4.68e-06 1.66e-06 3.11e-05 2.50e-06
0.25 2.68e-15 9.99e-06 1.07e-09 3.33e-06 9.30e-12 3.72e-11 9.74e-06 1.66e-06 6.48e-05 2.50e-06
0.50 5.36e-15 9.99e-06 2.15e-09 3.33e-06 1.86e-11 3.72e-11 1.95e-05 1.66e-06 1.30e-04 2.50e-06
1.00 1.07e-14 9.99e-06 4.29e-09 3.33e-06 3.72e-11 3.72e-11 3.90e-05 1.66e-06 2.59e-04 2.50e-06

B.3. Mildness of Assumption 5.5
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Figure 8. Under commonly used settings for RS, d
η
≫ ln(−ν) almost always holds.

In addition to Equation (13), we show Assumption 5.5 is very mild for practical use in RS computation. In Figure 8, all the
ln(−ν) are computed by the conventional procedure by binary search without any approximation. For each subfigure, we
uniformly select 1000 points in (0.5, 1) to simulate the sampling probability A. The maximum A we show in the figure is
0.9995, which corresponds to ln(−ν) ≈ 5.4 for the listed ESG distributions. Intuitively, the value of ln(−ν) will increase
exponentially when A → 1−, but it is more than enough for the practical use of the RS framework (the confident lower
bound of A can hardly ever reach 1), especially for ImageNet.

B.4. Extensions for Equation (14)

Equation (14) is an accurate approximation for Cohen et al. (2019)’s formula not only for little ρ that appears in the RS
certification. For this, we consider

A = Ψ d−1
2
(
1

2
+

x

2
√
d
), (50)

where x ∈ (0,
√
d). Here we provide a simple proof for the convergence in Equation (14).

Theorem B.2. (Convergence of the Beta(d, d) distribution’s CDF) Let Ψd(x) be the CDF of the beta(d, d) distribution and
Φ(x) be the CDF of the standard normal distribution, then for x ∈ (−

√
2d,
√
2d), limd→∞ Ψd(

1
2 + x

2
√
2d
) = Φ(x), with

an O(1/
√
d) error bound .

Proof. Let ψd(x) be the PDF of the Beta(d, d) distribution and ϕ(x) be the PDF of the standard normal distribution. By
Ryder (2012), we have

ψd(x) = ϕ(x)(1 +O(
1

d
)). (51)

WLOG, we consider appropriate real numbers c1, c2 ∈ R+, such that

(1− c1
d
)ϕ(x) < ψd(x) < (1 +

c2
d
)ϕ(x). (52)
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Then we get

lim
d→+∞

∫ x

−
√
2d

(1− c1
d
)ϕ(t)dt < lim

d→+∞

∫ x

−
√
2d

ψd(t)dt < lim
d→+∞

∫ x

−
√
2d

(1 +
c2
d
)ϕ(t)dt. (53)

By |ϕ(x)| < 1√
2π

, we have

lim
d→+∞

(

∫ x

−
√
2d

ϕ(t)dt− (x+
√
2d)c1√

2πd
) < lim

d→+∞

∫ x

−
√
2d

ψd(t)dt < lim
d→+∞

(

∫ x

−
√
2d

ϕ(t)dt+
(x+

√
2d)c2√

2πd
). (54)

Thus for x ∈ (−
√
2d,
√
2d), we have

Φ(x)− lim
d→+∞

2c1√
πd

< lim
d→+∞

∫ x

−
√
2d

ψd(t)dt < Φ(x) + lim
d→+∞

2c2√
πd
, (55)

which by definition means

lim
d→∞

Ψd(
1

2
+

x

2
√
2d

) = Φ(x), (56)

and the error bound is O(1/
√
d).

In addition, we show Ψ d−1
2
( 12 + x

2
√
d
) and Φ(x) in the same figure for d ∈ [101, 102, 103, 104, 105, 106] in Figure 9. From

the figure, only when d = 10 can we perceive the errors with eyes. Furthermore, to see the error more clearly, we uniformly
select 100000 points in the interval (0,

√
d), and report the maximum absolute error and the maximum relative error among

all the points in Table 6, where we see both errors match the O(1/d) error bound in Ryder (2012), slightly tighter than our
proved O(1/

√
d) bound.
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Figure 9. Comparison of Ψ d−1
2

( 1
2
+ x

2
√
d
) and Φ(x) for different d.

Table 6. Maximum absolute errors and maximum relative errors in 100000 points in (0,
√
d) for different d

d 101 102 103 104 105 106

AE 1.46e-2 1.38e-3 1.38e-4 1.38e-5 1.38e-6 1.38e-7
RE 1.93e-2 1.83e-3 1.82e-4 1.82e-5 1.82e-6 1.82e-7

C. Computational methods for ESG and EGG in DSRS
To evaluate the performance of ESG/EGG on real-world datasets, we consider solving Problem (57), the strong dual problem
of Problem (5):

max
ν1,ν2∈R

Pz∼P+δ{p(z − δ) + ν1p(z) + ν2q(z) < 0},

s.t. Pz∼P{p(z − δ) + ν1p(z) + ν2q(z) < 0} = A,

Pz∼Q{p(z − δ) + ν1p(z) + ν2q(z) < 0} = B.

(57)

We do not elaborate on the solution process since previous works (Yang et al., 2020; Li et al., 2022) have done well. Herein,
we directly give solutions to Problem (57) for ESG and EGG. Overall, the case of EGG is a relatively straightforward
generalization of General Gaussian, while the derivation for ESG includes nontrivial branches. When taking ESG as the
smoothing distribution and TESG as the supplementary distribution, we solve Problem (57) by the following theorem:
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Theorem C.1 (Integral form of Problem (57) with ESG). Let P = S(σ, η) with PDF p(·), Q = St(σ, η, T ) with PDF q(·)
and Cs =

Γ( d
η )

γ( d
η , Tη

2σ
η
s
)
, where γ(·, ·) is the lower incomplete gamma function. LetW ≜ {z | p(z− δ)+ ν1p(z)+ ν2q(z) < 0}.

Then

Pz∼P{z ∈ W} = E
u∼Γ( d

η
,1)


ω1(u, ν1), u ≥

Tη

2ση
s

,

ω1(u, ν1 + Csν2), u <
Tη

2ση
s

,

Pz∼Q{z ∈ W} = CsEu∼Γ( d
η

,1)
ω1(u, ν1 + Csν2) · 1u≤ Tη

2σ
η
s

,

Pz∼P+δ{z ∈ W} =


E
u∼Γ( d

η
,1)

ω2(u), ν1 ≥ 0,

E
u∼Γ( d

η
,1)

{ω2(u) + ω3(u)}, ν1 < 0,

(58)

where

ω1(u, ν) =


Ψ d−1

2

 (ρ + σs(2u)
1
η )2 − 2

2
η σ2

s(u − ln(−ν))
2
η

4ρσs(2u)
1
η

 , u − ln(−ν) ≥ 0,

1 , u − ln(−ν) < 0,

ω2(u) =


Ψ d−1

2

min{T2, 2
2
η σ2

s(u + ln(−ν1 − Csν2))
2
η } − (σs(2u)

1
η − ρ)2

4ρσs(2u)
1
η

 , u + ln(−(ν1 + Csν2)) ≥ 0,

0 , u + ln(−(ν1 + Csν2)) < 0,

ω3(u) =


max

Ψ d−1
2

 2
2
η σ2

s(u + ln(−ν1))
2
η − (σs(2u)

1
η − ρ)2

4ρσs(2u)
1
η

− Ψ d−1
2

T2 − (σs(2u)
1
η − ρ)2

4ρσs(2u)
1
η

 , 0

 , u + ln(−ν1) ≥ 0,

0 , u + ln(−ν1) < 0.

(59)

Similarly, We have the solution to Problem (57) for EGG as follows:

Theorem C.2 (Integral form of Problem (57) with EGG). Let P = G(σ, η, k) with PDF p(·), Q = Gt(σ, η, k, T ) with PDF

q(·) and Cg =
Γ(

(d−2k)
η )

γ( d−2k
η , Tη

2σ
η
g
)
, where γ(·, ·) is the lower incomplete gamma function. LetW ≜ {z | p(z − δ) + ν1p(z) +

ν2q(z) < 0}. Then

Pz∼P{z ∈ W} = E
u∼Γ( d−2k

η
,1)


ω1(u, ν1), u ≥

Tη

2ση
g

,

ω1(u, ν1 + Cgν2), u <
Tη

2ση
g

,

Pz∼Q{z ∈ W} = CgE
u∼Γ( d−2k

η
,1)

ω1(u, ν1 + Cgν2) · 1u≤ Tη

2σ
η
g

,

Pz∼P+δ{z ∈ W} =


E
u∼Γ( d−2k

η
,1)

ω2(u), ν1 ≥ 0,

E
u∼Γ( d−2k

η
,1)

{ω2(u) + ω3(u)}, ν1 < 0,

(60)

where

ω1(u, ν) = Ψ d−1
2


(ρ + σg(2u)

1
η )2 −

(
4kW (

ηu
2k

(−ν)
η
2k exp(

ηu
2k

))σ
η
g

η

) 2
η

4ρσg(2u)
1
η

 ,

ω2(u) = Ψ d−1
2

min{T 2, σ2
g(

4kW (
ηu
2k

(−ν1−Cgν2)
η
2k exp(

ηu
2k

))

η )
2
η } − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

 ,

ω3(u) = Ψ d−1
2

σ2
g(

4kW (
ηu
2k

(−ν1)
η
2k exp(

ηu
2k

))

η )
2
η − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

− Ψ d−1
2

T 2 − (σg(2u)
1
η − ρ)2

4ρσg(2u)
1
η

 .

(61)

Compared to Theorem C.2, we emphasize the following differences: (1) p(·) represents different PDFs in the two theorems;
(2) there are more branches for ω functions in Theorem C.1, which originates from different properties of the logarithmic
function and the Lambert W function.
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D. Proof of Theorem 6.2 and Theorem D.7
We put proofs of Theorem 6.2 and Theorem D.7 together since they share common thinking. Overall, this section includes 3
parts. We first introduce lemmas based mainly on the concentration properties of beta and gamma distributions, then derive
the solution for a lower bound of Problem (5). Finally, we prove Theorem 6.2 and Theorem D.7 respectively, on the basis of
those introduced lemmas. Both proofs are essentially generalizations for appendix F.3 in Li et al. (2022).

D.1. Preliminaries

We show lemmas for proofs in this section. In a nutshell, Lemma D.1 offers the probability that the mass of ESG is within T ;
Lemma D.3 gives a solution for a lower bound of Problem (5); Lemma D.4 and Lemma D.5 reveal concentration properties
of beta and gamma distributions; Lemma D.6 proves monotonicity of a function that appears in the proof of Theorem D.7.

