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Figure 1: CLoRA is a training-free method that works on test-time, and uses contrastive learning to
compose multiple concept and style LoRAs simultaneously. Using pre-trained LoRA models, such
as L, for a person, and Lo for a specific type of flower, the goal is to create an image that accurately
represents both concepts described by their respective LoRAs. Observation: directly combining
these LoORA models to compose the image often leads to poor outcomes (see LoRA Merge). This
failure primarily arises because the attention mechanism fails to create coherent attention maps for
subjects and their corresponding attributes. CLoRA revises the attention maps in test-time to clearly
separate the attentions associated with distinct concept LoRAs.

ABSTRACT

Low-Rank Adaptation (LoRA) has emerged as a powerful and popular technique
for personalization, enabling efficient adaptation of pre-trained image generation
models for specific tasks without comprehensive retraining. While employing in-
dividual pre-trained LoRA models excels at representing single concepts, such as
those representing a specific dog or a cat, utilizing multiple LoORA models to cap-
ture a variety of concepts in a single image still poses a significant challenge.
Existing methods often fall short, primarily because the attention mechanisms
within different LoRA models overlap, leading to scenarios where one concept
may be completely ignored (e.g., omitting the dog) or where concepts are incor-
rectly combined (e.g., producing an image of two cats instead of one cat and one
dog). We introduce CLoRA, a training-free approach that addresses these limita-
tions by updating the attention maps of multiple LoRA models at test-time, and
leveraging the attention maps to create semantic masks for fusing latent represen-
tations. This enables the generation of composite images that accurately reflect
the characteristics of each LoRA. Our comprehensive qualitative and quantita-
tive evaluations demonstrate that CLoRA significantly outperforms existing meth-
ods in multi-concept image generation using LoRAs. Furthermore, we share our
source code and benchmark dataset to promote further research.
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1 INTRODUCTION

Diffusion text-to-image models (Ho et al.,|2020) have revolutionized the generation of images from
textual prompts, as evidenced by significant developments in models such as Stable Diffusion (Rom-
bach et al., 2022), Imagen (Saharia et al.| 2022), and DALL-E 2 (Ramesh et al., 2022). Their
applications extend beyond image creation, including tasks like image editing (Avrahami et al.,
2022bja; (Couairon et al.} 2022} Hertz et al.} 2022)), inpainting (Lugmayr et al.,2022)), and object de-
tection (Chen et al.|[2023). As generative models gaining popularity, personalized image generation
plays a crucial role in creating high-quality, diverse images tailored to user preferences. Low-Rank
Adaptation (Hu et al., 2021)), initially introduced for LLMs, has emerged as a powerful technique
for model personalization in image generation. LoRA models can efficiently fine-tune pre-trained
diffusion models without the need for extensive retraining or significant computational resources.
They are designed to optimize low-rank, factorized weight matrices specifically for the attention
layers and are typically used in conjunction with personalization methods like DreamBooth (Ruiz
et al., 2023). Since their introduction, LoRA models have gained significant popularity among re-
searchers, developers, and artists (Gandikota et al.,|2023; |Guo et al.,[2023). For example, CiVit.a
a widely used platform for sharing pre-trained models, hosts more than 100K LoRA models (Luo
et al., 2024) tailored to specific characters, clothing styles, or other visual elements, allowing users
to personalize their image creation experiences.

While existing LoORA models function as plug-and-play adapters for pre-trained models, integrating
multiple LoRAs to facilitate the joint composition of concepts is an increasingly popular task. The
ability to blend a diverse set of elements, such as various artistic styles or the incorporation of unique
objects and people, into a cohesive visual narrative is crucial for leveraging compositionality (Huang
et al.| |2023bj Zhang et al., 2023)). For example, consider a scenario where a user has two pre-trained
LoRA models, representing a cat and a dog in a specific style (see Fig. [I). The objective might be
to use these models to generate images of this particular cat and dog against various backgrounds or
in different scenarios. However, using multiple LoORA models to create new, composite images has
proven to be challenging, often leading to unsatisfactory results (see Fig. [T).

Prior works on combining LoRA models, such as the application of weighted linear combination
of multiple LoRAs (Ryu, 2023)), often lead to unsatisfactory outcomes where one of the LoRA
concepts is often ignored. Other approaches (Shah et al.,[2023;Huang et al.|[2023a)) train coefficient
matrices to merge multiple LoRA models into a new one. However, these methods are limited by the
capacity to merge only a single content and style LoRA (Shah et al.,2023)) or by performance issues
that destabilize the merging process as the number of LoRAs increases (Huang et al., 2023a)). Other
methods, such as Mix-of-Show (Gu et al.| [2023)), necessitate training specific LORA variants such
as Embedding-Decomposed LoRAs (EDLoRAs), diverging from the traditional LoORA models (e.g.,
civit.ai) commonly used within the community. They also depend on controls like regions defined by
ControlNet (Zhang & Agrawalal 2023) conditions, which restrict their capability for condition-free
generation. More recent works, such as OMG (Kong et al.|[2024) utilizes off-the-shelf segmentation
methods to isolate subjects during generation, with the overall effectiveness significantly dependent
on the accuracy of the underlying segmentation model.

