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ABSTRACT

Sequence modeling has important applications in natural language processing and
computer vision. Recently, the transformer-based models have shown strong per-
formance on various sequence modeling tasks, which rely on attention to capture
pairwise token relations, and position embedding to inject positional information.
While showing good performance, the transformer models are inefficient to scale
to long input sequences, mainly due to the quadratic space-time complexity of
attention. To overcome this inefficiency, we propose to model sequences with a
relative position encoded Toeplitz matrix and use a Toeplitz matrix-vector pro-
duction trick to reduce the space-time complexity of the sequence modeling to
log linear. A lightweight sub-network called relative position encoder is pro-
posed to generate relative position coefficients with a fixed budget of parame-
ters, enabling the proposed Toeplitz neural network to deal with varying sequence
lengths. In addition, despite being trained on 512-token sequences, our model
can extrapolate input sequence length up to 14K tokens in inference with consis-
tent performance. Extensive experiments on autoregressive and bidirectional lan-
guage modeling, image modeling, and the challenging Long-Range Arena bench-
mark show that our method achieves better performance than its competitors in
most downstream tasks while being significantly faster. The code is available at
https://github.com/OpenNLPLab/Tnn.

1 INTRODUCTION
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Figure 1: The left figure shows the training speed (x-axis), performances (y-axis), and GPU memory
footprints (circle sizes) of the TNN and competing methods on Long-Range Arena benchmark. The
TNN beats the competitors with a clear margin. The right figure plots the extrapolation results with
different sequence lengths, where the x-axis denotes sequence lengths, and the y-axis denotes log
PPL. It demonstrates that regardless of the sequence length, the PPL of the TNN remains constant.
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Sequence modeling is a fundamental problem in natural language processing, speech processing,
and computer vision. Various sequence modeling methods have been proposed in the literature,
including recurrent (Hochreiter & Schmidhuber, 1997), convolutional architectures (LeCun et al.,
1989), and transformers (Vaswani et al., 2017). These models utilize various properties of sequential
data for their modeling. For example, recurrent models (Hochreiter & Schmidhuber, 1997) mimic
the sequential property by sequentially processing the input while maintaining hidden states through
steps. Convolutional models (LeCun et al., 1989) enforce the locality bias sequentially and only in-
teract elements within local patches. Transformers use attention matrices to model pairwise relations
regardless of the distance between them. Recently, Transformers (Vaswani et al., 2017; Dosovitskiy
et al., 2021) show strong performance on a wide range of applications across domains and become
arguably one of the most successful architectures for sequence modeling in general.

There are two main components in transformers: the attention mechanism that learns pairwise
correlations of tokens from data, and the position embedding to introduce positional inductive bi-
ases. The vanilla attention mechanism requires quadratic space-time complexity, which precludes
Transformers from handling long sequences. Numerous attention variants have been proposed re-
cently to reduce the complexity, including linear transformers (Katharopoulos et al., 2020), and
Performer (Choromanski et al., 2021). Although the types of attention vary, the position embedding
remains in every method, which indicates the importance of position information in sequence mod-
eling. This motivates us to ask the following question: since position information is important, can
we design a model that relies entirely on the position information of its elements regardless of their
content, thus alleviating the quadratic computation cost of the vanilla attention mechanism?

In this paper, we give an affirmative answer to this question by introducing Toeplitz neural network,
a new efficient architecture that solely exploits relative position relations for sequence modeling. In
specific, instead of attention matrices, the Toeplitz neural network uses Toeplitz matrices to capture
relations between each token pair. There are two motivations for selecting the Toeplitz matrix.
One is that it compactly represents relative positional relations between tokens with much fewer
parameters, i.e., 2n − 1 parameters for an n × n Toeplitz matrix. The other is that the Toeplitz
matrix-vector production can be efficiently processed in O(n log n) complexity, which is exactly
what we used in our token mixing operation. In this way, we avoid computing content similarities
between tokens and effectively reduce the quadratic computation complexity of transformers to log
linear, rendering a more efficient sequence modeling architecture.

We further propose relative position encoder, a lightweight module that generates relative posi-
tion parameters to assemble the Toeplitz matrices, so that the number of the TNN’s parameters
will no longer depend on the sequence length. Moreover, it allows TNN to deal with varying se-
quence lengths without retraining. In addition, the input sequence length extrapolation becomes an
important ability in sequence modeling as training on longer sequences can be prohibitively expen-
sive (Press et al., 2022). We propose an exponential decay bias that directly applies to the Toeplitz
matrix. Our model achieves a consistent performance to a sequence length of 14K tokens in infer-
ence when training on sequences of 512 tokens. We also show analytically that the Toeplitz neural
network represents a general form of sequence modeling methods, and derives transformers, CNNs,
and the recently proposed State-space-based methods (Gu et al., 2022) as its special forms.

