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ABSTRACT

Time series classification is a critical task in various domains, such as finance,
healthcare, and sensor data analysis. Unsupervised contrastive learning has gar-
nered significant interest in learning effective representations from time series
data with limited labels. The prevalent approach in existing contrastive learning
methods consists of two separate stages: pre-training the encoder on unlabeled
datasets and fine-tuning the well-trained model on a small-scale labeled dataset.
However, such two-stage approaches suffer from several shortcomings, such as the
inability of unsupervised pre-training contrastive loss to directly affect downstream
fine-tuning classifiers, and the lack of exploiting the classification loss which is
guided by valuable ground truth. In this paper, we propose an end-to-end model
called SLOTS (Semi-supervised Learning fOr Time clasSification). SLOTS re-
ceives semi-labeled datasets, comprising a large number of unlabeled samples and
a small proportion of labeled samples, and maps them to an embedding space
through an encoder. We calculate not only the unsupervised contrastive loss but
also measure the supervised contrastive loss on the samples with ground truth. The
learned embeddings are fed into a classifier, and the classification loss is calculated
using the available true labels. The unsupervised, supervised contrastive losses,
and classification loss are jointly used to optimize the encoder and classifier. We
evaluate SLOTS by comparing it with ten state-of-the-art methods across five
datasets. On an EEG-based emotion recognition task using the DEAP dataset
with only 10% labeled data, SLOTS significantly outperforms two-stage baselines,
achieving up to a 16.10% higher F1 score (compared to TS-TCC) and a 38.49%
higher absolute accuracy (compared to TS2Vec) when the labeling ratio increases
to 100%. SLOTS also attains the best performance on four diverse datasets with
an average 3.55% margin in F1. In various evaluation setups, including leave-
trials-out and leave-subjects-out, SLOTS consistently achieves top performance.
The results demonstrate that SLOTS is a simple yet effective framework. When
compared to the two-stage framework, our end-to-end SLOTS utilizes the same
input data, consumes a similar computational cost, but delivers significantly im-
proved performance. Crucially, our end-to-end framework is model-agnostic,
allowing it to be seamlessly integrated with any existing self-supervised contrastive
model in order to enhance its performance. We release code and datasets at
https://anonymous.4open.science/r/SLOTS-242E.

1 INTRODUCTION

Time series data, a sequence of data points collected at regular intervals over time Li (2020), is
prevalent across various fields such as economics, meteorology, healthcare, and transportation Haru-
tyunyan et al. (2019); Rezaei & Liu (2019); Ravuri et al. (2021); Sezer et al. (2020); Su & Wen
(2022); Deng et al. (2021). However, time series analysis often faces limitations of the scarcity of data
labels. Factors such as domain expertise requirements, extensive manual efforts, and privacy concerns
constrain the acquisition of high-quality data annotations Mohsenvand et al. (2020). Unsupervised (or
self-supervised) contrastive learning has emerged as a significant and effective technique for learning
valuable representations from time series data without relying on labels Wang et al. (2023). This
approach operates by prompting the model to generate similar representations for distinct views or
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Figure 1: (a) Illustration of a standard self-supervised contrastive model for classification tasks. The
whole framework includes two stages: pre-training and fine-tuning. (b) Proposed end-to-end frame-
work. Our model exhibits two properties that are unattainable in conventional two-stage frameworks:
1) the unsupervised contrastive loss, calculated on unlabeled data, contributes to the optimization
of the classifier, enabling more effective utilization of the unlabeled data; 2) the incorporation of a
newly added supervised contrastive loss further enhances performance and facilitates more efficient
learning, resulting in a more powerful and robust model.

augmentations of the same data instance, while simultaneously driving the representations of different
instances further apart Pöppelbaum et al. (2022); Chen et al. (2020); Jiang et al. (2021).

The majority of existing unsupervised contrastive learning methods follow a two-stage paradigm Kan
et al. (2022); Shen et al. (2022), as illustrated in Figure 1 (a). First, during the pre-training stage, an
unlabeled dataset is fed into an encoder that maps the input data sample to a latent space. In this
space, a contrastive loss is calculated based on instance discrimination. The unsupervised contrastive
loss is then used to optimize the encoder Li et al. (2022a); Lee et al. (2022); Li et al. (2022d).
Subsequently, in the fine-tuning stage, a small-scale labeled dataset is fed into the pre-trained model
to generate representations. A supervised classification loss is calculated to optimize the classifier
and/or fine-tune the encoder.

While the two-stage contrastive learning approach has demonstrated effectiveness in various domains,
it also presents challenges that may hinder better performance. One notable shortcoming of this
process is that the unsupervised pre-training contrastive loss cannot directly influence downstream
fine-tuning classifiers, potentially limiting the optimization of the final model. Furthermore, this
approach fails to fully exploit the classification loss, which is guided by valuable ground truth
information. As a result, the potential benefits of incorporating such information during the learning
process are not fully realized in the traditional two-stage contrastive learning framework. Moreover,
considering the two stages as a whole, it becomes evident that the self-supervised learning framework
actually receives a semi-supervised dataset (integrating unlabeled samples in pretraining and labeled
samples in fine-tuning). Then, a natural idea is to directly design a semi-supervised end-to-end model
to fully exploit the semi-labeled data.

To address these questions, we propose an end-to-end contrastive framework named SLOTS (Semi-
supervised Learning fOr Time clasSification), as shown in Fig. 1 (b). The end-to-end model allows
for the simultaneous training of the encoder and classifier, unifying model optimization, reducing
intermediate computational resources, and learning task-specific features. SLOTS takes a semi-
labeled dataset as input, which is identical to that of a conventional two-stage framework. Compared
to a traditional two-stage framework, our SLOTS: 1) receives the same dataset (partially unlabeled
and partially labeled samples); 2) has the same model components (an encoder and a classifier); and
3) calculates not only the unsupervised contrastive loss and supervised classification loss but also
introduces a supervised contrastive loss, computed with available true labels (see ablation study).

Regarding loss functions, unsupervised contrastive loss learns representations by maximizing agree-
ment between differently augmented views of the same unlabeled sample. Supervised contrastive
learning brings samples with same categories closer to each other using a supervised contrastive loss
in the embedding space. To jointly train the end-to-end framework, we develop a hybrid loss that
weighted aggregates unsupervised contrastive loss, supervised contrastive loss, and classification loss.

We note the trade-off between adaptability and model performance. While two-stage models may be
more effective in transfer learning or situations where pre-training and fine-tuning involve different
datasets, our SLOTS model is a superior choice for achieving optimal performance on a specific
dataset (Section 5; Appendix E). We evaluate the SLOTS model on five time series datasets covering
a large set of variations: different numbers of subjects (from 15 to 38,803), different scenarios
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(neurological healthcare, human activity recognition, physical status monitoring, etc.), and diverse
types of signals (EEG, acceleration, and vibration, etc.). We compare SLOTS to ten state-of-the-art
baselines. Results show that SLOTS outperforms the two-stage baselines with an improvement
of up to 16.10% in the F1 score with only 10% labeled data on the emotion recognition dataset
DEAP Koelstra et al. (2012). Furthermore, SLOTS achieves the highest performance with substantial
margins (3.55% on average in F1 score) compared with the strongest baselines on broad tasks.

2 RELATED WORK

Self-supervised contrastive learning with time series. Self-supervised learning, popular for learning
intrinsic information from unlabeled data, has been adapted for contrastive learning in the computer
vision domain Misra et al. (2016); Mikolov et al. (2013); Devlin et al. (2019); Le-Khac et al. (2020);
He et al. (2020); Chen et al. (2020). Some works have applied contrastive learning to time series Shen
et al. (2022); Banville et al. (2021); Li et al. (2022c), such as TS2Vec Yue et al. (2022), TS-TCC Eldele
et al. (2021), and data augmentation schemes with mixing components Wickstrøm et al. (2022). Zhang
et al. introduced a self-supervised pre-training strategy for time series, modeling Time-Frequency
Consistency (TF-C) Zhang et al. (2022a), while Khosla et al. extended self-supervised methods to
fully supervised approaches, leveraging emotion label information in EEG samples Khosla et al.
(2020).