Lemma D.1. For a random variable z ∼ S(σ, η) and a determined threshold T ∈ R+,

P{∥z∥2 ≤ T} = Λ d
η
(
T η

2ση
s
). (62)

Proof. We have ϕs, the PDF of z from Equation (21a) and Vd(r) from Lemma B.1, then

P{∥z∥2 ≤ T} =
∫ T

0

ϕs(r) exp(−
rη

2ση
s
)

dπ
d
2

Γ(d2 + 1)
rd−1dr

=
1

Γ( dη )

∫ Tη

2σ
η
s

0

t
d
η−1 exp(−t)dt

= Λ d
η
(
T η

2ση
s
).

(63)

Lemma D.2. Given a base classifier f : Rd → Y satisfies (σ, p, η)-concentration property at input (x0, y0) ∈ Rd. For the
supplementary distribution Q = Gt(σ, η, k, T ), where T = σs(2Λ

−1
d
η

(p))
1
η , η ∈ R+ and 2d− k ∈ [1, 30] ∩ N, we have

Pz∼Q{f(x0 + z) = y0} = 1. (64)

Proof. If f satisfies the (σ, p, η)-concentration property, when p is fixed, we have

Pz∼S(σ,η){f(x0 + z) = y0 | ∥z∥2 ≤ T} = 1 (65)

for T = σs(2Λ
−1
d
η

(p))
1
η from Definition 6.1 and Lemma D.1. Notice that though Equation (65) is defined by S(σs, η),

f(x0 + z) = y0 holds for almost all ∥z∥2 ≤ T since distribution S has positive density almost everywhere. Consider the
case z ∼ Gt(σ, η, k, T ); we thereby have

Pz∼Gt(σ,η,k,T ){f(x0 + z) ̸= y0 | 0 < ∥z∥2 ≤ T} = 0. (66)

By Equation (23a), we have

Pz∼Gt(σ,η,k,T ){z = 0}
=Pz∼G(σ,η,k){z = 0 | ∥z∥2 ≤ T}
≤ lim

t→0
Pz∼G(σ,η,k){∥z∥2 ≤ t}

= lim
t→0

∫ t

0

η

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

r−2k exp(−1

2
(
r

σg
)η)

dπ
d
2

Γ(d2 + 1)
rd−1dr

=
η

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

dπ
d
2

Γ(d2 + 1)
lim
t→0

∫ t

0

exp(−1

2
(
r

σg
)η)rd−2k−1dr

=0.

(67)
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Therefore, we see

Pz∼Gt(σ,η,k,T ){f(x0 + z) = y0} = Pz∼G(σ,η,k){f(x0 + z) = y0 | 0 ≤ ∥z∥2 ≤ T} = 1, (68)

which concludes the proof.

Here we give a solution for a lower bound of Problem (5). The lower bound found with the help of Lemma D.2 can be
solved by the level set method, sharing the same thinking with proofs of Theorem C.1 and C.2. We refer the readers to
previous papers (Yang et al., 2020; Li et al., 2022) for more details.

Lemma D.3. Under the setting of Lemma D.2, we let

R = max ρ,

s.t. Eu∼Γ( d−2k
η ,1)Ψ d−1

2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
≥ 1

2
.

(69)

If RD is the tightest ℓ2 certified radius when P = G(σ, η, k) is the smoothing distribution by DSRS, then RD ≥ R.

Proof. According to Lemma D.2, we define Q = Gt(σ, η, k, T ) as the supplementary distribution for P . Then the Problem
(5) can be simplified as

min
f̃x0

∈F
Ez∼P

(
f̃x0

(δ + z)
)
,

s.t. Ez∼P

(
f̃x0

(z)
)
= A, Ez∼Q

(
f̃x0

(z)
)
= B

(a)

≥ min
f̃x0

∈F
Ez∼P

(
f̃x0

(δ + z)
)
,

s.t. Ez∼Q

(
f̃x0

(z)
)
= 1,

(70)

where (a) is because the subjection Ez∼P [f̃x0
(z)] = A offers extra information outside {x | ∥x− x0∥2 ≤ T} in Rn, where

p(x) ≥ 0. It is obvious that the equality holds if A = 0. For the simplified problem, we have the worst function f̃∗x0
(t):

f̃∗x0
(t) =

{
1, ∥t∥2 ≤ T,
0, ∥t∥2 > T.

(71)

With the worst classifier, a lower bound for Problem (5) can finally be written as

Ez∼P

(
f̃∗x0

(δ + z)
)

(72)

for a fixed δ. Similar to Theorem C.1 and Theorem C.2, the final simplified problem is solved by the level set method (Yang
et al., 2020). We have

Ez∼P

(
f̃∗x0

(δ + z)
)

=Eϵ∼P{∥δ + x∥2 ≤ T}

=

∫ ∞

0

η

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

rd−2k−1 exp[−1

2
(
r

σg
)η]

dπ
d
2

Γ(d2 + 1)
drP{∥x+ δ∥2 ≤ T | ∥x∥2 = r}

=
1

Γ(d−2k
η )

∫ ∞

0

u
d−2k

η −1 exp(−u)duP{∥x+ δ∥2 ≤ T | ∥x∥2 = σg(2u)
1
η }.

(73)

As ∥x+ δ∥2 ≤ T ⇐⇒ x1 ≤
T 2−ρ2−σ2

g(2u)
2
η

2ρ , we have

1 + x1

σg(2u)
1
η

2
∼ Beta(

d− 1

2
,
d− 1

2
) (74)
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by Lemma I.23 of (Yang et al., 2020). Thus, we get

P{∥x+ δ∥2 ≤ T | ∥x∥2 = σg(2u)
1
η } = Ψ d−1

2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
. (75)

Combining Equation (73) and Equation (75), we finally get

Ez∼P

(
f̃∗x0

(δ + z)
)
= Eu∼Γ( d−2k

η ,1)Ψ d−1
2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
. (76)

If we can ensure that Ez∼P

(
f̃∗x0

(δ + z)
)
≥ 0.5 for δ = (ρ, 0, 0, · · · , 0)T , ∥δ∥2 will be qualified as a ℓ2 certified radius

due to ℓ2-symmetry in the Rn space (Zhang et al., 2020). As R is the solution to the lower-bound problem of Problem (5),
we have RD ≥ R, which concludes the proof.

The next two lemmas describe the concentration of the gamma distribution and the beta distribution, both are required for
the lower estimation of Problem (5).

Lemma D.4. (Concentration of the beta distribution) Let τ ∈ ( 12 , 1), θ ∈ (0, 1). Then there exist d0 ∈ N+, for any d ≥ d0,

Ψ d−1
2
(τ) ≥ θ. (77)

Proof. Let X ∼ Beta(d−1
2 , d−1

2 ). By property of the beta distribution, we have EX = 1
2 , DX = 1

4d , and

P{X > τ} = P{X − 1

2
> τ − 1

2
} ≤ P{|X − 1

2
| ≥ τ − 1

2
} ≤ 1

4d(τ − 1
2 )

2
. (78)

We then have

Ψ d−1
2
(τ) = 1− P{X > τ} ≥ 1− 1

4d(τ − 1
2 )

2
. (79)

Let 1− 1
4d(τ− 1

2 )
2 ≥ θ, then d ≥ 1

4(1−θ)(τ− 1
2 )

2 . Picking d0 = ⌈ 1
4(1−θ)(τ− 1

2 )
2 ⌉ concludes the proof.

Lemma D.5. (Unilateral concentration of the gamma distribution) Let p ∈ (0, 1), d ∈ N+, η ∈ R+ and β ∈ (0, 1). Then
there exist d0 ∈ N+, for any d ≥ d0,

Λ d
η

(
βd

η

)
≤ p. (80)

Proof. Let X ∼ Γ( dη , 1), then EX = d
η , DX = d

η ,

Λ d
η

(
βd

η

)
= P

{
X ≤ βd

η

}
≤ P

{
|X − d

η
| ≥ (1− β)d

η

}
≤ η

(1− β)2d
. (81)

If η
(1−β)2d ≤ p, then d ≥ η

(1−β)2p . Let d0 = ⌈ η
(1−β)2p⌉, for any d ≥ d0, we have η

(1−β)2d ≤
η

(1−β)2d0
≤ p, which concludes

the proof.

Remark. Both Lemma D.4 and Lemma D.5 illustrate that random variables following beta and gamma distributions are
highly concentrated towards their respective expectations in the high-dimensional setting.

The next lemma is required in the proof of Theorem D.7.

Lemma D.6. Let x ∈ N+, η = 1
n , n ∈ N+, g(x) = x(∏ 2

η
i=1(

x+2
η −i)

) η
2

. Then g(x) is a non-decreasing function with

respect to x.
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Proof. Obviously g(x) > 0. Let h(x) = ln g(x), then

dh(x)

dx
≥ 0⇐⇒ 1

g(x)

dg(x)

dx
≥ 0⇐⇒ dg(x)

dx
≥ 0, (82)

Therefore,

dh(x)

dx
=

1

x
− η

2

2
η∑

i=1

1

x+ 2− iη
≥ 1

x
− η

2

2
η∑

i=1

1

x
= 0. (83)

Thus, for all x ∈ N+, we have dg(x)
dx ≥ 0, which concludes the proof.

D.2. Proof of Theorem 6.2

Proof. We let the smoothing distribution P = G(σ, η, k) and the supplementary distributionQ = Gt(σ, η, k, T ). In addition,
we suppose the base classifier satisfies (σ, p, 2)-concentration property, which implies the base classifier is highly robust for
restricted Gaussian noises. For the convenience of future discussions, we parameterize 0.02 as µ, and the worst classifier
f̃∗x0

is defined the same as that in Lemma D.2.

