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Abstract

Recent advancements in embedding-based re-001
trieval, commonly referred to as dense retrieval,002
have achieved state-of-the-art results, surpass-003
ing the performance of traditional sparse or004
bag-of-words methodologies. Embedding-005
based techniques are extensively utilized in006
enterprise and domain-specific search appli-007
cations, which often require finetuning on008
domain-specific data to enhance retrieval per-009
formance. However, the scarcity of domain-010
specific data and the complexity of finetun-011
ing present significant challenges in develop-012
ing efficient domain-specific retrieval systems.013
This paper introduces a training-free, model-014
agnostic document-level embedding frame-015
work augmented by a large language model016
(LLM). This framework significantly enhances017
the efficacy of prevalent retriever models, in-018
cluding Bi-encoders (such as Contriever and019
DRAGON) and late-interaction models (such020
as ColBERTv2), and generalizes them into021
new domains. As a result, this approach022
has achieved state-of-the-art performance on023
benchmark datasets like LoTTE and BEIR,024
highlighting its potential to advance informa-025
tion retrieval processes, particularly in domain-026
specific contexts.027

1 Introduction028

In the realm of information retrieval (IR), the pur-029

suit of more precise and efficient retrieving meth-030

ods has been a continuous endeavor. Traditional031

IR systems have predominantly relied on sparse032

techniques, such as the bag-of-words (HaCohen-033

Kerner et al., 2020; Robertson et al., 1995; Zhang034

et al., 2010), but often fail to capture the semantic035

richness of queries and documents due to their de-036

pendence on exact keyword matches. Embedding-037

based retrieval (Huang et al., 2020), also known038

as dense retrieval, offers improved retrieval perfor-039

mance by converting text into dense vector spaces,040

where semantically similar texts are positioned in041

close proximity, thereby enabling the capture of 042

deep semantic relationships that are not readily dis- 043

cernible through keyword matching alone. 044

In addition to innovations in model architectures, 045

techniques such as query rewriting (Gottlob et al., 046

2014; He et al., 2016; Singh and Sharan, 2017; 047

Xiong and Callan, 2015) have proven effective 048

in enhancing query information from the user’s 049

perspective before conversion into dense vectors. 050

Conversely, we propose that enriching document 051

embeddings can also significantly improve text re- 052

trieval quality. Importantly, this process can be 053

conducted offline in advance, thereby reducing the 054

time required for online inference. In the past, 055

scalable methods for augmenting document-related 056

information have been challenging to implement; 057

however, the emergence of large language mod- 058

els (LLMs) provides a viable solution. This paper 059

introduces a document enrichment framework de- 060

signed to enhance retrieval performance by lever- 061

aging language models without the need for fine- 062

tuning. 063

Our primary contributions are as follows: 1) We 064

present LLM-augmented retrieval, a training-free, 065

model-agnostic framework 1 that enhances con- 066

textual information within the vector embeddings 067

of documents, thereby improving the performance 068

of existing retrievers across various domains; 2) 069

We validate this framework across a range of mod- 070

els and extensive datasets, achieving state-of-the- 071

art performance improvements over the original 072

models without any finetuning; 3) Our framework 073

exhibits strong generalizability to new domains, fa- 074

cilitating its adoption in domain-specific retrieval 075

applications or enterprise search scenarios. 076

2 LLM-augmented Retrieval Framework 077

2.1 Synthetic Relevant Queries 078

The concept of synthetic relevant queries arises 079

from a reevaluation of the traditional reliance on 080

1



Figure 1: Overall view on LLM-augmented retrieval framework. Synthetic relevant queries and synthetic titles are
generated from LLM and then assembled into doc-level embedding together with chunks (passages) split from the
original document. The final retrieval is based on the similarity between user query and the doc-level embedding.