Semi-supervised contrastive learning Semi-supervised learning has been integrated with con-
trastive learning for its ability to train networks with limited labeled data and large-scale unlabeled
data Arazo et al. (2020); Miyato et al. (2019); Sajjadi et al. (2016). Yang et al. proposed CCSSL to
improve pseudo-label quality Yang et al. (2022); Singh et al. presented a temporal contrastive learning
(TCL) framework for semi-supervised action recognition Singh et al. (2021) and later proposed a
simple Contrastive Learning framework for semi-supervised Domain Adaptation (CLDA) Singh
(2021); Kim et al. introduced SelfMatch, combining contrastive self-supervised learning and consis-
tency regularization Kim et al. (2021); Inoue et al. proposed a semi-supervised contrastive learning
framework based on generalized contrastive loss (GCL), unifying supervised metric learning and
unsupervised contrastive learning Inoue & Goto (2020).

End-to-end contrastive framework for time series. In contrastive learning, including self-
supervised and the majority of semi-supervised methods, the two-stage framework is mainstream,
involving a self-supervised pre-training stage followed by a supervised fine-tuning stage Eldele
et al. (2021); Xiao et al. (2021); Li & Metsis (2022); Kostas et al. (2021). In many studies, when
researchers refer to "semi-supervised contrastive" learning, they often mean that the overall two-stage
framework utilizes both labeled and unlabeled samples. Although the entire model is considered
semi-supervised, the pre-training stage remains unsupervised, as it primarily focuses on learning
representations from unlabeled data. The two-stage framework has certain limitations (Section 1),
which has led us to explore end-to-end solutions. Notably, there are several pioneering works in
developing end-to-end models within the context of contrastive learning. Li et al. proposed an EEG-
based emotion recognition method based on an efficient end-to-end CNN and contrastive learning
(ECNN-C) Li et al. (2022a). They evaluated their models on two common EEG emotion datasets,
DEAP Koelstra et al. (2012) and DREAMER Katsigiannis & Ramzan (2018), demonstrating that
the end-to-end network achieves high accuracy in time series classification. Furthermore, Zhang
et al. Zhang et al. (2022b) introduced a novel training strategy called Semi-supervised Contrastive
Learning (SsCL), which combines the well-known contrastive loss in self-supervised learning with
the cross-entropy loss in semi-supervised learning.

Nevertheless, ECNN-C solely relies on supervised learning, which requires a sufficient number of
labeled samples and lacks plug-in compatibility. On the other hand, SsCL focuses on leveraging
pseudo-labels and seeks an optimal approach to identify suitable positive pairs among all samples.
Since the input data and problem definitions differ from ours, we do not directly compare our method
with theirs in the experiments.

In this paper, we present a novel semi-supervised framework that achieves optimal performance with
minimal labeled samples and can be seamlessly integrated into various architectures. Our approach
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Figure 2: Overview of the proposed SLOTS. Our end-to-end model accepts a semi-labeled dataset
consisting of unlabeled time series and labeled time series samples. We perform augmentations on
the unlabeled sample xU, generating two views xU

i and xU
j . These two views are fed into an encoder

f that maps samples to a latent embedding space, where we compute the unsupervised contrastive
loss Lu through instance discrimination. Concurrently, we evaluate the supervised loss Ls on the
representations learned from the labeled sample xL. The zL

+ associates with the same label as zL

while zL
− belongs to a different label. Additionally, we calculate the classification loss Lc on the

labeled samples. The model is optimized using a hybrid loss L.

systematically combines unsupervised contrastive loss, supervised contrastive loss, and classification
loss to jointly update the model, maximizing the utilization of information from the data.

3 METHOD

3.1 PROBLEM FORMULATION

Suppose a semi-labelled time series dataset D contains two parts: the unlabeled subset DU with N
unlabeled sample xU, and the labeled subset DL with with M labeled sample xL which associates
with a label y ∈ {1, . . . , C}. The C denotes the number of classes. We denote the set of all available
labels in D as Y . Without loss of generality, in the following descriptions, we focus on univariate
(single-channel) time series xU or xL, while noting that our approach can accommodate multivariate
time series of varying lengths across datasets.

Let f be the encoder that maps a time series sample to its representation in the latent space, and let g
be the classifier that maps the latent representation to the class probabilities. We aim to learn the
optimal encoder f∗ and classifier g∗ by minimizing the following hybrid loss:

(f∗, g∗) = argmin
f,g

[λ1Lu(f,DU) + λ2Ls(f,DL,Y) + λ3Lc(f, g,DL,Y)] , (1)

where Lu(f,DU) is the unsupervised contrastive loss, Ls(f,DL,Y) is the supervised contrastive loss,
Lc(f, g,DL,Y) is the classification loss, and λ1, λ2, and λ3 are the hyperparameters that balance the
contributions of the three losses. The successful f∗ and g∗ can accurately predict the label for a new
time series sample.

3.2 MODEL ARCHITECTURE

We present the model pipeline of the proposed SLOTS in Figure 2. SLOTS receives a semi-labeled
dataset D, including an unlabeled subset DU and a labeled subset DL.

For each unlabeled sample xU ∈ DU, SLOTS first generates two augmented views xU
i and xU

j using
data augmentation techniques, such as jittering Eldele et al. (2021) and timestamp masking Yue et al.
(2022). We use the subscripts i and j to mark the augmented samples. Then, these two augmented
views are passed through the encoder f(·), resulting in their corresponding latent representations:

zU
i = f(xU

i ), zU
j = f(xU

j ). (2)

We calculate the unsupervised contrastive loss Lu(f,DU) in this embedding space. The zU
i and

zU
j constructs a positive pair as they originated from the same input sample xU; in contrast, the
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embedding derived from different samples are regarded as negative pairs. Our preliminary results
suggest a project header is not necessary in SLOTS.

For each labeled time series xL ∈ DL, SLOTS directly sends it to the encoder f to learn the
representation zL through:

zL = f(xL). (3)

The unlabeled sample xU and labeled sample xL are from the same original signal space and are
mapped by the same encoder f . Therefore, we assume that the embeddings zU

i , zU
j , and zL are located

in the same latent space. In this space, we measure the supervised loss Ls(f,DL,Y). We assume that
samples associated with the same label form positive pairs, while others form negative pairs. See
more details of loss functions in Section 3.3.

Next, the representation zL is fed into a classifier g, which produces the estimated sample label
ŷ = g(zL). With the ground truth y ∈ Y , we measure the classification loss Lc(f, g,DL,Y).

3.3 SEMI-SUPERVISED CONTRASTIVE LOSS

Unsupervised contrastive loss. The unsupervised contrastive loss Lu(f,DU) aims to encourage the
model to learn meaningful latent representations by minimizing the distance between the embeddings
of augmented views of the same unlabeled sample, while maximizing the distance between the
embeddings of different samples in the latent space. We leverage the contrastive learning framework
and adopt the normalized temperature-scaled cross-entropy loss Chen et al. (2020) for this purpose.

For each unlabeled sample xU ∈ DU, we generate two augmented views xU
i and xU

j . After passing
them through the encoder f , we obtain their corresponding embeddings zU

i and zU
j . The unsupervised

contrastive loss, averaging across all samples, is computed as:

Lu(f,DU) =
1

N

N∑
i=1

− log
exp(sim(zU

i , z
U
j )/τ)∑N

k=1,k ̸=i exp(sim(zU
i , z

U
k)/τ)

, (4)

where sim is a similarity function (e.g., cosine similarity), τ is a temperature hyperparameter. By
minimizing the unsupervised contrastive loss, the model learns to generate similar representations
for augmented views of the same sample, while generating dissimilar representations for different
samples in the latent space, which helps the model learn useful features from the unlabeled data.

Supervised contrastive loss. The supervised contrastive loss Ls(f,DL,Y) forces the model to learn
discriminative features for labeled samples by maximizing the similarity between the representations
of samples that belong to the same class while minimizing the similarity between the representations
of samples from different classes. Compared to unsupervised loss, this is stronger guidance because
true sample labels are directly involved as supervision.

Given a labeled time series xL ∈ DL with its corresponding ground truth label y ∈ Y . We measure
the supervised contrastive loss based on representation zL:

Ls(f,DL,Y) = − log

∑
y=y+

exp(sim(zL, zL
+)/τ)∑

y ̸=y−
exp(sim(zL, zL

−)/τ)
. (5)

The zL
+ is a representation derived from a sample that belongs to the same class as zL, i.e., y = y+.

Conversely, zL
− is derived from a sample with a different label, such that y ̸= y−. Minimizing

the supervised contrastive loss Ls(f,DL,Y) enables the model to produce more closely related
representations for labeled samples belonging to the same class, while generating more distinct
representations for labeled samples from different classes. This process promotes the learning of
discriminative features that are beneficial for the classification task.

