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ABSTRACT

Probabilistic time series forecasting is a challenging problem due to the long se-
quences involved, the large number of samples needed for accurate probabilistic
inference, and the need for real-time inference in many applications. These chal-
lenges necessitate methods that are not only accurate but computationally efficient.
Unfortunately, most current state-of-the-art methods for time series forecasting are
based on Transformers, which scale poorly due to quadratic complexity in sequence
length, and are therefore needlessly computationally inefficient. Moreover, with
a few exceptions, these methods have only been evaluated for non-probabilistic
point estimation. In this work, we address these two shortcomings. For the first,
we introduce VQ-TR, which maps large sequences to a discrete set of latent rep-
resentations as part of the Attention module. This not only allows us to attend
over larger context windows with linear complexity in sequence length but also
allows for effective regularization to avoid overfitting. For the second, we provide
what is to the best of our knowledge the first systematic comparison of modern
Transformer-based time series forecasting methods for probabilistic forecasting. In
this comparison, we find that VQ-TR performs better or comparably to all other
methods while being computationally efficient.

1 INTRODUCTION

Time series forecasting is a challenging machine learning task given the need to model complex,
non-linear temporal patterns over potentially long time horizons. Recently, methods based on
Transformers (Vaswani et al., 2017) have dominated the state-of-the-art, outperforming both classical
autoregressive approaches, as well as deep learning approaches using Convolutional Neural Networks
(CNNs) or Recurrent Neural Networks (RNNs). This is in large part due to the Transformer’s strong
inductive bias (Zhou et al., 2021), which allows it to look back over the entire context history of a
time series, without suffering from limited temporal field or issues of forgetting (Mahto et al., 2021).

Unfortunately, the recent line of work on using transformers for time series forecasting has two major
limitations. First, the proposed methods generally use very computationally inefficient architectures,
given the quadratic complexity in sequence length necessitated by the self-attention mechanism.
This problem is most pronounced in problems where sequence lengths are long, although even
with medium sequence lengths it results in unnecessarily inefficient computation. In particular,
these problems are exacerbated in probabilistic time series forecasting settings, where many sample
trajectories must be generated, and forecasting must often be performed in real time.
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A second issue with the past work on transformer-based time series forecasting is that, with very
few exceptions,1 these methods have only been evaluated in terms of their performance for point
forecasting (that is, predicting the mean values of future sequences), rather than their performance for
probabilistic forecasting (that is, predicting the full probability distribution of future sequences). This
is unfortunate, since for many applications areas probabilistic forecasting is paramount. Although
arguably it is straightforward to use these methods to perform probabilistic forecasting by replacing
the heads of the models with probabilistic emission heads, there are no existing standard benchmarks
for comparing the performance of different transformer architectures for this task.

In this paper, we address these shortcomings via a two-pronged approach. For the first, we propose a
novel Transformer architecture for time series forecasting, VQ-TR, which eliminates the quadratic
complexity in sequence length of attention via a Vector Quantization (van den Oord et al., 2017)
module. For the second, we provide a systematic comparison of the performance of an extensive set
of Transformer-based methods for probabilistic time series forecasting on a wide range of datasets,
in terms of many different performance metrics for probabilistic inference. In this comparison, we
find that VQ-TR performs better or comparably to all other methods while being significantly more
computationally efficient. In addition, we find that the Vector Quantization module not only improves
computational and memory efficiency but also improves forecasting performance due to a natural
regularizing effect.

2 BACKGROUND

2.1 PROBABILISTIC TIME SERIES FORECASTING

The task of probabilistic time series forecasting in the univariate setting consists of training on a
dataset of D ≥ 1 time series Dtrain = {xi

1:T i} where i ∈ {1, . . . , D} and at each time point t, we
have xi

t ∈ R or N. We are tasked with predicting the potentially complex distribution of the next
P > 1 time steps into the future, and we are given a test set Dtest = {xi

T i+1:T i+P }. Each time index
t is in practice a date-time value that increments regularly based on the frequency of the dataset in
question, and the last training point T i for each time series may or may not be the same date-time.
Autoregressive models like those in Graves (2013) or Salinas et al. (2019b) estimate the prediction
density by decomposing the joint distribution of all P points via the chain rule of probability as:

pX (xi
T i+1:T i+P ) ≈ ΠP

t=1p(x
i
T i+t|x

i
1:T i−1+t, c

i
1:T i+P ; θ),

parameterized by some model with trained weights θ. This requires the next time point being
conditioned on all the past and covariates cit (detailed in Section 3.3), which is computationally
challenging to scale, especially if the time series has a considerably long history. Models like
DeepAR (Salinas et al., 2019b) typically resort to the seq-to-seq paradigm (Sutskever et al., 2014)
and consider some context window of fixed-size C sampled randomly from the complete time series
history to learn some historical representation and use this representation in the decoder to learn the
distribution of the subsequent time points of the context. This does, however, mean that the model
falls short of capturing seasonalities in its prediction, which can lead to a worse approximation of the
future distribution.

Encoder-decoder Transformers (Vaswani et al., 2017) naturally fit the seq-to-seq paradigm, where N
encoding Transformer layers can be used to learn a size C sequence of representations, denoted by:

{ht}C−1
t=1 = EncN ◦ · · · ◦ Enc1({concat(xi

t, c
i
t+1)}C−1

t=1 ; θ).

Afterward, M layers of a causal or masked decoding Transformer can be used to model the subsequent
P future time points conditioned on the encoding representations as:

ΠC+P−1
t=C p(xi

t+1|xi
t:C , c

i
t+1:C+1,h1, . . . ,hC−1; θ).

For example, if we assume the data comes from a Student-T distribution then the outputs of the
Transformer’s M decoders can be passed to a layer that returns appropriately signed parameters of a

1Of note, Lim et al. (2021a) does probabilistic forecasting with transformer architectures via quantile
regression.
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Student-T distribution. Then, we can maximize the log-likelihood of the resulting Student-T given
the predicted parameters given by

C+P−1∑
t=C

log pT (x
i
t+1|xi

t:C , c
i
t+1:C+1,h1, . . . ,hC−1; θ),

for all i, t from Dtrain using stochastic gradient descent (SGD), as described in Section 3.1. Note
that this approach can be used with any choice of distribution class, not just student-T, with the
Transformer’s decoders returning the parameter values for the chosen distribution class.

Transformers offer a viable alternative to recurrent neural networks (RNN), such as LSTM (Hochreiter
and Schmidhuber, 1997) or GRU (Chung et al., 2014), which, apart from being sequential, suffer from
forgetting for large context windows, or Convolutional models like TCN (Bai et al., 2018), which have
limited temporal receptive fields. However, transformers scale quadratically with sequence length in
the compute and memory per layer. Reducing the computational requirements of Transformers is an
active area of research, and several strategies have been proposed, for example, by compressing the
sequence (Wang et al., 2020), exploiting locality (Beltagy et al., 2020), or mitigating computation for
each of the input entities (Hawthorne et al., 2022). In contrast, our approach works by quantizing the
representations without modifying the inputs, using Vector Quantization as described next.

