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ABSTRACT

Knowledge distillation (KD) is a technique used to transfer knowledge from a
larger “teacher” model into a smaller “student” model. Recent advancements in
meta-learning-based knowledge distillation (MetaKD) emphasize that the fine-
tuning of teacher models should be aware of the student’s need to achieve better
knowledge distillation. However, existing MetaKD methods often lack incentives
for the teacher model to improve itself. In this study, we introduce MPDistil,
a meta-policy distillation technique, that utilizes novel optimization strategies to
foster both collaboration and competition during the fine-tuning of the teacher
model in the meta-learning step. Additionally, we propose a curriculum learning
framework for the student model in a competitive setup, in which the student
model aims to outperform the teacher model by self-training on various tasks.
Exhaustive experiments on SuperGLUE and GLUE benchmarks demonstrate the
efficacy of MPDistil compared to 20 conventional KD and advanced MetaKD
baselines, showing significant performance enhancements in the student model
– e.g., a distilled 6-layer BERT model outperforms a 12-layer BERT model on
five out of six SuperGLUE tasks. Furthermore, MPDistil, while applied to
a large language teacher model (DeBERTa-v2-xxlarge), significantly narrows the
performance gap of its smaller student counterpart (DeBERTa-12) by just 4.6% on
SuperGLUE. We further demonstrate how higher rewards and customized training
curricula strengthen the student model and enhance generalizability.

1 INTRODUCTION

Large language models (LLMs) like GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022),
and LLaMA (Touvron et al., 2023) have demonstrated remarkable performance in a wide range of
natural language tasks, showcasing their abilities in tasks requiring minimal, zero, or context-based
prior knowledge (Kossen et al., 2023). These models underwent extensive pre-training on massive
datasets to achieve such impressive capabilities, incurring substantial computational costs, as high-
lighted by Zhu et al. (2023). The scaling laws associated with language models (Kaplan et al., 2020)
indicate that achieving superior predictive performance comes at the cost of a large number of model
parameters, extensive training data, and substantial computational power. However, these costs typi-
cally do not account for inference expenses, which must be handled by resource-constrained devices
when deploying these models at scale. One approach to address this challenge is “model compres-
sion” (Deng et al., 2020), a technique designed to reduce computational requirements and storage
while preserving the original models’ performance.

Knowledge distillation (KD) (Hinton et al., 2015) is a widely adopted model compression method
that entails transferring knowledge from a larger and more complex model, referred to as the “teacher
model”, to a smaller and simpler model known as the “student model”. In traditional white-box
knowledge distillation, the primary focus is on minimizing the “teacher-student margin” by narrow-
ing the gap between the teacher’s distribution, tθ(y|x), and the student’s distribution, sθ(y|x). More
advanced knowledge distillation techniques (Sun et al., 2019; Jiao et al., 2019) go further by aligning
the intermediate feature maps between the teacher and student models. This alignment helps the stu-
dent replicate the behaviors demonstrated by the teacher model. However, most of these techniques
operate in a unidirectional manner, in which the teacher model remains fixed after pre-training or
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fine-tuning, while the student model is trained to minimise the teacher-student margin. Zhou et al.
(2021) pointed out several limitations of this approach. Existing approaches do not optimize the
teacher explicitly for the distillation task or consider the student model’s capacity during training.
This differs from the real-life teacher-student dynamic, in which a teacher continuously enhances her
knowledge and teaching skills through repeated student interactions. To address this gap, Zhou et al.
(2021) introduced MetaDistil, a meta-learning-based knowledge distillation framework that aims to
overcome this limitation by considering the student’s predictive performance while fine-tuning the
teacher model. In MetaDistil, the teacher model undergoes training on a separate quiz dataset to
minimize the knowledge distillation loss between the teacher and student models along with the
teacher’s task-specific loss. Although MetaDistil addresses several shortcomings of conventional
KD methods, it is still far from imitating real-world teacher-student interactions. In a real-world
educational context, teachers may not solely focus on narrowing the teacher-student knowledge gap
to improve teaching; instead, they aim to maximize the joint performance of students and teachers.
Furthermore, in a typical classroom setting, students study various subjects and follow a curricu-
lum to optimize their learning across all subjects. For example, a student might aim to improve
her understanding of Physics by studying selected concepts from Mathematics. However, existing
knowledge distillation methods tend to distil knowledge for different tasks in isolation, which means
they fail to capture the commonalities among tasks. Consequently, the distilled models struggle to
generalize effectively to new tasks with limited training data. Another significant challenge with
the sole optimization of the teacher-student margin is that it positions the teacher as the “sole role
model” for the student without encouraging the student to surpass the teacher’s performance.

To address these limitations, we introduce MPDistil, a meta-policy knowledge distillation frame-
work that employs a collaborative learning approach within the context of meta-knowledge distil-
lation1. Through empirical analyses, we underscore that optimizing a shared utility function can
enhance the teacher’s predictive capabilities and ability to impart knowledge to the student model.
Furthermore, we establish a meta-reinforcement learning-based “curriculum learning” paradigm in
which the student model undergoes fine-tuning on a curriculum – a sequence of tasks. The aim is
to enhance the student model’s generalization skills, enabling it to surpass the teacher model. This
competitive approach empowers the student to outperform the teacher. We assess the effectiveness
of MPDistil using two natural language understanding benchmarks, SuperGLUE (Wang et al.,
2019) and GLUE (Wang et al., 2018), encompassing 15 NLU tasks. Following the experimental
setup adopted by contemporary KD-related studies, we highlight the effectiveness of MPDistil
with BERT-base (Devlin et al., 2018) as the teacher model and BERT 6L (with six layers) as the stu-
dent model. On the SuperGLUE benchmark, the meta update enhances the BERT teacher’s perfor-
mance with a maximum margin of +3%, resulting in a notable improvement in student performance
by +5.9%. Surprisingly, the distilled student surpasses the teacher model on five of six SuperGLUE
tasks within this competitive framework, with a maximum advantage of +7%. In contrast, the most
competitive baseline, MetaDistil, exhibits an average deficit of −1.1%, indicating that the distilled
student falls short of the teacher model’s performance. We also extend our evaluation to a large lan-
guage model, DeBERTa-v2-xxlarge (He et al., 2020), as the teacher model and its smaller variant,
DeBERTa-12, as the student model. Ours is the first large-scale study highlighting the effective-
ness of distilling knowledge from large language models (> 1B parameters) to smaller models.
MPDistil, when applied to DeBERTa, improves the student model’s performance with a maxi-
mum margin of +2.2%, reducing the student-teacher margin to −4.6% (a negative student-teacher
margin indicates that student underperforms the teacher), which is significantly higher than the other
distillation methods (−7.9%).

2 RELATED WORK

Knowledge distillation. One of the earliest investigations on knowledge distillation by Hinton et al.
(2015) introduced a technique in which the student model is trained to minimize the task-specific
loss while also enhancing the similarity between the outputs of the teacher and student models.
This enhancement is achieved by minimizing the difference between softened class probabilities
generated by both the teacher and student model using temperature scaling. Sanh et al. (2019)
distilled a more compact version of BERT-base by halving the number of layers and removing
the pooler output and token type embeddings. In contrast to learning solely from the teacher’s

1Source code of MPDistil can be found at https://github.com/notmyname16/MPDistil.
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last layer, Sun et al. (2019) introduced a “patient learner” approach. The student learns from the
last k layers by incorporating a Mean Squared Error (MSE) loss between the teacher and student
layer representations, leveraging the internal representations of the teacher model. TinyBERT (Jiao
et al., 2019) also utilises the internal representations of BERT to distil knowledge. It achieves this
by distilling the transformer, embedding, and classification layers. Yang et al. (2020) and Wu &
Chiu (2020) introduced multiple teacher-based knowledge distillation – each teacher is assigned
predetermined weights, and their weighted average probability distributions are used to train the
student model. In a similar attempt, Yuan et al. (2021) proposed a reinforcement learning-based
technique in which different weights are assigned to various teacher models during distillation using
a policy function.