similarity metrics for determining relevance in re-081

trieval tasks (Jones and Furnas, 1987). These met-082

rics, often based on the dot product or cosine simi-083

larity of encoded vectors, may not adequately cap-084

ture the semantic nuances crucial for relevance.085

For example, the queries "Who is the first president086

of the United States?" and "Who became the first087

president of America?" might yield high similar-088

ity scores but differ in semantic relevance. The089

desired document, such as a biography of George090

Washington, might not score highly against these091

queries. However, if synthetic queries generated092

from Washington’s biography include "Who be-093

came the first president of America?", it becomes094

possible to bridge the semantic gap. The synthetic095

query not only reflects the document’s content from096

various perspectives but also enhances the match-097

ing process with relevant user queries, as illustrated098

in Figure 2a. Through synthetic relevant queries,099

the relevance relationship is not solely expressed by100

the similarity between user queries and documents101

but also inferred from the similarity between user102

queries and pre-stored relevant queries.103

2.2 Title104

A document’s title is a critical determinant of its105

relevance and utility in response to user search106

queries. As the primary element encountered in107

search results, titles significantly influence user108

decision-making regarding link selection. Effec-109

tive titles provide essential context and keywords,110

enabling users to rapidly assess content and ob-111

jectives. When original documents possess titles,112

they can be leveraged to enhance search relevance.113

Conversely, for untitled documents, large language114

models can generate synthetic titles that capture 115

the essence and main themes, thereby aligning the 116

document with user informational needs. Whether 117

derived directly or synthesized through advanced 118

modeling, titles play a crucial role in optimizing 119

the search and discovery process. 120

2.3 Document chunks 121

Document chunking is a methodological approach 122

that involves segmenting large documents into 123

smaller, manageable units (chunks or passages) to 124

facilitate analysis and processing (Chen et al., 2023; 125

Finardi et al., 2024; Lewis et al., 2020). This pro- 126

cess groups related information segments within 127

the constraints of retrieval models’ context win- 128

dows, which limit input length. Chunks are derived 129

directly from original documents without language 130

model augmentation. 131

In practice, lengthy documents are divided into 132

chunks containing tokens within the model’s con- 133

text window limit. Optimal chunk size varies 134

across Bi-encoder retrieval models, whereas token- 135

level late-interaction models like ColBERT or Col- 136

BERTv2 do not require chunking due to their token- 137

level similarity score calculations. This distinction 138

highlights the importance of model-specific consid- 139

erations when implementing chunking strategies in 140

information retrieval systems. 141

2.4 Doc-level embedding 142

For clarity, we refer to the information 143

sources—synthetic relevant queries, titles, 144

and chunks—as the fields of a document. These 145

fields represent the semantics of the original 146

document from various perspectives and are 147
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(a) Through synthetic relevant queries, the relevance rela-
tionship is not solely expressed by the similarity between
user queries and documents but also inferred from the simi-
larity between user queries and pre-stored relevant queries.

(b) The graphic representation of "relevance" in doc-level
embedding

Figure 2: Graphic representation of synthetic queries, titles, passage chunks in doc-level embedding

integrated into the document-level embedding (see148

Figure 2b). This embedding is static, allowing149

it to be pre-computed and cached for efficient150

retrieval. Indexes of these embeddings can be151

pre-built to expedite the retrieval process, with152

each embedding linking back to the original153

document.154

The Bi-encoder architecture (Cer et al., 2018;155

Karpukhin et al., 2020) is a widely used approach in156

dense retrieval, consisting of two encoders (shared157

or distinct) that generate vector representations for158

user queries and documents. The relevance be-159

tween queries and documents is determined by160

computing the similarity between these vectors.161

To augment document embeddings with synthetic162

relevant queries, titles and document chunks, we163

propose a modified similarity computation:164

Definition 2.1. Similarity score for query-165

document pairs in Bi-encoders:166

sim(q, d) = max
i

s(q, ci) + s(q, d) (1)167

where168

s(q, d) = s(q,
wc

m

m∑
i

ci +
wq∗

n

n∑
j

q∗j + wt∗t
∗)

(2)169

The term maxi s(q, ci) computes the traditional170

maximum similarity score across query-chunk em-171

bedding pairs, where s denotes the similarity func-172

tion, q represents the search query’s embedding173

vector, and ci is the embedding vector for the i-174

th document chunk. This approach is prevalent175

in modern embedding-based retrieval systems, fo-176

cusing on the similarity between a query and the177

most relevant document chunk. The second term 178

s(q, d) introduces a novel aspect by incorporating 179

additional augmented information at the document 180

level. Here, c are the chunk embedding vectors 181

mentioned above, q∗ are the embedding vectors of 182

synthetic relevant queries, t∗ is the title embedding 183

vector, while wc, w∗
q , wt∗ are the corresponding 184

document field weights. (Arora et al., 2017) also 185

suggests averaging these vectors to represent the 186

entire document, as an approach we adopt for both 187

chunk and synthetic query fields. This method has 188

proven effective in our experiments, though more 189

sophisticated techniques could be explored in fu- 190

ture work. 191

Given that the similarity function is linear1, the 192

equation can be transformed to: 193

sim(q, d) = maxi s(q, ci +
wc
m

∑m
i ci +

wq∗
n

∑n
j q

∗
j + wt∗t

∗)