2.2 VECTOR QUANTIZATION (VQ)

The VQ-VAE (van den Oord et al., 2017; Razavi et al., 2019) is an encoder-decoder Variational
Autoencoder (VAE) (Kingma and Welling, 2019) that encodes inputs onto a set of J ≥ 1 discrete
latent variables called the codebook {z1, . . . , zJ}. The decoder reconstructs the inputs from the
resulting discrete vectors. The input vector is quantized with respect to its distance to its nearest
codebook vector via the Vector Quantization (VQ) operator, which is defined by:

Quantize(q) := zn, n where n = argmin
j

∥q− zj∥2. (1)

Due to the non-differentiable VQ operation, the codebook is learned by straight-through gradient
estimation (Hinton et al., 2012; Bengio et al., 2013).2

Additionally, when using VQ one introduces two extra loss terms. First, we include a latent loss
term, which encourages alignment of codebook vectors to the inputs of VQ, and therefore ensures
that the straight-through gradient estimation is reasonable. Second, we include a commitment loss
term, which encourages inputs to “commit” to particular code vectors, and heuristically helps with
convergence behavior and preventing cycling. These are implemented via the “stop-gradient” (sg) or
“detach” operators of deep learning frameworks, which block gradients from flowing into its argument.
The additional VQ loss terms can be concretely written as:

latent loss: ∥sg(q)− z∥22 commitment loss: β∥sg(z)− q∥22, (2)

where β is a hyperparameter weighting the commitment loss.

3 VQ-TR MODEL

We motivate our methodology for incorporating VQ within the transformer architecture with an
observation about the effect of approximations of the query vector on self-attention. Recall that in
self-attention, the incoming vector sequences are mapped to query, key, and value vectors, denoted
by qt,kt, and vt, respectively, for each time step t. Let us denote the approximation of the query
vector qt by q̂t. The attention weight for sequence index t attending on some other index u is

wtu =
exp(qT

t ku)∑
j exp(q

T
t kj)

,

and the output representation are correspondingly given by, ot =
∑

u wtuvu (Phuong and Hutter,
2022). We then have the following (see Appendix A for proof):

2That is, the gradients coming from upstream of the VQ module are copied downstream. This is equivalent
to incorrectly using the gradient at Quantize(q) instead of the gradient at q when performing backpropagation,
and is a reasonable approximation when Quantize(q) ≈ q.
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Theorem 3.1. If
∑

u

∣∣qT
t ku − q̂T

t ku

∣∣ ≤ δt for sufficiently small δt > 0, then the attention weights
with respect to the approximation q̂t, which we denote ŵtu, satisfy the bounds

wtu(1− 2δt) ≤ ŵtu ≤ wtu(1 + 2δt) ∀u .

Further, as a result |ot − ôt| ≤ 2δtot holds element-wise for the output representation.

The above result bounds the error in the output representation from the self-attention module due
to errors in the query vector. It is clear from this result that we can ensure that the outputs have a
good approximation on average for all queries if we pick codebook vectors {z1, . . . , zJ} such that
Eq∈Q,k∈K[minJj=1

∣∣qTk− zTj k
∣∣] is small, where the expectation operator Eq∈Q,k∈K corresponds

to averaging over all queries and keys. Now, by Jensen’s inequality, the squared of this average
is bounded by Eq∈Q,k∈K[minJj=1(q

Tk − zTj k)]
2 = Eq∈Q,k∈K minJj=1(q

Tk − zTj k)
2. We can

minimize a looser upper bound for these output representation errors by minimizing this mean
squared error. This has a nice interpretation, since

Eq∈Q,k∈K

[ J
min
j=1

(qTk− zTj k)
2
]
= Eq∈Q,k∈K

[ J
min
j=1

(q− zj)
TkkT (q− zj)

]
= Eq∈Q

[ J
min
j=1

(q− zj)
T
(
Σk + µkµ

T
k

)
(q− zj)

]
,

which is a K-means objective weighted by Σk + µkµ
T
k , where µk and Σk denote the mean and

covariance of the key vectors respectively. Thus, given that the optimal codes of VQ are known to be
the K-means clusters of the input representations (van den Oord et al., 2017), this suggests VQ is a
natural approach to ensure small output representation errors.

Given this motivation, in the VQ-TR model, we modify the Transformer’s encoder architecture by
first mapping the C incoming query vectors, denoted by Q ∈ RC×F , through a VQ module:

Z0, indices := VQ(Q) .

where Z0 ∈ RJ×F denotes the latent codebook vectors, and indices ∈ {1, . . . , J}C denotes the
sequences of C indices from these J codebook vectors. Next, we apply cross-attention of the
keys/values with the latent codebook vectors to obtain Z1 ∈ RJ×F :

Z1 := CrossAttn(Z0,K, V ) ,

and then process them further via self-attention L times: Zl+1 := SelfAttn(Zl). Finally, we return
the original number of sequences by gathering the resulting latent vectors via the indices with respect
to the quantization of the input vectors Q:

RC×F ∋ Z := Gather(ZL+1, indices).

This total construction can be repeated N times, allowing for N encoding layers. Since there are
only J latent vectors, and in practice J ≪ C, we obtain an architecture with memory and compute
complexity of O(CJ) and O(LJ2) from the cross-attention and latent self-attention respectively
(Jaegle et al., 2021; Hawthorne et al., 2022) per number of encoding layers N . This is in contrast to
memory and compute complexity of O(LC2) for each attention layer with the vanilla Transformer.

One downside to this architecture is that we lose the ability to impose a causal structure. Fortunately,
we can resolve this problem by first using the above non-causal encoder to learn discrete represen-
tations of large context windows, and then using a causal Transformer decoder to predict future
time series values, which is a standard kind of approach for time series forecasting. Unfortunately,
given M decoding layers, the decoder will then scale as O(MP 2). On the other hand, in practice
(including in our experiments) we often have P ≪ C, which mitigates this downside, so we can still
train and perform inference efficiently conditioned on long histories. We present a schematic of the
VQ-TR model in Figure 1 for both the training (Section 3.1) and inference (Section 3.2) scenarios.