Contrary to these methods, we propose a solution that composes multiple LoRAs at test-time, with-
out the need for training new models or specifying controls. Our approach involves adjusting the
attention maps through latent updates during test-time to effectively guide the appropriate LoORA
model to the correct area of the image while keeping LoRA weights intact. Our approach is inspired
by the following novel observation: issues of ‘attention overlap’ and ‘attribute binding’, previously
noted in image generation (Chefer et al.| [2023; |/Agarwal et al 2023), also exist in LoRA models.
Attention overlap occurs when specialized LoRA models redundantly focus on similar features or
areas within an image. This situation can lead to a dominance issue, where one LoRA model might
overpower the contributions of others, skewing the generation process towards its specific attributes
or style at the expense of a balanced representation (see Fig. [T). Another related issue is attribute
binding, especially occurs in scenarios involving multiple content-specific LoRAs where features
intended to represent different subjects blend indistinctly, failing to maintain the integrity and rec-
ognizability of each concept. For instance, consider the text prompt ‘An L4 cat and an L5 dog in the
forest’ in Fig. [1} which depicts two LoRA models tailored for a specific cat and a dog, respectively.

'http://civit.ai
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The straightforward approach of composing these LoORA models by merging the LoRA weights (see
Fig. |l|-LoRA Merge) struggles to produce the intended results. This is because the L, attention,
which should focus on the cat, blended with the L5 attention, designated for the dog. Therefore, the
output incorrectly features two cats, entirely omitting the dog. In contrast, our approach effectively
refines the attention maps of the LoORA models in test-time to concentrate on the intended attributes,
and produces an image that accurately places both LoORA models in their correct positions (see
Fig. [I). Our framework, CLoRA, effectively composes multiple LoORA models while addressing the
critical challenges of attention overlap and attribute binding. Our key contributions are as follows:

* We present a novel approach based on a contrastive objective to seamlessly integrate mul-
tiple content and style LoRAs simultaneously. Our approach works in test-time and does
not require training.

* To the best of our knowledge, this work represents the first comprehensive attempt to
observe and address attention overlap and attribute binding specifically within LoRA-
enhanced image generation models. To address these issues, our method dynamically up-
dates latents based on attention maps at test-time and fuses multiple latents using masks
derived from cross-attention maps corresponding to distinct LoRA models.

* Unlike some of the previous methods, our approach does not need specialized LoRA vari-
ants and can directly use community LoRAs on civit.ai in a plug-and-play manner.

* We introduce a diverse benchmark dataset comprising various LoRA models and an exten-
sive array of prompts covering characters, objects, and scenes. This dataset establishes a
standardized framework for evaluating the seamless integration of multiple concepts and
style adaptations in LoRA-based image generation.

2 RELATED WORK

Attention-based Methods for Improved Fidelity. Text-to-image diffusion models often struggle
with fidelity to input prompts, particularly when dealing with complex prompts containing multiple
concepts or attributes (Tang et al.|[2022)). Recent advancements in high-fidelity text-to-image diffu-
sion models (Chefer et al.,[2023;|L1 et al.,|2023;|/Agarwal et al.,|2023) share our approach of utilizing
attention maps to enhance image generation fidelity. A-Star (Agarwal et al., 2023) and DenseDif-
fusion (Kim et al., [2023)) refine attention during the image generation process. |Chefer et al.| (2023))
address neglected tokens in prompts, while |L1 et al.|(2023) propose separate objective functions for
missing objects and incorrect attribute binding issues. While these methods tackle attention overlap
and attribute binding within a single diffusion model, our approach uniquely addresses these issues
across multiple LoORA models. [Meral et al.| (2023) use a contrastive approach on a single diffusion
model, whereas our technique resolves these challenges across multiple diffusion models (LoRAs),
each fine-tuned for distinct objects or attributes.

Personalized Image Generation. The field of personalized image generation has evolved signifi-
cantly, building upon a rich history of image-based style transfer (Efros & Freeman, 2023} [Hertz-
mann et al.,|2023)). Early advancements came through convolutional neural networks (Gatys et al.,
2016; \Huang & Belongie| 2017; Johnson et al.l 2016) and GAN-based approaches (Karras et al.,
2019;[2020; |Chong & Forsyth, 2022} |Gal et al.,|2022b; Kwon & Yel |2023)). More recently, diffusion
models (Ho et al.,|2020; Rombach et al., [2022;|Song et al., |2020) have offered superior quality and
text control. In the context of large text-to-image diffusion models, personalization techniques have
taken various forms. Textual Inversion (Gal et al.| 2022a)) and DreamBooth (Ruiz et al., [2023)) focus
on learning specific subject representations. LoRA (Ryul |2023)) and StyleDrop (Sohn et al., [2023))
optimize for style personalization. Custom Diffusion (Kumari et al.l [2023) attempts multi-concept
learning but faces challenges in joint training and style disentanglement.