Classification loss. We incorporate a classification loss to directly optimize the model toward the
classification task. We use the softmax cross-entropy loss, which is a widely used loss function for
multi-class classification problems.

Given a labeled sample xL, we obtain its predicted class probabilities ŷ = g(f(xL)). Let ŷc denote
the predicted probability of class c ∈ {1, · · · , C} for a given labeled sample. We calculate the
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classification loss between predicted class probabilities ŷ and the ground-truth labels y:

Lc(f, g,DL,Y) = − 1

M

M∑
i=1

C∑
c=1

1(yi = c) log ŷc, (6)

where 1(yi = c) is an indicator function that equals 1 when the true label of the i-th labeled sample
is c, and 0 otherwise. This loss directly optimizes the model for predicting the correct class labels.

Hybrid loss. The proposed end-to-end SLOTS is trained by jointly minimizing a hybrid loss L,
which is a weighted sum of the unsupervised contrastive loss, supervised contrastive loss, and
classification loss, as described in the problem formulation (Equation 1). The three loss functions
complement each other in terms of improving the classification results. During training, we update
the encoder f and classifier g by minimizing the hybrid loss. This enables the model to learn
effective representations from both unlabeled and labeled samples, while simultaneously improving
its classification performance by directly optimizing the predicted class probabilities. The end-to-
end training process allows the model to adaptively balance the contributions of the unsupervised,
supervised, and classification losses to achieve the best performance on the given task.

4 EXPERIMENTS

Datasets. (1) DEAP, a multimodal dataset based on the stimulation of music video materials, is
used to analyze human emotional states Koelstra et al. (2012). It contains 32 subjects monitored by
32-channel EEG signals while watching 40 minutes (each minute is a trail) of videos. (2) SEED
includes 62-channel EEG data of 15 subjects when they are watching 15 film clips with three types
of emotions Zheng et al. (2019). (3) EPILEPSY monitors the brain activities of 500 subjects with a
single-channel EEG sensor (174 Hz) Andrzejak et al. (2001). Each sample is labeled in binary based
on whether the subject has epilepsy or not. (4) HAR has 10,299 9-dimension samples from 6 daily
activities Anguita et al. (2013). (5) P19 (PhysioNet Sepsis Early Prediction Challenge 2019) includes
38,803 patients that are monitored by 34 sensors in ICU Reyna et al. (2020). More dataset details are
in Appendix A.

Baselines. We evaluate our SLOTS model by comparing it with ten baselines, consisting of five state-
of-the-art contrastive methods that employ a two-stage framework and their improved end-to-end
variants. The five state-of-the-art methods include TS2vec Yue et al. (2022), Mixing-up Wickstrøm
et al. (2022), TS-TCC Eldele et al. (2021), SimCLR Chen et al. (2020), and TFC Zhang et al. (2022a).
To ensure a fair comparison, we create a two-stage version of SLOTS, named SLOTS (two-stage),
which can be directly compared with the five basic baselines. In addition, to adapt these baselines
to our end-to-end framework, we modify the baselines and denote the updated versions with a ‘++’,
resulting in a total of ten baselines. For instance, the end-to-end version of TS2Vec is referred to
as TS2Vec++. In this paper, unless explicitly stated otherwise, SLOTS refers to the SLOTS
(end-to-end) model.

Implementation. We adopt a dilated convolutional block as backbone for encoder f following Yue
et al. (2022). A dilated module with three blocks is designed based on separable convolution. Each
block consists of four distinct convolutional layers. The first layer employs a 2D convolution with
a 1 × 1 kernel. The second and third layers utilize kernels of size 1 × 3 and 3 × 1, respectively,
replacing the 3× 3 kernel in a manner similar to the MobileNet model. This reduces the number of
parameters by 33%Li et al. (2022b), enabling the network to operate more efficiently. The fourth
layer is a spatial convolution with a depth multiplier of 2, doubling the number of channels from
the first deep convolution layer. This layer allows the model to have sufficient channels to employ a
reduction factor in bottleneck structuresFreeman et al. (2018). The classifier model g utilizes a linear
fully connected layer with a single hidden unit as its structure. We employ temporal masking for time
series augmentations. See more details of experimental settings (e.g., hardware, baseline details, and
hyper-parameters) in Appendix B.

4.1 COMPARING FRAMEWORKS: END-TO-END VERSUS TWO-STAGE

Table 1 presents the performance on the DEAP dataset in a leave-trials-out setting with labeling
ratios ranging from 10% to 80%. Each baseline with the ‘++’ suffix is trained in an end-to-end
framework. Here, we provide a detailed analysis of the results in terms of the absolute values of the
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Table 1: Performance comparison on DEAP dataset while the label ratio (the proportion of labeled
samples in the training dataset) ranging from 10% to 100%.

Ratio Models Accuracy Precision Recall F1 Score AUROC AUPRC

10%

TS2Vec 0.5125±0.0149 0.5020±0.0158 0.5029±0.2001 0.5002±0.0196 0.5200±0.0059 0.5365±0.0067
TS2Vec++ 0.5218±0.0123 0.5109±0.0214 0.5100±0.0211 0.5057±0.0236 0.5447±0.0146 0.5590±0.0125
SimCLR 0.5150±0.0123 0.5173±0.0145 0.5154±0.0169 0.5096±0.0169 0.5194±0.0156 0.5292±0.0154
SimCLR++ 0.5862±0.0415 0.5912±0.0472 0.5848±0.0352 0.5716±0.0316 0.5874±0.0312 0.5815±0.0296
TFC 0.5006±0.0152 0.5167±0.0254 0.5255±0.0356 0.5249±0.0445 0.5099±0.0365 0.5102±0.0421
TFC++ 0.6605±0.0547 0.6549±0.0365 0.6533±0.0542 0.6504±0.0654 0.7069±0.0412 0.7084±0.0357
TS-TCC 0.5025±0.0631 0.4977±0.0614 0.4992±0.0748 0.4946±0.0861 0.5344±0.0743 0.5485±0.0763
TS-TCC++ 0.5547±0.0367 0.5431±0.0378 0.5409±0.0369 0.5358±0.0412 0.5575±0.0347 0.5680±0.0360
MixingUp 0.5250±0.0165 0.5357±0.0162 0.5326±0.0198 0.5075±0.0186 0.5447±0.0164 0.5478±0.0157
MixingUp++ 0.6037±0.0974 0.5806±0.0874 0.6025±0.0962 0.5463±0.0871 0.6704±0.0634 0.6713±0.0631
SLOTS (two-stage) 0.6276±0.0541 0.6393±0.0495 0.6138±0.0547 0.6055±0.0563 0.6704±0.0471 0.6480±0.0396
SLOTS (end-to-end) 0.6636±0.0763 0.6598±0.0791 0.6571± 0.0773 0.6556±0.0781 0.7115±0.0995 0.7118±0.0953

20%

TS2Vec 0.5250±0.0205 0.5397±0.0231 0.5308±0.0264 0.5004±0.0213 0.5361±0.0064 0.5452±0.0063
TS2Vec++ 0.5754±0.0096 0.6076±0.0068 0.5876±0.0067 0.5346±0.0099 0.6470±0.0037 0.6517±0.0048
SimCLR 0.5225±0.0223 0.5199±0.0248 0.5168±0.0296 0.5128±0.0284 0.5235±0.0198 0.5412±0.0196
SimCLR++ 0.6061±0.0521 0.6078±0.0543 0.5928±0.0469 0.5855±0.0437 0.6376±0.0379 0.6355±0.0380
TFC 0.5375±0.0084 0.5326±0.0099 0.5321±0.0152 0.5316±0.0251 0.5123±0.0325 0.5315±0.0241
TFC++ 0.6896±0.0420 0.6855±0.0254 0.6833±0.0421 0.6784±0.0362 0.7384±0.0125 0.7405±0.0152
TS-TCC 0.5105±0.0459 0.5137±0.0423 0.5228±0.0479 0.5105±0.0523 0.6006±0.0418 0.6000±0.0412
TS-TCC++ 0.5613±0.0412 0.5614±0.0430 0.5540±0.0426 0.5442±0.0497 0.5714±0.0409 0.5804±0.0410
MixingUp 0.5281±0.0089 0.5531±0.0110 0.5436±0.0102 0.5083±0.0163 0.5692±0.0165 0.5704±0.0135
MixingUp++ 0.6418±0.0861 0.6696±0.0845 0.6309±0.0960 0.5954±0.0934 0.7119±0.0847 0.7109±0.0823
SLOTS (two-stage) 0.6699±0.0452 0.6577±0.0432 0.6541±0.0632 0.6171±0.0542 0.6877±0.0512 0.6954±0.0510
SLOTS (end-to-end) 0.7618±0.0954 0.7599±0.0894 0.7563±0.0942 0.7553±0.0575 0.8155±0.0644 0.8164±0.0497

