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ABSTRACT

Learning good self-supervised graph representations that are beneficial to down-
stream tasks is challenging. Among a variety of methods, contrastive learning
enjoys competitive performance. The embeddings of contrastive learning are
arranged on a hypersphere that enables the Cosine distance measurement in the Eu-
clidean space. However, the underlying structure of many domains such as graphs
exhibits highly non-Euclidean latent geometry. To this end, we propose a novel
contrastive learning framework to learn high-quality graph embedding. Specif-
ically, we design the alignment metric that effectively captures the hierarchical
data-invariant information, as well as we propose a substitute of uniformity metric
to prevent the so-called dimensional collapse. We show that in the hyperbolic
space one has to address the leaf- and height-level uniformity which are related to
properties of trees, whereas in the ambient space of the hyperbolic manifold, these
notions translate into imposing an isotropic ring density towards boundaries of
Poincaré ball. This ring density can be easily imposed by promoting the isotropic
feature distribution on the tangent space of manifold. In the experiments, we
demonstrate the efficacy of our proposed method across different hyperbolic graph
embedding techniques in both supervised and self-supervised learning settings.

1 INTRODUCTION

Figure 1: Hypersphere vs. Hyperbola.

Figure 2: Dimensional Collapse on (left)
the ℓ2 ball vs. (right) the Poincaré disk).

Learning features in hyperbolic spaces has drawn a lot of
interest (Bronstein et al., 2017; Sun et al., 2021). Hyper-
bolic spaces are characterized by their negative curvature,
where the distance between two points can grow exponen-
tially in contrast to the Euclidean space where the distance
grows linearly. Compared with the Euclidean space, hyper-
bolic spaces have several advantages: 1) Geodesic distance
measure, 2) Better representation of hierarchical structures,
3) Increased capacity, and 4) Improved generalization.

Contrastive learning pulls related samples closer in the
Euclidean space while repelling unrelated samples from
each other (Chen et al., 2020a;b; Gao et al., 2021; Zhang
et al., 2022; Wang & Isola, 2020). Despite promising
results of contrastive learning (CL) (Chen et al., 2020a;
Zhang et al., 2022; Gao et al., 2021), CL suffers from a
fundamental limitation in the ability to model complex
patterns as CL inherently bounded by the dimensionality of the embedding space (Nickel & Kiela,
2017). In typical CL, embeddings are arranged on a hypersphere and compared by the inner (dot)
product or the Cosine distance (Figure 1). However, the underlying structure in many domains such
as graph data is inherently hierarchical (Bronstein et al., 2017). The quality of the representations is
determined by how well the geometry of the embedding space matches the structure of the data, and
has been explored in various works (Mathieu et al., 2019).

Wang & Isola (2020) showed that the quality of representation produced via contrastive learning is
characterized by two key factors: alignment and uniformity Wang & Isola (2020). Good alignment
ensures the preservation of distinct information contained by samples, while excessive alignment
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may lead to dimensional collapse where features become overly concentrated on specific points or
subspace (Figure 2) (Jing et al., 2021; Grill et al., 2020). To counteract this effect, the so-called
uniformity constraints are typically imposed to encourage samples to span the entire space evenly
to increase the feature diversity. In the Euclidean space, maximizing the pairwise distance between
samples on the hypersphere helps achieve a roughly uniform distribution on the surface.

However, since the hyperbolic space is non-compact and has infinite volume, maximizing the
uniformity directly in the hyperbolic space leads to pushing all samples towards the boundary
of Poincaré ball which has infinite volume. Thus, uniformity cannot be achieved. Therefore,
alignment with/without uniformity results in the Hyperbolic dimensional collapse (HDC), which can
be characterized by decline of Effective Rank (Roy & Vetterli, 2007) of features in the ambient space
of the hyperbolic manifold1. The HDC is illustrated in Figures 4a, 4c & 4d.

Exp Map

Log Map

Hyperbolic Space Tangent Space

Isotropic Rings 
of Different Levels 

Isotropic Gaussian Distribution
with Zero Mean

Figure 3: Mapping isotropic Gaussian from
the tangent plane at 0 to the ambient space of
the hyperbolic manifold (and back).

In this paper, we investigate the phenomenon of
HDC. We adopt the Poincaré model and introduce
a novel framework called Hyperbolic Graph Con-
trastive Learning (HyperGCL). The primary goal of
HyperGCL is to generate high-quality graph embed-
dings that avoid the HDC and can be effectively uti-
lized in various downstream tasks. To this end, we re-
visit the concept of alignment and uniformity for the
Hyperbolic embeddings. We adopt the Hyperbolic
distance2 to measure the alignment in the hyperbolic
space.

As the notion of uniformity is undefined for manifolds other than hypersphere, especially for a
manifold with an infinite volume of hyper-surface, instead of talking about the “uniformity” of
hyperbolic space, we will talk about the level-wise isotropic rings in the ambient space of the
hyperbolic manifold (Figure 3 (left)). We are interested in imposing high density of features
uniformly distributed along the ring circumference close to the boundary of Poincaré ball. We call
it the outer isotropic shell or simply put, isotropic shell. To optimize it, we discover that enforcing
an isotropic Gaussian distribution on the tangent plane at 0 to the Poincaré ball results in such
an isotropic shell, as shown in Figure 3. We are interested in such an ambient space because it
corresponds to a deep tree with uniformly distributed leaves (Fig. 4b).