We see the condition η = 2 simplifies some lemmas above. Let η = 2 in Lemma D.1, we get Pz∼S(σ,2){∥z∥2 ≤ T} =
Λ d

2
( T 2

2σ2
s
), which means

T = σ
√

2Λ−1
d
2

(p). (84)

By definition of (σ, p, 2)-concentration and Lemma D.2, we have Pz∼Gt(σ,η,k,T ){f(x0 + z) = y0} = 1, thus we can find a
lower bound to estimate Problem (5) by Lemma D.3. Let η = 2 in Lemma D.4, we see Λ d

2
(βd2 ) ≤ p. We have thereby

T ≥ σ
√
βd. (85)

Equation (85) will be used to find the lower bound of Problem (72). We then consider the solution of the lower-bound
Problem (72) in Lemma D.3. We have

T 2 − (σg(2u)
1
η − ρ)2

4ρσg(2u)
1
η

≥ τ ⇐⇒ σg(2u)
2
η − (2− 4τ)ρσg(2u)

1
η + ρ2 − T 2 ≤ 0. (86)

Notice Equation (86) is a one-variable quadratic inequality with respect to σg(2u)
1
η . Let ρ = µσ

√
d where the constant

µ ∈ R+. When the discriminant ∆ for Equation (86) is positive, the solution for it is

σg(2u)
1
η ∈

[
0, (1− 2τ)ρ+

√
T 2 + (4τ2 − 4τ)ρ2

)
⇐⇒ 0 ≤ u < 1

2

(
(1− 2τ)ρ+

√
T 2 + (4τ2 − 4τ)ρ2

σg

)η

. (87)

Now we are ready to show the minimization for Ez∼P

(
f̃∗x0

(δ + z)
)

for base classifier satisfies (σ, p, 2)-concentration
property. We have

Ez∼P

(
f̃∗x0

(δ + z)
)

=Eu∼Γ( d−2k
η ,1)Ψ d−1

2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)

≥θEu∼Γ( d−2k
η ,1)I

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

≥ τ

)

≥θEu∼Γ( d−2k
η ,1)I

(
u <

1

2

(
(1− 2τ)ρ+

√
T 2 + (4τ2 − 4τ)ρ2

σg

)η)
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(a)

≥θEu∼Γ( d−2k
η ,1)I

(
u <

1

2

(
(1− 2τ)µσ

√
d+

√
σ2βd+ (4τ2 − 4τ)µ2σ2d

σg

)η)

(b)
=θEu∼Γ( d−2k

η ,1)I

u <

√√√√Γ(d−2k+2

η )

Γ(d−2k
η )

(
(1− 2τ)µ+

√
β + (4τ2 − 4τ)µ2

)η , (88)

where I(·) is the indicator function, (a) is by ρ = µσ
√
d and Equation (85); (b) is because

σg = 2−
1
η

√√√√ dΓ(d−2k
η )

Γ(d−2k+2
η )

σ (89)

by definition. We write

m =


√√√√Γ(d−2k+2

η )

Γ(d−2k
η )

(
(1− 2τ)µ+

√
β + (4τ2 − 4τ)µ2

)η

, (90)

to get

Ez∼P

(
f̃∗x0

(δ + z)
)
≥ θEu∼Γ( d−2k

η ,1)1u<m = θΛ d−2k
η

(m). (91)

Let θ = 0.999, β = 0.99, τ = 0.6, µ = 0.02 (Li et al., 2022). We show the value of Λ d−2k
η

(m) when d− 2k ∈ [1, 30] ∩ Z

and η = 1
n , n ∈ [1, 50] ∩ Z in Table 7. Observing that there’s no value greater than 1

2θ , we have Ez∼P

(
f̃∗x0

(δ + z)
)
≥ 1

2 ,
which concludes the proof.

Algorithm 1: Algorithm for finding tight µ for the Ω(
√
d) lower bound

Input: input dimension d, hyperparameters k, β, τ, θ, exponent η, error limitation e
Output: tight constant µl for a specified EGG

1 µl, µr ← 0, 1
2 while µr − µl > e do
3 µm ← (µr + µl)/2

4 mm ← θΛ d−2k
η

((√
Γ( d−2k+2

η )

Γ( d−2k
η )

(
(1− 2τ)µm +

√
β + (4τ2 − 4τ)µ2

m

))η
)

5 if mm > 1/2 then
6 µl ← µm

7 else
8 µr ← µm

9 end
10 end
11 µ← µl

12 return µ

Remark. We exhaust the cases for η since the analytic solution to Problem (72) includes intractable gamma function terms.
The proof above can easily be generalized to other η ∈ R+. e.g., we have tried the sequence of η ∈ [0.02, 1] increasing
by 0.001, no value greater than 1

2θ is observed, meaning these ηs are all qualified to provide Ω(
√
d) lower bounds for the

ℓ2 certified radius under the setting of Theorem 6.2. We have also shown results for η ∈ [2, 10] ∩ N in Table 7, where the
boundary value for 1

2θ is marked red. It is remarkable that Λ d−2k
η

(m) decreases significantly when η > 2, which is in line
with Figure 2 (left) though we are only considering the lower bound for the certified radius. In addition to the fixed constant
0.02, the tight constant factor µ for each EGG distribution can be computed by Algorithm 1.
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D.3. Theorem D.7

The following theorem introduces d1/η into the lower bound using (σ, p, η)-concentration assumption, which can be proved
to be almost equivalent to Theorem 6.2.

Theorem D.7. Let d ∈ N+ be a sufficiently large input dimension, (x0, y0) ∈ Rd×Y be a labeled example and f : Rd → Y
be a base classifier which satisfies (σ, p, η)-concentration property w.r.t. (x0, y0). For the DSRS method, let P = G(σ, η, k)
be the smoothing distribution to give a smoothed classifier f̄P , and Q = Gt(σ, η, k, T ) be the supplementary distribution
with T = σs

√
2Λ−1

d
η

(p), d − 2k ∈ [1, 30] ∩ N and η ∈ {1, 12 ,
1
3 , · · · ,

1
50}. Then for the smoothed classifier f̄P(x) the

certified ℓ2 radius
rη ≥ 0.02σsd

1
η , (92)

where σs is the formal variance of S(σ, η). When σs is converted to σ keeping Er2 a constant, we still have

rη = Ω(
√
d). (93)

Proof. In this section, we first prove that a base classifier that satisfies a certain concentration property can certify Θ(d
1
η )

ℓ2 radii given the smoothing distribution P = G(σ, η, k) and the supplementary distribution Q = Gt(σ, η, k, T ). Then, by
converting σs to σ, we derive a Θ(

√
d) lower bound for the certified radius. Like Appendix D.2, we find the lower bound

for Problem (5) by Lemma D.3.

In Lemma D.1, when η is an arbitrarily positive real number, we have

p = Λ d
η

(
T η

2ση
s

)
⇐⇒ T = σs(2Λ

−1
d
η

(p))
1
η . (94)

We thereby obtain

T ≥ (
2β

η
)

1
η σsd

1
η (95)

by Lemma D.5. Then we have Equation (86) and Equation (87) the same as in Appendix D.2. Let ρ = ζσsd
1
η where

ζ ∈ R+. Let η = 1
n , n ∈ N+,∀d ≥ d̃, where d̃ is a sufficiently large real integer which satisfies Lemma D.4 and Lemma

D.5. We then have the estimation

Ez∼P

(
f̃∗
x0
(δ + z)

)
(a)

≥ θE
u∼Γ( d−2k

η
,1)

I

(
u <

1

2

(
(1− 2τ)ρ+

√
T 2 + (4τ2 − 4τ)ρ2

σg

)η)

(b)
=θE

u∼Γ( d−2k
η

,1)
I

u <
1

2


√√√√Γ( d

η
)Γ( d−2k+2

η
)

Γ( d+2
η

)Γ( d−2k
η

)

(1− 2τ)ρ+
√

T 2 + (4τ2 − 4τ)ρ2

σs

η
(c)

≥θE
u∼Γ( d−2k

η
,1)

I

u <
1

2


√√√√Γ( d

η
)Γ( d−2k+2

η
)

Γ( d+2
η

)Γ( d−2k
η

)

(1− 2τ)ζσsd
1
η +

√
( 2β

η
)

2
η σ2

sd
2
η + (4τ2 − 4τ)(ζσsd

1
η )2

σs

η


(d)

≥θE
u∼Γ( d−2k

η
,1)

I

u <
d̃

2

(∏ 2
η

i=1(
d̃+2
η

− i)

) η
2


√√√√Γ( d−2k+2

η
)

Γ( d−2k
η

)

(
(1− 2τ)ζ +

√
(
2β

η
)

2
η + (4τ2 − 4τ)ζ2

)η

 . (96)

In the equations above: (a) solve the inequality with respect to u in the indicator function, whose solution is shown in
Equation (87); (b) for a constant Er2, we have

σg =

√√√√Γ(d−2k
η )Γ(d+2

η )

Γ( dη )Γ(
d−2k+2

η )
σs; (97)

(c) by Lemma D.5 and ρ = ζσsd
1
η ; (d) by Lemma D.6.
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We write

m =
d̃

2

(∏ 2
η

i=1(
d̃+2
η − i)

) η
2


√√√√Γ(d−2k+2

η )

Γ(d−2k
η )

(
(1− 2τ)ζ +

√
(
2β

η
)

2
η + (4τ2 − 4τ)ζ2

)η

, (98)

and then we have
Ez∼P

(
f̃∗x0

(δ + z)
)
≥ Λ d−2k

η
(m) (99)

by Equation (96). Notice the lower estimation is slightly different from Appendix D.2 since there is a d̃ in the expression.
Pick p = 0.5, d̃ = 25000, θ = 0.999, β = 0.99, τ = 0.6, ζ = 0.02 (Li et al., 2022). We show the value of Λ d−2k

η
(m) when

d− 2k ∈ [1, 30] ∩ Z and η = 1
n , n ∈ [1, 50] ∩ Z in Table 8. As a result, all values in Table 8 are greater than 1

2θ ≈ 0.5005,
which means

Ez∼P

(
f̃∗x0

(δ + z)
)
≥ θ · 1

2θ
=

1

2
. (100)

Recalling that our goal here is to check whether Ez∼P

(
f̃∗x0

(δ + z)
)
≥ 1

2 holds for some determined ρ, we have finished

the proof that Rη ≥ ρ = ζσsd
1
η . Superficially, we get an Ω(d

1
η ) bound for the ℓ2 certified radius, which seems tighter than

the Ω(
√
d) one. But by Lemma 5.4, it is essentially equivalent to the Ω(

√
d) lower bound; we thus remark that Theorem 6.2

and Theorem D.7 are different manifestations of the same fact.

Remark. Different from Theorem 6.2, this proof can not be generalized directly to η > 2 due to the property of factorial.
In essence, the (σ, p, η)-concentration assumption is slightly less strict for base classifiers than the (σ, p, 2)-concentration
assumption.

E. Supplementary for experimental methods
E.1. DSRS algorithm

Taking EGG as an example, the DSRS algorithm used in this work is shown in Algorithm 2.

E.2. Computational overhead

All of our experiments on real-world datasets are composed of sampling and certification, which are finished with 4 NVIDIA
RTX 3080 GPUs and CPUs. The most computationally intensive procedure is sampling. For σ = 0.50 base classifiers, it
takes about 5s, 200s to sample 50000 times under noise distributions on CIFAR10, ImageNet with one GPU. Given that we
uniformly pick 1000 data points from each dataset, one sampling procedure takes around 1 hour, 1 day for 50000 noises on
CIFAR10, ImageNet respectively with one GPU. Naturally, the sampling time almost doubles for 100000 noises.