3.1 TRAINING

Given a set Dtrain of D ≥ 1 time series, we construct batches of inputs by randomly sampling
univariate time series {xi

1:T i}, with i ∈ Z+ such that i ≤ D, then selecting random t ∈ Z+ with

4



Published as a conference paper at ICLR 2024

prediction window -1context window
encoder input decoder input

Cross
Attention

indices

Vector
Quantizer

codebook

Latent
Self-Attention

latent +
commitment

loss

Masked
(causal)

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Position-wise
FFN

Add & Norm

Distribution
Head

Cross
Attention

indices

Vector
Quantizer

codebook

Latent
Self-Attention

Masked
(causal)

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Position-wise
FFN

Add & Norm

sample

Distribution
Head

prediction window -1context window
encoder input decoder input

Add & Norm

Position-wise
FFN

Add & Norm

Add & Norm

Position-wise
FFN

Add & Norm

neg log
likelihood

Figure 1: VQ-TR model with N encoding vector-quantized cross-attention blocks and M causal
decoding transformer blocks. During training (left), the encoder takes a sequence of length C − 1
and the decoder outputs the estimated distribution parameters (of some chosen distribution class) for
the next P time steps, which are learned via the negative log-likelihood together with the N Vector
Quantizer losses. During inference (right), we pass the last C − 1 length context window to the
encoder and the very last value in it to the decoder, which allows us to sample the next time step
which we autoregressively pass back to the decoder to obtain predictions for the desired horizon.

t ≤ T i − C − P , which gives us context window {xi
t:t+C} and corresponding prediction window

{xi
t+C+1:t+C+P }, for fixed context and prediction window lengths C and P respectively.

For each batch step, we jointly minimize the negative log-likelihood of the predicted distribution
with respect to the ground truth predictions, along with the N latent and commitment losses from
the VQ module placed on each encoder layer. This is in contrast to the practice of first learning the
discrete latent representations in an unsupervised fashion and then using these latent representations
for downstream tasks, as in, for example, the DALL·E model (Ramesh et al., 2021).

Note, VQ-TR models each time series independently, using a shared model. For example, if we have
a multivariate dataset with K time series, the future values for each of those time series are assumed
to depend only on past values of that specific time series, and not on any values of the other K − 1
time series. However, we do use a common model for the relationship between past and future values,
which is applied independently to each of the K time series. Also, note that this approach is used for
all models in our comparison, not just VQ-TR.

3.2 INFERENCE

During inference, we feed the final C-sized window (minus the last entry) for each time series
i ∈ Dtrain to the encoder, and the last entry to the decoder, to obtain estimated distribution parameters
of the next entry. We then sample one or more values from this distribution, and feed these back to
the decoder. Repeating this P times gives us sample trajectories over the prediction window.

Note that we only need to run the encoder once to make predictions, and we can repeat tensors in the
batch dimension to obtain multiple samples from the distribution in parallel. If a point forecast is
required, we can evaluate the empirical mean or median at each time point of the prediction.

5



Published as a conference paper at ICLR 2024

3.3 COVARIATES

Positional encoding allows the Transformer to encode positional information of sequences, which
is necessary since Attention is a permutation equivariant layer. In the time series setting, we can
naturally create positional encodings like Rotary Positional Embedding (RoPE) (Su et al., 2021) via
date-time covariates. More specifically, for a particular time point t, depending on the frequency of
the time series i, we can create hour-of-day, day-of-week, week-of-month, etc. features as a vector,
which we denote by cit. Due to their deterministic temporal nature, we can build these covariates for
all future time points we wish to forecast. Additional covariates can be constructed by embedding the
identity i of each time series in a dataset via Embedding layers, as done in the DeepAR method. All
the methods considered receive the same covariates as input.

3.4 SCALING

Time series data can be of an arbitrary numerical magnitude within a dataset. This is unlike vision,
NLP, or even audio modalities. So to train a shared model over potentially very different time series,
we calculate the mean value of the signal within its context window and divide the signal with it
to normalize (Salinas et al., 2019b). The scale value of the context is kept as a covariate. More
importantly, the model’s output distribution is transformed back to the original scale, using the scale
value from training or inference, to respectively calculate log probabilities or sample next points. If
the scaling cannot be done in the output distribution’s parameter space, one can do it in the data space
after sampling. All deep learning-based methods in Section 4 incorporate this heuristic.

4 EXPERIMENTS

4.1 DATASETS

We use the following open datasets: Exchange (Lai et al., 2018), Solar (Lai et al., 2018),
Elecricity3, Traffic4, Taxi5, and Wikipedia6 preprocessed exactly as in Salinas et al.
(2019a). The properties of the dataset are summarized in Table 3 of the Appendix. These datasets
cover a range of time series domains, including finance, weather, energy, logistics, and page views.
We also note that we do not normalize scales for the traffic dataset, as its values are bounded.

4.2 EVALUATION CRITERIA

We evaluate all methods both in terms of their performance for point forecasting and also for
probabilistic forecasting. As emphasized in Section 1, this is to the best of our knowledge the first
extensive, systematic comparison of transformer-based methods for probabilistic forecasting.

Point forecasting metrics: We use the normalized root mean square error (NRMSE), the mean
absolute scaled error (MASE) (Hyndman and Koehler, 2006), and the symmetric mean absolute
percentage error (sMAPE) (Makridakis, 1993). For these metrics, we use the sample median except
for NRMSE, where we report sample mean.

Probabilistic forecasting metrics: We follow the recommendations of the M4 competition (Makri-
dakis et al., 2020) for evaluating probabilistic forecasting. Specifically, we report the mean scale
interval score (MSIS7) (Gneiting and Raftery, 2007) for the 95% prediction interval, the 50th and 90th

quantile percentile loss (QL50 and QL90, respectively), as well as the continuous ranked probability
score (CRPS) (Gneiting and Raftery, 2007; Matheson and Winkler, 1976). The CRPS is a proper
scoring rule that measures the compatibility of a predicted cumulative distribution function (CDF) F

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://github.com/laiguokun/multivariate-time-series-data#

traffic-usage which is not the same dataset as in TFT Lim et al. (2021b).
5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
6https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
7http://www.unic.ac.cy/test/wp-content/uploads/sites/2/2018/09/

M4-Competitors-Guide.pdf

6

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/multivariate-time-series-data#traffic-usage
https://github.com/laiguokun/multivariate-time-series-data#traffic-usage
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
http://www.unic.ac.cy/test/wp-content/uploads/sites/2/2018/09/M4-Competitors-Guide.pdf
http://www.unic.ac.cy/test/wp-content/uploads/sites/2/2018/09/M4-Competitors-Guide.pdf
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with the ground-truth samples x as

CRPS(F, x) =

∫
R
(F (y)− I{x ≤ y})2 dy,

where I{x ≤ y} is 1 if x ≤ y and 0 otherwise. We approximate the CDF via empirical samples at
each time point, and the final metric is averaged over all context windows of the time series, and time
steps within the corresponding prediction window.

4.3 BASELINES

We compare VQ-TR against the Vanilla Transformer, as well as the following additional baselines,
whose details can be found in the Appendix:

Transformer-based Baselines: TFT (Lim et al., 2021b), Informer (Zhou et al., 2021),
Autoformer (Wu et al., 2021), ETSformer (Woo et al., 2022), Hopfield (Ramsauer et al.,
2021), Longformer (Beltagy et al., 2020), Reformer (Kitaev et al., 2020), Linformer (Wang
et al., 2020), Nystromformer (Xiong et al., 2021), Performer (Choromanski et al., 2021) and
PatchTST (Nie et al., 2023).