Below we summarize our contributions as follows:

i. We investigate the dimension collapse problem in the hyperbolic contrastive learning, and we
associate the dimensional collapse with the tree “leaf collapse” and “height collapse”, describing
it from the point of view that trees can be represented in hyperbolic spaces (Ganea et al., 2018).

ii. We propose a novel graph contrastive learning framework in the hyperbolic space to generate
high-quality graph embedding for the various downstream tasks.

iii. To alleviate the dimensional collapse problem, identified and measured as decline in Efficient
Rank of features in the ambient space of the hyperbolic manifold, we propose a new isotropic
Gaussian loss operating on the tangent space of manifold at 0 which forces the desired feature
distribution (isotropic shell) in the ambient space of the hyperbolic manifold. We show that
imposing the isotropic Gaussian loss on the tangent space increases the Effective Rank of feature
representations on the tangent plane, and we show that the Effective Rank measured in the
ambient space correlates with the effective rank measured on the tangent plane.

2 PRELIMINARIES

2.1 ALIGNMENT AND UNIFORMITY ON HYPERSPHERE Sm−1

Contrastive learning is commonly used to encourage learned feature representations for positive
pairs to be similar while pushing away features from randomly sampled negative pairs. It is known

1In simple terms, the ambient space of the Hyperbolic manifold is the space in which hyperbola is defined.
2Hyperbolic distances are known to approximate tree/hierarchical distances (Theorem 1).
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that representations should capture the information shared between positive pairs while remaining
invariant to nuisance/noise factors (Tschannen et al., 2019; Wu et al., 2018). When the representation
resides on the hypersphere Sm−1 (l2 normalized), Wang & Isola (2020) argue that the above properties
can be achieved through optimization of the following objective:

Lcontrastive = E
(x,y)∼ppos

∥f(x) − f(y)∥2
2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
LRd

A

+ log E
i.i.d

x,y∼pdata

[e−t∥f(x)−f(y)∥
2
2]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
LRd

U

,

(1)

where f(⋅) denotes the encoder with the l2-normalized output, i.e., ∥f(x)∥2 = 1. One can observe

that (i) Alignment LRd

A makes two samples of a positive pair to be mapped to nearby feature vectors,

and thus be (mostly) invariant to undesired nuisance/noise factors, whereas (ii) Uniformity LRd

U

forces feature vectors be roughly uniformly distributed on the unit ball Sm−1, diversifying features.

Dimensional Collapse. Often referred to as spectral collapse (Liu et al., 2019a), dimensional
collapse is common in representation learning as shown in Figure 2. It occurs when the embedding
space is dominated by a small number of large singular values, while the remaining singular values
decay rapidly as the training progresses. This phenomenon limits the representation power of high-
dimensional spaces by restricting the diversity of information that can be learned. In the framework
of optimizing the alignment and uniformity, optimizing the uniformity helps alleviate the dimensional
collapse by encouraging features to be uniformly distributed in the entire latent space.

2.2 HYPERBOLIC GEOMETRY

To describe our HyperGCL, we begin with a brief review of the hyperbolic geometry and its several
properties that will be used in our model.

Poincaré Ball Model. A hyperbolic space H is a complete, connected Riemannian manifold with
constant negative sectional curvature. Cannon et al. (1997) describe five common hyperbolic models.
In this paper, we choose the Poincaré ball Dd

c ∶= {p ∈ Rn ∣ ∥p∥2
<

1
c
} as our basic model (Nickel

& Kiela, 2017; Tifrea et al., 2018), where 1
c
> 0 is the radius of the ball. The Poincaré ball is coupled

with a Riemannian metric gD(p) = 4c

(1−∥p∥2)2 gE, where p ∈ Dd
c and gE is the canonical metric of the

Euclidean space. The hyperbolic space is globally differomorphic to the Euclidean space.

Definition 1 (Riemannian distance in Dd
c ) For p, q ∈ Dd

c , the Riemannian distance on the Poincaré
ball induced by its metric gD is defined as Dc(p, q) = 2√

c
tanh

−1 (√c∥ − p⊕ q∥2) where ⊕ is the
Möbius addition and it is clearly differentiable.

Definition 2 (Tangent Space) The tangent space TxD
n
c (x ∈ Dn

c ) is defined as the first-order ap-
proximation of Dn

c around ponit x : TxD
n
c ∶= {v ∈ Rn+1 ∶ ⟨v,x⟩ = 0}.

To perform operations in the hyperbolic space, the bijective map from Rn to Dd
c maps Euclidean

vectors to the hyperbolic space. The so-called exponential map performs such a mapping (the
logarithmic map performs the inverse mapping).

Definition 3 (Exponential/Logarithmic Map) The exponential map exp
c
x(⋅) is a function from

TxD
d
c ≅ Rn to Dd

c . The logarithmic map log
c
x(⋅) maps from Dd

c to TxD
d
c . These maps are defined as:

exp
c
x(v)=x⊕(tanh(

√
cλ

c
x

2
∥v∥) v√

c∥v∥) and log
c
x(y)=

2√
cλc

x

tanh
−1(

√
c∥−x⊕ y∥) −x⊕ y

∥−x⊕ y∥ ,
(2)

where λ
c
x =

2
1−c∥x∥2 is the conformal factor that scales the local distances and ∥ ⋅ ∥ is the ℓ2 norm.

We use exp
c
0(⋅) and log

c
x(⋅) to transition between the Euclidean and Poincaré ball representations.