40%

TS2Vec 0.5300±0.0231 0.5423±0.0247 0.5376±0.0239 0.5193±0.0267 0.5367±0.0146 0.5478±0.0176
TS2Vec++ 0.6169±0.0563 0.6587±0.0542 0.6011±0.0641 0.5697±0.0678 0.6939±0.0541 0.6963±0.0512
SimCLR 0.5325±0.0224 0.5283±0.0236 0.5290±0.0245 0.5216±0.0278 0.5367±0.0214 0.5469±0.0228
SimCLR++ 0.6106±0.0254 0.6385±0.0247 0.6115±0.0279 0.5914±0.0341 0.6836±0.0316 0.6842±0.0341
TFC 0.5500±0.0063 0.5533±0.0054 0.5500±0.0072 0.5429±0.0077 0.5850±0.0033 0.5926±0.0026
TFC++ 0.7367±0.0235 0.7333±0..0351 0.7304±0.0369 0.7274±0.0452 0.7857±0.0357 0.7913±0.0347
TS-TCC 0.5525±0.0196 0.5288±0.0213 0.5308±0.0236 0.5183±0.0255 0.6032±0.0194 0.6016±0.0184
TS-TCC++ 0.6021±0.0239 0.5991±0.0241 0.5883±0.0310 0.5768±0.0334 0.6320±0.0229 0.6332±0.0263
MixingUp 0.5781±0.0561 0.5924±0.0515 0.5850±0.0498 0.5553±0.0698 0.6085±0.0244 0.6176±0.0255
MixingUp++ 0.6479±0.0645 0.7101±0.0633 0.6653±0.0542 0.6211±0.0655 0.7730±0.0365 0.7707±0.0365
SLOTS (two-stage) 0.6742±0.3254 0.6797±0.0412 0.6637±0.0523 0.6701±0.0489 0.7087±0.0421 0.7114±0.0432
SLOTS (end-to-end) 0.8299±0.0542 0.8281±0.0499 0.8268±0.0621 0.8255±0.0634 0.8757±0.0510 0.8766±0.0515

60%

TS2Vec 0.5312±0.0198 0.5486±0.0174 0.5378±0.0234 0.5233±0.0249 0.5479±0.0132 0.5518±0.0126
TS2Vec++ 0.6573±0.0525 0.6773±0.0547 0.6397±0.0519 0.6287±0.0643 0.7282±0.0532 0.7301±0.0531
SimCLR 0.5375±0.0361 0.5307±0.0348 0.5262±0.0396 0.5179±0.0454 0.5393±0.0362 0.5464±0.0352
SimCLR++ 0.6396±0.0351 0.6561±0.0335 0.6452±0.0417 0.6299±0.0456 0.7052±0.0413 0.7062±0.0415
TFC 0.5875±0.0126 0.5922±0.0263 0.5875±0.0231 0.5822±0.0237 0.6119±0.0322 0.6025±0.0324
TFC++ 0.7647±0.0668 0.7616±0.0574 0.7595±0.0741 0.7585±0.0596 0.8150±0.0614 0.8224±0.0532
TS-TCC 0.5625±0.0346 0.5663±0.0348 0.5611±0.0417 0.5413±0.0454 0.6091±0.0346 0.6027±0.0333
TS-TCC++ 0.6026±0.0333 0.6058±0.0341 0.5900±0.0387 0.5792±0.0410 0.6404±0.0332 0.6413±0.0335
MixingUp 0.6062±0.0868 0.6437±0.0844 0.6074±0.0725 0.6011±0.0769 0.6159±0.0631 0.6199±0.0612
MixingUp++ 0.6960±0.0621 0.7304±0.0555 0.6731±0.0635 0.6392±0.0789 0.7837±0.0541 0.7845±0.0569
SLOTS (two-stage) 0.7054±0.0535 0.7038±0.0478 0.7275±0.0621 0.6975±0.0598 0.7610±0.0459 0.7564±0.0425
SLOTS (end-to-end) 0.8728±0.0625 0.8719±0.0654 0.8703±0.0968 0.8696±0.0842 0.9101±0.0682 0.9112±0.0574

80%

TS2Vec 0.5475±0.0213 0.5368±0.0241 0.5355±0.0219 0.5341±0.0238 0.5491±0.0196 0.5549±0.0194
TS2Vec++ 0.6886±0.0436 0.7112±0.0479 0.6672±0.0521 0.6587±0.0642 0.7704±0.0534 0.7691±0.0537
SimCLR 0.5400±0.0169 0.5677±0.0198 0.5640±0.0246 0.5383±0.0234 0.5365±0.0167 0.5457±0.0165
SimCLR++ 0.6958±0.0517 0.6994±0.0514 0.6847±0.0496 0.6823±0.0463 0.7641±0.0521 0.7575±0.0530
TFC 0.6025±0.0168 0.6048±0.0167 0.5918±0.0215 0.5926±0.0266 0.6212±0.0214 0.6470±0.0215
TFC++ 0.8000±0.0354 0.7967±0.0471 0.7953±0.0532 0.7939±0.0613 0.8403±0.0536 0.8459±0.0475
TS-TCC 0.5675±0.0310 0.5701±0.0296 0.5697±0.0309 0.5529±0.0342 0.6115±0.0296 0.6092±0.0284
TS-TCC++ 0.6028±0.0298 0.6077±0.0310 0.5933±0.0301 0.5889±0.0364 0.6492±0.0263 0.6420±0.0254
MixingUp 0.6500±0.0551 0.6540±0.0351 0.6529±0.0532 0.6498±0.0647 0.6679±0.0345 0.6547±0.0367
MixingUp++ 0.6973±0.0542 0.7443±0.0596 0.6804±0.0496 0.6522±0.0515 0.8091±0.0362 0.8090±0.0337
SLOTS (two-stage) 0.7312±0.0625 0.7460±0.0654 0.7520±0.0741 0.7615±0.0632 0.7812±0.0678 0.8210±0.0593
SLOTS (end-to-end) 0.9037±0.0774 0.9028±0.0710 0.9028±0.0821 0.9020±0.0736 0.9282±0.0630 0.9294±0.0622

100%

TS2Vec 0.5499±0.0225 0.5373±0.0172 0.5376±0.0200 0.5478±0.0235 0.5597±0.0046 0.5788±0.0050
TS2Vec++ 0.6982±0.0720 0.7160±0.0716 0.6684±0.0718 0.6629±0.0726 0.7726±0.0912 0.7810±0.0866
SimCLR 0.5687±0.0212 0.5728±0.0235 0.5682±0.0194 0.5460±0.0198 0.5694±0.0157 0.5524±0.0096
SimCLR++ 0.7087±0.0412 0.7028±0.0455 0.6882±0.0494 0.6860±0.0497 0.7694±0.0453 0.7594±0.0481
TFC 0.6225±0.0025 0.6181±0.0065 0.6475±0.0043 0.6037±0.0047 0.6538±0.0191 0.6513±0.0223
TFC++ 0.8167±0.0914 0.8074±0.0902 0.8125±0.0958 0.8118±0.0959 0.8504±0.0772 0.8526±0.0750
TS-TCC 0.5725±0.0150 0.5706±0.0171 0.5713±0.0119 0.5558±0.0065 0.6185±0.0014 0.6161±0.0056
TS-TCC++ 0.6184±0.0292 0.6209±0.0371 0.5996±0.0239 0.5897±0.0226 0.6606±0.0474 0.6610±0.0439
MixingUp 0.6562±0.0062 0.6610±0.0082 0.6504±0.0033 0.6505±0.0154 0.6717±0.0364 0.6852±0.0271
MixingUp++ 0.7499± 0.1017 0.7576±0.1037 0.7430± 0.1036 0.7372±0.1112 0.7050±0.0924 0.7048±0.0926
SLOTS (two-stage) 0.7525±0.0500 0.7594±0.0585 0.7401±0.0398 0.7664±0.0415 0.8197±0.0067 0.8388±0.0087
SLOTS (end-to-end) 0.9342±0.1161 0.9329±0.1171 0.9335±0.1184 0.9327± 0.1187 0.9456±0.0966 0.9469±0.0952
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Table 2: Performance comparison on SEED, P19, EPILEPSY, and HAR, under the label ratio of 10%.
To save space, we show the extended table with errorbars in Appendix C.