Merging Multiple LoRA Models. The combination of LoRAs for simultaneous style and subject
control is an emerging area of research, presenting unique challenges and opportunities. Existing
approaches have explored various methods, each with its own limitations. Weighted summation, as
proposed by Ryu| (2023), often yields suboptimal results due to its simplicity. |Gu et al.| (2023) sug-
gest retraining specific EDLoRA models for each concept, which limits the approach’s applicability
to existing community LoRAs. Wu et al.| (2023)) propose composing LoRAs through a mixture of
experts, but this method requires learnable gating functions that must be trained for each domain.
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Test-time LoRA composition methods, such as Multi LoRA Composite and Switch by |Zhong et al.
(2024), have also been proposed, but these do not operate on attention maps and may produce unsat-
isfactory results. ZipLoRA (Shah et al.l|2023) synthesizes a new LoRA model based on a style and a
content LoRA, however their method falls short in handling multiple content LoRAs. OMG by Kong
et al|(2024) utilizes off-the-shelf segmentation methods to isolate subjects during generation, with
its performance heavily dependent on the multi-object generation fidelity of diffusion models and
the accuracy of the underlying segmentation model. Our approach distinguishes itself by directly
addressing attention overlap and attribute binding issues in the context of multiple LoORA models.
We incorporate test-time generated masks, enhancing the disentanglement of LoORA models and ef-
fectively resolving attention map and attribute binding problems. This offers a more comprehensive
solution for high-fidelity, multi-concept image generation, bridging the gap between single-model
attention refinement and effective LORA model composition.

3 METHODOLOGY

This section outlines the foundational concepts of diffusion models, and Low-Rank Adaptation,
followed by a detailed discussion of our novel approach, CLoRA (see Fig. [2).

3.1 BACKGROUND

Diffusion models. Our method is implemented on the Stable Diffusion 1.5 (SDv1.5) model, a state-
of-the-art text-to-image generation framework for LoRA applications. Stable Diffusion operates in
the latent space of an autoencoder, comprising an encoder £ and a decoder D. The encoder maps
an input image x to a lower-dimensional latent code z = £(x), while the decoder reconstructs the
image from this latent representation, such that D(z) = x. The core of Stable Diffusion is a diffusion
model (Ho et al., [2020) trained within this latent space. The diffusion process gradually adds noise
to the original latent code zg, producing z; at timestep {. A UNet-based (Ronneberger et al., [2015)
denoiser ¢y is trained to predict and remove the noise. The training objective is defined as:

L=E., N0, € — €alze, c(P), t)]?] (D

where ¢(P) represents the conditional information derived from the text prompt P. Stable Diffusion
employs CLIP (Radford et al., 2021)) to embed the text prompt into a sequence ¢, then fed into the
UNet through cross-attention mechanisms. In these layers, c is linearly projected into keys (X') and
values (V'), while the UNet’s intermediate representation is projected into queries (()). The attention
at time ¢ is then calculated as A; = Softmax(QKT/+/d). These attention maps A; can be reshaped
into R"*w*! where h and w are the height and width of the feature map (typically 16 x 16, 32 x 32,
or 64 x 64), and [ is the text embedding sequence length. Our work utilizes the 16 x 16 attention
maps, which capture the most semantically meaningful information (Hertz et al., 2022).

LoRA models. LoRA fine-tunes large models by introducing rank-decomposition matrices while
freezing the base layer. In SD fine-tuning, LoRA is applied to cross-attention layers responsible for
text and image connection. Formally, a LoORA model is represented as a low-rank matrix pair (W,
Win). These matrices capture the adjustments introduced to the W weights of a pre-trained model
(). The updated weights during image generation are calculated as W’/ = W + W;,,Wy,;. The
low-rank property ensures that (W, and Wj,) have significantly smaller dimensions compared to
full-weight matrices, resulting in a drastically reduced file size for the LoRA model. For example,
while a full SDv1.5 model is about 3.44GB, a LoRA model typically ranges from 15 to 100 MB.

Contrastive learning. Contrastive learning has emerged as a powerful method in representation
learning (Chen et al.l 2020; Oord et al., [2018)). Its core principle is bringing similar data points
closer together in a latent embedding space while pushing dissimilar ones apart. Let x € & represent
an input data point, with 2T denoting a positive pair (both 2 and 2 share the same label) and x~
denoting a negative pair (where the data points have different labels). The function f : X — RY
is an encoder that maps an input x to an N-dimensional embedding vector. Various contrastive
learning objectives are proposed such as InfoNCE (also known as NT-Xent) (Oord et al., [2018)
which we utilize in this work.
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Figure 2: Overview of CLoRA, a training-free, test-time approach for composing multiple LoRA
models. Our method accepts a user-provided text prompt, such as ‘An L; cat and an Ly dog,’
along with their corresponding LoRA models L; and Ly. CLoRA applies test-time optimization to
attention maps to address attention overlap and attribute binding issues using a contrastive objective.

3.2 CLoRA

Given a text prompt such as ‘An L; cat and an Lo dog,’ and their corresponding LoRA models
L, and L, our method aims to create an image that reflects the text prompt while respecting the
corresponding LoRA models (see Fig. [2). Our method refines the attention maps of the LoORA
models at test-time using a contrastive objective. This objective encourages the attention maps to
focus on the intended attributes, thereby resolving issues of attention overlap and attribute binding.
Next, we discuss the key components of our contrastive objective and explain how positive and
negative pairs are formed.

For simplicity, let us assume that we have two LoRA models to compose. First, we decompose
the user-provided prompt into components that align with specific concepts (57 and S2), defined by
different LoRAs (L and Ls). For example, given the prompt ‘an L; S; and an Ly S5’ (e.g., ‘An
Lq catand an Ly dog,’), where the LoORA models ; and - represent the personalized concepts for
S1 and S5, respectively, we employ three prompt variations. First is the original prompt, ‘an S; and
an S5 . Second is the L;-applied prompt, ‘an L; S; and an S5 . Lastly, Lo-applied prompt, ‘an S
and an L, S5°. We then generate corresponding text embeddings using the CLIP model. If the text
encoder was fine-tuned during LoRA training, the embeddings are generated using the fine-tuned
text encoder. Otherwise, we use the embeddings from the base model. These prompt variations will
be used to form positive and negative pairs during the contrastive objective.