Tree Structure in Poincaré Ball. Hierarchical relations between data points call for Hyperbolic
embeddings. As the volume grows exponentially faster in the hyperbolic space (e.g., towards
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(a)Original (b) (c)Original (d)

Figure 4: Trees embedded in Poincaré disk. Fig. 4a, 4c & 4d are tree embeddings under the
dimensional collapse, whereas Fig. 4b is plausible “healthy” tree embedding (see text for details).

boundary of Poincaré Ball) than in the Euclidean space, the hyperbolic space is suitable for embedding
hierarchical structures with constant branching factors and an exponential number of nodes. Such a
property is formally discussed by Ganea et al. (2018) who state that any tree can be embedded into a
Poincaré disk (n = 2) with low distortion (unlike embedding the tree into the Euclidean space (Linial
et al., 1995)). Such a property is formally stated in the theorem below.

Theorem 1 (Ganea et al., 2018) Given a Poincaré ball Dd
c with an arbitrary dimension n ≥ 2 and

any set of points p1,⋯, pm ∈ Dd
c , there exists a finite weighted tree (T, dT ) and an embedding f ∶

T → Dd
c such that for all i, j, »»»»»dT (f−1 (xi) , f−1 (xj)) − dD (xi,xj)

»»»»» = O(log(1+
√
2) log(m)),

where dT (⋅, ⋅) and dD(⋅, ⋅) represent the tree and Hyperbolic distance, respectively.

3 METHODOLOGY

Dimensional Collapse in the Hyperbolic Space. Preventing the dimensional collapse in repre-
sentation learning is of utmost importance. Wang & Isola (2020) provide a new perspective on
this issue by introducing a uniformity metric that limits the degree of collapse in representations.
They demonstrate that in order to maintain diverse information for downstream tasks, the learned
embeddings should be evenly distributed on the hypersphere Sm−1. In the Euclidean space, a typical
collapse mode occurs when features collapse to a single point or a subspace, as depicted in Figure 2
(left). However, in the hyperbolic space, the collapse mode (Figure 2 (right)) differs due to the tree
property, as illustrated by Theorem 1.

Due to the exponential growth of hyperbolic space, direct application of uniformity fails to “fill” that
infinite volume uniformly. The uniformity is the ambient space of the hyperbolic manifold is also
meaningless as along boundaries of Poincaré ball, the hyperbolic space grows infinitely.

The dimensional collapse in Hyperbolic space results in an unbalanced distribution in the ambient
space of the hyperbolic manifold. Figure 4 shows the collapse mode may be associated with
inadequately constructed tree embeddings. A data point near the center of the Poincaré ball is
considered the root node, while data points near the boundary of the ball are leaf nodes. One
possible collapse mode is referred by us to as “leaf collapse,” where the embedding of the tree
node collapses into several dense regions at a specific level of the tree. Figure 4a shows an
example of this collapse, which is similar to the collapse observed on the hypersphere when the
model maps points in the opposite direction of the ball. Another collapse mode, called by us
as “height collapse” (Figure 4c), occurs when the underlying hierarchy results in a shallow tree,
limiting discriminative hierarchical relationships. Figure 4d includes both “leaf collapse” and
“height collapse” that limit the efficient use of the embedding space, and the expressive power of
the hyperbolic space for downstream tasks. Figure 4b shows a healthy embedding. The grey rings
illustrate density of feature vectors in the ambient space of hyperbolic manifold. Notice the outer
shell (ring) with isotropic density along circumference which has the most density, indicating we
attained a full tree depth due to the highest density close to the boundary of the Poincaré ball. In
contrast, the density (grey regions) in Fig. 4d show the dimensional collapse as encoder ends up
producing partially empty ambient space with a reduced Effective Rank of ambient features. The
actual feature collapse is caused by the encoder and that is why monitor the ambient space.
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Figure 5: Overall Framework of our Hyperbolic Graph Contrastive Learning (HyperGCL).

3.1 APPLYING ALIGNMENT AND OUTER SHELL ISOTROPY FOR HYPERBOLIC LEARNING

Overall Framework (Figure 5). We propose Hyperbolic Graph Contrastive Learning (HyperGCL)
that leverages the theoretical benefits of the hyperbolic space to impose an isotropic shell level-wise
in the ambient space and alignment directly in the hyperbolic space. Appendix A gives our notations.

To generate two augmented graph views, we randomly drop edges and nodes in the graph. The two
augmented graph views (X,A) and (X ′

,A
′) are fed into graph encoder fΘ. Z and Z

′ are output
node embeddings for the two augmented graph views, and fΘ is a GCN encoder with two layers:

Z = fΘ(X,A) = GCN2 (GCN1(X,A),A) where GCNl(X,A) = σ(D̂− 1
2 ÂD̂

− 1
2XΘ). (3)

Moreover, Ã = D̂
−1/2

ÂD̂
−1/2

∈ RN×N is the degree-normalized adjacency matrix, D̂ ∈ RN×N

is the degree matrix of Â = A + I where I is the identity matrix, X ∈ RN×dx contains the initial
node features, Θ ∈ Rdx×dh contains network parameters, and σ(⋅) is a parametric ReLU (PReLU).

The N pairs of node embeddings, {zi}Ni=1, {z′
i}Ni=1, are firstly projected into the he Poincaré ball Dd

c

as in Appendix B. We set a small margin ϵ > 0 to prevent infinite volume of the hyperbolic manifold.