We validate our model on a wide range of sequence modeling tasks and benchmarks. These include
auto-regressive language modeling, text classification, image classification, and the Long-Range
Arena benchmark. As illustrated in Fig. 1, our model achieves state-of-the-art performance on most
tasks at a favorable log linear space-time complexity. It also demonstrates superior extrapolation
capabilities when training on shorter sequences and evaluating on longer ones off-the-shelf.

2 PRELIMINARY

In this section, we introduce concepts used throughout the paper, including positional embedding,
token and channel mixing, and the Toeplitz matrix. Notations used can be found in Appendix A.

Positional embedding is introduced in transformers (Vaswani et al., 2017) to inject positional in-
ductive bias. It often uses fixed or learned parameters to encode position-specific information, thus
making the model position-aware. There are mainly two types of positional embeddings: the abso-
lute positional embedding (Vaswani et al., 2017) and the relative position embedding (Shaw et al.,
2018). In this work, we focus on the relative position embedding to emphasize pair-wise token
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relations. A typical relative positional embedding (Raffel et al., 2020) is formulated as:

eij = q⊤
i kj/

√
d+ wi−j , (1)

where j, i are two positional indices, eij denotes the attention score before softmax. The qi,kj

represents the queries and keys in the attention. The wi−j is a positional coefficient. In this case,
the relative position information is added to the attention as a bias.

Token and channel mixing are used by (Yu et al., 2022) to refer to the two main procedures in
sequence modeling. The token mixing refers to the process of mixing information between token
pairs and the channel mixing for those between feature channels. In the Transformers, given the
attention matrix A ∈ Rn×n and token matrix X ∈ Rn×d, the attention operation AX can be
regarded as a token mixing process and the FFN module is used for channel mixing.

Researchers often classify various sequence modeling techniques based on the token mixing tech-
niques used. MLP-based methods (Liu et al., 2021; Tolstikhin et al., 2021) use matrix multiplication
on the sequence dimension for token mixing. FFT-based methods (Lee-Thorp et al., 2022) utilize
the FFT on the sequence dimension to mix token-wise information. The State-space-based meth-
ods (Gu et al., 2022) leverage the state equations and hidden states to model sequences, as well as
perform interactions between tokens.

Toeplitz matrix is a special form of a matrix that has constant values along each diagonal running
from left to right, i.e.,

Tij = Ti+1,j+1 = ti−j ,T ∈ Rn×n. (2)

There are two nice properties of a Toeplitz matrix: 1). For an n×n Toeplitz matrix, we can efficiently
describe it with 2n−1 parameters. 2). The Toeplitz matrix-vector production is faster than standard
matrix-vector production. In particular, we have:

Theorem 2.1. For a Toeplitz matrix T ∈ Rn×n and any vector x ∈ Rn, the time complexity of Tx
is O(n log n).

We provide detailed proof in Appendix B. This property enables us to use the Toeplitz matrices to
perform efficient token mixing.

3 TOEPLITZ NEURAL NETWORK

In this section, we provide a detailed design and analysis of our proposed Toeplitz Neural Network
(TNN) by giving a glance at the overall structure of our model first and then describing each of
its components. We also discuss the connection between the TNN and other sequence modeling
methods at the end of this section.

3.1 THE OVERALL ARCHITECTURE

Our model consists of a stack of Gated Toeplitz Units (GTU) and GLU (Shazeer, 2020). GTU is
a modified GLU layer injected with the proposed Toeplitz Neural Operator (TNO), as illustrated in
Fig. 2. A TNO is used to perform token mixing with a Toeplitz matrix. To generate relative position
coefficients for the Toeplitz matrix, we propose a Relative Position Encoder (RPE), a lightweight
fully-connected sub-network to encode the relative position information. An exponential decay bias
is also added to the Toeplitz matrix to enable extrapolation on longer inputs.

3.2 TOEPLITZ NEURAL OPERATOR

Here, we will show how to use a Toeplitz matrix to represent relative positional information. Let us
consider i, j to be two positions in a 1D sequence, by using the relative position embedding in Eq. 1,
we can define a Toeplitz matrix T ∈ Rn×n, where Tij = ti−j . Specifically, given a sequence x
of n tokens, x = [x0, x1, . . . , xn−1]

⊤ ∈ Rn, we use a scalar ti−j to represent the relative position
coefficients between xi and xj . Then a Toeplitz matrix T ∈ Rn×n can be formed by gathering ti−j
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Figure 2: Network structure overview of the proposed Toeplitz Neural Network. The proposed
sequence modeling block is composed of a Gated Toeplitz Unit and a GLU Shazeer (2020) and. We
propose the TNO to perform token mixing with only relative position information. We use a small
fully-connected network named RPE to encode relative position information.

for every token pair:

T =


t0 t−1 · · · t−n+1

t1 t0
...

... t0 t−1

tn−1 . . . t1 t0

 ∈ Rn×n. (3)

Let us define a token mixing operation as:

y = Tx ∈ Rn, (4)

where y is the token mixing result. For any d-dimensional sequences, the token mixing is performed
on each dimension individually.