During the image generation process, Stable Diffusion utilizes cross-attention maps to guide atten-
tion on specific image regions at each diffusion step. However, as discussed before, these attention
maps suffer from attention overlap and attribute binding issues, leading to unsatisfactory composi-
tions. We apply a test-time optimization to the attention maps to encourage that each concept (e.g.,
*Sy” for the cat or S5’ for the dog) is represented according to their corresponding LoRA. In order to
do this, we first categorize cross-attention maps based on their corresponding tokens in the prompts,
creating concept groups, C'; and C5. For the first group, C'1, we include the cross-attention map for
S1 from the original prompt, cross-attention maps for ; and S; from the L;-applied prompt, and
the cross-attention map for S; from the Lo-applied prompt. Similarly, for the second group, C5, we
include the cross-attention map for .S, from the original prompt, the cross-attention map for S, from
the L;-applied prompt, and cross-attention maps for L, and S5 from the Lo-applied prompt. This
grouping will be utilized in our contrastive objective to ensure that the diffusion process maintains
a coherent understanding of each concept while integrating the stylistic variations introduced by the
LoRAs. Separating these concepts will also prevent attention overlap between different concepts,
ensuring that each element of the prompt is faithfully represented in the generated image.
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Figure 3: The qualitative results produced by CLoRA showcase a range of compositions, includ-
ing animal-animal, object-object, and animal-object pairs. Left columns display sample images
generated by the individual LoORA models. Our approach is successful at composing multiple con-
tent LoORAs—for example, combining a cat and a dog—along with scene LoRAs, such as pairing a
cat with a canal scene. Moreover, it demonstrates the capability to integrate more than two LoRAs,
exemplified by the composition of a panda, shoe, and plant LoRA (see bottom right).

CLoRA Contrastive Objective: We design a contrastive objective during inference to maintain
consistency with the input prompt. We used the form of InfoNCE loss due to its fast convergence
2018). Our loss function takes pairs of cross-attention maps, processing pairs within
the same group as positive and pairs from different groups as negative. For example, given the
text prompt ‘An L; cat and an Ly dog,” and their corresponding concept groups C (‘cat’ and L)
and C5 (‘dog’ and L), the attention maps of the concept group C'; form positive pairs. In other
words we want the attention map for the cat from the original prompt and the attention map for
Ly from the Lq-applied prompt get close to each other since we want L; LoRA to be aligned with
its corresponding subject, cat. In contrast, the attention maps of different concept groups C'; and
C5 (e.g., the attention map for cat and dog from the original prompt) form negative pairs since we
want these attention maps to repel each other to avoid attention overlap issue (see Fig. 2] for an
illustration). The loss function for a single positive pair is expressed as:

exp(sim(A7, A7) /7)

L = —lo : '
¢ Yone(itir i) SP(SIM(AT, A) /7)

2

where cosine similarity sim(u, v) is defined as sim(u, v) = u” - v/|Ju||||v||. Here, 7 is the temper-
ature parameter, and the denominator includes one positive pair and all negative pairs for A7. The
overall InfoNCE loss is averaged across all positive pairs.

Latent Optimization. The loss function guides the latent representation during the diffusion pro-
cess. The latent representation is updated iteratively similar to |Chefer et al.| (2023) and |Agarwal

(2023): z; = z — oV, L where vy is the learning rate at step ¢.

Masked Latent Fusion. In our approach, after a backward step in the diffusion process, we combine
the latent representations generated by Stable Diffusion with those derived from additional LoRA
models. While the direct combination of these latents is possible as described by
(2023), we introduce a masking mechanism to ensure that each LoRA influences only the relevant
regions of the image. This is achieved by leveraging attention maps from the corresponding LoRA
outputs to create binary masks. To create the masks, we first extract attention maps for the relevant
tokens from each LoRA-applied prompt. For L, we use the attention maps corresponding to the
tokens L1 and S from the L;-applied prompt, ‘an L; S; and an S5’. Similarly, for Lo, we extract
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Figure 4: Qualitative Comparison of CLoRA, Mix of Show, MultiLoRA, LoRA-Merge, ZipLoRA
and Custom Diffusion. Our method can generate compositions that faithfully represent the LoRA
concepts, whereas other methods often overlook one of the LoRAs and generate a single LoRA
concept for both subjects. Please zoom-in for more details. See Appendix for more comparisons.

the attention maps for the tokens L, and S5 from the Lo-applied prompt, ‘an S7 and an Lo S5’.
To create binary masks, we apply a thresholding operation to these attention maps, following a
method akin to semantic segmentation described by :Tang et al. . For each position (z,y) in
the attention map, the binary mask value M|z, y] is determined using the equation:

Mz, =1 (A[x, W= /\maxA[iJ]) )
2,7

where M [x, y] represents the binary mask output, A[z, 3] is the attention map value at position (z, )
for the corresponding token, I(+) is the indicator function that outputs 1 if the condition is true (and 0
otherwise), and A is a threshold value between 0 and 1. This thresholding process ensures that only
areas with attention values exceeding a certain percentage of the maximum attention value in the map
are included in the mask. When multiple tokens contribute to a single LoRA (such as ‘L;’ and Sy’
for L1), we perform a union operation on the individual masks to ensure that any region receiving
attention from either token is included in the final mask for that LoRA. This masking procedure
restricts the influence of each LoRA to the relevant regions, thereby preserving the integrity of the
generated image while incorporating the specific stylistic elements defined by the LoRAs.