The goal of Hyperbolic Graph contrastive learning (HyperGCL) is to find the representation to
minimize the distance between different augmented embeddings zi and z

′
i of the same sample node i

by maximizing hyperbolic alignment LDd
c

A and increase the diversity between distinct node embedding

zi and zj via improving the outer shell isotropy LDd
c

A . We define our new alignment and the outer
shell isotropy loss terms and propose to optimize the following objective:

LDd
c

HyperGCL(Z,Z
′) = LDd

c

A (Z,Z
′) + λ ⋅ LDd

c

U (Z,Z
′). (4)

In what follows, our focus is on how to design the alignment and especially the outer shell isotropy
for the contrastive hyperbolic learning to capture the hierarchical data-invariant information and
prevent the dimensional collapse of the ambient space of the hyperbolic manifold.

Optimizing Alignment in Dd
c . Hyperbolic spaces are not vector spaces in a traditional sense so

Euclidean operations are not applicable. Instead, the formalism of Möbius gyrovector spaces helps
generalize standard operations to hyperbolic spaces. We simply define3 the alignment of zi and z

′
i as:

LDd
c

A (Z,Z
′) = 1

N

N

∑
i=1

Dc (zi, z′
i) =

2

N
√
c

N

∑
i=1

tanh
−1 (

√
c
ÂÂÂÂÂ−zi ⊕ z

′
i
ÂÂÂÂÂ) . (5)

Optimizing the Outer Shell Isotropy. Alleviating the dimensional collapse in the hyperbolic space
is not an obvious task. One might naively change the Euclidian distance in Eq. (1) to the hyperbolic
distance, i.e., Dc(zi, z′

i) as
LDd

c

U = log E
i.i.d

z,z
−
∼pZ

[e−tDc(z,z−)] . (6)

However, unlike the Euclidean space where points are constrained on the hypersphere (Eq. (1)),
hyperbolic space is non-compact and has infinite volume. Thus, maximizing the pair-wise hyperbolic

3Kindly note we do not claim the use of Hyperbolic distance as a contribution.
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(a) N ([0, 1],diag([1, 1]))
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Figure 6: Visualization: leaf-level uniformity w.r.t. non-isotropic/non-zero mean Normal distribution.

distance of pairs of points in hyperbolic space via Eq. (6) will push embedding towards the boundary
of the Poincare Disk. It will also result in poor “filling” of the ambient space due to the infinite
volume at the boundaries, resulting in the height and leaf collapse as in Figure 4d and suboptimal
performance (Table 3). Moreover, computing pair-wise distance via Eq. (6) incurs large computation
overheads. Due to the exponential growth of volume of hyperbolic manifold, the desired leaf- and
height-level uniformity are required. Our investigation reveals that employing an isotropic Normal
distribution with zero mean, denoted as N (0, I), in the tangent plane at 0, T0D

n
c , yields satisfactory

outer shell isotropy in the ambient space of the hyperbolic manifold, as depicted in Figure 6c.

Thus, we propose to impose the feature distribution of learned representations with the ideal Normal
distribution in the tangent plane. We gather a set of data vectors from the learned representations in
one view, denoted as {zi}Ni=1 ∈ Dd

c , and calculate the mean and covariance matrix as follows:

µ =
1

N

N

∑
i=1

log
c
0(zi), Σ =

1

N

N

∑
i=1

[logc0(zi) − µ]T [logc0(zi) − µ] , (7)

where µ ∈ Rd
,Σ ∈ Sd++ and d is the dimension of vectors. Let y = log

c
0(z) ∈ Rd denote embedding

in the he tangent plane at 0. To facilitate the calculation of distribution distance, we apply a Gaussian
hypothesis to learned representations where y ∼ N (µ,Σ) and

q(y) = 1

(2π)d/2 det(Σ)1/2
exp (−1

2
(y − µ)TΣ−1(y − µ)) . (8)

Based on the above assumption, we employ KL divergence, a well-known distance for multivariate
Normal distributions, to calculate the distance between two distributions p and q:

DKL (p, q) = D(Σ,µ) = 1

2
[tr (I−1

Σ) + (0 − µ)T I
−1 (0 − µ) − d + log

det I

detΣ
]

= tr(Σ) − log det(Σ) − d + ∥µ∥2.

(9)

Then changing LDd
c

U in Eq. (4) to the outer shell isotropy term by computing D(Σ,µ) +D(Σ′
,µ

′)
and removing −2d constant yields:

LT
U = tr (Σ +Σ

′) − log det (ΣΣ
′)−2d + ∥µ∥2

+ ∥µ′∥2
. (10)

4 THEORETICAL ANALYSIS

4.1 ANALYTICAL MAPPING OF THE NORMAL DISTRIBUTION INTO THE AMBIENT SPACE OF
THE HYPERBOLIC MANIFOLD.

Theorem 2 The Normal distribution can be mapped into the ambient space of the Hyperbolic
manifold by the change of variable. Let the transformation variable be f(v) = exp

c
0(v) =

tanh(√c∥v∥) v√
c∥v∥2

. Then by mapping the Normal distribution from the tangent plane at 0 via
f(v) to the ambient space, we obtain:

pZ(z) = 0.5 pN (logc0(z);µ,Σ) ⋅ λc
z g

d−1(z), (11)
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where λ
c
z =

2

1−c∥z∥2
2

is the so-called conformal factor and g(z) =
1√

c∥z∥2
tanh

−1(√c∥z∥2) and
pN (⋅) is the probability density function (PDF) of the Normal distribution.

Proof 1 See Appendix C.

(a) 2D (σ = 1). (b) 3D(σ = 0.8). (c) 3D(σ = 1.1).