Other Deep-learning Baselines: DeepAR (Salinas et al., 2019b), MQCNN (Wen et al., 2017),
SQF-RNN (Gasthaus et al., 2019), IQN-RNN (Gouttes et al., 2021), VQ-AR (Rasul et al., 2022), and
D-Linear (Zeng et al., 2023).

Classical Baseline: ETS (Hyndman and Khandakar, 2008).

4.4 RESULTS

We detail the results of our extensive experiments for VQ-TR and the transformer-based baselines in
Table 1. In addition, we detail results for the other less competitive baselines in the Appendix.8 As can
be seen in Table 1, VQ-TR, performs competitively compared to all other transformer-based methods.
In particular, it performs best on almost all metrics on 5 out of 6 datasets. Moreover, the performance
is close to the best-performing method in cases where it does not outperform. We observe similar
behavior as well against the non-transformer baselines in Table 2 in Appendix B, where we also
provide a more detailed discussion of the relative performance of VQ-TR. We hypothesize that this
competitive performance is in part due to the vector quantization module, which may function as a
noisy channel similar to a VAE, regularizing the learning naturally and improving test performance.
Indeed, we provide some positive evidence for this in our vector quantization ablation.

Next, we investigate the computational efficiency of the VQ-TR transformer architecture. In Figure 2
we compare the training time and corresponding memory usage for VQ-TR with the vanilla Trans-
former, as well as several Transformers that were specifically designed for computational efficiency,
on the Traffic dataset.9 For fairness, we used equal batch sizes and comparable hyperparameter
values for all methods, as described in detail in the Appendix. We find that, when using a fairly mod-
erate codebook size (J = 25), VQ-TR strongly outperforms all other methods in terms of memory
efficiency, and is also competitive in terms of runtime. We also note that although the training time of
VQ-TR was not the lowest in this comparison using a fixed batch size, in practice its substantially
lower memory usage may allow for using larger batch sizes, and therefore faster training.

Finally, we provide more detailed results for VQ-TR, considering the effect of vector quantization, in
Appendix C. There, we study the impact of the codebook size (J) on forecasting quality. Our main
findings are that: (1) forecasting quality in general is not very sensitive to J ; and (2) using small J
can have a positive regularizing effect, which is especially evident for Traffic and Taxi where
the underlying signal is very simple and low dimensional.

8The full code will be published on acceptance, and hyperparameter details are provided in D.3.
9We also experimented with Reformer, but the training time and memory usage were so large (approx.

700s and 18GB respectively) that we excluded it from the comparison for clarity.
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Dataset Method CRPS QL50 QL90 MSIS NRMSE sMAPE MASE

Exchange

Trans-t 0.018 0.022 0.014 56.26 0.035 0.030 4.834
Tft-t 0.064 0.072 0.086 1647.64 0.087 0.328 55.77

Informer-t 0.012 0.015 0.006 28.89 0.024 0.020 2.779
Autoformer-t 0.014 0.019 0.006 19.16 0.027 0.022 3.591
ETSformer-t 0.009 0.013 0.006 13.51 0.019 0.014 2.148
Hopfield-t 0.016 0.018 0.012 46.46 0.031 0.027 4.208
Reformer-t 0.018 0.022 0.007 95.09 0.031 0.027 6.044
Linformer-t 0.014 0.018 0.008 37.98 0.026 0.020 2.822
Nystrom-t 0.060 0.071 0.061 171.27 0.109 0.069 11.75

Longformer-t 0.021 0.025 0.009 57.34 0.044 0.028 3.810
Performer-t 0.063 0.070 0.018 206.4 0.092 0.066 8.963
PatchTST-t 0.009 0.011 0.006 23.20 0.017 0.013 2.051
VQ-TR-t 0.008 0.010 0.005 34.38 0.015 0.019 2.936

Solar

Trans-t 0.492 0.638 0.345 7.16 1.233 1.478 1.499
Tft-t 0.931 0.995 1.305 48.04 2.03 1.950 1.950

Informer-t 0.406 0.535 0.192 5.704 1.088 1.381 1.254
Autoformer-t 0.758 0.985 0.308 15.68 2.035 1.854 2.317
ETSformer-t 0.364 0.497 0.170 6.09 0.963 1.371 1.166
Hopfield-t 0.477 0.642 0.243 5.94 1.217 1.471 1.505
Linformer-t 0.984 1.083 1.270 45.46 1.933 1.776 2.556
Nystrom-t 0.578 0.707 0.503 14.04 1.444 1.529 1.661

Longformer-t 0.432 0.560 0.211 6.41 1.122 1.411 1.314
Performer-t 0.472 0.626 0.294 6.29 1.205 1.466 1.474
PatchTST-t 0.436 0.580 0.253 6.87 1.128 1.411 1.361
VQ-TR-iqn 0.317 0.435 0.153 4.60 0.909 1.346 1.021

Electricity

Trans-t 0.061 0.078 0.035 7.49 0.538 0.115 0.853
Tft-t 0.047 0.059 0.031 5.92 0.516 0.098 0.676

Informer-t 0.064 0.079 0.054 6.47 0.739 0.116 0.788
Autoformer-t 0.070 0.087 0.054 8.02 0.819 0.127 1.00
ETSformer-t 0.068 0.081 0.064 8.43 0.650 0.128 0.904
Hopfield-t 0.056 0.069 0.038 5.87 0.713 0.110 0.736
Reformer-t 0.065 0.080 0.045 7.36 0.699 0.116 0.835
Linformer-t 0.062 0.078 0.042 8.50 0.556 0.127 1.024
Longformer-t 0.274 0.366 0.143 17.27 2.765 0.352 3.465
Performer-t 0.163 0.202 0.119 20.20 1.326 0.248 2.470
PatchTST-t 0.056 0.071 0.036 6.57 0.570 0.117 0.810
VQ-TR-t 0.050 0.063 0.033 6.29 0.495 0.104 0.744

Traffic

Trans-t 0.241 0.294 0.172 11.50 0.521 0.394 1.300
TFT-t 0.139 0.165 0.108 7.82 0.425 0.213 0.648

Informer-t 0.117 0.138 0.096 6.81 0.404 0.148 0.528
Autoformer-t 0.184 0.225 0.146 9.33 0.500 0.272 0.901
ETSformer-t 0.165 0.197 0.137 9.35 0.495 0.260 0.783
Hopfield-t 0.118 0.140 0.095 6.68 0.406 0.142 0.534
Linformer-t 0.459 0.573 0.346 19.73 0.859 0.606 2.419
Nystrom-t 0.272 0.336 0.175 13.07 0.555 0.387 1.528