(3) 194

This simplification allows us to treat ci + 195
wc
m

∑m
i ci +

wq∗
n

∑n
j q

∗
j + wt∗t

∗ as the compos- 196

ite embedding vector for each document chunk ci, 197

enabling the use of algorithms like approximate 198

nearest neighbors (Indyk and Motwani, 1998) for 199

efficient document retrieval. 200

In token-level late-interaction models like Col- 201

BERT and ColBERTv2, user queries and docu- 202

ments are encoded into token-level vector repre- 203

sentations independently. The "late interaction" 204

involves computing cosine similarity or dot prod- 205

uct scores between these representations at the to- 206

ken level. To incorporate augmented queries and 207

1Both dot product and cosine similarity are linear when
embedding vectors are normalized to unit length.
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titles, we append them to the original documents,208

enabling the model to utilize these additional sig-209

nals in its similarity calculation.210

3 Experiments211

3.1 Datasets and Models212

BEIR Data The BEIR (Benchmark for Evaluat-213

ing Information Retrieval) dataset (Thakur et al.,214

2021) serves as a comprehensive benchmark for as-215

sessing various information retrieval (IR) models,216

particularly in out-of-domain scenarios. Designed217

to overcome the limitations of previous datasets,218

BEIR offers a diverse and extensive collection of219

queries and passages across a broad range of topics.220

This diversity enables a more thorough and robust221

evaluation of IR models.222

LoTTE Data The LoTTE dataset (Santhanam223

et al., 2021) is specifically crafted for Long-Tail224

Topic-stratified Evaluation, focusing on natural225

user queries linked to long-tail topics that are often226

underrepresented in entity-centric knowledge bases227

like Wikipedia.228

Contriever The Contriever model employs the229

Roberta-base (Liu et al., 2019) architecture, trained230

on Wiki passages (Karpukhin et al., 2020) and231

CC100 (Conneau et al., 2019) data through con-232

trastive learning. It features 125 million parameters,233

a context window of 512 tokens, 12 layers, 768 hid-234

den dimensions, and 12 attention heads. In this235

model, a single Roberta-base model serves as both236

the query encoder and context encoder, following237

a shared "Two Tower" Bi-encoder architecture.238

DRAGON Similarly, the DRAGON model uti-239

lizes the Roberta-base architecture. However,240

unlike Contriever, DRAGON employs separate241

Roberta-base models for the query encoder and con-242

text encoder. This model’s checkpoint was trained243

and released publicly by the author.244

ColBERTv2 For ColBERTv2, the bert-base-245

uncased model architecture is adopted, consistent246

with the default settings in the original paper. This247

model comprises 110 million parameters and a con-248

text window of 256 tokens, with 12 layers, 768249

hidden dimensions, and 12 attention heads. The250

checkpoint for ColBERTv2 was trained on the MS-251

MARCO dataset (Nguyen et al., 2016) and pro-252

vided by the author.253

3.2 Implementation Details254

We choose open source Llama3-8B (Dubey et al.,255

2024; Touvron et al., 2023a,b) for both synthetic256

queries generation and titles generation. The 257

prompt templates are in Table 7 and 8. 258

For Bi-encoders, we implemented the doc- 259

level embeddings as mentioned above with 260

chunk_size=64 and chose wq∗=1.0, wt∗=0.5, 261

wc=0.1 for the Contriever model and wq∗=0.6, 262

wt∗=0.3, wc=0.3 for the DRAGON model. Those 263

hyperparameters are selected based on the dev set 264

of BEIR-ArguAna and then fixed across all the 265

evaluation sets. The hyperparameters seem to gen- 266

eralize well. For ColBERTv2, as mentioned previ- 267

ously, we concatenate the title with all the synthetic 268

queries for each document and make it an addi- 269

tional “passage” of the original document. We set 270

index_bits=8 when building the ColBERT index. 271

All the results in the below sections are from single 272

runs. 273

3.3 Results 274

We evaluate the performance of vanilla Bi-encoder 275

models and our proposed LLM-augmented method 276

on the BEIR dataset, reporting nDCG@10 in Table 277

1. The results demonstrate that integrating LLM- 278

augmented retrieval with document-level embed- 279