Meta knowledge distillation. Meta-learning-based knowledge distillation techniques utilize a
meta-learning loop to enhance the teacher model. Established MetaKD approaches (Pan et al., 2020;
Liu et al., 2022b) employ meta-teachers to adapt them to new domains and tasks. Liu et al. (2022b)
argued that using fixed temperature can result in suboptimal knowledge transfer from teacher to
student. They aimed to meta-learn the student and teacher’s temperature along with the distillation
function. In contrast, Zhou et al. (2021) introduced a generalized framework, MetaDistil, focus-
ing on teaching teachers how to facilitate knowledge distillation. Note that these techniques entail
fine-tuning a meta-teacher, which is computationally equivalent to the teacher model. Fine-tuning
a large pre-trained teacher model can be prohibitively expensive. Furthermore, the meta-learning
objective optimized by the meta-teacher primarily aims to narrow the gap between the teacher and
student models without encouraging them to surpass each other.

Curriculum based knowledge distillation. Curriculum learning (Bengio et al., 2009) involves
increasing the level of training samples progressively during training. Xiang et al. (2020) designed
curricula based on the confidence score of the mixture of expert models, which was later used to
train a unified student model. Li et al. (2023) proposed learning a curriculum from easy to hard
levels through a learnable temperature optimized through a reversed gradient. It involved increasing
the distillation loss through a cosine schedule, leading to an increased difficulty for student learning.

Our work introduces collaborative and competitive utility optimization within the meta-knowledge-
distillation paradigm and establishes a competitive reward system for the student using task based
curricula. This competitive framework motivates both teacher and student models to outperform
each other. The joint utility can also be optimized using a simpler feed-forward meta-teacher, elim-
inating the need to fine-tune the teacher backbone. This enhances the generality of our proposed
method, making it suitable for distilling large pre-trained models and making our method more
computationally efficient.

3 PROPOSED METHODOLOGY

Our proposed meta-policy knowledge distillation method, MPDistil, aims to distil knowledge
from an arbitrary teacher model, parameterized by θT to an arbitrary student model, parameter-
ized by θS . Although the teacher and student models can belong to any family (e.g., encoder,
encoder-decoder or decoder), we typically assume that they belong to the same architectural family.
Additionally, we assume that both the teacher and student models can be extended to a multi-task
framework, wherein the models can be optimized on any task T ∈ T. MPDistil consists of four
steps – (i) fine-tuning the teacher model, (ii) distilling the teacher model to the student model, (iii)
meta-teacher learning, and (iv) student curriculum learning. We illustrate these steps in Figure 1.

Fine-tuning teacher model. For any given task T ∈ T, we use the task-specific loss function LT
to optimize and fine-tune the teacher model. For classification tasks, cross-entropy is used as the
task-specific loss, whereas for regression tasks, MSE is used to calculate the loss. Precisely, for a
given training data batch of size N , Dtrain = {(x1, y1), . . . , (xN , yN )}, we calculate LT

teacher =
1
N

∑N
i=1 LT (yi, ŷ(i,T )), with ŷ(i,T ) = T (xi; θT ), the output generated by the teacher model T with

parameters θT . The teacher model parameters are then updated with gradients computed on LT
with respect to θT . Although we highlight the teacher fine-tuning with vanilla training procedure,
for large language models, it can be replaced with parameter-efficient fine-tuning or even few-shot
or zero-shot fine-tuning.
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Step 4: Student curriculum learning

Step 1: Teacher fine-tuning Step 2: Student distillation

Step 3: Meta-teacher learning

Figure 1: A schematic diagram of our proposed MPDistil framework. It consists of four steps
– (i) teacher fine-tuning step, where the original teacher model is fine-tuned on task T , (ii) student
distillation step, where the student model is fine-tuned with task-specific and knowledge distillation
loss, (iii) meta-teacher learning step, where a feed-forward model, the meta-teacher, is trained to
jointly optimize the outputs for the teacher and student hidden representations, and (iv) in student
curriculum learning step, we train a student curriculum model to generate a suitable curriculum, a
sequence of tasks T ′ ∈ T for which the distilled student is fine-tuned and calculated rewards.

Distilling teacher model to student model. In step 2 of our framework, we distil the student
model S with the knowledge acquired by the teacher model with fine-tuning. We use the task-
specific loss LT along with a knowledge distillation loss LKD computed on the training dataset.
MPDistil is a general framework and can handle any arbitrary LKD function, as long as it is
differentiable with respect to the student model parameters θS . Following Zhou et al. (2021), we
use a convex combination of the MSE loss between the teacher and student logits and the mean
squared differences between the teacher and student hidden representations. Formally, we calculate,

LT
student KD =

1

N

N∑
i=1

αLT (yi, ŷ(i,S)) + (1− α)
∥∥∥Φ( ŷ(.,T )

τ

)
− Φ

( ŷ(.,S)

τ

)∥∥∥
2
+ β

∥∥∥h(.,T ) − h(.,S)

∥∥∥
2

(1)

Here, Φ denotes the Softmax activation function. Although some studies (Hinton et al., 2015;
Gu et al., 2023) use Kullback–Leibler Divergence (KLD) and reverse KLD between the teacher
and student logits, following Kim et al. (2021), we use L2 norm to calculate the difference between
teacher and student logits, to stabilize the optimization. Hence, a student optimized with LT

student KD

is not only trained on the task T standalone but also acquires the knowledge from the teacher through
soft label association and shared latent, hidden representations.

Meta-teacher learning. In step 3 of MPDistil, we jointly update the teacher model parameters
to optimize the teacher and student performances. To achieve this, we devise a meta-teacher T

′
,

parametrized with θT ′ . The meta-teacher follows a simple feed-forward network architecture with
the ability to digest the hidden state representations from both the teacher and student models and
generate the final output. In our white-box distillation framework, we assume that the output logits
and hidden representations are accessible from both the teacher and student models. The meta-
teacher, therefore, can act as a discriminator, separating the representations extracted by the original
teacher and the student models. We train the meta-teacher parameters θT ′ as the meta-learner,
whereas the student model parameters θS are learned as the inner-learner. It is interesting to notice
that as opposed to the meta-teacher designed by Zhou et al. (2021), our meta-teacher has only an
insignificant number (only 0.001% of the teacher model) of learnable parameters and, therefore,
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is much easier to train in the meta-learning setup. We avoid a large pre-trained teacher model as
cloning it to a meta-teacher and fine-tuning could be prohibitively expensive. Our meta-teacher is,
therefore, computationally more efficient, even for distilling from computationally large pre-trained
models.