Figure 7: The theoretical distribution pZ(z) of z in the Hy-
perbolic space using Eq. (11). The rugged boundary effects
in 3D plots are due to poor-quality surface plotting method.

Figure 7 shows the analytical distribu-
tion in Eq. (11). Notice its agreement
with the simulations in Figure 6. We
have also verified that the integral of
the distribution within the support re-
gion equals 1.

4.2 BOUND ON THE EFFECTIVE
RANK IN THE TANGENT SPACE

Below we show that minimizing LT
U increases the Effective Rank which alleviated the dimensional

collapse. Effective Rank in the tangent space measures the effective dimension of embedding output
by the encoder fΘ in the tangent space. The higher effective rank denotes the lower degree of
dimensional collapse. As Effective Rank in the ambient space of the hyperbolic manifold is correlated
(just a non-linear mapping) with the Effective Rank in the tangent space, we can directly show how
imposing the Normal distribution in the tangent space increase the effective rank.

Definition 4 (Effective Rank.) Let matrix X∈Rm×nwith X=UΣV
T as its singular value decom-

position, where Σ is a diagonal matrix with singular values σ1≥⋯≥σQ≥0 with Q=min(m,n).
The distribution of singular values is defined as the normalized form pi = σi/∑Q

k=1 ∣σk∣. The effective
rank of the matrix X , is defined as Erank(X) = exp (H (p1, p2,⋯, pQ)), where H (p1, p2,⋯, pQ)
is the Shannon entropy given by H (p1, p2,⋯, pQ) = −∑Q

k=1 pk log pk.

Theorem 3 The Effective Rank of Σ is lower-bounded by −D(Σ,µ) as:

−D(Σ,µ) ≤ log [Erank(Σ)] + const (12)

Let {λ}di=1 be the eigenvalues of Σ, the equality is hold when λi = λj for all i, j.

Proof 2 Proof of Lemma 3 is in Appendix D.

Theorem 3 implies that the sum of the effective rank of Σ and Σ
′, i.e., Erank(Σ) + Erank(Σ′) is

lower-bounded by the proposed outer isotropy term −LT
U = −(D(Σ,µ) +D(Σ′

,µ
′)). Minimizing

LT
U achieves a higher effective rank which implies a lower degree of dimensional collapse.

5 EXPERIMENTS

5.1 RESULTS ON GRAPH REPRESENTATION LEARNING

Datasets. We use the citation networks Cora, CiteSeer and Pubmed whose nodes represent scientific
papers (Kipf & Welling, 2016). We also use the Disease dataset whose node labels tell whether the
node was infected or not. Airport is a dataset with nodes and edges representing airports and routes
from OpenFlights.org (Zhang & Chen, 2018). In the node classification (NC), we use 70/15/15%
splits for the Airport dataset, 30/10/60% splits for Disease, and we use standard splits (Kipf &
Welling, 2016) with 20 train examples per class for Cora, CiteSeer and PubMed. As in previous
works (Veličković et al., 2017), we evaluate node classification by measuring accuracy.

Setting and Baselines. Below we investigate both Euclidean embeddings and hyperbolic embeddings.
Our model is compared in (i) self-supervised and (ii) supervised (model trained with labeled data)
settings. In the self-supervised setting, we follow the linear evaluation from Veličković et al. (2017)
and Zhu et al. (2020), where models are first trained in an unsupervised manner. Subsequently, the
node representations are fed and evaluated with a logistic regression classifier on labeled data. Note
that HyperGCL operates in a self-supervised setting. For Euclidean graph embeddings, we compare

7
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Table 1: Comparison with various node classification models. ♥ marks the methods that are trained
in the supervised manner and ♦ marks the methods that are trained in the self-supervised manner.

Space Method Disease Airport PubMed CiteSeer Cora

Euclidean

♥ GCN 69.70±0.40 81.40±0.60 81.10±0.20 70.41±0.52 81.30±0.30
♥ GAT 70.40±0.40 81.50±0.30 82.00±0.30 70.14±0.38 83.00±0.70
♥ SAGE 69.10±0.60 82.10±0.50 80.40±2.20 69.91±1.38 77.90±2.40
♦ GRACE 69.61±0.49 82.79±0.40 83.51±0.37 71.42±0.64 81.13±0.44
♦ COSTA 67.12±0.39 81.19±0.40 84.31±0.37 70.77±0.24 82.14±0.62

Hyperbolic

♥ HNN 75.18±0.25 80.59±0.46 76.88±0.43 59.50±1.28 54.76±0.61
♥ HGNN 81.27±1.53 84.71±0.98 80.13±0.82 69.99±1.00 78.26±1.19
♥ HGCN 88.16±0.76 89.26±1.27 82.53±0.63 70.34±0.59 78.03±0.98
♥ HGAT 90.30±0.62 89.62±1.23 81.42±0.36 70.64±0.30 78.32±1.39
♦ HGCL 93.42±0.82 92.35±1.51 83.14±0.58 72.11±0.64 82.37±0.47
♦ HyperGCL 94.50±0.43 93.55±1.11 85.14±0.38 73.43±0.35 84.47±0.46

Table 2: Comparison with various competing models. ♠ denotes methods that are designed in the
Euclidean space and ♣ denotes methods that are designed in the hyperbolic space.