The computation for certification only relies on CPUs. The running time for certification includes NP certification and
DSRS certification, and is basically constant for different datasets. Usually, it takes 1-2 days to complete. The overall
computational time for standard DSRS certification is strictly larger than that for pure NP certification, with respect to a
specific number of samples. For instance, if we compute a certificate for 100000 noises, we need one NP certification for
100000 noises, while we need one NP certification for 50000 noises and one DSRS certification for the remaining 50000
noises to finish the DSRS computation. Generally, the computational time for standard DSRS certification is one to two
times that of pure NP certification.

E.3. Transferability of the incremental effect

We show results for real-world datasets on different base classifiers in this section. In Table 9, we observe that η = 8.0
shows better performance than General Gaussian (η = 2.0) overall. This alludes to some defects in the current training
method for General Gaussian because intuitively, if the models are trained by General Gaussian, then sampling with General
Gaussian should have provided the best certified results among all η, but we find the incremental effect with η still exists in
General-Gaussian-augmented models. We name the base classifiers by {training method}-{distribution} in experimental
results for ACR. In all the experiments in this subsection, we set the training method ∈ {StdAug (standard augmentation),
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Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing
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Algorithm 2: Standard algorithm for Double Sampling Randomized Smoothing by Exponential General Gaussian
(EGG) distributions on real-world datasets

Input: base classifier f , example x, formal variance σ, exponent η, hyperparameter k, significance level α, error
bound for certified radius e, heuristic algorithm H , conservative algorithm C, DualBinarySearch algorithm
D (Algorithms H,C,D from Li et al. (2022)).

Output: certified radius r
1 Initialize the smoothing distribution as EGG: P ← G(σ, η, k)
2 A1 ← SamplingUnderNoise (f, x,P, α)
/* A1 is the Clopper-Pearson lower bound for the sampling result (Clopper &

Pearson, 1934; Cohen et al., 2019) */
3 T ← H(A1) /* T is the hyperparameter for the truncated distribution Q */
4 Initialize the supplementary distribution as TEGG: Q ← Gt(σ, η, k, T )
5 B1 ← SamplingUnderNoise (f, x,Q, α)
6 A,B ← C(A1, B1) /* A,B for Problem (57) are determined by algorithm C */
7 rl ← 0, rr ← I
/* Initialization for the binary search on r, where I is big enough */

8 while rr − rl > e do
9 rm ← (rr + rl)/2

10 pm ← D(A,B) /* Problem (57) can be solved by D with given A,B */
11 if pm > 1/2 then
12 rl ← rm
13 else
14 rr ← rm
15 end
16 end
17 r ← rl
18 return r

Table 9. The incremental effect with η on different base classifiers.

Dataset Model η
Certified Accuracy at r

ACR0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50

CIFAR-10

StdAug-GS 2.0((Li et al., 2022), the SOTA) 56.9% 48.0% 40.9% 33.5% 26.4% 19.5% 13.8% 10.6% 7.4% 3.3% 0.437
8.0 58.1% 50.8% 42.8% 35.9% 30.6% 23.2% 18.1% 13.7% 10.1% 7.3% 0.489

StdAug-GGS 2.0((Li et al., 2022), the SOTA) 58.3% 51.7% 44.5% 38.1% 29.3% 22.7% 17.7% 13.1% 8.3% 3.8% 0.480
8.0 58.2% 52.1% 44.4% 38.8% 30.9% 24.1% 19.1% 14.4% 10.8% 6.8% 0.502

Consistency-GGS 2.0((Li et al., 2022), the SOTA) 52.0% 48.8% 44.7% 42.1% 38.5% 36.0% 32.9% 28.6% 24.0% 19.6% 0.618
8.0 51.7% 48.6% 44.7% 42.2% 38.8% 36.1% 34.1% 29.9% 26.8% 22.3% 0.650

SmoothMix-GGS 2.0((Li et al., 2022), the SOTA) 55.8% 52.3% 49.1% 45.3% 41.7% 37.7% 34.6% 30.0% 26.3% 21.2% 0.662
8.0 55.5% 52.1% 49.1% 45.6% 42.0% 38.2% 35.2% 31.7% 27.8% 24.3% 0.695

ImageNet StdAug-GGS 2.0((Li et al., 2022), the SOTA) 56.7% 52.8% 49.4% 45.7% 41.5% 38.1% 34.0% 30.6% 25.4% 19.4% 0.654
8.0 56.7% 52.9% 49.8% 46.3% 42.9% 39.3% 35.8% 32.7% 29.1% 24.6% 0.703

Consistency, SmoothMix}, the training distribution ∈ {GS (Gaussian), GGS (General Gaussian)}. We use σ = 0.50 for all
the training and sampling distributions.

F. Numerical simulation
We also conduct a numerical simulation to explore the effects of EGG distributions on currently unattainable A,B pairs
from Problem (57). We only show simulative experiments for the EGG distribution since we observe great monotonicity
for certified robustness (and/or certified radius) w.r.t. η from EGG, which does not occur in ESG. We consider two cases:
B = 1 and B < 1 for B in Problem (57).

Results and analyses. (1) B = 1. This is actually an ideal case since it is impossible to train such a base classifier. Here we
still present the results, as they demonstrate the theoretical performance of EGG distributions. From Figure 2 (left), we
observe there is a monotonically decreasing tendency in the certified radius w.r.t. η, which seems contradictory to the results
on real-world datasets. This is partly because the concentration assumption (i.e., B = 1) is more friendly to the smaller
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Table 10. Numerical simulation for EGG distributions (metric: certified radius).

η
A 0.6 0.7 0.8

B 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.7 0.8 0.9
0.5 0.188 0.194 0.216 0.273 0.408 0.391 0.407 0.471 0.678 0.632 0.675
1.0 0.218 0.225 0.251 0.320 0.471 0.451 0.470 0.546 0.778 0.726 0.776
2.0 0.234 0.242 0.271 0.346 0.506 0.485 0.505 0.589 0.836 0.779 0.833
4.0 0.243 0.251 0.281 0.360 0.525 0.502 0.524 0.611 0.867 0.807 0.863
8.0 0.247 0.255 0.286 0.367 0.534 0.511 0.533 0.622 0.882 0.821 0.878

16.0 0.249 0.257 0.288 0.370 0.538 0.515 0.537 0.627 0.889 0.827 0.885
32.0 0.250 0.258 0.289 0.371 0.540 0.517 0.539 0.629 0.893 0.830 0.887
64.0 0.250 0.258 0.290 0.371 0.541 0.518 0.539 0.629 0.894 0.831 0.888

Increase (64.0 to 2.0) 6.8% 6.6% 7.0% 7.2% 6.9% 6.8% 6.7% 6.8% 6.9% 6.7% 6.6%

η. In fact, the major mass of the EGG distribution with smaller η gathers near 0. This makes smaller η more sensitive to
relaxation of concentration assumption (see Figure 10b), which leads to worse performance on real-world datasets compared
to larger η. (2) B < 1. As shown in Table 10, the monotonically increasing tendency w.r.t. η continues to exist, manifesting
the essential superiority of the large η EGG distribution in the DSRS framework. We also notice that the increase is not
endless, since η = 64.0 shows a marginal increment to that of η = 32.0 (see also Figure 2 (right)), which may imply some
convergence due to the extremely slow growth. We do not show results for larger η due to floating-point limitations and low
necessity based on our observation. For all the distributions used for numerical simulation, we set σ = 1.0 and k = d

2 − 5
for fair comparison.

F.1. B = 1 settings

We need to modify Theorem C.2 slightly to get certified results. We see

B = 1⇐⇒ CgEu∼Γ( d−2k
η ,1) ω1(u, ν1 + Cgν2) · 1u≤ Tη

2σ
η
g

= 1

⇐⇒ ν1 + Cgν2 → −∞,
(101)

which makes

ω2(u) = Ψ d−1
2

(
T 2 − (t− ρ)2

4ρt

)
. (102)

Injecting ω2(u) into Theorem C.2, we can compute the certified radius as in general cases. In B = 1 experiments, T is set
to
√
2Λ d

2
(0.5) due to the assumption of the (1, 0.5, 2)-concentration property.

F.2. B < 1 settings

Theorem C.2 can be directly used in computing the certified radius for this case. The values set for A and B are not
completely random as there is an inherent constraint (Li et al., 2022):

B

Cg
≤ A ≤ 1− 1−B

Cg
,

0 ≤ B ≤ 1.

(103)

This constraint should also be considered when setting A in case B = 1. For each EGG distribution, we set Cg = 2,
meaning T = σg(2Λ

−1
d−2k

η

(0.5))
1
η for Figure 2 (right) and Table 10.

F.3. The effect of dimension

The results in Table 10 almost do not change on large d. That is, our results that certified radius increases monotonically
with η are general for common datasets like CIFAR-10 and ImageNet. See Figure 10a.

F.4. Different sensitivity to relaxation for η

We observe contrary monotonicity for certified radius w.r.t. η under B = 1 and B < 1. A direct reason is that small
η in EGG is more susceptible to relaxation of B = 1. We set T =

√
2Λ d

2
(0.5) for B < 1 curves in this figure for fair
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Figure 10. Results for numerical simulation.

Table 11. Maximum certified accuracy w.r.t. σ, Consistency models

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

EGG, η = 1.0 62.1% 50.7% 38.2% 33.1% 24.2% 19.2% 16.7% 14.3% 11.3% 9.2% 6.6% 4.1% 1.4% 0.0%
EGG, η = 2.0 62.5% 52.0% 38.5% 34.4% 27.4% 20.6% 17.0% 14.7% 12.7% 10.5% 8.5% 6.3% 3.9% 2.5%
EGG, η = 4.0 62.5% 52.2% 39.1% 35.4% 28.3% 21.1% 17.5% 15.3% 13.0% 10.9% 9.2% 7.0% 5.2% 3.1%
EGG, η = 8.0 62.5% 52.6% 40.4% 35.3% 28.6% 22.3% 17.6% 15.5% 13.2% 11.3% 9.6% 7.8% 5.8% 3.9%

CIFAR10

ESG, η = 1.0 62.6% 52.9% 41.6% 35.5% 29.3% 23.7% 17.7% 15.8% 13.7% 11.8% 10.0% 8.8% 6.8% 4.6%
ESG, η = 2.0 62.7% 53.0% 41.4% 35.5% 29.4% 24.0% 17.7% 16.0% 13.8% 11.9% 10.1% 8.7% 6.7% 4.4%
ESG, η = 4.0 62.7% 52.9% 41.6% 35.5% 29.5% 23.8% 17.8% 15.7% 13.9% 11.9% 10.2% 8.8% 6.7% 4.8%
ESG, η = 8.0 62.7% 52.9% 41.7% 35.5% 29.1% 23.8% 17.6% 15.8% 13.6% 11.8% 10.1% 8.3% 6.7% 4.8%

comparison with B = 1 ones. Figure 10b demonstrates that the smaller η performs better when B = 1, while performs
worse when B < 1 than the larger η. This indicates that the smaller η suffers more from the relaxation of the concentration
assumption than the larger η.