We adopt a quiz dataset QT for each task T , separate from the original training dataset for meta-
teacher learning. We formulate two different training objectives for the meta-teacher. In the first
approach, we compute a collaborative loss, in which the meta-teacher optimizes the joint task-
specific losses calculated with the teacher’s and student’s hidden representations. Given a training
data (xi, yi), we obtain the hidden states from the teacher and student models as h(i,T ) and h(i,S),
respectively, and obtain the final output from the meta-teacher model as, ˆ̂y(i,T ) = T

′
(h(i,T ); θT ′ )

and ˆ̂y(i,S) = T
′
(h(i,S); θT ′ ), respectively. If the task T is a classification task, we use only the class

probabilities of the true class ȳ(i,T ) = Φ(ˆ̂y(i,T ))c and ȳ(i,S) = Φ(ˆ̂y(i,S))c for c = argmaxk y(i,k),
the true class label. The collaborative loss is formally defined as,

LT
meta col =


− 1

2N

N∑
i=1

[
log ȳ(i,T ) + log ȳ(i,S)

]
, if T is a classification task

1

2

∥∥∥y − ˆ̂y(.,T )

∥∥∥
2
+

1

2

∥∥∥y − ˆ̂y(.,S)

∥∥∥
2
, if T is a regression task

(2)

The meta-teacher acts as a discriminator and does not understand whether the teacher or the stu-
dent obtains the hidden representation. Moreover, the original student and teacher parameters are
frozen during meta-teacher training, and the meta-teacher is trained. Therefore, the meta-teacher
only learns the optimal function to jointly optimize the teacher’s and student’s final predictive per-
formances. We compute a competitive loss in another formulation between the teacher and student
representations. The competitive loss is motivated by the Wasserstein loss used in WGAN (Arjovsky
et al., 2017) and calculates the Earth Mover’s (EM) distance between the teacher and student logits.
Additionally, we add the meta-teacher’s task-specific loss so that the meta-teacher can minimize its
loss, along with maximizing the margin from the student model. Using the Kantorovich-Rubenstein
duality (Villani et al., 2009), we compute the competitive loss as,

LT
meta com =


− 1

N

N∑
i=1

[
2 log ȳ(i,T ) − log ȳ(i,S)

]
, if T is a classification task∥∥∥y − ˆ̂y(.,T )

∥∥∥
2
− 1

2

∥∥∥y − ˆ̂y(.,S)

∥∥∥
2
, if T is a regression task

(3)

Proposition 1. For any classification task T , having E[LT
meta col] < E[LT

meta com] ensures stronger
student with E[ȳS ] > E[ȳT ].2

Student curriculum learning. The final step of MPDistil is the student curriculum learning,
in which the student model aims to outperform the meta-teacher by training itself on a suitable set of
tasks, possibly different from the task at hand T . Curriculum learning (Bengio et al., 2009) involves
gradually acquiring skills by initially focusing on simpler tasks before progressing to more complex
ones. We use a policy learner, a curriculum model, to learn the curriculum for the student. The
curriculum model is a feed-forward network that takes the current state of the student model and
samples a task (action) T ′ ∈ T in each forward pass. The student model is trained on a batch
sampled from QT ′ and is used to calculate a reward on QT . For an updated student model, we
calculate the output ŷ(i,S) = S(xi; θS) for each (xi, yi) ∼ QT . Similarly, we obtain the output
ŷ(i,T ′ ) from the meta-teacher. Analogous to the previous meta-teacher learning step, we obtain only
the predicted probability of the true output class for classification tasks. We evaluate two different
reward functions: (i) binary reward and (ii) real reward.

R binary =


Iŷ(i,S)>ŷ

(i,T
′
)
, if T is a classification task

I∥∥∥yi−ŷ
(i,T

′
)

∥∥∥
2

>

∥∥∥yi−ŷ(i,S)

∥∥∥
2

, if T is a regression task (4)

2All the proofs presented in the paper are supplied in Appendix A.
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Here, I is the indicator function. Similarly,

R real =


ŷ(i,S) − ŷ(i,T ′

), if T is a classification task∥∥∥yi − ŷ(i,T ′
)

∥∥∥
2
−

∥∥∥yi − ŷ(i,S)

∥∥∥
2
, if T is a regression task

(5)

Proposition 2. For any classification task T , E[R binary] ≥ E[R real].

The expected reward for an entire episode is calculated as Gt =
∑E

k=t+1 γ
k−t−1Rk, with a suit-

able discount factor γ and the length of the episode E. In our case, the length of an episode is
the number of quiz batches for task T . We use the Monte Carlo policy gradient algorithm, RE-
INFORCE (Williams, 1992; Sutton et al., 1999), to update the curriculum model parameters θA to
maximize the expected reward. The curriculum model samples tasks that maximize the reward for
the student model, i.e., increases the difference between the student and teacher models. In other
words, having trained on these newly sampled tasks, the student model can achieve better results
than the teacher when evaluated through meta-teacher, leading to higher rewards.

4 EXPERIMENTAL DETAILS AND RESULTS

Following the contemporary knowledge distillation studies (Liu et al., 2022a; Zhou et al., 2021), we
evaluate MPDistil on 15 different natural language understanding tasks from SuperGLUE (Wang
et al., 2019) and GLUE (Wang et al., 2018) benchmarks. We choose the classification tasks – CB,
COPA, RTE, WiC, WSC and BoolQ from the SuperGLUE benchmark. From the GLUE bench-
mark, we use MNLI, MNLI Mismatch, QNLI, QQP, WNLI, MRPC, RTE, SST-2 and STS-B tasks,
out of which only STS-B is a regression task and the remaining are classification tasks. We elab-
orate on these tasks in Appendix B.1. We utilize the pre-trained BERT-base (Devlin et al., 2018)
model as the teacher (111M parameters) and the pre-trained BERT 6-layer model as the student
(66M parameters)3. Additionally, we evaluate MPDistil on a pre-trained large language model,
DeBERTa-v2-xxlarge (He et al., 2020) (1.4B parameters) and its 12-layered variant (547M param-
eters) as the student model. As described in Section 3, for teacher, meta-teacher and student models,
we use multiple output heads depending on the number of tasks. For SuperGLUE and GLUE, we
use six and nine output heads (one for each task), respectively. However, all the models are trained
on each task separately. The BERT-base model utilizes a pooling layer for learning a suitable pro-
jection from the output representation corresponding to the first token ([CLS] token) and uses it for
downstream tasks. We use the student model pooling layer weight matrix and learn a projection
vector on R768 to represent the state of the student model in curriculum learning. Meta-teacher
learning and student curriculum learning require a separate labelled dataset, for which we split the
original training dataset provided in SuperGLUE and GLUE tasks into an updated training and quiz
sets by 9 : 1. However, we use the original datasets provided in the benchmarks for dev and test. We
furnish other experimental details in Appendix B.2. We evaluate MPDistil with 20 contemporary
KD and MetaKD methods, some of which are elaborated in Appendix B.3.

Results. We report the performances of different models – the fine-tuned teacher model, the dis-
tilled student, the meta-teacher and the updated student with MPDistil on the SuperGLUE tasks
in Table 1. Additionally, we report the results obtained from the student model when fine-tuned
on the tasks without distillation. As an ablation to MPDistil, we evaluate the performance of an
alternate student model that is only trained with LKD in step 4 (c.f. Figure 1), without curriculum
learning. We denote this model as ‘(-) Curriculum learning’. On the SuperGLUE dev split, the meta-
teacher obtains 0.7% better performance than the original teacher model. Although both the loss for-
mulations are adequate for the meta-teacher, collaborative loss helps the meta-teacher obtain better
performance, as opposed to the competitive loss. Collaborative loss is equally essential for better stu-
dent distillation. On SuperGLUE dev, the student distilled with collaborative loss and binary reward
achieves 5.9% and 1.5% better than the base student and teacher models, respectively. Although
both reward functions are equally effective, the distilled student achieves 0.2% improvement with
binary reward than with the real reward function. Without student curriculum learning, the ablation
model achieves 2.4% better than the base student model. However, the improvement over the teacher
model remains muted at −2.1%, indicating the positive impact of curriculum learning on the student.