Models SEED P19

Accuracy Precision Recall F1 score AUROC AUPRC Accuracy Precision Recall F1 score AUROC AUPRC

TS2Vec 0.5750 0.6048 0.5732 0.5113 0.6493 0.6218 0.6580 0.6467 0.5520 0.5669 0.5171 0.5860
TS2Vec++ 0.6252 0.6191 0.6084 0.5599 0.6607 0.6962 0.6589 0.6794 0.6500 0.6894 0.6527 0.6978
TS-TCC 0.5893 0.5627 0.5772 0.5723 0.7137 0.6941 0.9216 0.5968 0.6597 0.6156 0.6941 0.6667
TS-TCC++ 0.6172 0.5935 0.5776 0.5977 0.8004 0.7637 0.9654 0.7338 0.6776 0.7076 0.7011 0.7065
SimCLR 0.5050 0.5115 0.5313 0.5155 0.6963 0.6982 0.9130 0.5877 0.5600 0.5338 0.5995 0.5956
SimCLR++ 0.5736 0.5344 0.5505 0.5374 0.6802 0.6361 0.9534 0.6924 0.6124 0.6321 0.7077 0.6554
MixingUp 0.5166 0.5356 0.5638 0.5141 0.6605 0.6580 0.9136 0.6744 0.6481 0.6477 0.6802 0.6361
MixingUp++ 0.5569 0.5701 0.5638 0.5265 0.7494 0.6603 0.9253 0.6777 0.6500 0.6489 0.7685 0.6932
TFC 0.5500 0.5356 0.5487 0.5290 0.7499 0.6423 0.9049 0.6207 0.6340 0.6267 0.6399 0.7092
TFC++ 0.6087 0.6121 0.6071 0.5990 0.7847 0.6685 0.9361 0.7500 0.6761 0.6954 0.7721 0.7287
SLOTS (two-stage) 0.6468 0.6573 0.7316 0.6169 0.7575 0.7572 0.9254 0.7138 0.6776 0.7076 0.7011 0.7065
SLOTS (end-to-end) 0.7181 0.7286 0.7869 0.6510 0.8034 0.7592 0.9596 0.7580 0.7416 0.7788 0.7703 0.8270

Models EPILEPSY HAR

Accuracy Precision Recall F1 score AUROC AUPRC Accuracy Precision Recall F1 score AUROC AUPRC

TS2Vec 0.5125 0.5604 0.5118 0.5287 0.6519 0.6233 0.5738 0.5555 0.5768 0.5565 0.7623 0.7413
TS2Vec++ 0.6022 0.6011 0.5500 0.5445 0.6537 0.6498 0.6743 0.6197 0.5838 0.5701 0.8488 0.8114
TS-TCC 0.6175 0.6338 0.5000 0.5403 0.6029 0.6726 0.6596 0.6154 0.6158 0.5459 0.7511 0.7414
TS-TCC++ 0.6206 0.6401 0.5459 0.5445 0.6851 0.7150 0.6787 0.6473 0.6316 0.6169 0.7575 0.7572
SimCLR 0.6375 0.5938 0.5200 0.5100 0.6293 0.6776 0.6168 0.6390 0.5704 0.5744 0.7452 0.7098
SimCLR++ 0.6805 0.6591 0.5084 0.5599 0.6607 0.6962 0.6217 0.6435 0.6205 0.5977 0.9004 0.7637
MixingUp 0.6175 0.6115 0.5313 0.5485 0.6596 0.6782 0.6277 0.6393 0.6138 0.6055 0.7705 0.7481
MixingUp++ 0.6617 0.6356 0.5804 0.5734 0.6605 0.6980 0.6699 0.6577 0.6541 0.6172 0.8878 0.8254
TFC 0.6550 0.6312 0.5250 0.5226 0.5390 0.6653 0.6502 0.6102 0.6083 0.6095 0.7315 0.7371
TFC++ 0.6693 0.6627 0.5472 0.5472 0.7014 0.6834 0.7263 0.6479 0.6634 0.6512 0.8519 0.8064
SLOTS (two-stage) 0.6652 0.6591 0.5684 0.5599 0.6607 0.6962 0.6654 0.6538 0.6276 0.6076 0.8011 0.7565
SLOTS (end-to-end) 0.6955 0.6952 0.5999 0.5819 0.7105 0.7600 0.7312 0.6661 0.6720 0.6615 0.9013 0.8811

Table 3: Ablation study (DEAP; 10% label ratio). ‘W/o Lu’ means removing unsupervised contrastive
loss, i.e., encoders and classifiers are updated with supervised loss and cross-entropy loss.‘W/o
Ls’ refers to removing supervised contrastive loss, i.e., encoders and classifiers are updated with
unsupervised loss and classification loss. ‘W/ Ls’ refers to introducing supervised contrastive loss in
SLOTS’s fine-tuning stage.

Models Methods Accuracy Precision Recall F1 score AUROC AUPRC

SLOTS (two-stage) W/ Ls in fine-tuning 0.6375±0.0100 0.6433±0.0255 0.6359±0.0130 0.6308±0.0159 0.6897±0.0061 0.6865±0.0067
Full model 0.6276±0.0541 0.6393±0.0495 0.6138±0.0547 0.6055±0.0563 0.6704±0.0471 0.6480±0.0396

SLOTS (end-to-end)
W/o Lu 0.6590±0.0724 0.6548±0.0757 0.6490±0.0736 0.6472±0.0748 0.7042±0.0961 0.7049±0.0927
W/o Ls 0.6103±0.0520 0.6072±0.0583 0.5953±0.0497 0.5905±0.0495 0.6438±0.0771 0.6469±0.0714

Full model 0.6636±0.0763 0.6598±0.0791 0.6571± 0.0773 0.6556±0.0781 0.7115±0.0995 0.7118±0.0953

F1 score. (1) The results demonstrate that transitioning a model from a two-stage to its end-to-end
version (without any other changes) leads to significant performance improvement. For instance, at
an 80% label ratio, TFC++ achieves the highest improvement over TFC, with a 20.13% increase. (2)
Furthermore, our end-to-end SLOTS model consistently outmatchs its two-stage counterpart, and the
performance margin increases as the labeling ratio increases. Specifically, with 100% labeled data,
SLOTS (end-to-end) achieved a significant improvement of 16.63% over SLOTS (two-stage).

4.2 COMPARING MODEL: SLOTS VERSUS BASELINES

Our end-to-end SLOTS model consistently outperforms all ten baselines. With a full availably of data
labels, SLOTS (end-to-end) achieves the highest performance of 93.27%, surpassing the best baseline,
TFC++ (81.18%), by a significant margin of 12.09% (Table 1). Additionally, our model outperforms
all baselines across multiple datasets, including SEED, P19, EPILEPSY, and HAR datasets (Table 2).
Overall, our SLOTS (end-to-end) model achieves victory in 21 out of 24 tests (6 metrics in 4 datasets)
and is the second-best performer in 3 other tests.

Ablation study To demonstrate the importance of each loss component, we examine two scenarios:
1) removing unsupervised losses; 2) removing supervised losses. Both scenarios result in degraded
performance (DEAP; 10% labeling ratio; Table 3)). Additionally, we incorporate a supervised
contrastive loss into the two-stage version of SLOTS, which leads to a slight increase (1% in
accuracy) but still remains 2.6% lower than the end-to-end framework.
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Table 4: Performance comparison (DEAP; 40% label ratio) across trial-dependent, leave-trials-out,
and leave-subjects-out settings. We present the comparison with the strongest baseline on DEAP
(MixingUp) to save space.