4 EXPERIMENTS

In this section, we present qualitative results, along with quantitative comparisons and a user study.
For additional results, please refer to our supplementary material.

Datasets. Due to the absence of standardized benchmarks for composing multiple LoRA models,
we propose a new benchmark to evaluate the integration of multiple content and style adaptations.
Our benchmark dataset consists of 131 LoRA models trained with custom characters generated
with the character sheet trick (see Appendix [A)) and various concepts from Custom Concept dataset
(Kumari et al., 2023)). These models are accompanied by 200 prompts, such as ‘A plushie bunny and
a flower in the forest, where both ‘plushie bunny’ and ‘flower’ have corresponding LoRA models.
Additional details about the dataset and composition prompts can be found in the Appendix [A]

Implementation Details. For each prompt, we use 10 different seeds, running 50 iterations with
Stable Diffusion v1.5. Following [Chefer et al. (2023), we apply optimization in iterations 7 €
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(c) Results showcasing the composition of two subject and one style LoRAs.

Figure 5: Qualitative Results and Comparisons of CLoRA. (a) Our method can successfully com-
pose images using three LoRAs. (b) Our method can handle realistic compositions featuring hu-
mans. (c) Our method can seamlessly compose images using style, object, and human LoRAs.

{0, 10, 20}, and stop further optimization after ¢ = 25 to prevent artifacts. For contrastive learning,
we set the temperature to 7 = 0.5 in Equation[2] Image generation was performed on a V100 GPU.
Our approach takes ~ one minute to compose multiple LoORA models for image generation, and can
successfully combine up to four LoRAs on a single L40 Nvidia GPU.

Baselines. We compare our results with baselines such as LoRA-Merge that merges
LoRAs as a weighted combination, ZipLoRA 2023) that synthesizes a new LoORA model
based on the provided LoRAs, Mix-of-Show that requires training a specific LORA
type, Custom Diffusion (Kumari et al.,[2023)) and MultiLoRA (Zhong et al.} 2024). For MultiLoRA,
we use the ‘Composite’ configuration, as it outperformed MultiLoRA-Switch (Zhong et al,[2024).

4.1 QUALITATIVE EXPERIMENTS

Qualitative Results. The qualitative performance of our approach is shown in Fig. [[|and 3] Our
method successfully composes images using multiple content LoRAs, such as a cat and dog, within
varied backgrounds like the mountain or moon (Figs. [[]and [3). Furthermore, it successfully com-
poses a content LORA with a scene LoRA, such as situating the car within a specific canal as defined
by the scene LoRA (Fig. [3). Our method also demonstrates versatility, combining diverse LoRAs,
such as pairing a car with a bicycle or clothing (Fig. [3). Notably, it handles compositions involving
more than two LoRAs, as illustrated by a panda, shoe, and plant in the bottom right of Fig. [3]

Qualitative Comparison We provide a qualitative comparison between our method and several
baselines in Fig. ], focusing on animal-animal and object-object compositions. Each comparison
visualizes four randomly generated compositions using our method, Mix of Show 2023),
MultiLoRA (Zhong et all, [2024), LoRA-Merge [2023), ZipLoRA (Shah et al., 2023), and
Custom Diffusion (Kumari et al.| [2023). Our method faithfully captures both concepts from the
corresponding LoRA models without attention overlap issues. Other approaches often struggle with
attribute binding or fail to represent one of the concepts due to overlapping attention maps. For
example, in a prompt such as ‘An L; cat and an Ly penguin in the house’ (where L; represents a
cat LoRA and L a plush penguin LoRA), Mix of Show blends the two objects, producing either
two plush penguins while ignoring the cat, or a single cat with plush-like features (Fig. [d} top-left).
MultiLoRA fails to resemble the specific LoORA models, producing either two cats or two penguins.
LoRA-Merge generates a cat that somewhat aligns with the intended LoRA but does not capture
the penguin accurately. ZipLoRA frequently fails to incorporate the plush penguin, instead creating
two cats due to its design constraints for combining multiple content LoRAs. Similarly, Custom
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Table 1: Average, Minimum/Maximum DINO image-image similarities between the merged
prompts and individual LoRA models, User Study. For all metrics, the higher, the better.

| Merge|Ryu|(2023} | Composite  Switch|Zhong et al.|(2024} | ZipLoRA |Shah et al.|(2023} | Mix-of-Show|Gu et al. |(2023} | Ours
o Min 0.376 + 0.041 | 0.288 £ 0.049 0.307 & 0.055 0.369 & 0.036 0.407 £ 0.035 0.447 £ 0.035
Z Avg 0.472 +£0.036 | 0.379 & 0.045 0.395 4 0.053 0.496 + 0.030 0.526 £ 0.024 0.554 4 0.028
A Max. 0.504 +0.038 | 0.417 & 0.046 0.432 £+ 0.055 0.533 +0.032 0.564 £+ 0.024 0.593 + 0.024
USerStudy‘ 2.0+ 1.10 ‘ 211+ 1.12 1.98 + 1.14 ‘ 2.81 £ 1.18 ‘ 203+ 1.12 ‘ 332+1.13