G. Comparison to other work
Li et al. (2022) is one of the cornerstones of this work. To the best of our knowledge, we are the first to generalize the
DSRS certification systematically. For NP certification, though many attempts in the community have investigated the
interrelationship between the smoothing distribution and certified radius, nobody has shown results as we do. Yang et al.
(2020) trained models for each smoothing distribution, while we fixed the base classifier for the convenience of comparison.
They also did not fully consider the distributions we use. Kumar et al. (2020) showed similar results to us for ESG in their
Figure 5, but they only showed sampling results due to the lack of computing method, and they also trained base models for
each distribution like Yang et al. (2020). Zhang et al. (2020) showed results for η = 2 EGG distribution under a fixed-model
setting, but they didn’t consider η ̸= 2 cases.

H. Supplementary for experimental results
H.1. Certified radius at r for Consistency (Jeong & Shin, 2020) and SmoothMix (Jeong et al., 2021) models,

maximum results

Table 11 and Table 12 show the experimental results for certified accuracy at radius r. Each data is the maximum one
among base classifiers with σ ∈ {0.25, 0.50, 1.00}. All the base classifiers in both tables are trained under the General
Gaussian distribution, by Consistency (Jeong & Shin, 2020) and SmoothMix (Jeong et al., 2021) respectively. From the
tables, we can see the rule observed on classifiers augmented standardly continues to exist, that certified accuracy increases
monotonically with the η of EGG, and stays almost constant with the η of ESG.
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Table 12. Maximum certified accuracy w.r.t. σ, SmoothMix models

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

EGG, η = 1.0 63.7% 53.8% 40.9% 34.3% 26.6% 21.1% 17.0% 14.2% 10.5% 7.7% 4.0% 1.5% 0.1% 0.0%
EGG, η = 2.0 64.5% 55.0% 41.7% 35.6% 28.9% 21.3% 18.0% 15.2% 12.3% 9.7% 6.4% 3.7% 1.4% 0.4%
EGG, η = 4.0 64.4% 55.5% 43.0% 35.9% 29.5% 23.4% 18.3% 15.8% 12.8% 10.2% 7.7% 4.6% 2.1% 0.9%
EGG, η = 8.0 64.7% 55.7% 43.9% 36.2% 30.1% 24.3% 18.6% 15.8% 13.2% 10.6% 8.0% 5.4% 2.7% 1.3%

CIFAR10

ESG, η = 1.0 64.6% 56.5% 46.5% 36.6% 31.3% 25.6% 19.1% 16.2% 13.4% 11.4% 8.9% 6.3% 4.0% 1.8%
ESG, η = 2.0 64.7% 56.3% 45.8% 36.6% 31.2% 25.6% 18.9% 16.3% 13.4% 11.6% 8.8% 6.2% 4.0% 1.7%
ESG, η = 4.0 64.6% 56.3% 46.0% 36.5% 31.0% 25.6% 19.0% 16.2% 13.6% 11.5% 9.2% 6.0% 3.9% 1.8%
ESG, η = 8.0 64.6% 56.1% 46.5% 36.4% 31.1% 25.5% 18.9% 16.3% 13.5% 11.3% 9.0% 6.2% 4.1% 1.6%
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Figure 11. ACR results on Consistency and SmoothMix models. (a). ACR monotonically increases with η in EGG. (b). The ACR growth
gain from DSRS relative to NP shrinks with η in EGG. (c). ACR stays almost constant in ESG. (d). The ACR growth gain from DSRS
remains almost constant in ESG. For (a) and (c), solid lines represent results from DSRS, and dotted lines represent results from NP.

H.2. Full experimental results for certifications

We show full experimental results in this section, where the maximum results for certified accuracy in Table 2, Table 3,
Table 11 and Table 12 originated from. All the base classifiers in this section are trained under the EGG distribution with
η = 2 (the General Gaussian distribution used in DSRS (Li et al., 2022)). Our base classifiers are only affected by the
dataset and the formal variance. For example, in Table 13, all data under σ = 0.25 use the same base classifier, no matter
what η is. In addition, for σ = 0.25, the base classifiers for EGG and ESG are the same, which guarantees fair comparisons
between distinctive distributions for certification.
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Table 13. Full experimental results for certified accuracy, standard augmentation, EGG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

0.25
NP 41.4% 0.5%

DSRS 52.6% 7.9%
(Growth) 11.2% 7.4%

0.5
NP 51.6% 14.5% 0.1%

DSRS 55.5% 29.5%
(Growth) 3.9% 15.0%

1.0
NP 55.6% 29.1% 5.5%

DSRS 56.3% 36.5% 9.3%
(Growth) 0.7% 7.4% 3.8%

2.0
NP 56.2% 35.7% 13.4%

DSRS 56.7% 38.4% 16.9%
(Growth) 0.5% 2.7% 3.5%

4.0
NP 57.3% 38.5% 18.5%

DSRS 57.5% 39.3% 20.0%
(Growth) 0.2% 0.8% 1.5%

8.0
NP 57.5% 39.2% 21.2%

DSRS 57.6% 40.1% 22.0%
(Growth) 0.1% 0.9% 0.8%

0.50

0.25
NP 50.9% 23.7% 3.9% 0.1%

DSRS 54.2% 37.6% 16.4% 2.0%
(Growth) 3.3% 13.9% 12.5% 1.9%

0.5
NP 53.0% 34.6% 16.6% 4.5% 0.3%

DSRS 53.6% 40.4% 25.2% 12.9% 2.5%
(Growth) 0.6% 5.8% 8.6% 8.4% 2.2%

1.0
NP 53.7% 39.8% 23.1% 12.4% 3.6% 0.7%

DSRS 54.1% 41.7% 28.2% 17.3% 9.2% 1.8%
(Growth) 0.4% 1.9% 5.1% 4.9% 5.6% 1.1%

2.0
NP 53.8% 41.2% 27.9% 17.0% 8.9% 2.9% 0.1%

DSRS 54.0% 42.4% 29.3% 19.4% 11.6% 3.8% 0.6%
(Growth) 0.2% 1.2% 1.4% 2.4% 2.7% 0.9% 0.5%

4.0
NP 53.9% 42.2% 29.7% 19.0% 11.3% 4.7% 1.5%

DSRS 54.0% 42.5% 30.0% 20.2% 12.8% 5.8% 1.5%
(Growth) 0.1% 0.3% 0.3% 1.2% 1.5% 1.1% 0.0%

8.0
NP 54.0% 42.6% 30.0% 20.0% 12.7% 6.8% 2.3%

DSRS 54.2% 42.5% 30.9% 20.6% 13.4% 6.8% 1.8%
(Growth) 0.2% -0.1% 0.9% 0.6% 0.7% 0.0% -0.5%

1.00

0.25
NP 40.6% 28.7% 18.0% 9.0% 3.1% 0.4%

DSRS 41.8% 32.6% 23.5% 16.5% 9.4% 4.5% 0.5% 0.1%
(Growth) 1.2% 3.9% 5.5% 7.5% 6.3% 4.1%

0.5
NP 40.9% 31.8% 21.8% 15.7% 9.1% 4.9% 1.6% 0.2% 0.1%

DSRS 41.1% 33.6% 24.7% 19.1% 13.4% 8.5% 5.5% 2.0% 0.4% 0.1%
(Growth) 0.2% 1.8% 2.9% 3.4% 4.3% 3.6% 3.9% 1.8% 0.3%

1.0
NP 40.4% 32.4% 24.0% 17.7% 12.6% 8.5% 5.0% 2.2% 0.5% 0.1% 0.1%

DSRS 40.2% 33.2% 25.5% 20.0% 15.1% 10.5% 7.1% 4.2% 1.9% 0.9% 0.1%
(Growth) -0.2% 0.8% 1.5% 2.3% 2.5% 2.0% 2.1% 2.0% 1.4% 0.8% 0.0%

2.0
NP 40.2% 32.6% 24.6% 18.9% 15.0% 10.1% 7.4% 4.0% 2.0% 0.7% 0.1% 0.1%

DSRS 40.2% 32.8% 25.5% 20.2% 15.7% 11.5% 8.0% 5.5% 2.6% 1.5% 0.6% 0.1%
(Growth) 0.0% 0.2% 0.9% 1.3% 0.7% 1.4% 0.6% 1.5% 0.6% 0.8% 0.5% 0.0%

4.0
NP 40.0% 32.7% 25.2% 19.7% 15.5% 11.4% 8.2% 5.3% 3.0% 1.5% 0.6% 0.1% 0.1%

DSRS 39.6% 32.7% 25.7% 20.2% 15.9% 12.2% 8.5% 6.5% 3.4% 1.8% 0.9% 0.4%
(Growth) -0.4% 0.0% 0.5% 0.5% 0.4% 0.8% 0.3% 1.2% 0.4% 0.3% 0.3% 0.3%

8.0
NP 39.7% 32.5% 25.5% 20.2% 15.7% 12.1% 8.5% 6.3% 3.4% 2.0% 0.9% 0.5% 0.2%

DSRS 39.5% 32.6% 25.5% 20.2% 15.8% 12.3% 8.6% 6.6% 3.7% 2.1% 1.1% 0.5% 0.2%
(Growth) -0.2% 0.1% 0.0% 0.0% 0.1% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.0% 0.0%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Table 14. Full experimental results for certified accuracy, standard augmentation, EGG, ImageNet

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

0.25
NP 9.9%

DSRS 45.8%
(Growth) 35.9%

0.5
NP 44.6% 0.6%

DSRS 54.9% 9.7%
(Growth) 10.3% 9.1%

1.0
NP 54.0% 21.1% 0.6%

DSRS 57.0% 39.3% 1.4%
(Growth) 3.0% 18.2% 0.8%

2.0
NP 57.1% 41.7% 17.6%

DSRS 58.4% 47.9% 24.1%
(Growth) 1.3% 6.2% 6.5%

4.0
NP 58.4% 48.0% 33.6%

DSRS 58.7% 49.9% 36.2%
(Growth) 0.3% 1.9% 2.6%

8.0
NP 58.7% 50.0% 37.8%

DSRS 59.1% 50.8% 38.7%
(Growth) 0.4% 0.8% 0.9%

0.50

0.25
NP 49.7% 26.7% 0.1%

DSRS 53.8% 41.4% 14.8%
(Growth) 4.1% 14.7% 14.7%

0.5
NP 52.1% 40.6% 26.4% 8.3% 0.1%

DSRS 54.4% 46.3% 36.4% 22.5% 2.9%
(Growth) 2.3% 5.7% 10.0% 14.2% 2.8%

1.0
NP 52.8% 44.8% 35.7% 26.2% 16.1% 6.3%

DSRS 54.2% 47.8% 39.9% 32.8% 22.9% 8.9%
(Growth) 1.4% 3.0% 4.2% 6.6% 6.8% 2.6%

2.0
NP 53.4% 47.0% 39.4% 33.3% 24.5% 17.4% 8.4%

DSRS 53.8% 48.5% 41.5% 35.2% 28.9% 19.4% 11.3%
(Growth) 0.4% 1.5% 2.1% 1.9% 4.4% 2.0% 2.9%