Datasets ♠NGCF ♠LGCN ♣HAE ♣HAVE ♣HGCF ♣HRCF ♣HyperGCL

Amazon-CD
R@10 0.0758 0.0929 0.0666 0.0781 0.0962 0.1003 0.1069
R@20 0.1150 0.1404 0.0963 0.1147 0.1455 0.1503 0.1573
N@10 0.0591 0.0726 0.0565 0.0629 0.0751 0.0785 0.0825
N@20 0.0718 0.0881 0.0657 0.0749 0.0909 0.0947 0.1043

Amazon-Book
R@10 0.0658 0.0799 0.0634 0.0774 0.0867 0.0900 0.0973
R@20 0.1050 0.1248 0.0912 0.1125 0.1318 0.1364 0.1489
N@10 0.0655 0.0780 0.0709 0.0778 0.0869 0.0902 0.0982
N@20 0.0791 0.0938 0.0789 0.0901 0.1022 0.1060 0.1060

Yelp2020
R@10 0.0458 0.0522 0.0360 0.0421 0.0527 0.0537 0.0587
R@20 0.0764 0.0866 0.0588 0.0691 0.0884 0.0898 0.0950
N@10 0.0405 0.0461 0.0331 0.0371 0.0458 0.0468 0.0508
N@20 0.0513 0.0582 0.0409 0.0465 0.0585 0.0594 0.0639

HyperGCL against several models. In the supervised setting, we consider GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2017), SGAE (Hamilton et al., 2017). In the self-supervised setting, we
compare HyperGCL with GRACE (Zhu et al., 2020) and COSTA (Zhang et al., 2022). For hyperbolic
graph embeddings, we compare HyperGCL with the supervised hyperbolic models HGCN (Chami
et al., 2019), HGAT (Zhang et al., 2021), HGNN (Liu et al., 2019c). We also compare HyperGCL
with the self-supervised hyperbolic model HGCL (Liu et al., 2022).

Results. Table 1 compares HyperGCL to baseline methods. HyperGCL achieves the highest
performance in both the supervised GNN and self-supervised GCL settings. Notably, the performance
gains of HyperGCL over Euclidean GNN models show that graph contrastive learning can benefit from
the hyperbolic geometry. Furthermore, HyperGCL outperforms HGCL, indicating the effectiveness
of our proposed hyperbolic alignment and outer shell isotropy losses.

5.2 RESULT OF REPRESENTATION LEARNING IN COLLABORATIVE FILTERING

In large-scale recommender systems, user-item relationships often exhibit scale-free or exponential
expansion characteristics, making them particularly suitable for hyperbolic embedding and adding
the outer shell isotropy loss into the HRCF (Yang et al., 2022). Appendix E provides detailed setting.

Results. Table 2 shows that HyperGCL outperforms the baseline models on all datasets across both
Recall@20 and NDCG@20. We notice that hyperbolic models equipped with the ranking loss (i.e.,
HGCF and HRCF) show a significant advantage over their Euclidean counterparts (i.e., LGCN),

demonstrating the superiority of hyperbolic geometry for modeling user-item networks. Using LDd
c

U to
adjust the embedding space also improves the performance by alleviating the dimensional collapse.

5.3 ANALYSIS

Ablation Study. Below we analyze various components of HyperGCL in Table 3, which shows

that applying LRd

U / LRd

A in the tangent space or applying LDd
c

U /LDd
c

A in the hyperbolic space does not
achieve higher effective rank, and yields low performance compared to our method. There is nothing
to prevent the network from learning a constant embedding for all nodes if only the alignment loss
(the third row) is used. While applying augmentation alleviates it from the full collapse, it achieves a
lower effective rank. Our HyperGCL (last row) achieves a higher effective rank and the best results.

The Impact of Gaussian Centering and Non-isotropy (tangent space). Below we explore the
impact of these above two factors on the outer shell isotropy loss. We scale vector 1 by some constant
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Table 3: Ablations on HyperGCL. Erank of embedding is measured in the ambient space (and (Erank)
in the tangent space) of the encoder output. Eranks in the ambient and tangent spaces correlate well.

Manifold Align Uni PubMed CiteSeer Cora Disease Airport

Acc. Erank Acc. Erank Acc. Erank Acc. Erank Acc. Erank

Euclidean LRd

A LRd

U 83.14±0.18 5.22(5.20) 71.43±0.52 23.01(23.03) 82.37±0.27 5.50(5.47) 73.40±0.24 2.19 (2.15) 81.30±0.21 2.34(2.32)

Tangent LRd

A LRd

U 82.34±0.35 4.79(4.78) 71.42±0.67 22.87(23.02) 81.34±0.33 4.94(4.93) 69.42±0.45 2.08(2.05) 79.53±0.41 2.02(2.01)

Hyperbolic L
Ddc
A × 71.02±0.13 1.22(1.19) 63.84±0.43 5.93(5.92) 72.27±0.12 1.23(1.22) 42.40±0.64 1.02(1.01) 52.31±0.31 1.06(1.05)

Hyperbolic LDdc
A L

Ddc
U 81.51±0.37 4.43(4.42) 70.23±0.41 21.01(21.01) 81.13±0.44 4.50(4.47) 90.30±0.82 3.59(3.58) 91.70±0.71 4.15(4.14)

Hyperbolic L
Ddc
A LT

U 85.14±0.38 6.89(6.88) 73.43±0.66 24.75(24.72) 84.47±0.16 7.76(7.75) 94.50±0.43 4.79(4.78) 93.55±1.11 5.25(5.23)

Table 4: Test performance w.r.t. the isotropic Nor-
mal distribution with different mean centers.