Diffusion often overlooks the cat LoRA entirely, focusing only on generating the plush penguin.
Similar observations can be made when combining object-object LoRAs (see Fig. 4] bottom row).
Our method successfully generates both elements within a composition, e.g. effectively positioning
a specific pair of shoes and a purse as dictated by different LoORA models (Fig. [} bottom-left). In
contrast, other approaches frequently miss one of the elements or create objects that do not match the
characteristics outlined by the respective LoRAs. Additionally, these methods often struggle with
attribute binding issues. This problem is evident in Fig. [ (bottom right), where the book LoRA
tends to blend with the cup LoRA, leading to an image of a cup that features the cover of the book.
Please see Appendix [C|for additional comparisons.

Composition with three LoRA models. We evaluate the ability to compose with more than two
LoRA models in Fig. [5a] Our method effectively maintains the characteristics of each LoRA in
the composite image, while other methods struggle to create coherent compositions, often blending
multiple models togetheﬂ Moreover, Fig. shows sample compositions using 3 LoRAs that
corresponds to style, object and human LoRAs.

Composition with human subjects. We compare the composition of human subjects in Figs. |I|and
[5b} Our method seamlessly composes human subjects with objects, preserving the distinct properties
of each LoRA. Other methods often struggle to integrate both elements effectively (see Fig. [5b).

Composition with style LoRAs. Our approach can blend both style and concept LoRAs (see Figs.
and [5¢). The results show that our method captures the unique features of each content LORA
(e.g., a flower and a human), while applying the style LoORA consistently across the entire image.

4.2 QUANTITATIVE EXPERIMENTS

Quantitative Comparison. We leverage DINO features (Radford et al.,[2021)) to assess the quality
of images generated by our method and compare methods that combine multiple LoRAs. DINO
offers a hierarchical representation of image content, enabling a more detailed analysis of how each
LoRA contributes to specific aspects of the merged image. To calculate DINO-based metrics, we
first generate separate outputs using each individual LoRA based on the prompt sub-components
(e.g., L cat’ and Lo flower’). Then, we extract DINO features for the merged image and each single
LoRA output. Finally, we calculate cosine similarity between the DINO features of the merged
image and the corresponding features from each single LoRA output.

We utilize three DINO-based metrics: Average DINO Similarity, which reflects the overall align-
ment between the merged image and individual LoRAs averaged across all LoRAs; Minimum DINO
Similarity, which uses the cosine similarity between the DINO features of the merged image and
the least similar LoRA reference output; and Maximum DINO Similarity, which identifies the LoRA
reference image whose influence is most represented in the merged image. For each LoRA model
and composition prompts, 50 reference images are generated and DINO similarities are calculated.
Prompts used in benchmarks consist of two subjects and a background, such as ‘an L; cat and an Lo
penguin in the house’ (see Fig. ). The results (see Table[T) demonstrate that our method surpasses
the baselines in terms of faithfully merging content from LoRAs.

We opt for DINO features over CLIP features due to their focus on subject identity. While CLIP em-
phasizes broader visual understanding, DINO’s specialized design for subject identity aligns more
closely with the objectives of our task, as highlighted by Ruiz et al.[(2023). For a more extensive
comparison of performance across CLIP metrics, please refer to Appendix

2Some methods were excluded because they could not compose three LoRAs (Shah et al., 2023), or require
additional controls (Gu et al.} 2023).
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An L, catand an L, dog on the mountain

L, dog

With latent update and masking

Figure 6: CLoRA Ablation Study. Using the L, cat and Lo dog LoRAs, the effects of two key
components (latent update and latent masking) can be observed.

User Study. To further validate our approach, we conducted a user study involving 50 participants
recruited through the Prolific platfor Each participant was shown four generated images per
composition from different methods and asked to rate how faithfully each method preserved the
concepts represented by the LoRAs (on a scale from 1 = “Not faithful” to 5 = “Very faithful”).
As presented in Table[I] our method consistently outperformed the baseline approaches, achieving
higher scores for faithful representation of concepts.

4.3 ABLATION STUDY

Our method integrates two key components to generate compositions with multiple LoRAs: Latent
Update and Latent Masking. Latent Update employs our contrastive objective to direct the model’s
attention precisely towards the concepts specified by each LoRA, preventing misdirection and at-
tention to irrelevant areas. Without this component, the model could erroneously generate duplicate
objects or incorrect attribute connections (e.g., producing two dogs instead of a cat and a dog), as
shown in Fig. [6l Latent Masking protects the identity of the main subject during generation. With-
out masking, every pixel would be influenced by all prompts, leading to inconsistencies and loss
of identity in the final image. Together, these components enhance composition process, enabling
users to introduce specific styles or variations into designated regions guided by multiple LoRAs.