Patterns Models Accuracy Precision Recall F1 Score AUROC AUPRC

Trial-dependent
MixingUp 0.6563±0.0012 0.6692±0.0065 0.6499±0.0111 0.6340±0.0047 0.7400±0.0058 0.7262±0.0052
MixingUp++ 0.8670±0.0738 0.8827±0.0638 0.8676±0.0698 0.8612±0.0777 0.9548±0.0371 0.9537±0.0371
SLOTS (end-to-end) 0.9418±0.0279 0.9410±0.0280 0.9410±0.0287 0.9404±0.0286 0.9818±0.0134 0.9817±0.0132

Leave-trials-out
MixingUp 0.5781±0.0561 0.5924±0.0515 0.5850±0.0498 0.5553±0.0698 0.6085±0.0244 0.6176±0.0255
MixingUp++ 0.6479±0.0645 0.7101±0.0633 0.6653±0.0542 0.6211±0.0655 0.7730±0.0365 0.7707±0.0365
SLOTS (end-to-end) 0.8299±0.0542 0.8281±0.0499 0.8268±0.0621 0.8255±0.0634 0.8757±0.0510 0.8766±0.0515

Leave-subjects-out
MixingUp 0.5062±0.0038 0.5202±0.0017 0.5186±0.0107 0.5104±0.0085 0.5878±0.0118 0.5891±0.0086
MixingUp++ 0.6085±0.0136 0.6640±0.0182 0.6278±0.0088 0.5788±0.0121 0.7010±0.0106 0.7006±0.0099
SLOTS (end-to-end) 0.6765±0.1204 0.6864±0.1175 0.6818±0.1156 0.6708±0.1200 0.7330±0.1342 0.7365±0.1280

4.3 ROBUSTNESS ACROSS TRIALS AND SUBJECTS

Taking emotion recognition (DEAP; 40% labels) as an example, we investigate the robustness of
SLOTS in three settings (Appendix D): trial-dependent, leave-trials-out, and leave-subjects-out. We
compare SLOTS with MixingUp which is the strongest baseline on DEAP (Table 1). In Table 4,
as expected, the trial-dependent pattern outstrips leave-trials-out, which in turn outperforms the
leave-subjects-out pattern. This could be due to inter-trial and inter-subject variations Shen et al.
(2022). In the trial-dependent pattern, SLOTS (end-to-end) achieves the highest F1 score of 94.04%,
surpassing MixingUp by 30.64% and MixingUp++ by 7.92%. SLOTS (end-to-end) consistently
performs best across all three patterns and six metrics, demonstrating the effectiveness of SLOTS.

5 DISCUSSION AND FUTURE WORKS

SLOTS demonstrated promising results across various datasets, outperforming ten competitive
baselines. Nevertheless, there are several aspects that warrant further investigation and improvements.

Firstly, the methodology employed in our approach prioritizes enhanced performance at the expense
of transferability. Unlike two-stage models that facilitate pre-training on a distinct dataset followed
by fine-tuning on a smaller dataset, our end-to-end model necessitates that both pre-training and
fine-tuning datasets be derived from the same source. This constraint hampers the model’s capacity
to transfer knowledge across disparate tasks and datasets. A potential remedy to this issue may entail
incorporating domain adaptation techniques, as delineated by Wilson et al. (2020) Wilson et al.
(2020), to address both model performance and knowledge transferability concurrently.

Secondly, the existing model offers opportunities for extension to a wider array of downstream tasks.
In principle, our end-to-end framework can be tailored to accommodate tasks such as clustering,
forecasting, regression, anomaly detection, and other time series data tasks, granted that an appropriate
task-specific loss function is incorporated.

Lastly, the data augmentation techniques employed in our model warrant further refinement Liu et al.
(2023). The development of more sophisticated and task-specific augmentation methods could yield
superior representations, consequently enhancing the model’s performance.

6 CONCLUSION

This paper presented SLOTS, an end-to-end model for semi-supervised time series classification,
which combines unsupervised contrastive loss, supervised contrastive loss, and classification loss
in a unified framework. The hybrid loss function effectively leverages both labeled and unlabeled
data to learn discriminative features, while the end-to-end training process allows the model to
adaptively balance the contributions of these losses to achieve optimal performance. Extensive
experiments demonstrated that SLOTS surpasses state-of-the-art methods and their end-to-end
adaptations, showcasing its effectiveness and versatility in handling time series classification tasks.
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APPENDIX A DATASET DETAILS

We use five diverse time series datasets to evaluate our model. Following is a detailed description of
the datasets.

DEAP dataset Koelstra et al. (2012). The publicly available database DEAP consists of a multimodal
dataset for the analysis of human emotional states. A total of 32 EEG channels and eight peripheral
physiological signals of 32 subjects (aged between 19 and 37) were recorded whilst watching music
videos with a sampling frequency of 128 Hz. Then the recorded signals are passed from a bandpass
filter to remove noise and artifacts like eye blinks. The 40 one-minute-long videos were carefully
selected to elicit different emotional states according to the dimensional, valence-arousal. The
valence-arousal emotion model, first proposed by Russell Russell (1980), places each emotional state
on a two-dimensional scale. The first dimension represents valence, which ranged from negative
to positive, and the second dimension is arousal, which ranged from calm to exciting. In DEAP,
each video clip is rated from 1 to 9 for arousal and valence by each subject after the viewing, and
the discrete rating value can be used as a classification label in emotion recognition Frydenlund &
Rudzicz (2015); Pham et al. (2015); Lan et al. (2016); Chao & Dong (2021); Bagherzadeh et al.
(2022).

SEED dataset Zheng et al. (2019). The SJTU Emotion EEG Dataset (SEED) is a free and publicly
available EEG dataset for emotional analysis provided by Shanghai Jiao Tong University in 2015.
SEED dataset provided EEG recordings from 15 subjects (8 females and 7 males, 23.27 ± 2.37 years)
using a 62-channel system. In total, 45 trials (the same 15 movie clips repeated on 3 days) were
presented to the subjects. Each trial lasted for approximately 4 minutes. Each participant contributed
to the experiment thrice at an interval of one week or longer. For data preprocessing, these recordings
were downsampled from 1000 to 200 Hz and filtered to 0.5–70 Hz. In addition, the labels of the trials
were obtained from the self-assessments, and the elicitations involved three emotional categories:
positive, neutral, and negative.

P19 dataset Reyna et al. (2020). P19 (PhysioNet Sepsis Early Prediction Challenge 2019) dataset
contains 38,803 patients and each patient is monitored by 34 irregularly sampled sensors including 8
vital signs and 26 laboratory values. The original dataset has 40,336 patients, we remove the samples
with too short or too long time series, remaining 38,803 patients (the longest time series of the patient
has more than one and less than 60 observations). Each patient is associated with a static vector
indicating attributes: age, gender, time between hospital admission and ICU admission, ICU type,
and ICU length of stay (days). Each patient has a binary label representing occurrence of sepsis
within the next 6 hours. The dataset is highly imbalanced with only ~4% positive samples. Raw data
of P19 can be found at https://physionet.org/content/challenge-2019/1.0.0/.

EPILEPSY dataset Andrzejak et al. (2001). The dataset contains single-channel EEG measurements
from 500 subjects. For every subject, the brain activity was recorded for 23.6 seconds. The dataset
was then divided and shuffled (to mitigate sample-subject association) into 11,500 samples of 1
second each, sampled at 178 Hz. The raw dataset features five classification labels corresponding to
different states of subjects or measurement locations — eyes open, eyes closed, EEG measured in
the healthy brain region, EEG measured in the tumor region, and whether the subject has a seizure
episode. To emphasize the distinction between positive and negative samples in terms of epilepsy, We
merge the first four classes into one, and each time series sample has a binary label describing if the
associated subject is experiencing a seizure or not. There are 11,500 EEG samples in total. The raw
dataset (https://repositori.upf.edu/handle/10230/42894) is distributed under the Creative Commons
License (CC-BY) 4.0.

HAR Anguita et al. (2013). This dataset contains recordings of 30 health volunteers perform-
ing daily activities, including walking, walking upstairs, walking downstairs, sitting, standing,
and lying. Prediction labels are the six activities. The wearable sensors on a smartphone
measure triaxial linear acceleration and triaxial angular velocity at 50 Hz. After preprocess-
ing and isolating gravitational acceleration from body acceleration, there are nine channels (i.e.,
3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer) in total. The raw dataset
(https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones) is dis-
tributed as-is. Any commercial use is not allowed.
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APPENDIX B EXPERIMENTAL DETAILS

We implement the baselines follow the corresponding papers including TS2vec Yue et al. (2022),
Mixing-up Wickstrøm et al. (2022), TS-TCC Eldele et al. (2021), SimCLR Chen et al. (2020), and
TFC Zhang et al. (2022a). Unless noted below, we use default settings for hyper-parameters as
reported in the original works. All two-stage and end-to-end frameworks with baselines are done
with an NVIDIA GeForce RTX 3090 GPU with 256 GB of allocated memory.