3The pre-trained models are obtained from https://huggingface.co/models/.
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Methods BoolQ CB COPA RTE WiC WSC
Teacher (BERT-base) 75.3 83.9 63.0 67.1 57.1 64.4
Student (BERT-base 6L) 71.6 75.0 53.0 64.6 56.0 63.5
Distilled Student 73.0 80.4 54.0 66.4 57.7 64.4
Meta-teacher
(+) Col loss 75.5 83.9 66.0 67.8 58.5 63.5
(+) Com loss 75.5 83.9 63.0 67.8 57.2 61.5
Student with MPDistil
(+) Col loss + Binary reward 72.8 83.9 67.0 67.1 58.0 65.4
(+) Col loss + Real reward 73.4 82.1 70.0 66.4 58.6 64.4
(+) Com loss + Binary reward 73.0 80.4 62.0 67.5 59.6 65.4
(+) Com loss + Real reward 73.0 78.6 63.0 66.4 58.9 65.4
(-) Curriculum learning + Col loss 72.5 78.6 58.0 65.3 58.3 64.4
(-) Curriculum learning + Comp loss 72.3 76.8 59.0 65.3 58.0 63.5

(a) BERT Teacher

Methods BoolQ CB COPA RTE WiC WSC
Teacher (DeBERTa-v2-xxlarge) 86.8 82.1 84.0 90.6 57.7 63.4
Student (DeBERTa-v2 12L) 82.1 82.1 64.0 79.4 57.8 63.5
Distilled Student 82.4 76.9 67.0 78.7 59.4 64.4
Meta-teacher
(+) Col loss 86.6 76.9 83.0 89.5 55.9 63.5
(+) Com loss 86.9 78.5 83.0 89.5 56.9 63.5
Student with MPDistil
(+) Col loss + Binary reward 82.7 76.8 67.0 79.8 61.0 66.3
(+) Col loss + Real reward 82.7 76.7 67.0 78.0 60.0 65.4
(+) Com loss + Binary reward 82.4 76.8 69.0 80.9 59.7 65.4
(+) Com loss + Real reward 82.6 76.8 68.0 77.6 60.0 64.4
(-) Curriculum learning + Col loss 82.5 75.0 67.0 78.7 59.4 63.5
(-) Curriculum learning + Comp loss 82.6 75.0 64.0 80.5 61.3 64.4

(b) DeBERTa Teacher

Table 1: Results of our method (MPDistil) on the SuperGLUE dev set with the BERT and De-
BERTa teacher models. We report the accuracy scores for each of these classification tasks. We
observe the teacher and student base models trained on the original train set and compare them
against the distilled student and the meta-teacher model. We highlight the cases in blue in which
the meta-teacher outperforms the original teacher model. Scenarios highlighted with brown are the
cases in which the distilled student model performs better than the teacher.

Methods BoolQ CB COPA RTE WiC WSC
KD Hinton et al. (2015) -13.3 -19.1 -4.3 -3.7 -9.1 -14.4
PD Turc et al. (2019) † -9.6 -9.5 -0.3 -13.5 -6.9 -11.2
PKD Sun et al. (2019) -1.7 -5.9 -6.0 -3.8 -0.4 -12.5
DistilBERT Sanh et al. (2019) † -6.0 -7.7 -1.0 -12.0 -5.8 -9.3
Theseus Xu et al. (2020) † -1.6 -3.6 -4.3 -4.8 -1.8 -11.5
TinyBERT Jiao et al. (2019) -1.4 -1.2 4.3 -3.7 1.7 -2.9
MobileBERT Sun et al. (2020) † -4.8 -2.4 -0.7 -14.0 -2.3 -9.3
SID Aguilar et al. (2020) † -10.1 -17.3 -1.0 -14.8 -9.0 -12.8
MiniLM Wang et al. (2020b) † -3.5 -11.9 -4.0 -5.3 -1.2 -14.4
MiniLMv2 Wang et al. (2020a) † -2.7 -14.3 -4.0 -6.3 -2.5 -15.1
ALP-KD Passban et al. (2021) † -2.2 -11.3 -5.3 -4.8 -1.3 -13.1
LRC-BERT Fu et al. (2021) † -4.5 -9.5 -0.3 -16.4 -8.5 -11.2
Annealing-KD Jafari et al. (2021) † -8.8 -5.9 3.3 -14.0 -6.3 -11.2
CKD Park et al. (2021) † -7.8 -6.6 -1.0 -11.7 -7.3 -11.2
Universal-KD Wu et al. (2021a) † -1.8 -5.4 -7.3 -2.8 -0.6 -11.2
DIITO Wu et al. (2021b) † -3.9 -5.9 6.0 -7.5 -5.4 -8.6
Continuation-KD Jafari et al. (2022) † -8.0 -7.1 2.7 -14.2 -7.9 -13.1
RAIL-KD Haidar et al. (2021) † -10.4 -7.7 0.7 -12.4 -5.8 -7.7
MGSKD Liu et al. (2022a)) † -6.1 -6.6 -1.0 -7.0 -3.0 -12.8
MetaDistil Zhou et al. (2021) -2.7 -1.8 1.0 -2.0 -1.6 0.9
MPDistil (Ours) -1.9 0.0 7.0 0.4 2.5 1.0
(-) Curriculum learning -2.8 -5.3 -4.0 -1.8 1.2 0.0

Table 2: ∆Margin reported for different distillation meth-
ods on SuperGLUE tasks dev split with BERT models.
The higher the value of ∆Margin, the more effective the
distillation technique. ∆Margin > 0 indicates that the
student outperforms the teacher. The results highlighted
with † are taken from Tan et al. (2023). For MPDistil
and the ablation, we use the best scores obtained across
different loss and reward configurations.

To assess the effectiveness of
MPDistil in distilling knowledge
from the teacher to the student models,
we compare it with other competitive
knowledge distillation techniques.
As the performance of the distilled
student depends on the teacher’s perfor-
mance, we derive an evaluation metric,
∆Margin = (Performance of student −
Performance of teacher), to compare
the distillation methods. The metric
indicates the student’s performance
in terms of the teacher (or the im-
provement over the teacher), which
is agnostic to the original teacher’s
performance. It is worth noting that
existing distillation techniques can not
empower the student model to perform
better than the teacher model, often
leading to a negative ∆Margin. We
report ∆Margin for different distillation
techniques on the SuperGLUE dev
in Table 2 (with BERT models) and
Table 3 (with DeBERTa models). With
the BERT teacher model, MPDistil
shows a significant ∆Margin of +1.5% on average compared to two most competitive base-
lines, TinyBERT (average ∆Margin = −0.5%) and MetaDistil (average ∆Margin = −1.0%).
Even on the SuperGLUE test split, the BERT student model distilled with MPDistil out-
performs the BERT teacher model on three out of six tasks (Table 5 in Appendix B.4).
The margin between the teacher and student models is higher with the DeBERTa model. On COPA
and RTE tasks, the DeBERTa-v2-xxlarge model achieves nearly state-of-the-art results, whereas the
12-layered student model achieves significantly lower performances. However, the average per-
formance drop with MPDistil distillation is 4.6%, significantly lower than the other distillation
methods – CKD (9.8%) and MetaDistil (6%). MPDistil shows similar competitive performance
on GLUE dev set (Table 4). BERT-6L distilled with MPDistil achieves an average improvement
of 3.1% over the base student model. Similar improvements are observed on the GLUE test set
(Table 7 in Appendix B.4). In terms of accuracy, the student model distilled with MPDistil out-
performs the teacher BERT-base model on four GLUE tasks on both the dev and test split. Table 6
and Table 8 in Appendix B.4 show that MPDistil achieves the highest ∆Margin among all the
KD techniques on four tasks on both GLUE dev and test datasets.
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Methods MNLI/MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B WNLI
Acc Acc/F1 Acc Acc/F1 Acc Acc Pear/Spear Acc