4.0
NP 53.3% 47.7% 41.3% 35.2% 29.3% 21.3% 14.0%

DSRS 53.6% 48.6% 42.6% 36.4% 31.0% 22.8% 14.4%
(Growth) 0.3% 0.9% 1.3% 1.2% 1.7% 1.5% 0.4%

8.0
NP 53.3% 48.3% 42.2% 36.5% 31.1% 24.0% 16.9%

DSRS 53.6% 48.8% 42.9% 36.8% 31.8% 24.6% 16.5%
(Growth) 0.3% 0.5% 0.7% 0.3% 0.7% 0.6% -0.4%

1.00

0.25
NP 38.8% 29.8% 15.7% 3.3%

DSRS 41.0% 35.3% 28.4% 20.1% 7.1% 0.8%
(Growth) 2.2% 5.5% 12.7% 16.8%

0.5
NP 40.3% 34.1% 26.4% 19.0% 10.7% 4.1% 1.4% 0.1%

DSRS 40.9% 37.0% 31.6% 26.3% 22.1% 15.2% 8.7% 3.1% 0.8%
(Growth) 0.6% 2.9% 5.2% 7.3% 11.4% 11.1% 7.3% 3.0%

1.0
NP 41.7% 36.4% 30.7% 25.5% 20.9% 15.3% 10.5% 6.3% 3.3% 1.7% 0.7% 0.2%

DSRS 42.0% 37.9% 33.4% 29.3% 24.9% 22.0% 18.5% 13.1% 9.2% 5.0% 2.1% 0.5%
(Growth) 0.3% 1.5% 2.7% 3.8% 4.0% 6.7% 8.0% 6.8% 5.9% 3.3% 1.4% 0.3%

2.0
NP 42.5% 37.2% 32.8% 29.2% 24.7% 21.4% 17.4% 13.8% 10.1% 7.8% 5.5% 3.3% 2.2% 1.1%

DSRS 42.9% 38.2% 34.3% 30.2% 26.8% 23.3% 21.3% 18.8% 14.1% 11.1% 8.9% 6.1% 2.2% 1.4%
(Growth) 0.4% 1.0% 1.5% 1.0% 2.1% 1.9% 3.9% 5.0% 4.0% 3.3% 3.4% 2.8% 0.0% 0.3%

4.0
NP 42.2% 38.0% 33.8% 30.8% 26.1% 23.3% 21.1% 18.2% 13.9% 11.2% 9.3% 8.1% 6.0% 4.2%

DSRS 42.5% 38.5% 34.6% 31.3% 27.5% 23.9% 22.3% 20.2% 17.3% 13.2% 10.7% 9.2% 6.8% 4.0%
(Growth) 0.3% 0.5% 0.8% 0.5% 1.4% 0.6% 1.2% 2.0% 3.4% 2.0% 1.4% 1.1% 0.8% -0.2%

8.0
NP 42.4% 38.1% 34.5% 31.1% 26.9% 24.0% 22.2% 19.9% 16.8% 12.8% 11.0% 9.5% 8.0% 6.1%

DSRS 42.4% 38.4% 35.0% 31.4% 28.0% 24.4% 22.6% 20.7% 18.9% 14.5% 11.7% 10.1% 8.6% 5.2%
(Growth) 0.0% 0.3% 0.5% 0.3% 1.1% 0.4% 0.4% 0.8% 2.1% 1.7% 0.7% 0.6% 0.6% -0.9%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Table 15. Full experimental results for certified accuracy, standard augmentation, ESG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 57.8% 40.7% 25.6%

DSRS 57.6% 40.7% 25.1%
(Growth) -0.2% 0.0% -0.5%

2.0
NP 57.8% 40.8% 25.7%

DSRS 57.6% 40.6% 25.1%
(Growth) -0.2% -0.2% -0.6%

4.0
NP 57.9% 40.9% 26.0%

DSRS 57.6% 40.6% 25.0%
(Growth) -0.3% -0.3% -1.0%

8.0
NP 57.9% 40.8% 25.6%

DSRS 57.8% 40.6% 24.9%
(Growth) -0.1% -0.2% -0.7%

0.50

1.0
NP 54.3% 42.7% 31.7% 21.8% 14.0% 8.7% 3.5%

DSRS 54.2% 42.6% 31.3% 21.5% 14.1% 8.3% 2.7%
(Growth) -0.1% -0.1% -0.4% -0.3% 0.1% -0.4% -0.8%

2.0
NP 54.3% 42.6% 31.6% 21.7% 14.0% 8.5% 3.6%

DSRS 54.3% 42.6% 31.6% 21.5% 13.9% 8.7% 2.8%
(Growth) 0.0% 0.0% 0.0% -0.2% -0.1% 0.2% -0.8%

4.0
NP 54.3% 42.7% 31.5% 21.6% 14.3% 8.6% 3.6%

DSRS 54.3% 42.6% 31.3% 21.5% 13.9% 8.2% 3.0%
(Growth) 0.0% -0.1% -0.2% -0.1% -0.4% -0.4% -0.6%

8.0
NP 54.3% 42.6% 31.7% 21.7% 14.1% 8.7% 3.5%

DSRS 54.4% 42.6% 31.6% 21.6% 14.0% 8.1% 2.4%
(Growth) 0.1% 0.0% -0.1% -0.1% -0.1% -0.6% -1.1%

1.00

1.0
NP 39.6% 32.6% 26.0% 20.5% 15.9% 13.0% 9.2% 7.0% 4.5% 2.5% 1.5% 0.9% 0.5% 0.2%

DSRS 39.6% 32.5% 25.7% 20.4% 15.8% 12.8% 8.6% 6.8% 4.3% 2.3% 1.3% 0.8% 0.3% 0.1%
(Growth) 0.0% -0.1% -0.3% -0.1% -0.1% -0.2% -0.6% -0.2% -0.2% -0.2% -0.2% -0.1% -0.2% -0.1%

2.0
NP 39.6% 32.6% 25.9% 20.4% 15.9% 13.0% 9.2% 7.0% 4.6% 2.5% 1.3% 0.8% 0.3% 0.2%

DSRS 39.5% 32.6% 25.8% 20.4% 15.8% 12.7% 8.8% 6.8% 4.5% 2.4% 1.3% 0.7% 0.2% 0.2%
(Growth) -0.1% 0.0% -0.1% 0.0% -0.1% -0.3% -0.4% -0.2% -0.1% -0.1% 0.0% -0.1% -0.1% 0.0%

4.0
NP 39.7% 32.6% 25.9% 20.4% 15.9% 12.9% 9.0% 7.0% 4.6% 2.5% 1.5% 0.8% 0.3% 0.2%

DSRS 39.5% 32.6% 25.8% 20.3% 15.9% 12.9% 8.6% 6.9% 4.3% 2.4% 1.3% 0.8% 0.2% 0.1%
(Growth) -0.2% 0.0% -0.1% -0.1% 0.0% 0.0% -0.4% -0.1% -0.3% -0.1% -0.2% 0.0% -0.1% -0.1%

8.0
NP 39.6% 32.6% 25.8% 20.3% 15.9% 12.9% 9.2% 7.0% 4.5% 2.5% 1.3% 0.8% 0.3% 0.2%

DSRS 39.7% 32.4% 25.8% 20.4% 15.9% 12.9% 8.9% 6.7% 4.2% 2.4% 1.3% 0.9% 0.2% 0.1%
(Growth) 0.1% -0.2% 0.0% 0.1% 0.0% 0.0% -0.3% -0.3% -0.3% -0.1% 0.0% 0.1% -0.1% -0.1%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Table 16. Full experimental results for certified accuracy, standard augmentation, ESG, ImageNet

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 59.6% 51.6% 42.2%

DSRS 59.6% 51.5% 41.6%
(Growth) 0.0% -0.1% -0.6%

2.0
NP 59.6% 51.7% 41.9%

DSRS 59.6% 51.6% 41.8%
(Growth) 0.0% -0.1% -0.1%

4.0
NP 59.6% 51.7% 42.0%

DSRS 59.6% 51.5% 41.9%
(Growth) 0.0% -0.2% -0.1%

8.0
NP 59.6% 51.6% 42.2%

DSRS 59.6% 51.5% 41.5%
(Growth) 0.0% -0.1% -0.7%

0.50

1.0
NP 53.6% 49.3% 43.2% 38.2% 33.0% 27.2% 21.0%

DSRS 53.6% 49.1% 43.2% 37.9% 33.0% 26.8% 19.1%
(Growth) 0.0% -0.2% 0.0% -0.3% 0.0% -0.4% -1.9%

2.0
NP 53.7% 49.2% 43.2% 38.1% 33.1% 27.3% 20.7%

DSRS 53.6% 49.2% 43.1% 38.0% 32.9% 26.9% 19.2%
(Growth) -0.1% 0.0% -0.1% -0.1% -0.2% -0.4% -1.5%

4.0
NP 53.6% 49.2% 43.2% 38.1% 33.0% 27.5% 20.8%

DSRS 53.6% 49.2% 43.2% 38.0% 32.9% 27.2% 19.4%
(Growth) 0.0% 0.0% 0.0% -0.1% -0.1% -0.3% -1.4%

8.0
NP 53.7% 49.2% 43.2% 38.1% 33.1% 27.4% 21.0%

DSRS 53.6% 49.1% 43.2% 38.0% 33.0% 26.8% 19.4%
(Growth) -0.1% -0.1% 0.0% -0.1% -0.1% -0.6% -1.6%

1.00

1.0
NP 42.7% 39.1% 35.4% 32.0% 29.5% 25.3% 23.1% 21.6% 20.0% 17.6% 13.9% 11.7% 10.5% 9.1%

DSRS 42.6% 38.8% 35.3% 31.9% 28.9% 25.3% 23.1% 21.5% 19.9% 17.4% 13.8% 11.5% 10.3% 7.7%
(Growth) -0.1% -0.3% -0.1% -0.1% -0.6% 0.0% 0.0% -0.1% -0.1% -0.2% -0.1% -0.2% -0.2% -1.4%