dings significantly improves nDCG@10 metrics 280

for Contriever and DRAGON models. Notably, the 281

improvement is more pronounced for Contriever, a 282

weaker retriever model compared to DRAGON. 283

On the LoTTE dataset, we compare all three 284

models in both vanilla and LLM-augmented modes, 285

reporting their Recall@3 (R@3) in Table 2. The 286

results show noticeable improvements across all 287

models, with the magnitude of enhancement being 288

more significant when the base retriever model is 289

weaker. 290

3.4 LLM Augmentation Analysis 291

Table 3 gives an overview on the number of doc- 292

uments per dataset (ND, in thousands), the num- 293

ber of total tokens in documents (NTD
, in thou- 294

sands), the average number of tokens per document 295

(NTD
/ND), the number of synthetic queries gen- 296

erated (Nq∗ , in thousands), the total number of 297

total synthetic query tokens generated (NTq∗ , in 298

thousands), the average number of synthetic query 299

per document (Nq∗/ND), the average number of 300

synthetic query tokens per document (NTq∗/ND) 301

and the average number of synthetic query tokens 302

per synthetic query (NTq∗/Nq∗). On average 6 303

synthetic relevant queries are generated per doc- 304

ument and the token count in the generated syn- 305

thetic queries is comparable to the token count 306
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nDCG@10 Contriver Dragon
BEIR Vanilla LLM-Aug Vanilla LLM-Aug
ArguAna 33.2 34.8 52.0 50.3
FiQA 3.0 28.7 8.0 42.5
Quora 83.1 83.3 89.0 88.3
SCIDOCS 17.0 24.6 30.4 31.8
SciFact 53.1 58.0 67.1 68.0
Climate-FEVER 7.3 27.8 32.0 37.3
MS MARCO 63.1 72.1 99.6 99.2
DBPedia 45.0 57.7 84.6 83.1
Touche-2020 51.1 69.9 72.4 78.0
NFCorpus 32.3 48.1 49.8 50.6
Trec-COVID 50.8 82.9 95.5 95.0
CQADupStack 16.4 29.4 35.8 40.0
FEVER 8.2 52.7 74.9 77.7
HotpotQA 45.8 58.6 81.4 78.6
NFCorpus 32.3 48.1 54.5 57.3

Table 1: The performance of vanilla retriever models vs LLM-augmented retriever performance on BEIR datasets.

R@3 Contriver Dragon ColbertV2
LoTTE Vanilla LLM-Aug Vanilla LLM-Aug Vanilla LLM-Aug

Lifestyle
Search 33.6 60.2 56.0 76.3 79.3 80.0
Forum 43.7 62.4 52.7 68.8 69.9 73.1

Recreation
Search 19.5 46.1 42.5 64.7 66.8 71.0
Forum 34.9 54.6 45.6 60.8 63.4 67.5

Science
Search 10.1 29.0 26.0 45.0 50.7 50.2
Forum 10.5 24.0 25.8 31.0 39.3 40.3

Technology
Search 12.4 35.6 35.9 52.9 59.4 59.6
Forum 18.3 36.6 28.5 41.9 45.0 46.3

Writing
Search 27.5 57.2 58.0 70.3 74.2 75.4
Forum 39.5 59.7 53.0 65.2 69.6 71.5

Table 2: The performance comparison of vanilla retriever models vs LLM-augmented retriever performance on
LoTTE datasets.

in the original documents. The average ratio of307

synthetic query tokens to original document to-308

kens (NTq∗/NTD
) for BEIR dataset is 100% and309

this ratio decreases to 58% when the subsets of310

Quora, HotpotAQ, MSMARCO and DBPedia are311

excluded. NTq∗/NTD
for LoTTE is 55%. While312

the number of generated tokens is comparable to313

that of the original tokens, our method involves314

only a single decoding (generation) and encoding315

(retrieval index construction) step throughout the316

entire procedure. Furthermore, our method does317

not require any further training, rendering it costing318

less than traditional query augmentation techniques319

that rely on augmented queries solely for retriever320

model training. In addition, the inference speed321

remains unaffected, as the retrieval index is pre-322

constructed using the augmented tokens. 323

We also compute the query match ratio, denoted 324

as Match(q∗), which is defined as the ratio of the 325

number of intersections between search queries 326

and synthetic relevant queries to the total number 327

of search queries. This metric is reported in Table 328

3. It is observed that most Match(q∗) values are 329

zero, with the exceptions being the FIQA, Quora, 330

FEVER and HopotQA subsets. 331

3.5 Comparative Analysis of different LLMs 332

for Synthetic Query Generation 333

This section presents a comprehensive investiga- 334

tion into the impact of different LLMs on synthetic 335

query generation and their subsequent effects on 336

retrieval performance. Specifically, we compare 337
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Original Documents Generated Synthetic Relevant Queries
Dataset Subset ND (in K) NTD