Longformer-t 0.317 0.382 0.278 15.92 0.694 0.556 1.651
Performer-t 0.332 0.402 0.204 15.43 0.644 0.483 1.736
PatchTST-t 0.166 0.209 0.130 8.16 0.506 0.211 0.812
VQ-TR-t 0.110 0.130 0.093 6.91 0.392 0.137 0.500

Taxi

Trans-nb 0.308 0.388 0.212 6.09 0.628 0.594 0.790
Tft-nb 0.301 0.377 0.211 6.27 0.617 0.584 0.767

Informer-nb 0.326 0.407 0.230 7.11 0.649 0.634 0.825
Autoformer-nb 0.365 0.458 0.273 7.38 0.726 0.648 0.916
ETSformer-nb 0.311 0.393 0.211 5.85 0.634 0.597 0.797
Hopfield-nb 0.340 0.424 0.265 6.91 0.685 0.634 0.850
Linformer-t 0.648 0.951 0.493 8.32 1.094 1.804 1.855
Nystrom-t 0.398 0.467 0.333 7.60 0.656 0.881 0.930

Longformer-nb 0.398 0.473 0.320 7.40 0.652 0.905 0.937
Performer-nb 0.397 0.471 0.297 7.18 0.626 0.954 0.954
PatchTST-nb 0.301 0.386 0.203 5.03 0.611 0.599 0.785
VQ-TR-nb 0.281 0.357 0.184 5.19 0.570 0.561 0.729

Wikipedia

Trans-nb 0.366 0.394 0.517 84.20 25.225 0.354 1.837
Tft-nb 0.341 0.361 0.494 32.36 7.18 0.286 1.566

Informer-nb 0.253 0.292 0.283 24.03 2.151 0.238 1.357
Hopfield-nb 0.318 0.222 0.950 32.72 2.304 0.330 1.698

Longformer-nb 0.529 0.487 0.677 59.04 2.571 0.479 2.211
Performer-nb 0.461 0.401 0.491 31.68 2.283 0.326 1.762
PatchTST-nb 0.256 0.305 0.272 20.20 2.101 0.249 1.507
VQ-TR-iqn 0.231 0.269 0.260 21.17 2.121 0.213 1.269

Table 1: Forecasting metrics (lower is better) using Vanilla Transformer and other Transformer
based models with Student-T (-t), Negative Binomial (-nb) or IQN (-iqn) emission heads, on the
open datasets. The best (smallest) metrics are highlighted in bold. Note that the numbers for TFT are
different than those in Lim et al. (2021a), since our Traffic dataset is different than theirs.
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Figure 2: Training time and memory usage of VQ-TR compared with other transformer-based models
on Traffic dataset, using comparable hyperparameters for all methods. For each method, the left
bar displays training time (in seconds), and the right bar displays the memory usage (in gigabytes).
In the case of VQ-TR we show results with a moderate codebook size (J = 25) as well as a very
large codebook size (J = 245).

5 RELATED WORK

Our method decouples the input sequence from the computation of the attention block by utilizing a
discrete set of latent. This strategy of reducing the computational cost is similar to the Perceiver
(Hawthorne et al., 2022), Set Transformer (Lee et al., 2019), Luna (Ma et al., 2021), and
Compressive Transformer (Rae et al., 2020) models. Perceiver-AR is the closest related
method. However, it is a decoder-only architecture. Thus, to produce multiple samples for the
probabilistic forecasting use case at inference time, Perceiver-AR requires running cross-attention
over a large context window for P times, causing both memory and computation bottlenecks. The
use of VQ in sequential generative modeling has been explored in Audio/Speech settings (Dhariwal
et al., 2020; Zeghidour et al., 2021; Baevski et al., 2020) where typically a VQ-VAE is trained on the
data, and then a generative model is trained on these learned latent representations separately.

An alternative approach to improving the scalability of Transformer architectures to longer context
windows is to better optimize the underlying computation, for example, using flash attention (Dao
et al., 2022). Our work is orthogonal to such approaches, as it focuses on the scalability of the
transformer architecture itself, and can further benefit from more optimized computation.

Using VQ for time-series forecasting problems has been explored by the VQ-AR (Rasul et al., 2022)
model. This model works by applying an RNN to the raw time series input, and then applying
VQ. This means, if one were to simply replace the RNN in VQ-AR with Transformer blocks, the
transformer would be applied to non-quantized vectors, and we would still have quadratic-in-sequence-
length scaling. In contrast, our work incorporates VQ within the transformer architecture as part of
the encoder attention blocks. In Rabanser et al. (2020) the authors investigate the performance of
forecasting models when they discretize the input into discrete bins whereas here we explicitly learn
discrete representations.

6 SUMMARY AND DISCUSSION

We have presented VQ-TR, a novel transformer architecture that scales linearly with the encoder
sequence size, and demonstrated its empirical value for probabilistic time series forecasting in a
systematic comparison with other transformer-based methods for this task. We find that VQ-TR
performs very competitively in terms of both forecasting performance and computation / memory
usage, due to the dual efficiency and regularization benefits of vector quantization. Furthermore, our
extensive comparison of the performance of state-of-the-art transformer methods for probabilistic
time series forecasting can serve as a needed and previously missing benchmark within the literature.
For future work, we would like to investigate the performance of VQ-TR for NLP, Audio, or Vision
based problems.
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A PROOF OF THEOREM 1

Theorem A.1. If
∑

u

∣∣qT
t ku − q̂T

t ku

∣∣ ≤ δt for sufficiently small δt > 0, then the attention weights
with respect to the approximation q̂t, which we denote ŵtu, satisfy the bounds

wtu(1− 2δt) ≤ ŵtu ≤ wtu(1 + 2δt) ∀u .

Further, as a result |ot − ôt| ≤ 2δtot holds element-wise for the output representation.

Proof.

wtu =
exp(qT

t ku)∑
j exp(q

T
t kj)

=
exp(qT

t ku − q̂T
t ku + q̂T

t ku)∑
j exp(q

T
t kj − q̂T

t kj + q̂T
t kj)

=
exp(q̂T

t ku) exp(q
T
t ku − q̂T

t ku)∑
j exp(q̂

T
t kj) exp(qT

t kj − q̂T
t kj)

.

We have
∑

u

∣∣qT
t ku − q̂T

t ku

∣∣ ≤ δt, and this directly implies maxu
∣∣qT

t ku − q̂T
t ku

∣∣ ≤ δt.

Since, maxj
∣∣qT

t kj − q̂T
t kj

∣∣ ≤ δt, then exp(−δt) ≤ exp(qT
t kj − q̂T

t kj) ≤ exp(δt) ∀j and thus
we have:

exp(−2δt) ≤
wtu

ŵtu
≤ exp(2δt).