As aforementioned in Theorem 2.1, the computation complexity of Eq. 4 is O(n log n). As we need
to perform token mixing on d dimensions, our TNO has a computation complexity of O(nd log n).
One following question is how to calculate the relative position coefficients in T. A naive solution
is to make the coefficients learnable parameters, such that the model can directly learn them from
training data. However, this solution has some drawbacks: 1). Parameter explosion. For a d-
dimensional sequence of n tokens, there are a total of (2n − 1)d learnable parameters, which can
be prohibitively large as n increases. It also shows an unsatisfactory performance in our ablation
studies in Sec. 4.3. 2). Fixed input sequence length. Since the sequence length n is fixed in training,
we are unable to adjust the sequence length during inference, i.e., it will cause a crucial performance
drop when the sequence length changes. To address these drawbacks, we propose a relative position
encoder to generate the relative position coefficients.

3.3 RELATIVE POSITION ENCODER

We illustrate the network structure of our RPE in Fig. 2, which is a fully connected network with
K layers. The input of the network is a 1-dimensional scalar, i.e., the value of −(n − 1), . . . , (n −
1),∀n ∈ N+, and output a d dimension vector, which is used to assemble the Toeplitz matrix. In
this case, the number of the TNN’s parameters will no longer depend on the input sequence length
and the TNN will have the flexibility to deal with various sequence lengths in the inference stage.

Note that recent literature (Mildenhall et al., 2021) claims that projecting the scalar input to a higher
dimensional space with high frequency functions, i.e., sin and cos functions, before passing a net-
work can lead to better performance. However, in our ablations, we find that using the original
integer achieves better performance.

Exponential decay bias Previous models (Vaswani et al., 2017; Qin et al., 2022) often use a fixed
sequence length in both training and inference. If we need to infer a longer sequence, the model
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needs to be retrained on the longer sequence length to maintain the performance, which can be
prohibitively expensive in the application.

ALiBi (Press et al., 2022) shows that by applying a simple penalty to the query-key attention scores,
the Transformer can handle longer sequence length in inference without compromising the perfor-
mance. The penalty is a linear bias that is proportional to the distance between tokens. Inspired
by this technique, we propose an exponential decay bias that directly applies to the Toeplitz matrix
to achieve the same goal. In specific, let us define a decay rate of λ ∈ [0, 1], and the new relative
position coefficients t̄i−j in T can be expressed as:

t̄i−j = λ|i−j|ti−j . (5)

ALiBi can be seen as a special case of our method. Given the equation of ALiBi:

s̄ij = q⊤
i kj/

√
d+m|i− j|, exp(s̄ij) = exp(q⊤

i kj/
√
d) exp(m|i− j|), (6)

and
sij = q⊤

i kj/
√
d, λ ≜ exp(m), (7)

we have:
exp(s̄ij) = exp(sij)λ

|i−j|. (8)
It means the ALiBi applies an exponential decay on the softmax attention matrices whereas ours
applies it on the Toeplitz matrices.

3.4 RELATION TO OTHER SEQUENCE MODELING MODELS

In this section, we will show the relationship between our model and other sequence modeling
models such as the Transformers (Vaswani et al., 2017), CNNs (LeCun et al., 1989), and the State
space (Gu et al., 2022). We also compare the theoretical space-time complexity of our model with
previous sequence modeling models in Table. 1.

Transformers A Transformer with relative position embedding can be expressed as:

O = Softmax(QK⊤/
√
d+T)V. (9)

Comparing it with Eq. 4, the TNN can be regarded as an attention-free transformer, i.e., removing
the Q,K, and the Softmax, while only keeping the relative position matrices T.

CNNs A convolutional layer can be viewed as a Toeplitz matrix of a special structure. Considering
a 1D convolution:

y = h ∗ x,yi =

i∑
j=0

hi−jxj ,h ∈ Rm,x ∈ Rn,y ∈ Rn+m−1. (10)

Let’s define a Toeplitz matrix T ∈ R(n+m−1)×(n+m−1):

Tst =

{
ht−s 0 ≤ t− s ≤ m− 1, 0 ≤ t ≤ n− 1

0 others,
, z =

[
x

0m−1

]
∈ Rn+m−1. (11)

Then:
y = Tz ∈ Rn+m−1. (12)

Therefore, a 1D CNN can be viewed as a special case of the TNN with a zero-padded input. For
better illustration, we provide a matrix form of CNN operation in Appendix C.1.

State space The equation of the State space can be expressed as:

ui = Aui−1 +Bxi,yi = Cui,A ∈ Rh×h,B ∈ Rh×1,C ∈ R1×h, i = 1, . . . , n (13)

where xi is the input, yi is the output,ui is the intermediate state. According to (Gu et al., 2022),
the output of the State space is:

yi =

i∑
j=0

ki−jxj ,k =
(
CB,CAB, . . . ,CAn−1B

)⊤ ∈ Rn. (14)
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Let’s define the Toeplitz matrix T ∈ Rn×n:

Ti−j =

{
ki−j , i ≥ j

0, i < j
. (15)

Then:
y = Tx,x ∈ Rn,y ∈ Rn. (16)

In this case, the State space can be regarded as a special form of TNN with the coefficients that
are calculated by the State space. We also provide the matrix form in Appendix C.2 for better
illustration.