Gaussian PubMed CiteSeer Cora

Acc. Erank Acc. Erank Acc. Erank

N (0.0 ⋅ 1, I) 85.14±0.38 6.89 73.43±0.64 24.75 84.47±0.16 7.76
N (0.5 ⋅ 1, I) 80.13±0.24 4.27 69.43±0.22 18.34 80.27±0.11 4.31
N (1.0 ⋅ 1, I) 80.79±0.42 4.20 70.25±0.15 20.65 79.47±0.35 4.45

N (0, I0.3) 84.24±0.18 5.59 71.82±0.47 20.41 82.32±0.13 4.98
N (0, I0.5) 82.34±0.23 5.02 70.13±0.34 16.32 80.17±0.15 4.20
N (0, I0.7) 78.24±0.64 4.15 67.43±0.35 9.69 75.25±0.14 2.85

factor, as shown in Table 4. To check if non-
isotropy has a negative impact on results, we
randomly sample a fraction of p = 0.3, 0.5, 0.7
from the diagonal elements of I and set them
to be 0.01 to simulate the non-isotropic Normal
distribution (covariance matrix denoted by Ip).
When moving from the zero-mean or violating
isotropy of Gaussian, the mode collapse in the
hyperbolic space occurs, as in Figure 6a. Table
4 confirms the detrimental impact of non-isotropy and non-zero centering on experimental results.

Discussion on Erank. Table 3 reveals that Effective Ranks in the ambient space and the tangent
space are highly correlated (as expected as these spaces are connected via non-linear mapping).
Theorem 3 shows that imposing the isotropic Gaussian in the tangent space on features improves
its effective rank. Ergo, we improve the effective rank in the ambient space by promoting the
outer shell isotropy in the ambient space which means preventing the leaf and height collapse.

6 RELATED WORKS

Hyperbolic Graph Neural Networks. Recent works (Liu et al., 2019b; Chami et al., 2019; Zhang
et al., 2021; He et al., 2020; Liu et al., 2022) extend GNNs to the hyperbolic space. HGNN (Liu
et al., 2019b), HGCN (Chami et al., 2019), and HGAT (Zhang et al., 2021) use graph convolutions in
the tangent space. LGCN (He et al., 2020) proposes graph convolutions on the hyperbolic manifold.
HGNN (Liu et al., 2019b) (graph classification) provides an extension to dynamic graph embeddings.
HGAT (Zhang et al., 2021) (node classification and clustering) introduces a hyperbolic attention-based
graph convolution. HGCN (Chami et al., 2019) develops a learnable curvature model. LGCN (He
et al., 2020) aggregates the neighborhood information via centroid of Lorentzian distance. HGCL (Liu
et al., 2022) utilizes contrastive learning to improve the hyperbolic graph learning.

Graph Contrastive Learning. Inspired by CL methods in vision and NLP (Chen et al., 2020a; Gao
et al., 2021), CL has also been adapted to the graph domain. By adapting DeepInfoMax (Bachman
et al., 2019) to graph representation learning, DGI (Velickovic et al., 2019) learns embedding by
maximizing the mutual information to discriminate between nodes of original and corrupted graphs.
REFINE (Zhu & Koniusz, 2021) uses a simple negative sampling term inspired by skip-gram models.
Fisher-Bures Adversarial GCN (Sun et al., 2019) uses adversarial perturbations of graph Laplacian.
Inspired by SimCLR (Chen et al., 2020a), GRACE (Zhu et al., 2020) correlates graph views for
node-level task. while GraphCL method (Hafidi et al., 2020) learns embeddings for graph-level tasks.

7 CONCLUSIONS

We believe ours is the first to investigate the notion of dimensional collapse for hyperbolic graph
embedding. We have discussed that poor quality hyperbolic embedding space results in the leaf-
and height-level collapse of tree-equivalent cases. To that end, we have shown that imposing a
zero-centered isotropic Gaussian distribution in the tangent plane at x = 0, TxD

n
c , results in the

best levels of leaf- and height-level uniformity in the hyperbolic spaces. Such a notion uniformity
translates into the outer shell isotropy in the ambient space of the hyperbolic manifold. Moreover, by
employing KL-divergence, we have shown how such a zero-centered isotropic Gaussian distribution
can be mapped to the Poincaré disk via the exponential map.
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A NOTATIONS

Notations. In this paper, a graph with node features is denoted as G = (X,A) and X ∈ RN×dx is
the feature matrix (i.e., the i-th row of X is the feature vector xi of node vi) and A ∈ {0, 1}n×n
denotes the adjacency matrix of G, i.e., the (i, j)-th entry in A is 1 if there is an edge between nodes i
and j. The degree of node i, denoted as di, is the number of edges incident with i. The degree matrix
D is a diagonal matrix and its i-th diagonal entry is di. For a d-dimensional vector x ∈ Rd

,∥x∥2 is
the Euclidean norm of x. We use xi to denote the i th entry of x, and xij for the (i, j)-th entry of X.
diag(x) ∈ Rd×d is a diagonal matrix such that the i-th diagonal entry is xi. We use xi denote the
row vector of X . The trace of a square matrix X is denoted by tr(X), which is the sum along the
diagonal of X.

B PROJECTION INTO THE POINCARÉ BALL

Assume the output space of the graph neural network fΘ(⋅) is in the Poincaré ball Dd
c , we project the

all the node embedding to the Dd
c as

z ∶= {
z if ∥z∥ ≤

1
c

(1 − ϵ) z
c∥z∥ else (13)

C PROOF OF THEOREM 2

It directly follow from the transformation of random variables. Specifically, pZ(z) = pN (f−1(z)) ⋅
det (J(f−1(z))). Notice that for f(v) = exp

c
0(v) the inverse is logarithmic map f

−1(z) =

log
c
0(z) =

1√
c∥z∥2

tanh
−1(√c∥z∥2) z√

c∥z∥2
. The main difficulty lies with computing the Jacobian

J(f−1(z)) and its determinant det (J(f−1(z))), which (after crunching some maths) turns out to
enjoy a simple analytical form 0.5λ

c
z g

d−1(z).