Assuming δt is small, wtu(1 − 2δt) ≤ ŵtu ≤ wtu(1 + 2δt) or |ŵtu − wtu| ≤ 2δtwtu. Since
ot =

∑
u wtuvu,

|ot − ôt| ⪯

∣∣∣∣∣∑
u

wtuvu − ŵtuvu

∣∣∣∣∣ ⪯ ∑
u

|wtu − ŵtu|vu ⪯
∑
u

2δtwtuvu ⪯ 2δtot.

Here, ⪯ indicates element-wise inequality.

B ADDITIONAL RESULTS AND DISCUSSION

In Table 2 we provide the remaining results comparing VQ-TR against the non-transformer-based
baselines. As noted in the main text, we mostly observe the same trend as with the comparison
against transformer-based models, with VQ-TR performing best on most datasets/metrics, and close
to best on most others. Specifically, on Electricity, Traffic, and Taxi, VQ-TR clearly
outperforms the other methods, and on Solar and Wikipedia, VQ-TR is roughly on par with the
best performing methods, with a tiny difference in each metric versus the best performing method.

However, the performance on Exchange requires some additional context and discussion. While
VQ-TR mostly outperformed the other transformer-based methodologies on this dataset, it is slightly
outperformed by some of the most simple non-Transformer baselines. A simple explanation for
this is that Exchange consists of currency exchange rate time series, which are more less random
walks with extremely little predictive information. Therefore, it is difficult to outperform simple
classical methods like ETS on this kind of dataset. Despite this, we do believe it is noteable that,
although Transformer-based approaches do not seem to be ideal for datasets like Exchange, VQ-TR
still outperforms the other Transformer-based methods here, which is additional evidence for the
regularizing benefit of vector quantization.

C ABLATION STUDY ON VECTOR QUANTIZATION

Given our hypothesis on the possible regularizing benefit of vector quantization, we provide an
ablation study on the effect of vector quantization on forecasting performance. Specifically, we exper-
iment with varying the codebook size (J) in the range of {1, 2, 4, 8, 12, 16, 32, 50, 64, 100, 128, 245},
and for each value of J we train VQ-TR with this codebook size, and record the CRPS metric on the
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Dataset Method CRPS QL50 QL90 MSIS NRMSE sMAPE MASE

Exchange

SQF-RNN-50 0.010 0.013 0.006 14.15 0.020 0.013 1.800
DeepAR-t 0.012 0.016 0.007 69.29 0.022 0.030 9.980

ETS 0.008 0.010 0.005 15.89 0.015 0.011 1.517
IQN-RNN 0.007 0.010 0.004 17.37 0.014 0.013 3.041
MQCNN 0.015 0.016 0.011 60.04 0.026 0.045 5.440

VQ-AR-t 0.010 0.013 0.007 18.10 0.019 0.015 2.658
D-Linear-t 0.010 0.013 0.006 24.69 0.020 0.015 2.506
VQ-TR-t 0.008 0.010 0.005 34.38 0.015 0.019 2.936

Solar

SQF-RNN-50 0.330 0.431 0.175 5.65 0.929 1.342 1.004
DeepAR-t 0.418 0.543 0.254 7.33 1.072 1.393 1.275

ETS 0.646 0.661 0.383 18.55 1.112 1.546 1.938
IQN-RNN 0.373 0.491 0.165 5.99 1.037 1.356 1.150
MQCNN 0.928 0.960 1.535 73.58 1.920 1.838 2.248

VQ-AR-iqn 0.320 0.414 0.174 5.64 0.885 1.346 0.969
D-Linear-t 0.451 0.545 0.338 13.24 1.079 1.391 1.280
VQ-TR-iqn 0.317 0.435 0.153 4.60 0.909 1.346 1.021

Electricity

SQF-RNN-50 0.078 0.097 0.044 8.66 0.632 0.144 1.051
DeepAR-t 0.062 0.078 0.046 6.79 0.687 0.117 0.849

ETS 0.076 0.100 0.050 9.99 0.838 0.156 1.247
IQN-RNN 0.060 0.074 0.040 8.74 0.543 0.138 0.897
MQCNN 0.129 0.148 0.132 30.54 1.230 0.240 2.000

VQ-AR-t 0.054 0.068 0.036 5.88 0.653 0.107 0.717
D-Linear-t 0.057 0.069 0.040 9.29 0.537 0.118 0.806
VQ-TR-t 0.050 0.063 0.033 6.29 0.495 0.104 0.744

Traffic

SQF-RNN-50 0.153 0.186 0.117 8.40 0.401 0.243 0.760
DeepAR-t 0.172 0.216 0.117 8.02 0.472 0.244 0.890

ETS 0.373 0.386 0.287 17.67 0.647 0.489 1.543
IQN-RNN 0.139 0.168 0.117 7.11 0.433 0.171 0.656
MQCNN 1.220 0.563 2.005 116.69 0.723 0.636 2.712

VQ-AR-t 0.138 0.164 0.113 7.79 0.409 0.185 0.641
D-Linear-t 0.182 0.216 0.139 9.25 0.481 0.221 0.851
VQ-TR-t 0.110 0.130 0.093 6.91 0.392 0.137 0.500

Taxi

SQF-RNN-50 0.286 0.362 0.188 5.53 0.570 0.609 0.741
DeepAR-nb 0.299 0.379 0.203 5.44 0.610 0.582 0.771

ETS 1.059 1.297 0.617 12.24 2.147 1.159 1.552
IQN-RNN 0.295 0.370 0.201 6.51 0.583 0.629 0.758
MQCNN 1.262 1.451 0.488 48.61 2.645 0.912 3.041

VQ-AR-nb 0.286 0.362 0.193 5.43 0.572 0.570 0.741
D-Linear-nb 0.335 0.422 0.236 6.02 0.678 0.641 0.854
VQ-TR-nb 0.281 0.357 0.184 5.19 0.570 0.561 0.729

Wikipedia

SQF-RNN-50 0.283 0.328 0.321 23.71 2.24 0.261 1.440
DeepAR-nb 0.321 0.383 0.361 26.48 2.354 0.327 1.852
DeepAR-t 0.235 0.27 0.267 23.77 2.15 0.219 1.295

ETS 0.788 0.440 0.836 61.68 3.261 0.301 2.214
IQN-RNN 0.221 0.254 0.251 21.78 2.102 0.193 1.214
MQCNN 0.398 0.453 0.327 38.79 2.202 0.379 2.336

VQ-AR-iqn 0.231 0.266 0.252 22.09 2.106 0.208 1.261
D-Linear-nb 0.327 0.331 0.369 26.37 2.242 0.240 1.430
VQ-TR-iqn 0.231 0.269 0.260 21.17 2.121 0.213 1.269

Table 2: Forecasting metrics (lower is better) using: SQF-RNN with 50 knots, ETS, MQCNN, and
IQN-RNN, DeepAR, VQ-AR and VQ-TR with Student-T (-t), Negative Binomial (-nb) or IQN
(-iqn) emission heads, on the open datasets. The best (smallest) metrics are highlighted in bold.

test set. We performed this experiment on all of our datasets, and for each repeated it 5 times, with
hyperparameters used detailed in the Appendix.