2.0
NP 42.6% 39.1% 35.3% 32.1% 29.2% 25.3% 23.2% 21.6% 20.0% 17.6% 14.1% 11.7% 10.5% 9.1%

DSRS 42.5% 39.0% 35.2% 31.7% 29.0% 25.2% 23.1% 21.5% 19.7% 17.4% 13.6% 11.4% 10.1% 8.3%
(Growth) -0.1% -0.1% -0.1% -0.4% -0.2% -0.1% -0.1% -0.1% -0.3% -0.2% -0.5% -0.3% -0.4% -0.8%

4.0
NP 42.6% 39.1% 35.4% 32.0% 29.1% 25.3% 23.1% 21.6% 19.9% 17.9% 14.5% 11.7% 10.5% 9.1%

DSRS 42.5% 38.8% 35.2% 31.9% 29.3% 25.3% 23.1% 21.6% 19.9% 17.2% 13.6% 11.4% 10.2% 8.0%
(Growth) -0.1% -0.3% -0.2% -0.1% 0.2% 0.0% 0.0% 0.0% 0.0% -0.7% -0.9% -0.3% -0.3% -1.1%

8.0
NP 42.7% 39.0% 35.3% 31.9% 29.4% 25.3% 23.1% 21.7% 20.0% 17.5% 13.9% 11.5% 10.4% 9.3%

DSRS 42.5% 38.8% 35.3% 32.0% 29.0% 25.2% 23.1% 21.6% 19.7% 17.3% 13.6% 11.5% 10.1% 8.4%
(Growth) -0.2% -0.2% 0.0% 0.1% -0.4% -0.1% 0.0% -0.1% -0.3% -0.2% -0.3% 0.0% -0.3% -0.9%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Table 17. Full experimental results for certified accuracy, Consistency, EGG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 61.4% 47.0% 25.2%

DSRS 62.1% 50.7% 30.1%
(Growth) 0.7% 3.7% 4.9%

2.0
NP 61.8% 50.7% 35.1%

DSRS 62.5% 52.0% 37.2%
(Growth) 0.7% 1.3% 2.1%

4.0
NP 62.3% 51.7% 38.2%

DSRS 62.5% 52.2% 39.1%
(Growth) 0.2% 0.5% 0.9%

8.0
NP 62.5% 52.2% 40.2%

DSRS 62.5% 52.6% 40.4%
(Growth) 0.0% 0.4% 0.2%

0.50

1.0
NP 49.2% 43.1% 36.3% 28.7% 19.6% 11.6%

DSRS 49.5% 43.7% 38.2% 33.1% 24.2% 15.4%
(Growth) 0.3% 0.6% 1.9% 4.4% 4.6% 3.8%

2.0
NP 49.3% 43.8% 37.8% 32.3% 23.5% 18.0% 9.6%

DSRS 49.4% 44.1% 38.5% 34.4% 27.4% 19.6% 11.5%
(Growth) 0.1% 0.3% 0.7% 2.1% 3.9% 1.6% 1.9%

4.0
NP 49.3% 44.0% 38.3% 34.1% 27.4% 20.4% 14.6%

DSRS 49.3% 44.0% 38.7% 35.4% 28.3% 21.1% 14.1%
(Growth) 0.0% 0.0% 0.4% 1.3% 0.9% 0.7% -0.5%

8.0
NP 49.3% 44.1% 38.7% 35.0% 28.4% 21.9% 15.8%

DSRS 49.3% 44.1% 38.8% 35.3% 28.6% 22.3% 15.2%
(Growth) 0.0% 0.0% 0.1% 0.3% 0.2% 0.4% -0.6%

1.00

1.0
NP 37.2% 32.5% 29.4% 25.2% 21.8% 17.6% 14.4% 11.7% 8.8% 6.3% 4.5% 2.6% 1.8%

DSRS 37.4% 33.0% 29.5% 26.2% 22.8% 19.2% 16.7% 14.3% 11.3% 9.2% 6.6% 4.1% 1.4%
(Growth) 0.2% 0.5% 0.1% 1.0% 1.0% 1.6% 2.3% 2.6% 2.5% 2.9% 2.1% 1.5% -0.4%

2.0
NP 37.2% 32.6% 29.7% 25.9% 22.4% 19.0% 16.3% 13.9% 11.3% 8.9% 7.2% 5.1% 3.5% 2.2%

DSRS 37.1% 32.3% 29.8% 26.5% 23.0% 20.6% 17.0% 14.7% 12.7% 10.5% 8.5% 6.3% 3.9% 2.5%
(Growth) -0.1% -0.3% 0.1% 0.6% 0.6% 1.6% 0.7% 0.8% 1.4% 1.6% 1.3% 1.2% 0.4% 0.3%

4.0
NP 37.1% 32.5% 29.8% 26.2% 22.7% 20.3% 16.9% 14.9% 12.4% 10.6% 8.7% 6.7% 5.1% 3.2%

DSRS 37.0% 32.4% 29.8% 26.7% 23.1% 20.9% 17.5% 15.3% 13.0% 10.9% 9.2% 7.0% 5.2% 3.1%
(Growth) -0.1% -0.1% 0.0% 0.5% 0.4% 0.6% 0.6% 0.4% 0.6% 0.3% 0.5% 0.3% 0.1% -0.1%

8.0
NP 37.1% 32.5% 29.9% 26.4% 23.0% 20.7% 17.2% 15.2% 13.2% 10.9% 9.6% 7.5% 5.9% 4.2%

DSRS 36.7% 32.5% 29.8% 26.6% 23.2% 20.9% 17.6% 15.5% 13.2% 11.3% 9.6% 7.8% 5.8% 3.9%
(Growth) -0.4% 0.0% -0.1% 0.2% 0.2% 0.2% 0.4% 0.3% 0.0% 0.4% 0.0% 0.3% -0.1% -0.3%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Table 18. Full experimental results for certified accuracy, Consistency, ESG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 62.7% 52.9% 41.8%

DSRS 62.6% 52.9% 41.6%
(Growth) -0.1% 0.0% -0.2%

2.0
NP 62.7% 53.0% 42.1%

DSRS 62.7% 53.0% 41.4%
(Growth) 0.0% 0.0% -0.7%

4.0
NP 62.7% 53.0% 42.0%

DSRS 62.7% 52.9% 41.6%
(Growth) 0.0% -0.1% -0.4%

8.0
NP 62.7% 53.0% 42.0%

DSRS 62.7% 52.9% 41.7%
(Growth) 0.0% -0.1% -0.3%

0.50

1.0
NP 49.3% 44.1% 39.2% 35.5% 29.7% 24.3% 18.7%

DSRS 49.3% 44.1% 38.9% 35.5% 29.3% 23.7% 16.9%
(Growth) 0.0% 0.0% -0.3% 0.0% -0.4% -0.6% -1.8%

2.0
NP 49.3% 44.1% 39.2% 35.5% 29.7% 24.1% 18.7%

DSRS 49.3% 44.1% 38.9% 35.5% 29.4% 24.0% 17.1%
(Growth) 0.0% 0.0% -0.3% 0.0% -0.3% -0.1% -1.6%

4.0
NP 49.3% 44.1% 39.1% 35.5% 29.9% 24.1% 18.6%

DSRS 49.3% 44.0% 39.0% 35.5% 29.5% 23.8% 17.6%
(Growth) 0.0% -0.1% -0.1% 0.0% -0.4% -0.3% -1.0%

8.0
NP 49.3% 44.1% 39.3% 35.5% 29.6% 24.2% 19.0%

DSRS 49.3% 44.1% 38.9% 35.5% 29.1% 23.8% 17.3%
(Growth) 0.0% 0.0% -0.4% 0.0% -0.5% -0.4% -1.7%

1.00

1.0
NP 36.7% 32.6% 30.0% 26.9% 23.4% 21.0% 18.0% 16.0% 14.0% 12.2% 10.4% 8.8% 7.0% 5.4%

DSRS 36.5% 32.3% 29.8% 27.0% 23.2% 20.9% 17.7% 15.8% 13.7% 11.8% 10.0% 8.8% 6.8% 4.6%
(Growth) -0.2% -0.3% -0.2% 0.1% -0.2% -0.1% -0.3% -0.2% -0.3% -0.4% -0.4% 0.0% -0.2% -0.8%

2.0
NP 36.8% 32.5% 29.9% 27.1% 23.3% 21.0% 18.1% 16.0% 14.0% 12.2% 10.3% 8.8% 7.1% 5.5%

DSRS 36.6% 32.3% 29.9% 26.8% 23.3% 21.0% 17.7% 16.0% 13.8% 11.9% 10.1% 8.7% 6.7% 4.4%
(Growth) -0.2% -0.2% 0.0% -0.3% 0.0% 0.0% -0.4% 0.0% -0.2% -0.3% -0.2% -0.1% -0.4% -1.1%

4.0
NP 36.6% 32.5% 29.9% 27.0% 23.2% 21.0% 18.0% 16.1% 14.0% 12.2% 10.3% 9.0% 7.2% 5.3%

DSRS 36.6% 32.3% 29.8% 26.9% 23.3% 20.9% 17.8% 15.7% 13.9% 11.9% 10.2% 8.8% 6.7% 4.8%
(Growth) 0.0% -0.2% -0.1% -0.1% 0.1% -0.1% -0.2% -0.4% -0.1% -0.3% -0.1% -0.2% -0.5% -0.5%

8.0
NP 36.7% 32.6% 29.8% 27.0% 23.3% 21.0% 17.9% 16.1% 13.8% 12.2% 10.3% 9.0% 7.1% 5.1%

DSRS 36.6% 32.1% 29.8% 26.9% 23.2% 20.9% 17.6% 15.8% 13.6% 11.8% 10.1% 8.3% 6.7% 4.8%
(Growth) -0.1% -0.5% 0.0% -0.1% -0.1% -0.1% -0.3% -0.3% -0.2% -0.4% -0.2% -0.7% -0.4% -0.3%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Table 19. Full experimental results for certified accuracy, SmoothMix, EGG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 63.3% 49.8% 27.4%

DSRS 63.7% 53.8% 32.4%
(Growth) 0.4% 4.0% 5.0%

2.0
NP 63.8% 53.3% 38.1%

DSRS 64.5% 55.0% 40.8%
(Growth) 0.7% 1.7% 2.7%

4.0
NP 64.2% 55.1% 42.0%

DSRS 64.4% 55.5% 43.0%
(Growth) 0.2% 0.4% 1.0%

8.0
NP 64.6% 55.5% 43.7%

DSRS 64.7% 55.7% 43.9%
(Growth) 0.1% 0.2% 0.2%

0.50

1.0
NP 53.0% 46.7% 38.8% 30.1% 22.2% 12.7%

DSRS 53.3% 47.7% 40.9% 34.3% 26.6% 16.5%
(Growth) 0.3% 1.0% 2.1% 4.2% 4.4% 3.8%

2.0
NP 53.2% 47.5% 40.3% 34.0% 26.6% 19.4% 9.6%

DSRS 53.3% 48.1% 41.7% 35.6% 28.9% 21.2% 11.4%
(Growth) 0.1% 0.6% 1.4% 1.6% 2.3% 1.8% 1.8%