SLOTS (our model) allows for the simultaneous training of the encoder and classifier, unifying model
optimization, reducing intermediate computational resources, and learning task-specific features. Our
encoder f is similar to ECNN-C Li et al. (2022a). Specifically, the novel block structure is designed
to comprise four different convolutional layers. First, we adopt two consecutive kernels 3× 1 and
1× 3 to replace the convolution kernel of shape of 3× 3 by taking a similar operation to MobileNet
model. Second, we use spatial convolution with a depth multiplier of 2, thus doubling the number of
channels in the first deep convolution layer. The purpose of this approach is to enable the model to
have sufficient channels, allowing them to utilize a reduction factor in bottleneck structures Freeman
et al. (2018). Third, separable pooling is used to replace the max-pooling due to the aliasing in the
step convolution. We adopt a 2 × 1 pooling kernel after the first spatial convolutional layer. The
classifier contains one fully-connected layer. We employ a specific data augmentation technique for
the proposed algorithm. This involves masking the data using a binary mask, where each element is
independently sampled from a Bernoulli distribution with a probability of p=0.5. We use a batch size
of 100 and a training epoch of 30.

TS2Vec Yue et al. (2022) introduces the notion of contextual consistency and uses a hierarchical loss
function to capture long-range structure in time series. TS2vec is a powerful representative learning
method and has a specially-designed architecture. The encoder network consists of three components.
First, the input time series is augmented by selecting overlapping subseries. They are projected into a
higher dimensional latent space. Then, latent vectors for input time series are masked at randomly
chosen positions. Finally, a dilated CNN with residual blocks produces the contextual representations.
To compute the loss, the representations are gradually pooled along the time dimension and at each
step a loss function based on contextual consistency is applied. For the baseline experiment, we
found that the original 10 layers of ResNet blocks are redundant, and we reduce residual blocks in
the encoder from 10-layer to 3-layer without compromising model performances.

Mixing-up Wickstrøm et al. (2022) proposes new mixing-up augmentation and pretext tasks that aim
to correctly predict the mixing proportion of two time series samples. In Mixing-up, the augmentation
is chosen as the convex combination of two randomly drawn time series from the dataset, where the
mixing parameter is random drawn from a beta distribution. The contrastive loss is then computed
between the two inputs and the augmented time series. The loss is a minor modification of NT-Xent
loss and is designed to encourage the correct prediction of the amount of mixing. We use the same
beta distribution as reported in the original Mixing-up model.

TS-TCC Eldele et al. (2021) leverages contextual information with a transformer-based autoregressive
model and ensures transferability by using both strong and weak augmentations. TS-TCC proposed a
challenging pretext task. An input time series sample is first augmented by adding noise, scaling, and
permuting time series. The views are then passed through an encoder consisting of three convolutional
layers before being processed by the temporal contrasting module. During temporal contrasting,
for each view, a transformer architecture is used to learn a contextual representation. The learned
representation is then used to predict latent observation of the other augmented view at a future time.
The contextual representations are then projected and maximized similarity using NT-Xent loss. For
this baseline, we mostly adopted the hyper-parameters presented in the original paper.

SimCLR Chen et al. (2020) is a state-of-the-art model in self-supervised representation learning
of images. It utilizes deep learning architectures to generate augmentation-based embeddings and
optimize the model parameters by minimizing NT-Xent loss in the embedding space. Although
initially proposed for image data, it is readily adapted to time series, as shown in Eldele et al. (2021).
An input time series sample is first augmented into two related views. Then a base encoder extracts
representation vectors. ResNet is used as an encoder backbone for simplicity. Then the projection
head transforms representations into a latent space where the NT-Xent loss is applied. For time series,
SimCLR investigated two augmentations, including jitter-and-scale, and permutation-and-jitter. All
the unmentioned hyper-parameters are kept the same as the original model.
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TFC Zhang et al. (2022a) introduces a strategy for self-supervised pre-training in time series by
modeling Time-Frequency Consistency. TFC specifies that time-based and frequency-based represen-
tations, learned from the same time series sample, should be closer to each other in the time-frequency
space than representations of different time series samples. Specifically, contrastive learning in
time-space is adapted to generate a time-based representation. In parallel, TFC proposes a set of novel
augmentations based on the characteristic of the frequency spectrum and produces a frequency-based
embedding through contrastive instance discrimination. All the unmentioned hyper-parameters are
kept the same as the original model.

APPENDIX C EXTENDED EXPERIMENTAL RESULTS

Table 5 is the performance with errorbars comparison on SEED, P19, EPILEPSY, and HAR, under
the label ratio of 10%.

APPENDIX D ADDITIONAL INFORMATION ON ROBUSTNESS VALIDATION

We investigate the robustness of SLOTS in three settings on DEAP dataset: trial-dependent, leave-
trials-out, and leave-subjects-out Liang et al. (2021); Kumari et al. (2022); Kim & Jo (2020); Mert &
Akan (2018). The details of these three settings are explained as follows.

1) Trial-dependent

In the DEAP dataset, we permute the trials of 32 subjects and randomly selected some trials as the
training set and the remaining trials as the testing set.

2) Leave-trials-out

In the DEAP dataset, each subject has 40 trials. We take out some of their trials for each of the 32
subjects to form the training set, and the remaining trials to form the testing set. For example, the first
36 trials are used as the training set and the last 4 trials as the testing set. The total number of trials in
the training set is 36× 32 = 1152; the total number of trials in the testing set is 4× 32 = 128.

3) Leave-subjects-out

In the DEAP dataset, there are a total of 32 subjects. We randomly select a part of the subjects as
the training set and a part of the subjects as the testing set. For example, 30 subjects are randomly
selected as the training set and the remaining 2 subjects as the testing set. The total number of trials
in the training set is 30× 40 = 1200; the number of trials in the test set is 2× 40 = 80.

APPENDIX E TRANSFERABILITY OF SLOTS

We note the trade-off between adaptability and model performance. While two-stage models may be
more effective in transfer learning or situations where pre-training and fine-tuning involve different
datasets, our SLOTS model is a superior choice for achieving optimal performance on a specific
dataset (Section 5).

In the two-stage framework, we use the DEAP dataset during pre-training and the SEED dataset during
fine-tuning. We report metrics including accuracy, precision (macro-averaged), recall, F1-score,
AUROC (one-versus-rest), and AUPRC. The evaluation results are shown in Table 6.
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Table 5: Performance with errorbars comparison on SEED, P19, EPILEPSY, and HAR, under the
label ratio of 10%.

Models SEED

Accuracy Precision Recall F1 score AUROC AUPRC

TS2Vec 0.5750 ±0.0561 0.6048 ±0.0751 0.5732 ±0.0836 0.5113 ±0.1023 0.6493 ±0.0651 0.6218 ±0.0712
TS2Vec++ 0.6252 ±0.0695 0.6191 ±0.0752 0.6084 ±0.0658 0.5599 ±0.0832 0.6607 ±0.0694 0.6962 ±0.0769
TS-TCC 0.5893 ±0.0852 0.5627 ±0.0935 0.5772 ±0.0876 0.5723 ±0.0987 0.7137 ±0.0876 0.6941 ±0.0635
TS-TCC++ 0.6172 ±0.0845 0.5935 ±0.0657 0.5776 ±0.0589 0.5977 ±0.0896 0.8004 ±0.0674 0.7637 ±0.0863
SimCLR 0.5050 ±0.0651 0.5115 ±0.0769 0.5313 ±0.0984 0.5155 ±0.0863 0.6963 ±0.0785 0.6982 ±0.0895
SimCLR++ 0.5736 ±0.0782 0.5344 ±0.0972 0.5505 ±0.0871 0.5374 ±0.0777 0.6802 ±0.0698 0.6361 ±0.0974
MixUp 0.5166 ±0.0642 0.5356 ±0.0759 0.5638 ±0.0968 0.5141±0.0874 0.6605 ±0.0778 0.6580 ±0.0965
MixUp++ 0.5569 ±0.0869 0.5701 ±0.0759 0.5638 ±0.0963 0.5265 ±0.0758 0.7494 ±0.0851 0.6603 ±0.0685
TFC 0.5500 ±0.0542 0.5356 ±0.0693 0.5487 ±0.0579 0.5290 ±0.0698 0.7499 ±0.0782 0.6423 ±0.0869
TFC++ 0.6087 ±0.0368 0.6071 ±0.0597 0.6071±0.0698 0.5990 ±0.0475 0.7847 ±0.0369 0.6685 ±0.0475
SLOTS(two-stage) 0.6468 ±0.0682 0.6573 ±0.0864 0.7316 ±0.0987 0.6169 ±0.0996 0.7575 ±0.0874 0.7572 ±0.0872
SLOTS(end-to-end) 0.7181 ±0.1023 0.7286 ±0.0964 0.7869 ±0.0867 0.6510 ±0.1136 0.8034 ±0.0987 0.7592 ±0.0869