D PROOF OF LEMMA 3

D(Σ,µ) = tr(Σ) − log det(Σ) − d =

d

∑
i=1

(λi − log λi − 1) . (14)

We usually centralize the embedding {logc0(zi)}, therefore we ignore the u for brevity in Eq. (14).
We know that x − log x ≥ 1 with equality at x = 1. and x − log x ≥ log x + 1 − log 4 with equality
at x = 2. Given λ1 ≥ λ2⋯ ≥ λd > 0, we have:

D(Σ,µ) ≥ (log λ1 + 1 − log 4) − (log λd + 1)
D(Σ,µ) ≥ (log λ1 − log λd) + const

D(Σ,µ) ≥ (log λ1

λd
) + const = log

λ1

λ2
+ log

λ2

λ3
⋯ log

λd−1

λd
+ log

λd

λd
+ const.

(15)

13



Under review as a conference paper at ICLR 2024

Let qi =
λi

∑d
i λi

and 0 < qi ≤ 1, then:

D(Σ,µ) = log
q1
q2

+ log
q2
q3

+ log
qd−1
qd

+ log
qd
qd

+ const

≥ log q1 + log q2⋯ log qd−1 + log qd + const

≥

d

∑
q=1

qi log qi + const

−D(Σ,µ) ≤ −
d

∑
q=1

qi log qi + const

exp(−D(Σ,µ)) ≤ exp(−
n−1

∑
q=1

qi log qi) + const

D(Σ,µ) ≥ − log Erank(Σ) + const.

(16)

Thus, our loss yields an upper bound on the Effective Rank.

E SETTING OF THE COLLABORATIVE FILTERING

Datasets. We use three publicly available datasets Amazon-Book, Amazon-CD, and Yelp2020, which
are also employed in the HRCF. The statistics are summarized in Table 5 in the appendix.

Baselines. Compared methods. To verify the effectiveness of our proposed method, the compared
methods include both well-known or leading hyperbolic models and Euclidean baselines. For
hyperbolic models, the HGCF (Sun et al., 2021), HVAE and HAE (Liang et al., 2018) and are
compared. HAE (HVAE) combines a (variational) autoencoder with hyperbolic geometry. Besides,
we include strong Euclidean baselines, i.e., LGCN (He et al., 2020) and NGCF (Wang et al., 2019).

Setting. To show that hyperbolic uniformity is crucial for learning the hierarchical representation, we
combine the proposed uniformity metric with the existing SOTA method (i.e., HRCF (Yang et al.,

2022)) by adding LDd
c

U as an auxiliary loss. We test the model using the relevancy-based metric
Recall@20 and the ranking-aware metric NDCG@20. In order to maintain a fair comparison and
reduce the workload of our experiments, we closely adhere to the settings of HRCF (Yang et al.,
2022). Specifically, we set the embedding size to 50 and fix the total training epochs at 500. The
range of λ values in the loss function is {10, 15, 20, 25, 30}, while the aggregation order is searched
in range from 2 to 10. When it comes to the margin, we explore values within the range of {0.1, 0.15,
0.2}. To train the network parameters, we employ Riemannian SGD (Bonnabel, 2013) with weight
decay, using values from the range 1e-4, 5e-4, 1e-3, along with learning rates of {0.001, 0.0015,
0.002}. RSGD is a technique that emulates stochastic gradient descent optimization while accounting
for the geometry of the hyperbolic manifold (Bonnabel, 2013). For the baseline settings of HAE,
HAVE and HGCF, we refer the reader to (Sun et al., 2021).

Table 5: Statistics of the experimental datasets.

Dataset #User #Item #Interactions Density

Amazon-CD 22,947 18,395 422,301 0.00100
Amazon-Book 52,406 41,264 1,861,118 0.00086
Yelp2020 71,135 45,063 1,940,014 0.00047

F IMPACT OF CURVATURE c.

Since the curvature parameter c controls the depth of hierarchy (height of the tree embedding), we
analyze its effect on results. The notion of height-level uniformity is related to the value of c: the
larger c is, the more concentration of the distribution towards the tree root. Figure 8 shows results
w.r.t. varying c. The result shows HyperGCL achieves the best result for different c meaning the the
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height-level uniformity is data dependent and related to sparsity of the datasets (sparsity is indicated
in caption brackets of Figure 8), e.g., graphs with relatively larger density require smaller c.
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Figure 8: Performance w.r.t. the value of curvature c. In caption brackets, we indicate the dataset
sparsity.

G BROADER IMPACT AND LIMITATIONS

Our method enjoys impact and limitations similar to those in graph contrastive learning. Typical
GCL models cannot guarantee they can utilize the feature space efficiently due to the mode collapse
phenomenon. As we utilize the feature space more efficiently due to the Hyperbolic geometry and
the penalty preventing collapse, our model works better, delivering better prediction on graphs for the
similar computational cost. Our idea can be universally applied to other scenarios where the mode
collapse is an issue. Of course, in this work we do not study fairness or biases but we believe that
poorer utilization of the feature space in other methods can exacerbate such issues.
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