Table 1: Comparison of theoretical space-time complexity of several models. Parallel indicates
whether parallel training is possible, n indicates the sequence length, and d indicates the feature
dimension, e indicates the CNN kernel size. Here we only list about 1D CNN.

Method CNN RNN Vanilla
Attention

Linear
Attention MLP FFT State

space TNN

Time
complexity ned nd2 n2d nd2 n2d nd logn nd logn nd logn

Space
complexity nd nd n2d nd n2d nd nd nd

Parallel True False True True True True True True

4 EXPERIMENT

We compare our method to four kinds of sequential modeling methods including attention-based
methods, MLP-based methods, FFT-based methods, and State-space-based methods. In particular,
we select the following methods:

• Attention-based: Vanilla transformer(Vaswani et al., 2017), Transformer-LS(Zhu et al.,
2021), FLASH, (Hua et al., 2022), 1+elu (Katharopoulos et al., 2020), Performer (Choro-
manski et al., 2020), cosFormer (Qin et al., 2022).

• MLP-based: gMLP(Liu et al., 2021), Synthesizer (Random), Synthesizer (Dense) (Tay
et al., 2021).

• FFT-based: FNet(Lee-Thorp et al., 2022), GFNet (Rao et al., 2021), AFNO(Guibas et al.,
2021).

• State-space-based: S4(Gu et al., 2022), DSS (Gupta et al., 2022), GSS(Mehta et al., 2022).

We evaluate our methods on the WikiText-103 (Merity et al., 2017) for autoregressive language
modeling and the input length extrapolation ability, and the GLUE benchmark (Wang et al., 2018)
for bidirectional language modeling. We also validate the accuracy and efficiency of our methods
in handling long-range dependencies on the Long-Range Arena benchmark (Tay et al., 2020). To
demonstrate the robustness of our model, we implement our model in DeiT (Touvron et al., 2021)
structure and compare its performance with the vanilla DeiT (Touvron et al., 2021) on the ImageNet-
1K (Deng et al., 2009) for image classification.

4.1 SETTING

We implement our models in Pytorch (Paszke et al., 2019) and train them on 8 V100 GPUs. We
adopt the same training configuration for all competitors, including batch size, learning rate, training
epochs/updates, etc. More detailed hyper-parameters are listed in Appendix D.

For the autoregressive language modeling, all models are trained on the WikiText-103 dataset (Mer-
ity et al., 2017) for 50K steps with a learning rate of 0.005. We use perplexity (PPL) as the evaluation
metric.

For the bidirectional language modeling, we choose the Roberta (Liu et al., 2019) model as the base
model structure for all methods. All models are pre-trained on the WikiText-103 (Merity et al.,
2017) for 50K steps with lr=0.005 and fine-tuned on the GLUE dataset (Wang et al., 2018). We use
different learning rates among 1e-5, 3e-5, 6e-5, 1e-4 and choose the best result after fine-tuning for
3 epochs.
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For the Long-Range Arena benchmark, we adopt the same experimental configurations from the
Skyformer Chen et al. (2021). We ensure that performances and efficiencies of all methods are
obtained with a similar parameter size and the same training hyperparameters.

For the image classification on the ImageNet-1k dataset, we adopt the Deit (Touvron et al., 2021)
network structure and replace the transformer layers with our model.

4.2 RESULTS

Autoregressive language modeling Autoregressive language modeling is a crucial task that requires
the models to estimate causal probability distribution given the previously seen tokens. In Table 2,
we compare the proposed TNN with competing sequence modeling models. First, compared to
existing Mlp-based methods, TNN shows better performances with a clear margin on both val set
and test set. Transformer-based methods are currently dominant sequence modeling methods. As
a strong baseline, Transformer adopts a standard self-attention module with quadratic complexity,
TNN still outperforms it on both val and test sets. in addition, TNN achieves better results than
most efficient transformers including FLASH, 1+elu, Performer, and cosFormer. Finally, compared
with recent emerging State-space-based sequence modeling methods, TNN achieves superior per-
formance to all competing methods. it proves the effectiveness of our method in causal models.

Table 2: Performances comparison of autore-
gressive language modeling on the Wikitext-
103 dataset. The best result is highlighted in bold
and the second in underline. ↓ means lower is bet-
ter. Attn stands for Attention, Ss stands for State
space, Trans stands for Transformer, LS stands for
Transformer-LS.