Teacher (BERT-base) 83.7/83.4 84.0/88.2 91.0 90.5/87.3 67.1 89.7 89.4/89.1 56.3
Student (BERT-base 6L) 77.8/78.3 75.8/81.5 85.0 89.1/85.0 64.6 87.7 88.8/88.5 56.3

Distilled Student 80.3/80.8 80.0/86.2 87.6 90.2/86.9 66.4 90.4 89.1/88.8 56.3
Meta-teacher
(+) Col loss 83.9/83.8 83.8/88.1 91.1 90.5/87.6 67.8 93.5 89.2/89.1 59.1
(+) Com loss 83.9/83.8 84.1/88.2 91.2 90.5/87.6 67.8 93.2 89.4/89.1 56.3
Student with MPDistil
(+) Col loss + Binary reward 80.5 /80.8 81.4 /86.7 87.6 90.2 /86.9 67.1 91.0 89.1 /88.9 63.3
(+) Col loss + Real reward 80.4/80.2 81.6/86.8 87.7 90.3/87.0 66.4 90.9 89.1/88.9 56.3
(+) Com loss + Binary reward 80.4/80.7 81.6/86.8 87.6 90.3/87.0 67.5 91.4 89.1/88.9 56.3
(+) Com loss + Real reward 80.3/81.0 81.5/86.8 87.7 90.3/87.0 66.4 90.9 89.1/88.9 56.3
(-) Curriculum learning + Col loss 79.7/81.0 82.0/87.2 88.3 90.2/87.0 65.3 90.8 89.1/88.8 56.3
(-) Curriculum learning + Com loss 79.8/81.0 81.6/87.1 88.3 90.2/86.8 65.3 90.9 89.1/88.8 56.3

Table 4: Results of our method (MPDistil) on the GLUE dev set with BERT model.
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Figure 2: Meta-teacher validation loss w.r.t. dif-
ferent meta-teacher loss formulations.
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Figure 3: Student rewards for different tasks.
Methods BoolQ CB COPA RTE WiC WSC
PKD Sun et al. (2019) -4.7 -1.8 -22.0 -11.9 -1.9 0.0
CKD Park et al. (2021) -6.8 -7.3 -27.0 -13.0 -0.2 -4.8
MetaDistil Zhou et al. (2021) -4.6 -8.9 -13.0 -10.8 -1.1 2.3
MPDistil (Ours) -4.1 -5.3 -15.0 -9.7 3.3 2.9
(-) Curriculum learning -4.2 -7.1 -17.0 -10.1 3.6 1.0

Table 3: ∆Margin for different distillation methods on
the dev split of SuperGLUE tasks with DeBERTa models.

We evaluate MPDistil with OPT-
1.3B (Zhang et al., 2022), a decoder-
only LLM, reported in Appendix B.4
Table 12. The average ∆Margin on Su-
perGLUE tasks with MPDistil is −0.58,
significantly lower than PKD which
achieves an margin of −1.92(c.f. Ta-
ble 13). We report the standard deviation of performances obtained in each episode of curriculum
learning in Tables 9, 10 and 11 in Appendix B.4. With BERT, the average standard deviation across
all SuperGLUE and GLUE tasks remain meagre at 2.4% and 0.71%, respectively, indicating our
framework’s stability.

5 DISCUSSION

Can better learners teach better? Figure 2 highlights the distribution of meta-teacher validation
loss, and shows lower validation loss with collaborative loss for most tasks than competitive loss.
As Proposition 1 suggested, lower collaborative loss than competitive loss asserts stronger students.
We analyze how a lower loss enables a better meta-teacher and encourages a better student. Towards
this, we observe the improvement shown by the meta-teacher over the original fine-tuned teacher.
Similarly, we calculate the improvements the distilled student shows over the fine-tuned student
model. The Pearson’s correlation coefficient between meta-teacher improvement and student im-
provement under collaborative loss is 0.65 (p-value=5e−8); in contrast, the same under competitive
loss is only 0.02 with an insignificant p-value of 0.86. Overall, the Pearson’s correlation coefficient
between the meta-teacher and student improvement values remains 0.40 (p-value=1e − 5). With
such a low p-value and a strong positive correlation, we assert that a stronger meta-teacher leads to
a better and more competitive student.

How does higher student reward impact student’s performance? Figure 3 highlights the dis-
tribution of rewards gathered by the distilled student across tasks. On the classification tasks, the
expected binary reward obtained is 0.81, as opposed to the expected real reward of 0.35. As per
Proposition 2, the expected binary reward on these classification tasks is always higher than the ex-
pected real reward. With binary reward formulation, the correlation between the performances of
the distilled student and the meta-teacher is 0.77, significantly higher than the correlation with the
real reward (0.60). On BoolQ, the expected binary reward is < 0.5, indicating that the student model
is more underconfident than the teacher model. This propagates to the poorer dev performance by
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the distilled student model. In contrast, on the tasks with the highest expected reward such as RTE,
SST-2, CB and COPA, the distilled student outperforms the teacher model with the widest margins.

How does a student select learning curricula? We analyze the cumulative weightage of
different tasks in the student curriculum in Figure 4a. On the low-performing tasks such
as MNLI, MNLI-mm, and QNLI, the model explores all the different tasks with nearly uni-
form weightage. Compared to this, on high-performing tasks such as RTE, CB, and COPA,
the model perfectly balances exploration and exploitation in selecting the suitable curricu-
lum. For instance, on CB, the model only chooses the COPA task in its curriculum.

(a)

(b)

(c)

Figure 4: (a) Cumulative weightage of differ-
ent tasks in final student curriculum for Su-
perGLUE and GLUE benchmarks. (b) Dis-
tribution of curriculum similarities for differ-
ent SuperGLUE and GLUE tasks. High cur-
riculum similarity indicates that the student
model preserves the curriculum in consecu-
tive iterations. (c) Distribution of Chi-square
distance between consecutive curricula.

On the other hand, on COPA, CB has the highest
weightage in the curriculum. On the RTE task, the
model selects the same task repeatedly in the cur-
riculum. To understand how the model preserves
the curriculum throughout its learning, we calculate
a similarity metric, simi,i+1 = |LCS(Ci,Ci+1)|

|Ci| , be-
tween two learned curricula Ci and Ci+1 in two con-
secutive episodes. LCS denotes the longest common
subsequence. We visualize the simi,i+1 distribu-
tion for different tasks in Figure 4b. A high sim-
ilarity score indicates that the model only exploits
and shows reluctance to learn new curricula. In-
terestingly, the model has lower average similarity
on the high-performing tasks, indicating more ex-
ploration. However, after learning the most suitable
curriculum, the model stops exploration and exploits
the same set of tasks to preserve high rewards. On
the other hand, on low-performing tasks like MNLI,
MNLI-mm and QNLI, the model shows higher av-
erage similarity with low variance, indicating more
restrictive behavior.