Models P19

Accuracy Precision Recall F1 score AUROC AUPRC

TS2Vec 0.6580 ±0.0562 0.6467 ±0.0634 0.5520 ±0.0675 0.5669 ±0.0741 0.5171 ±0.0683 0.5860 ±0.0652
TS2Vec++ 0.6589 ±0.0358 0.6794 ±0.0210 0.6500 ±0.0235 0.6894 ±0.0355 0.6527 ±0.0196 0.6978 ±0.0210
TS-TCC 0.9216 ±0.0325 0.5968 ±0.0413 0.6597 ±0.0321 0.6156 ±0.0369 0.6941 ±0.0299 0.6667 ±0.0345
TS-TCC++ 0.9654 ±0.0681 0.7338 ±0.0593 0.6776 ±0.0581 0.7076 ±0.0698 0.7011 ±0.0782 0.7065 ±0.0635
SimCLR 0.9130 ±0.0594 0.5877 ±0.0425 0.5600 ±0.0501 0.5338 ±0.0632 0.5995 ±0.0596 0.5956 ±0.0720
SimCLR++ 0.9534 ±0.0368 0.6924 ±0.0244 0.6124 ±0.0543 0.6321 ±0.0576 0.7077 ±0.0147 0.6554 ±0.0247
MixUp 0.9136 ±0.0369 0.6744 ±0.0475 0.6481 ±0.0355 0.6477 ±0.0593 0.6802 ±0.0682 0.6361 ±0.0651
MixUp++ 0.9253 ±0.0741 0.6777 ±0.0655 0.6500 ±0.0357 0.6489 ±0.0698 0.7685 ±0.0241 0.6932 ±0.0369
TFC 0.9049 ±0.0357 0.6207 ±0.0366 0.6340 ±0.0445 0.6267 ±0.0369 0.6399 ±0.0485 0.7092 ±0.0436
TFC++ 0.9361 ±0.0563 0.7500 ±0.0684 0.6761 ±0.0536 0.6954 ±0.0458 0.7721 ±0.0412 0.7287 ±0.0369
SLOTS(two-stage) 0.9254 ±0.0842 0.7138 ±0.0933 0.6776 ±0.0789 0.7076 ±0.1023 0.7011 ±0.0698 0.7065 ±0.0563
SLOTS(end-to-end) 0.9596 ±0.1036 0.7580 ±0.1025 0.7416 ±0.1124 0.7788 ±0.1253 0.7703 ±0.0865 0.8270 ±0.0869

Models EPILEPSY

Accuracy Precision Recall F1 score AUROC AUPRC
TS2Vec 0.5125 ±0.0569 0.5604 ±0.0647 0.5118 ±0.0541 0.5287 ±0.0698 0.6519 ±0.0754 0.6233 ±0.0694
TS2Vec++ 0.6022 ±0.0658 0.6011 ±0.0794 0.5500 ±0.0635 0.5445 ±0.0774 0.6537 ±0.0896 0.6498 ±0.0894
TS-TCC 0.6175 ±0.0313 0.6338 ±0.0779 0.5000 ±0.0312 0.5403 ±0.0510 0.6029 ±0.0122 0.6726 ±0.0097
TS-TCC++ 0.6206 ±0.0818 0.6401 ±0.0938 0.5459 ±0.0936 0.5445 ±0.0928 0.6851 ±0.0678 0.7150 ±0.0715
SimCLR 0.6375 ±0.0751 0.5938 ±0.0698 0.5200 ±0.0876 0.5100 ±0.0964 0.6293 ±0.0854 0.6776 ±0.0769
SimCLR++ 0.6805 ±0.0984 0.6591 ±0.0842 0.5084 ±0.0687 0.5599 ±0.0964 0.6607 ±0.0578 0.6962 ±0.0635
MixUp 0.6175 ±0.0778 0.6115 ±0.0863 0.5313 ±0.0684 0.5485 ±0.0851 0.6596 ±0.0657 0.6782 ±0.0423
MixUp++ 0.6617 ±0.0412 0.6356 ±0.0324 0.5804 ±0.0256 0.5734 ±0.0421 0.6605 ±0.0332 0.6980 ±0.0236
TFC 0.6550 ±0.0369 0.6312 ±0.0475 0.5250 ±0.0452 0.5226 ±0.0637 0.5390 ±0.0635 0.6653 ±0.0569
TFC++ 0.6693 ±0.0786 0.6627 ±0.0684 0.5472 ±0.0756 0.5472 ±0.0692 0.7014 ±0.0462 0.6834 ±0.0553
SLOTS(two-stage) 0.6652 ±0.0896 0.6591 ±0.0974 0.5684 ±0.0963 0.5599 ±0.0823 0.6607 ±0.0785 0.6962 ±0.0862
SLOTS(end-to-end) 0.6955 ±0.1102 0.6952 ±0.0962 0.5999 ±0.1084 0.5819 ±0.1024 0.7105 ±0.0984 0.7600 ±0.0893

Models HAR

Accuracy Precision Recall F1 score AUROC AUPRC
TS2Vec 0.5738±0.0125 0.5555±0.0241 0.5768±0.0362 0.5565±0.0452 0.7623±0.0123 0.7413±0.0163
TS2Vec++ 0.6743 ±0.0698 0.6197 ±0.0541 0.5838 ±0.0751 0.5701 ±0.0832 0.8488 ±0.0564 0.8114 ±0.0452
TS-TCC 0.6596 ±0.0079 0.6154 ±0.0115 0.6158 ±0.0266 0.5459 ±0.0120 0.7511 ±0.0077 0.7414 ±0.0112
TS-TCC++ 0.6787 ±0.0128 0.6473 ±0.0093 0.6316 ±0.0096 0.6169 ±0.0005 0.7575 ±0.0053 0.7572 ±0.0159
SimCLR 0.6168 ±0.0347 0.6390 ±0.0478 0.5704 ±0.0563 0.5744 ±0.0698 0.7452 ±0.0452 0.7098 ±0.0365
SimCLR++ 0.6217 ±0.0657 0.6435 ±0.0593 0.6205 ±0.0741 0.5977 ±0.0863 0.9004 ±0.0634 0.7637 ±0.0413
MixUp 0.6277 ±0.0421 0.6393 ±0.0325 0.6138 ±0.0415 0.6055 ±0.0365 0.7705 ±0.0214 0.7481 ±0.0259
MixUp++ 0.6699 ±0.0358 0.6577 ±0.0563 0.6541 ±0.0684 0.6172 ±0.0687 0.8878 ±0.0632 0.8254 ±0.0412
TFC 0.6502 ±0.0658 0.6102 ±0.0753 0.6083 ±0.0861 0.6095 ±0.0742 0.7315 ±0.0436 0.7371 ±0.0438
TFC++ 0.7263 ±0.0362 0.6479 ±0.0214 0.6634 ±0.0421 0.6512 ±0.0369 0.8519 ±0.0128 0.8064 ±0.0231
SLOTS(two-stage) 0.6654 ±0.0896 0.6538 ±0.0968 0.6276 ±0.0785 0.6076 ±0.0993 0.8011 ±0.0741 0.7565 ±0.0635
SLOTS(end-to-end) 0.7312 ±0.0936 0.6661 ±0.0967 0.6720 ±0.0786 0.6615 ±0.1036 0.9013 ±0.0997 0.8811 ±0.0974

Table 6: Performance of baseline and SLOTS: pre-training on DEAP and fine-tuning on SEED.
Models Accuracy Precision Recall F1 Score AUROC AUPRC

TS2Vec 0.5781±0.0281 0.5683±0.0272 0.5325±0.0351 0.5278±0.0315 0.7488±0.0193 0.6151±0.0252
TS-TCC 0.4937±0.0250 0.5516±0.0147 0.4870±0.0275 0.4859±0.0202 0.6915±0.0332 0.5674±0.0101
SimCLR 0.5312±0.0312 0.5472±0.0363 0.5248±0.0284 0.5154±0.0252 0.7363±0.0173 0.6206±0.0159
MixUp 0.4875±0.0437 0.4832±0.0377 0.4878±0.0275 0.4647±0.0390 0.6887±0.0382 0.5677±0.0332
TFC 0.6031±0.0093 0.6135±0.0315 0.6028±0.0239 0.5847±0.0272 0.7900±0.0020 0.6642±0.0206
SLOTS (two-stage) 0.5250± 0.0062 0.5313±0.0185 0.5215±0.0112 0.5180±0.0122 0.7176±0.0050 0.5928±0.0014
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