Method PPL
(val)

PPL
(test)

Params
(m)

Attn-based
Trans 24.40 24.78 44.65
LS 23.56 24.05 47.89
FLASH 25.92 26.70 42.17
1+elu 27.44 28.05 44.65
Performer 62.50 63.16 44.65
cosFormer 26.53 27.06 44.65
MLP-based
Syn(D) 31.31 32.43 46.75
Syn(R) 33.68 34.78 44.65
gMLP 28.08 29.13 47.83
Ss-based
S4 38.34 39.66 45.69
DSS 39.39 41.07 45.73
GSS 29.61 30.74 43.84
Ours
TNN 23.98 24.67 48.68

Further, we also compared the extrapolation ca-
pabilities of each method. In Figure 1, we show
that our method outperforms all other methods
and is comparable to ALiBi (Press et al., 2022).
Complete results can be found in Appendix 15.

Bidirectional language modeling We bench-
mark bidirectional modeling methods on the
GLUE datasets in Table. 3. TNN achieves
competitive results across all tasks. Further,
it is worth noting that TNN boosts the results
of CoLA by a significant margin, showing the
ability of reasoning logistic information from
sequences. It demonstrates the effectiveness of
TNN in bidirectional language modeling.

Long-Range Arena benchmark As shown in
Table 4, we compare TNN with competing
methods across five tasks of the LRA bench-
mark. The results before the Transformer-LS
are taken from Skyformer (Chen et al., 2021).
As demonstrated, TNN achieves the best scores
on three tasks and the second places on the left
two tasks. In terms of overall results, TNN out-
performs all other competing methods includ-
ing S4 (Gu et al., 2022) 1

For speed comparison, we compare the training
speed of the TNN with other methods in Table 5. For a fair and comprehensive comparison, we
follow exactly the same configurations of the Skyformer Chen et al. (2021) and report step per
second under different sequence lengths. Timing is conducted on an Nvidia A6000 GPU with 48G
GPU memory.

Image modeling We report classification results on the ImageNet-1k dataset in Table 6. As shown,
under similar parameter sizes, TNN achieves better results than Deit-Tiny and comparable results
with Deit-Small. It demonstrates the capability of our method in encoding visual signals.

1We re-run the S4 experiments with the new configuration to match the number of parameters. For the sake
of completeness, we also compare TNN with S4 in the original size of S4 using the suffix ”-Large” in Table14,
which validates our ability to encode long sequences.
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Table 3: Performances comparison of bidirectional sequence modeling on the GLUE bench-
mark. MNLI is reported by the match/mismatch splits. MRPC is reported by F1 score. CoLA is
reported by Matthews correlation coefficient. All the other tasks are measured by accuracy. The
best result is highlighted in bold and the second in underline. The larger the better for all metrics.
”-” means unconverted. Attn stands for Attention, Ss stands for State space, Trans stands for Trans-
former, LS stands for Transformer-LS.

Method MNLI QNLI QQP SST-2 MRPC CoLA AVG Params(m)
Attn-based
Trans 79.37/79.07 87.79 88.04 90.25 88.35 38.63 78.79 124.70
LS 77.01/76.78 84.86 86.85 90.25 82.65 40.65 77.01 128.28
FLASH 79.45/80.08 87.10 88.83 90.71 82.50 29.40 76.87 127.12
1+elu 74.87/75.37 82.59 86.90 87.27 83.03 - 70.00 124.70
Performer 58.85/59.52 63.44 79.10 81.42 82.11 19.41 63.41 124.70
cosFormer 75.10/75.95 82.61 86.12 89.45 81.93 33.03 74.88 124.70
MLP-based
Syn(D) 50.93/51.02 62.80 81.33 82.34 81.79 - 58.60 131.00
Syn(R) 52.82/52.13 62.29 78.11 82.22 81.38 4.63 59.08 129.42
gMLP 73.30/73.60 80.56 86.48 90.25 82.30 36.06 74.65 131.08
FFT-based
FNet 62.45/64.71 73.31 79.43 81.88 82.91 - 63.53 124.70
GFNet 66.75/67.45 65.42 80.25 84.40 82.44 9.62 65.19 130.06
AFNO 68.79/69.28 73.20 85.12 88.88 82.35 36.19 71.97 121.57
Ss-based
S4 68.45/68.42 72.14 84.61 87.04 83.36 23.01 69.58 131.79
DSS 35.46/35.22 50.80 65.18 65.37 80.95 6.14 48.45 123.76
GSS 50.53/51.58 62.58 80.98 85.67 82.11 6.56 60.00 122.80
Ours
TNN 76.72/76.06 85.06 88.30 90.60 82.96 49.85 78.51 126.40

Table 4: Performances Comparison on the Long Range Arena benchmark. We use bold and
underline to highlight the best and the second result of each task respectively. The proposed TNN
achieves the best performances and outperforms all competing methods.