4.0
NP 53.3% 48.0% 41.3% 35.1% 29.0% 22.6% 15.5%

DSRS 53.3% 48.1% 41.9% 35.9% 29.5% 23.4% 14.3%
(Growth) 0.0% 0.1% 0.6% 0.8% 0.5% 0.8% -1.2%

8.0
NP 53.3% 48.2% 41.6% 35.8% 29.5% 23.9% 17.5%

DSRS 53.3% 48.3% 42.0% 36.2% 30.1% 24.3% 15.6%
(Growth) 0.0% 0.1% 0.4% 0.4% 0.6% 0.4% -1.9%

1.00

1.0
NP 43.3% 39.3% 33.2% 27.9% 22.7% 18.2% 15.1% 10.9% 7.4% 3.5% 1.6% 0.8% 0.1%

DSRS 43.5% 39.6% 34.5% 29.1% 24.8% 21.1% 17.0% 14.2% 10.5% 7.7% 4.0% 1.5% 0.1%
(Growth) 0.2% 0.3% 1.3% 1.2% 2.1% 2.9% 1.9% 3.3% 3.1% 4.2% 2.4% 0.7% 0.0%

2.0
NP 43.2% 39.4% 33.9% 29.2% 24.1% 20.5% 16.8% 14.1% 10.4% 7.9% 4.8% 2.0% 1.3% 0.3%

DSRS 43.1% 39.6% 34.3% 29.3% 24.8% 21.3% 18.0% 15.2% 12.3% 9.7% 6.4% 3.7% 1.4% 0.4%
(Growth) -0.1% 0.2% 0.4% 0.1% 0.7% 0.8% 1.2% 1.1% 1.9% 1.8% 1.6% 1.7% 0.1% 0.1%

4.0
NP 43.1% 39.5% 34.3% 29.6% 24.5% 21.3% 17.7% 15.0% 12.2% 9.6% 6.7% 4.0% 2.1% 1.3%

DSRS 42.8% 39.6% 34.4% 29.4% 25.2% 21.8% 18.3% 15.8% 12.8% 10.2% 7.7% 4.6% 2.1% 0.9%
(Growth) -0.3% 0.1% 0.1% -0.2% 0.7% 0.5% 0.6% 0.8% 0.6% 0.6% 1.0% 0.6% 0.0% -0.4%

8.0
NP 43.1% 39.5% 34.1% 29.8% 24.9% 21.7% 18.4% 15.6% 12.9% 10.1% 8.0% 5.6% 3.2% 1.6%

DSRS 42.9% 39.5% 34.3% 29.8% 25.2% 21.9% 18.6% 15.8% 13.2% 10.6% 8.0% 5.4% 2.7% 1.3%
(Growth) -0.2% 0.0% 0.2% 0.0% 0.3% 0.2% 0.2% 0.2% 0.3% 0.5% 0.0% -0.2% -0.5% -0.3%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Table 20. Full experimental results for certified accuracy, SmoothMix, ESG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 64.8% 56.5% 46.7%

DSRS 64.6% 56.5% 46.5%
(Growth) -0.2% 0.0% -0.2%

2.0
NP 64.8% 56.5% 46.7%

DSRS 64.7% 56.3% 45.8%
(Growth) -0.1% -0.2% -0.9%

4.0
NP 64.8% 56.4% 46.8%

DSRS 64.6% 56.3% 46.0%
(Growth) -0.2% -0.1% -0.8%

8.0
NP 64.8% 56.5% 46.9%

DSRS 64.6% 56.1% 46.5%
(Growth) -0.2% -0.4% -0.4%

0.50

1.0
NP 53.3% 48.3% 42.1% 36.7% 31.6% 26.2% 20.1%

DSRS 53.3% 48.3% 42.0% 36.6% 31.3% 25.6% 18.1%
(Growth) 0.0% 0.0% -0.1% -0.1% -0.3% -0.6% -2.0%

2.0
NP 53.2% 48.3% 42.2% 36.7% 31.7% 26.0% 20.4%

DSRS 53.3% 48.3% 42.0% 36.6% 31.2% 25.6% 17.6%
(Growth) 0.1% 0.0% -0.2% -0.1% -0.5% -0.4% -2.8%

4.0
NP 53.3% 48.3% 42.1% 36.6% 31.6% 26.1% 20.3%

DSRS 53.1% 48.3% 42.0% 36.5% 31.0% 25.6% 18.3%
(Growth) -0.2% 0.0% -0.1% -0.1% -0.6% -0.5% -2.0%

8.0
NP 53.3% 48.3% 42.0% 36.5% 31.6% 26.3% 20.2%

DSRS 53.3% 48.3% 42.0% 36.4% 31.1% 25.5% 18.5%
(Growth) 0.0% 0.0% 0.0% -0.1% -0.5% -0.8% -1.7%

1.00

1.0
NP 43.1% 39.6% 34.4% 30.2% 25.4% 22.2% 19.0% 16.3% 13.7% 11.6% 9.1% 6.7% 4.9% 2.3%

DSRS 42.8% 39.5% 34.4% 29.9% 25.3% 22.0% 19.1% 16.2% 13.4% 11.4% 8.9% 6.3% 4.0% 1.8%
(Growth) -0.3% -0.1% 0.0% -0.3% -0.1% -0.2% 0.1% -0.1% -0.3% -0.2% -0.2% -0.4% -0.9% -0.5%

2.0
NP 43.0% 39.7% 34.4% 30.0% 25.5% 22.5% 19.0% 16.2% 13.6% 11.5% 9.3% 6.5% 4.6% 2.1%

DSRS 42.9% 39.4% 34.3% 29.8% 25.3% 22.1% 18.9% 16.3% 13.4% 11.6% 8.8% 6.2% 4.0% 1.7%
(Growth) -0.1% -0.3% -0.1% -0.2% -0.2% -0.4% -0.1% 0.1% -0.2% 0.1% -0.5% -0.3% -0.6% -0.4%

4.0
NP 43.0% 39.7% 34.6% 30.1% 25.5% 22.4% 19.0% 16.3% 13.7% 11.6% 9.4% 6.6% 4.8% 2.4%

DSRS 42.9% 39.5% 34.3% 29.8% 25.4% 22.1% 19.0% 16.2% 13.6% 11.5% 9.2% 6.0% 3.9% 1.8%
(Growth) -0.1% -0.2% -0.3% -0.3% -0.1% -0.3% 0.0% -0.1% -0.1% -0.1% -0.2% -0.6% -0.9% -0.6%

8.0
NP 43.0% 39.7% 34.3% 30.0% 25.5% 22.3% 19.1% 16.2% 13.5% 11.5% 9.2% 6.5% 4.7% 2.5%

DSRS 42.7% 39.4% 34.3% 29.8% 25.3% 22.3% 18.9% 16.3% 13.5% 11.3% 9.0% 6.2% 4.1% 1.6%
(Growth) -0.3% -0.3% 0.0% -0.2% -0.2% 0.0% -0.2% 0.1% 0.0% -0.2% -0.2% -0.3% -0.6% -0.9%



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

H.3. Supplemental figures for StdAug-GGS models
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Figure 12. Certified accuracy of ℓ2 for standardly augmented models, on CIFAR-10 by General Gaussian, k = 1530.



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
er

tif
ie

d 
A

cc
ur

ac
y

NP certification, ESG, σ=0.25

η=1.0
η=2.0
η=4.0
η=8.0

0.0 0.5 1.0 1.5 2.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
er

tif
ie

d 
A

cc
ur

ac
y

NP certification, ESG, σ=0.50
η=1.0
η=2.0
η=4.0
η=8.0

0 1 2 3 4
r

0.0

0.1

0.2

0.3

0.4

0.5

C
er

tif
ie

d 
A

cc
ur

ac
y

NP certification, ESG, σ=1.00
η=1.0
η=2.0
η=4.0
η=8.0

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
er

tif
ie

d 
A

cc
ur

ac
y

DSRS certification, ESG, σ=0.25

η=1.0
η=2.0
η=4.0
η=8.0

0.0 0.5 1.0 1.5 2.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
er

tif
ie

d 
A

cc
ur

ac
y

DSRS certification, ESG, σ=0.50
η=1.0
η=2.0
η=4.0
η=8.0

0 1 2 3 4
r

0.0

0.1

0.2

0.3

0.4

0.5

C
er

tif
ie

d 
A

cc
ur

ac
y

DSRS certification, ESG, σ=1.00
η=1.0
η=2.0
η=4.0
η=8.0

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
er

tif
ie

d 
A

cc
ur

ac
y

NP certification, EGG, σ=0.25
η=0.25
η=0.5
η=1.0
η=2.0
η=4.0
η=8.0

0.0 0.5 1.0 1.5 2.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
er

tif
ie

d 
A

cc
ur

ac
y

NP certification, EGG, σ=0.50
η=0.25
η=0.5
η=1.0
η=2.0
η=4.0
η=8.0

0 1 2 3 4
r

0.0

0.1

0.2

0.3

0.4

0.5

C
er

tif
ie

d 
A

cc
ur

ac
y

NP certification, EGG, σ=1.00
η=0.25
η=0.5
η=1.0
η=2.0
η=4.0
η=8.0

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
er

tif
ie

d 
A

cc
ur

ac
y

DSRS certification, EGG, σ=0.25
η=0.25
η=0.5
η=1.0
η=2.0
η=4.0
η=8.0

0.0 0.5 1.0 1.5 2.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
er

tif
ie

d 
A

cc
ur

ac
y

DSRS certification, EGG, σ=0.50
η=0.25
η=0.5
η=1.0
η=2.0
η=4.0
η=8.0

0 1 2 3 4
r

0.0

0.1

0.2

0.3

0.4

0.5

C
er

tif
ie

d 
A

cc
ur

ac
y

DSRS certification, EGG, σ=1.00
η=0.25
η=0.5
η=1.0
η=2.0
η=4.0
η=8.0

Figure 13. Certified accuracy of ℓ2 for standardly augmented models, on ImageNet by General Gaussian, k = 75260.



Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

H.4. Supplemental figures for Consistency-GGS and SmoothMix-GGS models
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Figure 14. Certified accuracy of ℓ2 for Consistency models, augmented on CIFAR-10 by General Gaussian, k = 1530.
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Figure 15. Certified accuracy of ℓ2 for SmoothMix models, augmented on CIFAR-10 by General Gaussian, k = 1530.
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