(in K) NTD
/ND Nq∗ (in K) NTq∗ (in K) Nq∗/ND NTq∗/ND NTq∗/Nq∗ Match(q∗) %

BEIR

ArguAna 9 1,782 205 46 684 5 79 15 0
FiQA 58 9,470 164 305 4,360 5 76 14 1.0
Quora 523 8,404 16 3,123 40,947 6 78 13 6.2
SCIDOCS 25 5,365 212 160 2,580 6 102 16 0
SciFact 5 1,548 299 32 618 6 119 19 0
CQADupstack 457 94,394 206 2,428 40,789 5 89 17 0
Climate-FEVER 5,417 625,083 115 33,471 553,419 6 102 17 0
FEVER 5,417 625,075 115 31,571 518,917 6 96 16 0.9
HotpotQA 5,233 342,517 65 32,972 535,565 6 102 16 6.2
MSMARCO 8,842 695,270 79 57,288 878,871 6 99 15 0
DBPedia 4,636 331,480 72 27,023 419,920 6 91 16 0
Touche-2020 383 85,134 223 2,491 36,333 7 95 15 0
NQ 2,681 279,593 104 16,616 260,766 6 97 16 0
NFCorpus 4 1,155 318 21 360 6 99 17 0
TREC-COVID 171 36,819 215 1,027 17,196 6 100 17 0

LoTTE

Lifestyle 119 21,639 181 664 9,866 6 83 15 0
Recreation 167 26,988 162 902 13,215 5 79 15 0
Science 1,694 400,544 236 8,461 159,901 5 94 19 0
Technology 662 117,940 178 7,031 105,610 11 159 15 0
Writing 200 29,031 145 1,027 15,364 5 77 15 0

Table 3: Statistics on original document information and augmented document information for each dataset