Model Text ListOps Retrieval Pathfinder Image AVG.
Transformer 61.95 38.37 80.69 65.26 40.57 57.37
Kernelized Attention 60.22 38.78 81.77 70.73 41.29 58.56
Nystromformer 64.83 38.51 80.52 69.48 41.30 58.93
Linformer 58.93 37.45 78.19 60.93 37.96 54.69
Informer 62.64 32.53 77.57 57.83 38.10 53.73
Performer 64.19 38.02 80.04 66.30 41.43 58.00
Reformer 62.93 37.68 78.99 66.49 48.87 58.99
BigBird 63.86 39.25 80.28 68.72 43.16 59.05
Skyformer 64.70 38.69 82.06 70.73 40.77 59.39
LS 66.62 40.30 81.68 69.98 47.60 61.24
cosFormer 67.70 36.50 83.15 71.96 51.23 62.11
FLASH 64.10 38.70 86.10 70.25 47.40 61.31
S4 85.92 50.60 67.30 72.44 78.07 70.87
TNN 86.39 47.33 89.40 73.89 77.84 74.97

4.3 ABLATION STUDY

Network structure configuration We ablate different structure configurations on the autoregressive
language modeling task in Table 7. We consider three options of configuration: the GTU+GLU,
GTU only, and attention+GLU. We empirically find that the GTU+GLU one achieves better perfor-
mance than other options and choose it as our structure in TNN.

Input of relative position encoder In Table 8, we ablate different RPE inputs on language mod-
eling. (-(n-1),...,(n-1)) denotes that we feed 2n − 1 constants into the RPE. (-(n-1),...,(n-1))/n de-
notes normalized constants. The sin, cos denotes the absolute position embedding method used
in (Vaswani et al., 2017). We empirically find that using the original integers as the input for the
RPE leads to better performance.
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Relative position encoder There are two ways to generate relative position coefficients for the
Toeplitz matrix. One is to set these coefficients as learnable parameters and allow TNN to learn
them from data. The other is to use our proposed RPE network to generate these coefficients. We
compare these two strategies in Table 9. The TNN with our RPE network achieves an improvement
of 2.47 PPL in language modeling.

Table 5: Speed comparison on Long-Range Arena
benchmark. We mark it with a dash if a method ex-
hausts GPU memory. The higher the better for all met-
rics. The 1K,...,5K represent the input sequence length.

Speed(steps per sec)
model 1K 2K 3K 4K 5K
Transformer 15.34 3.05 - - -
FLASH 20.49 11.06 8.47 7.23 6.93
LS 15.43 8.68 6.28 5.24 4.76
Performer 28.41 16.23 12.02 10.04 9.06
cosFormer 22.94 12.82 9.19 7.79 7.14
Linformer 27.17 15.63 11.26 8.77 7.42
Reformer 20.16 10.87 7.46 5.69 4.70
Nystorm 14.12 9.62 7.46 6.11 5.26
State space 25.99 14.88 8.35 6.66 5.40
FNet 24.61 14.37 9.18 8.39 7.44
TNN 25.72 15.35 9.90 8.07 7.00

Table 6: Performances comparison of image classifi-
cation on the ImageNet-1k dataset.

DeiT-Tiny DeiT-Small
Model Acc Param Acc Param
Transformer 72.20 5.7M 79.90 22.0M
TNN 72.29 6.4M 79.20 23.4M

Table 7: Performances comparison
with different structure configurations.
GTU+GLU achieves better performance in
language modeling.

Method PPL(val)
GTU+GLU 23.98
GTU only 25.19
Attention+GLU 27.40

Table 8: Results comparison with differ-
ent RPE inputs.

Method PPL(val)
(-(n-1),...,(n-1)) 23.98
(-(n-1),...,(n-1))/n 24.11
sin, cos 24.04

Table 9: Performances comparison of
TNN with and without RPE. RPE brings
an improvement in language modeling.

Method PPL(val)
TNN 23.98
TNN w/o RPE 26.45

Table 10: Ablation of exponential decay rates
in input length extrapolation. The model vari-
ants are trained on a fixed sequence length of 512
and tested on a series of sequence lengths ranging
from 512 to 14336. We compute the average PPL
for all sequence lengths.

Decay rate PPL
(val)

Avg PPL
(extrapolation)

0.99 (ours) 23.98 23.70
0.90 25.28 25.22
0.95 24.56 24.63
0.999 23.98 24.56

1 (no decay) 24.03 672.72
learnable 27.65 24.39

Exponential decay rate We ablate different ex-
ponential decay rates in Table 10 on the lan-
guage modeling. We train these model variants
with a fixed sequence length of 512 and test
them on a series of sequence lengths from 512
to 14336 and compute the average PPL. When
there is no exponential decay, the model fails
to extrapolate to a longer sequence length. We
also test our model with a learnable decay rate,
but it does not show better performance. We
empirically select 0.99 as the exponential decay
rate in our method.

5 CONCLUSION

In this paper, we propose Toeplitz neural network, a new efficient architecture that relies entirely
on relative positional information for sequence modeling. The proposed model enjoys a favorable
log linear space-time complexity. Thanks to the proposed relative position encoder and exponential
decay techniques, Toeplitz neural network generalizes to long sequences with a fixed budget of pa-
rameters while obtaining consistently superior performance than competing methods across multiple
challenging tasks, including language modeling, image modeling, and sequence modeling on long
inputs, i.e., the Long-Range Arena benchmark. Toeplitz neural network is also a generic sequence
modeling approach, which renders various popular architectures, such as Transformers, CNNs, and
State-space-based methods, as its special forms, offering a unified view for sequence modeling.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
Efficient token mixing for transformers via adaptive fourier neural operators. In International
Conference on Learning Representations, 2021.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V Le. Transformer quality in linear time. arXiv
preprint arXiv:2202.10447, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International Conference on Ma-
chine Learning, pp. 5156–5165. PMLR, 2020.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. FNet: Mixing tokens with
Fourier transforms. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4296–4313,
Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.naacl-main.319. URL https://aclanthology.org/2022.naacl-main.319.