We further calculate the count of each task in each
curriculum and the chi-square distance between con-
secutive curricula to understand how different tasks
are preserved within curricula. We report the dis-
tribution of chi-square distances in Figure 4c. For
high-performing tasks, we observe a significantly
lower chi-square distance between consecutive cur-
ricula. Lower chi-square and low average sim val-
ues conclude that for these tasks, the curriculum
learning model does not explore newer tasks in
the curriculum but rather explores the different se-
quences among them. It justifies that not only are the
tasks important within curricula, but their sequence
also equally matters.

6 CONCLUSION

This paper introduced MPDistil, a method for distilling meta-policy knowledge, emphasizing the
importance of creating a suitable joint utility to enhance the teacher’s distillation capabilities. Fur-
thermore, we underscored the necessity of employing multi-task curricula to produce more robust
and effective student models through teacher knowledge distillation. It is essential to note that our
framework is generic and can be applied to distilling large language models, regardless of their
underlying architecture. While our empirical study primarily focused on natural language under-
standing tasks, our methodology can also be extended to other tasks involving natural language
generation and reasoning. While our student curricula were designed with tasks featuring similar
abstractions, it would be worth noting the potential impact of diverse tasks with varying levels of
abstraction and complexity on enhancing the generalizability of student models.
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A PROOFS OF THE THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 1

The expected collaborative and competitive loss for any given teacher and student logit is defined as
E[− log ȳ(i,T ) − log ȳ(i,S)] and E[−2 log ȳ(i,T ) + log ȳ(i,S)], respectively.
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E[LT
meta col] < E[LT

meta com]

⇐⇒ E[− log ȳ(i,T ) − log ȳ(i,S)] < E[−2 log ȳ(i,T ) + log ȳ(i,S)]

⇐⇒ E[log ȳ(i,T )] < 2E[log ȳ(i,S)]

⇐⇒ E[log ȳ(i,T )] < E[log ȳ2(i,S)]

⇐⇒ E[log ȳ2(i,S) − log ȳ(i,T )] > 0

=⇒ logE[ȳ2(i,S)]− logE[ȳ(i,T )] > 0 (Jensen’s inequality)

⇐⇒ log
E[ȳ2(i,S)]

E[ȳ(i,T )]
> 0

⇐⇒
E[ȳ2(i,S)]

E[ȳ(i,T )]
> 1.

As ȳ(i,S) > ȳ2(i,S), it proves that E[ȳ(i,S)] > E[ȳ(i,T )]. ■

A.2 PROOF OF PROPOSITION 2

E[Iŷ(i,S)>ŷ
(i,T

′
)
] = Pŷ(i,S),ŷ(i,T

′
)
[ŷ(i,S) − ŷ(i,T ′ ) > 0]

=

∫ 1

ŷ(i,S)−ŷ
(i,T

′
)=0

∫ 1

ŷ
(i,T

′
)=0

dŷ(i,S) · dŷ(i,T ′ ).

Being two probability distributions, the random variable ŷ(i,S) − ŷ(i,T ′ ) has its range [−1, 1].

E[ŷ(i,S) − ŷ(i,T ′ )] =

∫ 1

ŷ(i,S)=0

∫ 1

ŷ
(i,T

′
)=0

(
ŷ(i,S) − ŷ(i,T ′ )

)
· dŷ(i,S) · dŷ(i,T ′ )

=

∫ 1

ŷ(i,S)=ŷ
(i,T

′
)

∫ 1

ŷ
(i,T

′
)=0

(
ŷ(i,S) − ŷ(i,T ′ )

)
· dŷ(i,S) · dŷ(i,T ′ )

+

∫ ŷ
(i,T

′
)

ŷ(i,S)=0

∫ 1

ŷ
(i,T

′
)=0

(
ŷ(i,S) − ŷ(i,T ′ )

)
· dŷ(i,S) · dŷ(i,T ′ ).

The second term in the above expression is less than or equal to 0 as ŷ(i,S) − ŷ(i,T ′ ) ≤ 0 for any
ŷ(i,S) ∈ [0, ŷ(i,T ′ )]. Therefore,

E[ŷ(i,S) − ŷ(i,T ′ )] ≤
∫ 1

ŷ(i,S)=ŷ
(i,T

′
)

∫ 1

ŷ
(i,T

′
)=0

(
ŷ(i,S) − ŷ(i,T ′ )

)
· dŷ(i,S) · dŷ(i,T ′ ).

=

∫ 1−ŷ
(i,T

′
)

ŷ(i,S)−ŷ
(i,T

′
)
=0

∫ 1

ŷ
(i,T

′
)=0

dŷ(i,S) · dŷ(i,T ′ ) (Change of limits)

≤
∫ 1

ŷ(i,S)−ŷ
(i,T

′
)
=0

∫ 1

ŷ
(i,T

′
)=0

dŷ(i,S) · dŷ(i,T ′ )

= E[Iŷ(i,S)>ŷ
(i,T

′
)
]. ■

B EXPERIMENTAL DETAILS AND RESULTS

B.1 DATASETS

This section briefly describes the tasks of SuperGLUE (Wang et al., 2019) and GLUE (Wang et al.,
2018) benchmarks.
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B.1.1 SUPERGLUE BENCHMARK

BoolQ: Boolean Questions comprise of binary questions using the Google search engine as their
source of questions; they are then paired with appropriate paragraphs from Wikipedia articles that
contain the relevant answers (Clark et al., 2019).

CB: CommitmentBank comprises of short texts with embedded clauses. The examples are taken
from sources like British National Corpus Fiction and Wall Street Journal. It involves a three-class
textual entailment task. Each example includes a premise and the corresponding hypothesis along
with the class label "contradiction", "neutral", or "entailment" (De Marneffe et al., 2019).

COPA: Choice of Plausible Alternatives is a causal reasoning task which involves selecting the most
plausible choice for a cause or effect given a premise. (Roemmele et al., 2011).

WiC: Word-in-Context is a task focused on word sense disambiguation, comprising of binary clas-
sification of pairs of sentences. In this task, two text snippets are provided, each containing a word
that could have multiple meanings. The goal is to ascertain whether the word has the same meaning
in both sentences (Pilehvar & Camacho-Collados, 2018).

WSC: Winograd Schema Challenge is a coreference resolution task where each sentence example
includes a passage, a pronoun, and a choice of nouns from that sentence. The task objective is to
determine whether the pronoun and noun refer to each other or not (Levesque et al., 2012).

B.1.2 GLUE BENCHMARK

SST-2: Stanford Sentiment Treebank is a dataset derived from movie reviews, annotated with senti-
ment labels. The goal is to predict the sentiment ("positive"/"negative") of the reviews, employing a
two-way classification Socher et al. (2013).

MRPC: Microsoft Research Paraphrase Corpus consists of sentence pairs obtained from online
news sources and are human-annotated to ascertain their semantic equivalence. This task involves
predicting whether two given sentences are paraphrases of each other or not (Dolan & Brockett,
2005).

STS-B: Semantic Textual Similarity Benchmark predicts the degree of similarity between two given
sentences on a scale from 0-5. The dataset is compiled from diverse origins, including videos and
image descriptions, news headlines, and natural language inference information. (Cer et al., 2017).

QQP: Quora Question Pairs involves predicting whether two given questions asked on the question-
answering website Quora are semantically equivalent or not (Chen et al., 2018).

MNLI: Multi-Genre Natural Language Inference involves predicting whether a given hypothesis is
"entailed", "neutral", or "contradicted" for a given premise. The dataset is collected from various
sources, including fiction, government reports, and transcribed speech (Williams et al., 2017).