5 LIMITATIONS

Our method marks a significant advancement in creative fields, enabling users to create compo-
sitions from multiple LoORA models. However, while democratizing creativity, our method raises
concerns about ethical implications of automated tools in art creation, necessitating thoughtful dis-
course around their use [Kenthapadi et al.|(2023). Additionally, the ease of generating personalized
images could lead to misuse for malicious purposes, such as creating deepfakes or spreading misin-
formation, as highlighted by [Korshunov & Marcel (2018). Additionally, integrating and optimizing
multiple LoRA models simultaneously poses a challenge due to potential increases in computational
complexity, which can affect processing times and resource demands as the number of LoRA models
increases, a limitation that is also common among competing methods. Nevertheless, our method is
capable of successfully combining up to four LoRAs on a single Nvidia L40 GPU.

6 CONCLUSION

In this paper, we presented a training-free method, CLoRA, for integrating content from multiple Lo-
RAs to compose images. Our approach addresses the limitations of existing methods by dynamically
adjusting attention maps in test-time, ensuring each LoRA guides the diffusion process toward its
designated subject. Furthermore, we provide a benchmark LoRA and composition prompt dataset
for a thorough evaluation. Our results demonstrate that CLoRA outperforms existing baselines in
faithfully composing content from multiple LoRAs. Unlike competing methods, our approach does
not require the training of specific LoRAs and is compatible with a wide range of community-
developed LoRAs available on platforms like Civit.ai. Furthermore, we have made our source code
and benchmark dataset publicly available to further promote research in this area.

*http://prolific.com
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7 REPRODUCIBILITY STATEMENT

To promote reproducibility and facilitate further research, we have made our source code publicly
available in the supplementary materials. Detailed descriptions of our experimental procedures are
thoroughly outlined in the main paper under ‘Implementation Details’ in Section [d] Additionally,
comprehensive information about our benchmark dataset is provided in Appendix [Al

We also offer an extensive collection of uncurated qualitative comparisons between our method
and those of competitors, which can be found in Appendix [C] This extensive compilation aims to
provide a robust and comprehensive assessment of our approach compared to existing methods. For
our quantitative analyses, we include standard deviations for all metrics, which are presented in
Table[I]to ensure transparency and reliability of the reported results.

8 ETHICS STATEMENT

While our method democratizes creativity by simplifying the process of art creation, it also intro-
duces ethical considerations that must be taken into account. Our method enable the generation
of personalized images with minimal effort, and opens the door to transformative opportunities in
art and design. However, as noted by Kenthapadi et al.| (2023)), it necessitates a comprehensive
and thoughtful discourse around their ethical use to prevent potential abuses. In addition to these
concerns, our user study strictly adheres to anonymity protocols to safeguard participant privacy.

The capability of our method to effortlessly generate personalized images also poses risks of misuse
in several harmful ways, such as the creation of deepfakes. These can be used to forge identities or
manipulate public opinion, a concern underscored by Korshunov & Marcel| (2018).
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A DETAILS OF BENCHMARK DATASET

A.1 DATASETS
This study leverages two key datasets for benchmark:

* Custom collection: We generated custom characters such as cartoon style cat and dog,
created using the character sheet trick [z_f] popular within the Stable Diffusion community.
This set comprises 20 unique characters, where we trained a LoRA per character.

* CustomConcept101: We used a popular dataset [Kumari et al.| (2023)) CustomConcept101
that includes several diverse objects such as plushie bunny, flower, and chair. All 101
concepts are utilized.

Leveraging the datasets above, we trained LoRAs to represent each concept, totaling to 131 LoRA
models. For every competitor, the base stable diffusion model cited in the relevant paper is used. For
instance, ZipLoRA |Shah et al.| (2023)) employs SDXL, while MixOfShow |Gu et al.| (2023)) utilizes
EDLOoRA alongside SDv1.5. Similarly, our method uses SDv1.5.

A.2 EXPERIMENTAL PROMPTS

To evaluate the merging capabilities of the methods, we created 200 text prompts designed to repre-
sent various scenarios such as (the corresponding LoRA models are indicated within paranthesis):

* A cat and a dog in the mountain (blackcat, browndog)
A cat and a dog at the beach (blackcat, browndog)
A cat and a dog in the street (blackcat, browndog)

A cat and a dog in the forest (blackcat, browndog)

A plushie bunny and a flower in the forest (plushie_bunny and flower_1)
¢ A cat and a flower on the mountain (blackcat, flower_1)
¢ A cat and a chair in the room (blackcat, furniture_1)

* A cat watching a garden scene intently from behind a window, eager to explore. (blackcat,
scene_garden)

e A cat playfully batting at a Pikachu toy on the floor of a child’s room. (blackcat,
toy_pikachul)
* A cat cautiously approaching a plushie tortoise left on the patio. (blackcat, plushie_tortoise)

* A cat curiously inspecting a sculpture in the garden, adding to the scenery. (blackcat,
scene_sculpturel)

B ADDITIONAL QUANTITATIVE ANALYSIS

In addition to the results presented
in the main paper, we apply fur-
ther experiments to assess the per-
formance of our method in de-
tail. Specifically, we apply instance
segmentation methods to the com-
posed images to identify and isolate
object instances. For this, we use SEEM (Zou et al.}[2024) to segment the objects within the images.
After segmentation, we calculate the similarity metrics separately for each object instance, allow-
ing for a more granular comparison of the methods. We perform these evaluations on a set of 700
images per method, as shown in the table. The results demonstrate that our method significantly
outperforms others across multiple metrics. In particular, we calculate DINO scores, which further