10

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://aclanthology.org/2022.naacl-main.319


Published as a conference paper at ICLR 2023

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204–9215, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. 5th International Conference on Learning Representations, ICLR, Toulon, France, 2017.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
Bl8CQrx2Up4.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-2074. URL https://aclanthology.org/N18-2074.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2020.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Re-
thinking self-attention for transformer models. In International conference on machine learning,
pp. 10183–10192. PMLR, 2021.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:24261–
24272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers &amp; distillation through attention.
In International Conference on Machine Learning, volume 139, pp. 10347–10357, July 2021.

11

https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://aclanthology.org/N18-2074


Published as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10819–10829, 2022.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=M_
lkFOwVdYc.

12

https://openreview.net/forum?id=M_lkFOwVdYc
https://openreview.net/forum?id=M_lkFOwVdYc


Published as a conference paper at ICLR 2023

Appendix

A MATHEMATICAL NOTATIONS

Notation Meaning
X Hidden state.

Q,K,V Query, key, value.
O Attention output.
d Feature dimension.

m⊤
s s-th row of matrix M .

1d All-ones vector with dimension d.
Id Identity matrix with dimension d.

Table 11: Mathematical notations used in the paper.

B PROOF OF THEOREM

In this section, we will prove Theorem 2.1. Before doing that, let’s first introduce the circulant
matrix and Toeplitz matrix:
Definition B.1. A matrix C ∈ Rn×n is a circulant matrix if and only if Cij = c(i−j+n) mod n , i.e.,

C =



c0 cn−1 cn−2 · · · · · · c1

c1 c0 cn−1
. . .

...

c2 c1
. . .

. . .
. . .

...
...

. . .
. . .

. . . cn−1 cn−2

...
. . . c1 c0 cn−1

cn−1 . . . . . . c2 c1 c0


∈ Rn×n. (17)

Definition B.2. A matrix T ∈ Rn×n is a Toeplitz matrix if and only if Tij = ti−j , i.e.,

T =



t0 t−1 t−2 · · · · · · t−n+1

t1 t0 t−1
. . .

...

t2 t1
. . .

. . .
. . .

...
...

. . .
. . .

. . . t−1 tn−2

...
. . . t1 t0 t−1

tn−1 . . . . . . t2 t1 t0


∈ Rn×n. (18)

Based on the definition, we can give a key lemma:
Lemma B.3. A circulant matrix C ∈ Rn×n is orthogonally equivalent to the diagonal matrix Λ, in
particular, the orthogonal matrix F is a n× n DFT matrix:

C = F⊤ΛF,

Λ = diag{F[a0, a1, . . . , an−1]
⊤} ∈ Rn×n,Fst = exp

(
2πsti

n

)
, i2 = −1.

(19)

The proof can be found in (Gray et al., 2006). Based on this, we can prove a key lemma:
Lemma B.4. For a vector x ∈ Rn and a circulant matrix C ∈ Rn×n, matrix multiplication Cx
can be done in O(n log n) time.

Proof of Lemma B. Because F,F⊤ is a DFT matrix, so Fx and F⊤x can be done O(n log n) time
(Bracewell & Bracewell, 1986). Since Λ is a diagonal matrix, so Λx can be done in O(n) time,
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note that its diagonal elements F[a0, a1, . . . , an−1]
⊤ can also be computed in O(n log n) time com-

plexity, therefore,
Cx = F⊤ΛFx = F⊤ (Λ(Fx)) , (20)

can be done in O(n log n).

Based on this, we can prove Theorem 2.1:

Proof of Theorem 2.1. We first fill the Toeplitz matrix T ∈ Rn× into a circulant matrix C ∈
R2n×2n:

ck =


tk, 0 ≤ k ≤ n− 1

t0, k = n

tk−2n, n+ 1 ≤ k ≤ 2n− 1

, (21)

i.e.,

C =



t0 t−1 . . . . . . t−n+1 t0 tn−1 . . . t2 t1

t1 t0
. . .

... t−n+1
. . . . . . t2

t2
. . . . . . . . .

...
...

. . . . . .
...

...
. . . t0 t−1 t−2

. . . . . . tn−1

tn−1 . . . . . . t1 t0 t−1 t−2 . . . t−n+1 t0
t0 tn−1 . . . . . . t1 t0 t−1 . . . . . . t−n+1

t−n+1
. . . . . . t2 t1 t0

. . .
...

...
. . . . . .