We summarize the results of this ablation study in Figure 3. In general, we typically see good
performance with relatively small J , with performance often degrading when J is large. This seems
to especially hold for both the Taxi and Traffic datasets, which is notable because each of these
datasets exhibits very simple low-dimensional underlying dynamics despite having large numbers
of time series, with fairly simple shared day/night cyclical behavior. In other words, for the exact
datasets where, given domain knowledge, we would expect regularization to be most important, we
indeed see that VQ-TR benefits significantly from smaller codebook sizes. Therefore, the VQ-TR
architecture can provide benefits for forecasting performance as well as computational efficiency.

Note that the scale of variation seen in these plots is very small compared with the differences in
CRPS values observed for different methods in Table 2. For example, with the Taxi dataset we see
CRPS ranging from approx. 0.29 to 0.305 in Figure 3; even the most pessimistic end of this range is
barely any worse than the most competitive benchmark methods (CRPS of 0.301), and this is despite
the fact that the comparison favors the benchmarks since we are comparing VQ-TR performance
without any dataset-specific hyperparameter optimization (other than codebook size) to benchmark
performance with hyperparameter optimization (as seen in Table 2, when we do full hyperparameter
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Figure 3: Effect of varying the codebook size (J) on the test set CRPS metric. Lines are mean CRPS
values, and shaded regions represent standard deviation over 5 runs.

optimization for VQ-TR on Taxi we get CRPS of 0.281). Similar results also hold for the other
datasets. In other words, although we see some interesting trends in Figure 3, on the whole VQ-TR is
not very sensitive to the codebook size, and performs competitively even when codebook sizes are
not well optimized.

Finally, an interesting observation is that we can obtain decent performance even with J = 1, since
a single vector z1 will get cross-attended with respect to the variable inputs, and then fed into the
vanilla Transformer decoder. This is unlike VQ-AR (Rasul et al., 2022), where J = 1 does not work.

D ADDITIONAL EXPERIMENT DETAILS

D.1 DATASET DETAILS

We summarize the details of the datasets used in our experiments in Table 3.

Dataset D Dom. Freq. Time step Pred. len.

Exchange 8 R≥0 day 6, 071 30
Solar 137 R≥0 hour 7, 009 24
Electricity 321 R≥0 hour 15, 782 48
Traffic 862 (0, 1) hour 14, 036 24
Taxi 1, 214 N≥0 30-min 1, 488 24
Wikipedia 9, 535 N≥0 day 762 30

Table 3: Dataset statistics. For each dataset, we list: (D) the number of time series; (Dom.) the
domain of time series values; (Freq.) the frequency of the time series; (Time step) the total number of
time steps for the training data; and (Pred. len.) the prediction length used.

D.2 DETAILS OF BASELINES

In our experiments, we compared VQ-TR against the following baseline models:

• DeepAR (Salinas et al., 2019b): an RNN based probabilistic model which learns the
parameters of some chosen distribution for the next time point;

• MQCNN (Wen et al., 2017): a Convolutional Neural Network model which outputs chosen
quantiles of the forecast upon which we regress the ground truth via Quantile loss;

• SQF-RNN (Gasthaus et al., 2019): an RNN based non-parametric method which models the
quantiles via linear splines and also regresses the Quantile loss;
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• IQN-RNN (Gouttes et al., 2021): combines an RNN model with an Implicit Quantile
Network (IQN) (Dabney et al., 2018) head to learn the distribution similar to SQF-RNN;

• VQ-AR (Rasul et al., 2022): an RNN based encoder-decoder model which quantizes its
input via a VQ;

• D-Linear (Zeng et al., 2023): a linear model which decomposes the time series into trend
and its residual;

• ETS (Hyndman and Khandakar, 2008): exponential smoothing method using weighted
averages of past observations with exponentially decaying weights as the observations get
older together with Gaussian additive errors (E) modeling trend (T) and seasonality (S)
effects separately

• TFT (Lim et al., 2021b): an auto-regressive attention based Seq-to-Seq model with variable
selection network for selecting relevant inputs;

• Informer (Zhou et al., 2021): an efficient transformer and full horizon predictor model;
• Autoformer (Wu et al., 2021): a transformer that decomposes the trend and seasonal

components during the forecasting process together with a series-wise auto-correlation
mechanism;

• ETSformer (Woo et al., 2022): a transformer architecture that adds the principle of
exponential smoothing and frequency attention in the attention mechanism;

• Hopfield (Ramsauer et al., 2021): a modern Hopfield network with continuous state
which generalizes attention;

• Longformer (Beltagy et al., 2020): a local attention model with sliding window attention;
• Reformer (Kitaev et al., 2020): a transformer that replaces dot-product attention by

locality-sensitive hashing and reversible residual layers which reduces the memory footprint
in the backward pass;

• Linformer (Wang et al., 2020): a transformer that learns a fixed projection matrix to
reduce the length of the keys and value;

• Nystromformer (Xiong et al., 2021): a transformer that adapts the Nyström method to
approximate standard self-attention to make its complexity linear;

• Performer (Choromanski et al., 2021): a transformer model which estimates regular
full-rank attention by using linear space/compute complexity;

• PatchTST (Nie et al., 2023): a transformer encoder that takes as input segments of time
series as fixed-sized vectors;

D.3 TRAINING AND HYPERPARAMETER DETAILS FOR MAIN EXPERIMENTS

All the models have been trained using the hyperparameters from their respective papers with Student-
T (-t), Negative Binomial (-nb), or Implicit Quantile Network (-iqn) emission heads. Note that
we can afford to use a longer context length of C = 20× P for VQ-TR due to its memory efficiency,
as noted in Figure 2. Here, P is the prediction horizon for each dataset. We use two encoder layers
and six decoder layers, i.e., N = 2 and M = 6. We use J = 25 codebook vectors and train with
a batch size of 256 for 20 epochs using the Adam (Kingma and Ba, 2015) optimizer with default
parameters and a learning rate of 0.001. At inference time, we sample S = 100 times for each time
point and feed these samples in parallel via the batch dimension autoregressively through the decoder
to produce the reported metrics. Full complete details for running these experiments will be available
with the code release.