‘ Merge ‘ Composite ‘ ZipLoRA ‘Mix-of—Show‘ Ours

Min. | 76.0% £ 8.7% | 76.2% + 7.2% | 73.4% + 8.1% | 75.2% + 9.5% | 83.3% + 5.5%
Avg. |79.5% £ 8.3% | 79.7% + 6.8% | 77.1% + 7.6% | 78.7% + 9.2% | 87.1% + 4.9%
Max. | 82.5% + 8.1% | 82.5% + 6.7% | 80.6% + 7.6% | 81.7% £ 9.2% | 89.8% + 4.8%

Min. | 37.0% %+ 15% | 30.3% % 13% | 36.9% + 13% | 37.5% + 17% | 47.2% + 14%
Avg. | 43.7% £ 17% | 38.5% = 13% | 49.6% + 15% | 48.0% + 22% | 57.3% + 14%
Max. | 50.5% + 17% | 49.5% + 14% | 53.3% + 16% | 55.6% =+ 23% | 69.1% + 14%

CLIP

DINO

4https ://web.archive.org/web/20231025170948/https://semicolon.dev/
midjourney/how-to-make-consistent-characters
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highlight the effectiveness of our approach compared to competing methods. Moreover, we also
compute CLIP scores as additional evidence of our method’s superior performance.

C ADDITIONAL QUALITATIVE RESULTS

Comparison with OMG. We perform a qualitative comparison between our method, CLoRA, and
OMG (Kong et all 2024). OMG relies on off-the-shelf segmentation methods to isolate subjects
before generating images. As seen in Fig. [7] while this enables well-defined subject boundaries,
the performance of OMG is heavily dependent on the accuracy of the segmentation model. Errors
in segmentation can result in incomplete or incorrect generation, particularly in complex scenes
involving multiple interacting subject. For instance, if the segmentation model fails to detect a
flower, this may prevent the correct placement of the LoRA in the composition (see Fig. [7] bottom-
left). Moreover, since OMG depends on the base image generated by the Stable Diffusion model, it
also encounters the attention overlap and attribute binding issues identified by [Chefer et al| (2023).
For instance, if the Stable Diffusion model does not generate the required objects in the base image
from the text prompt ’A man and a bunny in the room’, then OMG cannot produce the desired
composition. This issue is apparent in Fig. [7, where the rightmost image shows that the base
model generated only a bunny, omitting the man. In contrast, CLoRA bypasses the need for explicit
segmentation by directly updating attention maps and fusing latent representations. This ensures
that each concept, represented by different LoRA models, is accurately captured and preserved
during generation. The comparison in Fig. [7] demonstrates that CLoRA produces more coherent
compositions, maintaining the integrity of each concept even in challenging multi-concept scenarios.

An L, catandan L, flower An L, woman and an L, flower An L, man and an L; bunny
in the garden inL, style in the room

e ) G

L, style

L bunny

Figure 7: Qualitative comparison with OMG. Our method (top row) consistently produces more
coherent and accurate compositions compared to OMG (bottom row). By leveraging attention map
updates and latent fusion, CLoRA effectively handles multi-concept generation without relying on
segmentation, leading to higher quality results, particularly in complex scenes.

Extensive Qualitative Results. The rest of the Supplementary Materials will provide additional
qualitative comparisons which contain the following competitors: Mix of Show (2023),
MultiLoRA (2024), LoRA-Merge [Ryu|(2023)), ZipLoRA [Shah et al[(2023), and Custom
DiffusionKumari et al.| (2023) on various LoRAs and prompts. Figure[8|compare LoRA-Merge and
MultiLoRA using three combined LoRAs, while later figures expand the comparison to include all
methods across two separate LoRAs.
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L, panda L, shoes

An L, panda, an L, shoes and an L; plantin the room

Ours LoRA Merge MultiLoRA

Figure 8: Qualitative comparison of CLoRA with other LORA methods using 3 LoRAs to generate
a single image. Our approach consistently produces images that more accurately reflect the input
text prompts, LoRA subjects, and LoRA styles.

L, dog LoRA-Merge ZipLoRA Custom Diffusion

Figure 9: Qualitative comparison of CLoRA with other LoORA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA
styles.
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AnL;catand an L, dog in the garden

I
ZipLoRA

L, dog LoRA-Merge

Figure 10: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

An L, cat and an L, dog in the moon

LoRA-Merge ZipoRA Custom Diffusion

Figure 11: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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b= ) o
Custom Diffusion

Figure 12: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

An L; cat and an L, dog in the volcano

7

L, dog LoRA-Merge

Custom Diffusion

ZipLoRA

Figure 13: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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ZipLoRA

AL TR

L, flower ' LRA-Merg

Figure 14: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

y i I AN : -
L, chair LoRA-Merge Custom Diffusion

Figure 15: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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An L, cat and an L; chair on the dining

L, chair LoRA-Merge

Figure 16: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

An L; cat and an L, sofa in the room

ZipLoRA Custom Diffusion

Figure 17: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 18: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 19: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 20: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

LoRA-Merge ~ ZipLoRA

Figure 21: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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L, jacket y ZipLoRA

Figure 22: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 23: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 24: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

An L; pandaand anL, plant in the room
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Figure 25: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 26: Qualitative comparison of CLoRA with other LoORA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and

LoRA styles.
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