... t2
. . . . . . . . .

...

t−2
. . . . . . tn−1

...
. . . t0 t−1

t−1 t−2 . . . . . . t0 tn−1 . . . . . . t1 t0



∈ R2n×2n.

(22)

Using the notation of block matrix, we can define:

C =

[
C1 C2

C3 C4

]
∈ R2n×2n,Cs ∈ Rn×n, s = 1, 2, 3, 4,C1 = T. (23)

For the vector x ∈ Rn, let’s define:

x1 =

[
x
0n

]
∈ R2n, (24)

so:

Cx1 =

[
C1 C2

C3 C4

] [
x
0n

]
=

[
C1x
C3x

]
=

[
Tx
C3x

]
∈ R2n, (25)

therefore:

[In 0n×n]Cx1 = [In 0n×n]

[
Tx
C3x

]
= Tx. (26)

Note that:

• Computing Cx1 has a time complexity of O(2n log(2n)) = O(n log n).

• [ In 0n×n ]Cx1 is equivalent to selecting the first n rows of Cx1, the time complexity
is O(n).

So the total time complexity is O(n log n).

C MATRIX FORM OF SEQUENTIAL MODELS

In this section, we give the matrix form of some sequence models mentioned in section 3.4.
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C.1 CNN

The matrix form of CNN mentioned in Eq. 10 is:


y0

y1

y2

...
yn+m−1

 =



h0 0 . . . 0 0

h1 h0 . . .
...

...
h2 h1 . . . 0 0
... h2 . . . h0 0

hm−2

... . . . h1 h0

hm−1 hm−2

...
... h1

0 hm−1 . . . hm−3

...
0 0 . . . hm−2 hm−3

...
...

... hm−1 hm−2

0 0 0 · · · hm−1




x0

x1

x2

...
xn−1

 ∈ Rn+m−1. (27)

C.2 STATE SPACE

The Toeplitz matrix mentioned in Eq. 15 is:

T =



k0 0 0 · · · · · · 0

k1 k0 0
. . .

...

k2 k1
. . . . . . . . .

...
...

. . . . . . . . . 0 0
...

. . . k1 k0 0
ks−1 · · · · · · k2 k1 k0


∈ Rn×n. (28)

D CONFIGURATIONS

Table 12: Detailed training configurations used in our experiments. “Total batch size” means
batch per gpu × update freq × num gpus. “ALM” stands for Autoregressive Language Model.
“BLM” stands for Bidirectional Language Model. “IM” stands for Image Modeling.

AML BLM IM
Data WikiText-103 WikiText-103 ImageNet-1k
Tokenizer method BPE BPE -
Src Vocab size 50265 50265 -
Sequence length 512 512 -
Total batch size 128 512 2048
Number of updates/epochs 50k updates 50k updates 300 epochs
Warmup steps/epochs 4k steps 3k steps 5 epochs
Peak learning rate 5e-4 5e-4 2.5e-4
Learning rate scheduler Inverse sqrt Polynomial decay cosine
Optimizer Adam Adam Adamw
Adam ϵ 1e-8 1e-6 1e-8
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)

Weight decay 0.2 for TNN,
0.1 for others

0.2 for TNN,
0.1 for others 0.1

Gradient clipping - - 1.0
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Table 13: Detailed model configurations used in our experiments.

Model LM Roberta Deit-tiny Deit-small
TNN
Layer 6 12 12 12
Feature dim 512 768 192 384
GTU
GTU dim 1536 2304 576 1152
GTU act SiLU SiLU SiLU SiLU
GLU
GLU dim 512 768 192 384
GLU act SiLU SiLU SiLU SiLU
RPE
RPE layer 6 6 1 1
RPE dim 64 64 48 48
RPE act ReLU ReLU ReLU ReLU
Exponential
decay bias 0.99 0.99 0.95 0.9

Table 14: Performances Comparison on the Long Range Arena benchmark. We use bold and
underline to highlight the best and the second result of each task respectively. The proposed TNN
achieves the best performances and outperforms all competing methods.

Model Text ListOps Retrieval Pathfinder Path-X Image AVG.
S4-Large 86.82 59.60 90.90 94.20 96.35 88.65 86.09
TNN-Large 87.90 61.04 90.97 93.00 96.10 88.24 86.21

E EXPERIMENTS

F EXTRAPOLATION

G VISUALIZATION

In this section, we visualize Tnn, in particular, we choose the Toeplitz matrix used in Roberta for
visualization.
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Figure 3: Visualization of the Toeplitz matrix used by each layer in Roberta, each element of the
matrix represents the interaction between tokens. The Toeplitz matrices show similar behaviors to
conventional transformer attention matrices where the diagonal concentrates the most attention.

(i) Layer 1. (ii) Layer 2. (iii) Layer 3.

(iv) Layer 4. (v) Layer 5. (vi) Layer 6.

(vii) Layer 7. (viii) Layer 8. (ix) Layer 9.

(x) Layer 10. (xi) Layer 11. (xii) Layer 12.
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