D.4 ADDITIONAL DETAILS FOR COMPUTATIONAL EFFICIENCY COMPARISON

For our computational efficiency comparison summarized in Figure 2, we compared all methods
by training them over 20 epochs, with a batch size of 128, with training details otherwise the same
as described for our main experiments. As described in the main text, we compared all methods
using hyperparameters that were as similar as possible. Specifically, for each method, where possible,
we used 2 encoding layers and 2 decoding layers (i.e. N = M = 2). For VQ-TR we set J = 25.
Other hyperparameters for all methods were hand-tuned so that all methods had as close to the same
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number of trainable hyperparameters as VQ-TR as possible. The experiments were performed on a
single Tesla V100S GPU with 32GB of RAM. In all cases, we computed runtimes by performing this
experiment 5 times and report the median runtime; however, we note that the variance in runtimes
for all methods was extremely negligible (of order ≈ 1s). Full complete details for performing this
comparison will be available with the code release.

D.5 ADDITIONAL DETAILS FOR ABLATION STUDY ON VECTOR QUANTIZATION

For this ablation study, we used the same training details and other hyperparameter values for every
codebook size J ∈ {1, 2, 4, 8, 12, 16, 32, 50, 64, 100, 128, 245}. Specifically, we used 20 epochs
with a batch size of 256, and with other training details the same as for the main experiment. For the
VQ-TR architecture we used one encoding layer and four decoding layers, i.e., N = 1 and M = 4.
Again, full complete details for performing this ablation study will be available with the code release.

D.6 VQ-TR IMPLEMENTATION DETAILS

We provide the code for the VQ-TR encoder below. In addition, as noted in the main text, full code
for all methods shall be made available upon acceptance.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum

# https://github.com/lucidrains/vector-quantize-pytorch
from vector_quantize_pytorch import VectorQuantize

def FeedForward(dim, hidden_dim, dropout=0.0):
return nn.Sequential(

nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim, bias=False),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim, bias=False),

)

class Attention(nn.Module):
def __init__(self, dim, dim_head=64, heads=8, dropout=0.0):

super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = heads * dim_head

self.norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)

def forward(self, x):
x = self.norm(x)

q, k, v = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(

lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads),
(q, k, v)

)

q = q * self.scale

sim = einsum("b h i d, b h j d -> b h i j", q, k)
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attn = sim.softmax(dim=-1)
attn = self.dropout(attn)

out = einsum("b h i j, b h j d -> b h i d", attn, v)

out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)

class VQAttention(nn.Module):
def __init__(

self,
dim,
codebook_size,
dim_feedforward=16,
dim_head=16,
heads=2,
max_heads_process=2,
dropout=0.0,
cross_attn_dropout=0.0,
depth=1,
decay=0.8,
commitment_weight=1.0,

):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
self.max_heads_process = max_heads_process

inner_dim = heads * dim_head
self.dim = dim

self.norm = nn.LayerNorm(dim)
self.context_norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(dropout)

# drop out a percentage of the prefix during training,
# shown to help prevent overfitting
self.cross_attn_dropout = cross_attn_dropout

self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim)

self.vq = VectorQuantize(
dim=dim,
codebook_size=codebook_size,
decay=decay,
commitment_weight=commitment_weight,
threshold_ema_dead_code=2,

)

self.layers = nn.ModuleList([])
for _ in range(depth):

self.layers.append(
nn.ModuleList(

[
Attention(

dim=dim, dim_head=dim_head, heads=heads,
dropout=
dropout

),
FeedForward(dim, hidden_dim=dim_feedforward,

dropout=
dropout),
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]
)

)

def forward(self, context_input, context_mask=None):
batch, context_len, device = (

context_input.shape[0],
context_input.shape[-2],
context_input.device,

)

# take care of cross attention dropout
if self.training and self.cross_attn_dropout > 0.0:

rand = torch.zeros((batch, context_len), device=device).
uniform_()

keep_context_len = context_len - int(context_len * self.
cross_attn_dropout)

keep_indices = rand.topk(keep_context_len, dim=-1).indices
keep_mask = torch.zeros_like(rand).scatter_(1, keep_indices,

1).bool()

context_input = rearrange(
context_input[keep_mask], "(b n) d -> b n d", b=batch

)

if context_mask is not None:
context_mask = rearrange(

context_mask[keep_mask], "(b n) -> b n", b=batch
)

_, indices, commit_loss = self.vq(context_input)

x = repeat(self.vq.codebook, "m d -> b m d", b=batch) # [B, M, D
]

# normalization
x = self.norm(x)
context = self.context_norm(context_input)

# derive queries, keys, values
q = self.to_q(x)
k, v = self.to_kv(context).chunk(2, dim=-1)

q, k, v = map(
lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads),

(q, k, v)
)
q = q * self.scale

# take care of masking
i, j = q.shape[-2], k.shape[-2]
mask_value = -torch.finfo(q.dtype).max

if context_mask is not None:
mask_len = context_mask.shape[-1]
context_mask = F.pad(context_mask, (0, max(j - mask_len, 0)),

value=True)
context_mask = rearrange(context_mask, "b j -> b 1 1 j")

# process in chunks of heads
out = []
max_heads = self.max_heads_process
for q_chunk, k_chunk, v_chunk in zip(

q.split(max_heads, dim=1),
k.split(max_heads, dim=1),

20



Published as a conference paper at ICLR 2024

v.split(max_heads, dim=1),
):

sim = einsum("b h i d, b h j d -> b h i j", q_chunk, k_chunk)

if context_mask is not None:
sim = sim.masked_fill(~context_mask, mask_value)

attn = sim.softmax(dim=-1)
attn = self.dropout(attn)

out_chunk = einsum("b h i j, b h j d -> b h i d", attn,
v_chunk)

out.append(out_chunk)

# concat all the heads together
out = torch.cat(out, dim=1)

# merge heads and then combine with linear
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out(out)

# self-attention on latents
for attn, ff in self.layers:

out = attn(out) + out
out = ff(out) + out

expanded_indices = indices.unsqueeze(-1).expand(*indices.shape,
self.dim)

outputs = torch.gather(out, 1, expanded_indices)

return outputs, commit_loss

class VQTrModel(nn.Module):
def __init__(self, ...):

...

# VQ attention encoder
self.encoder = nn.ModuleList([])
for _ in range(num_encoder_layers):

self.encoder.append(
VQAttention(

codebook_size=codebook_size,
decay=decay,
commitment_weight=commitment_weight,
dim=d_model,
depth=depth,
heads=nhead,
dim_head=dim_head,
dim_feedforward=dim_feedforward,
dropout=dropout,
cross_attn_dropout=dropout,

),
)

# causal decoder and mask
decoder_norm = nn.LayerNorm(d_model, eps=1e-5)
decoder_layer = nn.TransformerDecoderLayer(

d_model,
nhead,
dim_feedforward,
dropout,
activation,
layer_norm_eps=1e-5,
batch_first=True,
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norm_first=False,
)
self.decoder = nn.TransformerDecoder(

decoder_layer, num_decoder_layers, decoder_norm
)

# causal decoder tgt mask
self.register_buffer(

"tgt_mask",
nn.Transformer.generate_square_subsequent_mask(

prediction_length),
)

...
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