QNLI: Question-answering NLI is a task based on the Stanford Question Answering Dataset. It
involves determining whether a given context sentence contains the answer to a corresponding ques-
tion Wang et al. (2018).

RTE: Recognizing Textual Entailment is compiled from collection of datasets that originate from a
series of annual textual entailment challenges (Dagan et al., 2005; Haim et al., 2006; Giampiccolo
et al., 2007; Bentivogli et al., 2009). These datasets are constructed using news and Wikipedia text
sources. The datasets are transformed into a two-class split, collapsing "neutral" and "contradiction"
categories into "not entailment".

WNLI: Winograd NLI requires selecting the referent of a pronoun from choices by converting it
into sentence pair classification. The task assesses whether substituting the pronoun with possible
referents results in sentence entailment (Levesque et al., 2012).

B.2 EXPERIMENTAL SETUP

For all the SuperGLUE and GLUE tasks, we use a maximum sequence length of 128. All the results
reported in the paper (except for the results obtained from other baselines) are obtained from running
a grid search over the set of hyperparameters, teacher learning rate from {2e-5, 3e-5}, the student
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learning rate from {2e-5, 3e-5}, τ from {4.0, 5.0, 6.0, 7.0}, α from {0.4, 0.5, 0.6}, and β from {80,
90, 100}. The discount factor γ is set as 0.99. The meta-teacher and the curriculum models are
trained with a fixed learning rate of 0.001. We train all the models with a maximum of 10 epochs,
and the curriculum model is trained with 200 episodes. We set the training, quiz and validation batch
size as 8. All the models are trained with Adam optimizer with weight decay (Loshchilov & Hutter,
2017). One Tesla V100 and A100-40 GPU were used for conducting the experiments.

B.3 BASELINES

To evaluate the impact of our proposed distillation method, we undertake several competitive KD
and MetaKD baselines.

PKD (Sun et al., 2019) uses a patient learning approach where instead of using the last layer of
teacher for distilling knowledge into the student, the student utilises the intermediate layer represen-
tation of the teacher model.

CKD (Park et al., 2021) transfers knowledge from teacher to student, utilising the word representa-
tions contextual knowledge. It defines two contextual knowledge objectives – Word Relation (WR)
and Layer Transforming Relation (LTR), examining the relationships among words in a particular
layer and across different layers, respectively.

TinyBERT (Jiao et al., 2019) employs a two-stage framework, general and task-specific distillation
of BERT-base into a tiny 4-layer student model, using a multiple distillation objective. In addition
to logit-based matching, the teacher transfers its knowledge through embedding layers, intermediate
hidden states, and attention matrices.

MetaDistil: Zhou et al. (2021) argued that the teacher model is not optimized for transferring knowl-
edge to the student model. MetaDistil proposes a trainable teacher setup wherein the student’s pre-
dictive performance is considered while fine-tuning the teacher model using a quiz dataset. The
updated teacher is further used to distil knowledge into the student further.

B.4 RESULTS

Table 5 and Table 7 highlight different model performances on SuperGLUE and GLUE test4 sets, re-
spectively. BERT-6L distilled with MPDistil achieves better accuracy than the BERT-base teacher
model in three SuperGLUE and four GLUE tasks. Table 6 and Table 8 highlight the ∆Margin for
MPDistil on GLUE dev and test set respectively. It is worth noting that most contemporary KD
methods fail to improve the student’s performance over the teacher’s on GLUE test. In contrast,
the student model distilled with MPDistil achieves positive ∆Margin on MRPC, QQP, RTE and
SST-2. The ablation model without curriculum learning achieves positive ∆Margin on the STS-B
task. These superior performances demonstrate the generalizability of the student model distilled
with MPDistil.

Methods BoolQ CB COPA RTE WiC WSC
Teacher (BERT-base) 74.6 83.6 56.6 63.2 54.8 65.1
Student (BERT-base 6L) 71.3 81.2 53.0 64.1 56.4 65.1
Distilled Student 72.1 82.0 52.8 64.3 53.9 65.1
Meta-teacher
(+) Col loss 73.0 84.0 56.8 62.8 54.9 65.1
(+) Com loss 72.9 84.0 58.8 62.9 54.4 64.4
Student with MPDistil
(+) Col loss + Binary reward 72.1 81.2 50.6 64.2 53.8 63.0
(+) Col loss + Real reward 71.1 82.4 53.6 64.2 53.8 64.4
(+) Com loss + Binary reward 71.2 82.0 51.6 64.5 55.0 65.8
(+) Com loss + Real reward 71.3 81.6 50.6 64.2 54.7 66.4
(-) Curriculum learning + Col loss 72.4 82.0 53.0 62.8 54.3 65.1
(-) Curriculum learning + Comp loss 72.7 82.4 53.0 64.2 55.2 65.8

Table 5: Results of our method on the SuperGLUE test sets with the BERT model.

4Submissions to https://super.gluebenchmark.com/ and https://gluebenchmark.
com/

16

https://super.gluebenchmark.com/
https://gluebenchmark.com/
https://gluebenchmark.com/


Published as a conference paper at ICLR 2024

Methods MNLI/MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B
Acc Acc/F1 Acc Acc/F1 Acc Acc Pear/Spear

KD Hinton et al. (2015) † -2.0/-1.7 -2.4/-2.0 -2.0 -0.5/-1.2 -3.7 -1.8 -1.6/-1.6
PKD Sun et al. (2019) † -1.9/-1.6 -2.9/-2.2 -1.7 -0.5/-0.7 -3.8 -1.7 -1.6/-1.7
TinyBERT Jiao et al. (2019) † -1.0/-1.1 -1.1/-1.1 -1.4 -0.8/-0.9 -3.7 -1.1 -1.0/-1.1
RCO Jin et al. (2019) † -2.2/-2.0 -2.5/-2.1 -1.5 -0.8/-1.1 -3.8 -1.6 -1.5/-1.5
TAKD Mirzadeh et al. (2020) † -2.1/-1.9 -2.6/-2.0 -1.6 -0.7/-1.0 -2.9 -1.6 -2.0/-1.8
DML Zhang et al. (2018) † -2.2/-2.0 -2.5/-2.0 -1.6 -1.1/-1.1 -3.0 -1.5 -1.8/-1.7
ProKT Shi et al. (2020) † -1.8/-1.7 -1.3/-0.9 -1.5 -0.5/-0.6 -3.0 -1.7 -1.3/-1.2
SFTN Park et al. (2021) † -2.2/-2.0 -2.3/-1.8 -1.7 -1.0/-1.0 -2.9 -1.5 -1.8/-1.3
MetaDistil Zhou et al. (2021)† -1.1/-1.1 -0.8/-0.5 -0.8 -0.4/-0.4 -2.0 -0.7 -0.8/-0.7
MPDistil (Ours) -3.2/-2.3 -2.4/-1.4 -3.3 -0.2/-0.3 0.4 1.1 -0.3/-0.2
(-) Curriculum learning -4.0/-2.4 -2.0/-1.0 -2.6 0.3/-0.3 -1.8 1.3 -0.4/-0.3

Table 6: ∆Margin reported for different distillation methods on GLUE tasks dev split with the BERT
model. The results highlighted with † are obtained from Zhou et al. (2021).

Methods MNLI/MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B WNLI
Acc Acc/F1 Acc Acc/F1 Acc Acc Pear/Spear Acc

Teacher (BERT-base) 83.5/82.8 81.3/86.9 90.2 87.9/70.3 63.2 91.4 83.4/82.1 65.1
Student (BERT-base 6L) 79.5/78.2 80.5/86.0 86.9 87.9/68.6 64.1 90.1 83.8/82.5 65.1
Distilled Student 80.0/79.6 79.6/85.5 86.7 88.1/69.3 64.3 89.8 83.1/81.8 65.1
Meta-teacher
(+) Col loss 84.1/83.0 81.4/86.7 90.3 87.9/70.2 62.8 92.5 83.3/82.0 65.1
(+) Com loss 84.0/83.1 81.6/86.8 90.2 88.2/70.4 62.9 92.4 83.3/82.0 65.1
Student with MPDistil
(+) Col loss + Binary reward 80.6/79.6 81.4/86.8 86.7 88.1/69.3 64.2 90.4 83.0/81.7 58.9
(+) Col loss + Real reward 80.2/78.5 81.6/86.8 86.8 88.2/69.4 64.2 91.2 83.2/81.9 65.1
(+) Com loss + Binary reward 80.5/79.6 81.6/86.8 86.9 88.2/69.3 64.5 90.6 83.2/81.9 65.1
(+) Com loss + Real reward 80.2/80.1 81.5/86.8 86.8 88.2/69.4 64.2 91.2 83.2/81.9 65.1
(-) Curriculum learning + Col loss 79.8/79.9 82.0/87.3 88.2 88.5/70.4 62.8 90.2 84.2/83.1 65.1
(-) Curriculum learning + Com loss 79.4/79.9 81.6/87.1 88.2 88.5/70.1 64.2 91.0 84.1/83.1 65.1

Table 7: Results of our method (MPDistil) on the GLUE test set with the BERT model.

Methods MNLI/MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B
Acc Acc/F1 Acc Acc/F1 Acc Acc Pear/Spear

KD Turc et al. (2019) † -1.8/-1.2 -3.1/-2.1 -1.6 -0.3/-0.8 -1.1 -1.7 -
PKD Sun et al. (2019) † -3.1/-2.4 -4.9/-3.9 -1.5 -0.3/-0.5 -0.9 -1.5 -3.7/-4.2
BERT-of-Theseus Xu et al. (2020) † -2.2/-1.3 -1.6/-1.3 -0.9 0.1/0.4 -0.2 -1.3 -1.5/-1.7
ProKT Shi et al. (2020) † -1.7/-1.2 -2.5/-1.9 -0.8 -0.3/-0.3 - -0.2 -
TinyBERT Jiao et al. (2019) † -1.6/-0.8 -2.0/-1.0 -0.7 -0.6/-0.3 0.4 -0.4 -1.3/-1.2
DML Zhang et al. (2018) † -2.0/-1.8 -3.6/-2.4 -1.0 -0.5/-0.5 -0.1 -0.8 -1.6/-1.8
RCO Jin et al. (2019) † -2.3/-2.2 -3.4/-2.1 -1.2 -0.5/-0.8 0.1 -0.9 -1.8/-1.7
TAKD Mirzadeh et al. (2020) † -2.2/-1.7 -3.5/-2.4 -1.1 -0.4/-0.6 0.4 -0.6 -1.7/-1.7
SFTN Park et al. (2021) † -2.5/-2.1 -3.6/-2.4 -0.9 -0.8/-1.0 -0.1 -0.8 -2.0/-1.6
MetaDistil Zhou et al. (2021) † -0.8/-0.2 -0.1/-0.2 -0.3 -0.3/-0.1 0.8 0.0 -1.0/-0.8
MPDistil (Ours) -3.3/-2.9 0.3/-0.1 -3.4 0.3/-0.9 1.3 -0.6 -0.4/-0.4
(-) Curriculum learning -4.1/-2.9 0.7/0.4 -2.0 0.6/0.1 1.0 -0.4 0.7/1.0

Table 8: ∆Margin reported for different distillation methods on GLUE tasks test split with the BERT
model. The results highlighted with † are obtained from Zhou et al. (2021).

Methods BoolQ CB COPA RTE WiC WSC
Student with MPDistil
(+) Col loss + Binary reward 72.8 ± 0.35 83.9 ± 3.31 67.0 ± 4.13 67.1 ± 1.44 58.0 ± 1.05 65.4 ± 5.36
(+) Col loss + Real reward 73.4 ± 0.71 82.1 ± 1.49 70.0 ± 4.22 66.4 ± 1.44 58.6 ± 0.78 64.4 ± 4.24
(+) Com loss + Binary reward 73.0 ± 0.63 80.4 ± 1.55 62.0 ± 3.80 67.5 ± 1.37 59.6 ± 1.63 65.4 ± 4.12
(+) Com loss + Real reward 73.0 ± 0.34 78.6 ± 2.19 63.0 ± 4.38 66.4 ± 2.22 58.9 ± 0.99 65.4 ± 2.56

Table 9: Performance of our method (MPDistil) along with standard deviation on the SuperGLUE
dev sets with the BERT model.
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Methods BoolQ CB COPA RTE WiC WSC
Student with MPDistil
(+) Col loss + Binary reward 82.7 ± 2.86 76.8 ± 3.91 67.0 ± 2.58 79.8 ± 2.25 61.0 ± 0.96 66.3 ± 0.76
(+) Col loss + Real reward 82.7 ± 0.18 76.7 ± 1.31 67.0 ± 2.87 78.0 ± 1.08 60.0 ± 0.53 65.4 ± 4.40
(+) Com loss + Binary reward 82.4 ± 0.49 76.8 ± 2.26 69.0 ± 3.90 80.9 ± 2.27 59.7 ± 0.47 65.4 ± 2.94
(+) Com loss + Real reward 82.6 ± 0.22 76.8 ± 1.27 68.0 ± 3.28 77.6 ± 1.28 60.0 ± 0.45 64.4 ± 3.87

Table 10: Performance of our method (along with standard deviation) including performance vari-
ance on the SuperGLUE dev sets with the DeBERTa model.
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Table 11: Performance of our method (MPDistil) along with standard deviation on the GLUE dev
set with BERT model.
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Methods BoolQ CB COPA RTE WiC WSC
Teacher (OPT-1.3B) 64.9 83.9 55.0 53.4 56.7 63.5
Student (OPT 12L) 63.4 75.0 54.0 53.1 53.8 63.5
Distilled Student 65.6 67.9 55.0 52.7 54.7 63.5
Meta-teacher
(+) Col loss 64.9 80.4 55.0 50.9 56.1 63.5
(+) Com loss 65.4 82.1 55.0 53.8 56.0 63.5
Student with MPDistil
(+) Col loss + Binary reward 65.7 71.4 55.0 55.6 54.7 63.5
(+) Col loss + Real reward 65.6 73.2 55.0 54.9 56.1 63.5
(+) Com loss + Binary reward 65.6 76.8 55.0 53.8 56.1 63.5
(+) Com loss + Real reward 65.6 73.2 55.0 53.8 56.7 63.5
(-) Curriculum learning + Col loss 65.6 73.2 55.0 52.7 54.7 63.5
(-) Curriculum learning + Comp loss 64.3 71.4 54.0 54.5 54.9 63.5

Table 12: Performance of our method (MPDistil) on the SuperGLUE dev set with OPT model.

Methods BoolQ CB COPA RTE WiC WSC
PKD Sun et al. (2019) -0.5 -8.9 0.0 0.7 -2.8 0.0
MPDistil (Ours) 0.8 -7.1 0.0 1.5 0.0 0.0
(-) Curriculum learning 0.7 -10.7 0.0 1.0 -1.8 0.0

Table 13: ∆Margin for different distillation methods on SuperGLUE dev tasks with OPT model.
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