the performance of four distinct LLMs: Llama2-338

7b, Llama2-70b, Llama3-8b, and Llama3-70b. The339

evaluation results are summarized in Table 4, which340

provides an overview of the R@3 and nDCG@10341

performance on two BEIR datasets.342

Our analysis reveals that the patterns of queries343

generated by different LLMs exhibit minimal vari-344

ation, suggesting that the choice of LLM may345

not significantly influence the quality of synthetic346

queries. Furthermore, the corresponding recall and347

nDCG metrics demonstrate a similar trend, indicat-348

ing that the differences between LLMs have a neg-349

ligible impact on the overall retrieval performance.350

These findings provide valuable insights into the351

robustness of synthetic query generation across var-352

ious LLM architectures and sizes. As a result, we353

opt to use smaller models (e.g. Llama3-8B) for354

queries and titles generation for the considerations355

cost-effectiveness.356

3.6 Effect of Synthetic Relevant Queries and357

Titles358

This section investigates the effect of LLM-359

augmented document fields, specifically synthetic360

query and title, on the retrieval performance of361

various models. We conduct a systematic analy-362

sis by manipulating field weights for Bi-encoders363

(Contriever and DRAGON) and isolating individ-364

ual fields for the token-level late-interaction model365

(ColBERTv2). The experiments are performed on366

the LoTTE dataset, with results summarized in Ta-367

ble 5.368

Our findings indicate that synthetic queries play369

a crucial role in enhancing recall for Contriever, 370

whereas titles have a more significant impact on 371

DRAGON’s performance. For ColBERTv2, syn- 372

thetic queries are found to be more influential 373

than titles. Notably, integrating multiple document 374

fields into a weighted sum generally improves per- 375

formance across all three models, as evidenced by 376

the comparison with recall performance in Table 2. 377

This suggests that incorporating diverse document 378

fields can lead to more effective retrieval outcomes. 379

3.7 Training-free Augmentation vs Finetuning 380

This section presents a comprehensive evaluation 381

of the proposed training-free LLM-augmented re- 382

trieval method against domain-finetuned retrievers, 383

which utilize augmented queries solely for fine- 384

tuning retriever models to improve domain-specific 385

performance. We conduct experiments on several 386

BEIR datasets to compare the performance of these 387

two approaches. 388

In our evaluation, we employ the same LLM- 389

generated queries used in document-level embed- 390

ding to create positive and negative labels for super- 391

vised training of the finetuned retrievers. Each fine- 392

tuned retriever is trained exclusively on synthetic 393

queries generated within its respective domain, en- 394

suring a fair comparison. The training protocol 395

involves one epoch with a learning rate of 1e− 5. 396

The comprehensive results are presented in Table 397

6. 398

Our findings indicate that the proposed training- 399

free LLM-augmented retrieval method is compa- 400

rable to, or often surpasses, the finetuned method, 401
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Model BEIR Metrics Llama2-7b Llama2-70b Llama3-8b Llama3-70b

Contriever SciFact
R@3 58.7 60.0 60.0 62.3
nDCG@10 56.3 58.1 58.0 60.1

Dragon SciFact
R@3 65.2 65.4 65.8 66.7
nDCG@10 67.8 67.5 68.0 68.6

Table 4: Comparison on synthetic relevant queries generated by different LLM models

R@3 Contriver Dragon ColbertV2
LoTTE Query Only Title Only Query Only Title Only Query Only Title Only

Lifestyle
Search 69.7 49.0 72.5 76.1 74.1 62.2
Forum 61.9 53.1 65.8 69.1 71.0 60.0

Recreation
Search 44.4 37.9 60.7 64.7 65.8 54.9
Forum 53.6 49.8 58.4 62.9 64.8 52.1

Science
Search 29.0 19.0 36.5 44.1 43.3 37.0
Forum 23.4 23.5 27.1 35.7 36.3 31.3

Technology
Search 33.0 26.7 48.7 54.4 45.3 47.2
Forum 35.2 34.7 38.9 46.2 36.4 43.4

Writing
Search 54.7 48.1 65.8 69.3 72.7 57.8
Forum 58.6 53.2 62.3 65.5 68.4 54.3

Table 5: Ablation study of using query only or title only on LLM-augmented retriever performance on LoTTE
datasets.

while significantly reducing human effort and com-402

putational costs. This suggests that the proposed403

method can achieve competitive performance with-404

out the need for extensive training data or compu-405

tational resources. We hypothesize that overfitting406

may contribute to the suboptimal performance ob-407

served in domain-finetuned models. Overfitting408

occurs when a model becomes too specialized to409

the training data and fails to generalize well to new,410

unseen data. In this case, the finetuned retrievers411

may be overfitting to the synthetic queries gener-412

ated within their respective domains, leading to413

reduced performance on real user queries.414

4 Related Work415

4.1 Embedding-based Retrieval416

Recent advancements in the field of information417

retrieval have seen the integration of neural net-418

work architectures to compute text embeddings,419

which have shown to outperform the traditional420

sparse bag-of-words models in terms of effective-421

ness (Dai and Callan, 2019; Luan et al., 2021). Ex-422

panding on this foundation, Liu and Croft (2002)423

and Bendersky and Kurland (2008) have explored424

paragraph-based and window-based methods to de-425

lineate passages in information retrieval, respec-426

tively. Within the neural network domain, Fan et al.427

(2018) illustrated that aggregating representations 428

to assess passage-level relevance yields promising 429

results, particularly with pre-BERT models. Fur- 430

thermore, Li et al. (2023a) introduced the technique 431

of max-pooling to evaluate passage relevance. Our 432

methodology draws upon similar principles to these 433

preceding studies, aiming to further refine, aggre- 434

gate and enhance the information from the docu- 435

ments for embedding-based retrieval, through both 436

max-pooling and average methods. 437

4.2 Data Augmentation and Pseudo Queries 438

Generation 439

Data augmentation is a widely used technique in 440

information retrieval training. Contrastive Learn- 441

ing (Izacard et al., 2021) has introduced techniques 442

such as inverse cloze tasks, independent cropping, 443

and random word deletion, replacement, or mask- 444

ing to enrich the diversity of training data. In train- 445

ing the DRAGON model, Lin et al. (2023) studied 446

query augmentation using query generation mod- 447

els and label augmentation methods with diverse 448

supervision. 449

Pre-generated pseudo queries have been shown 450

to be effective in improving retrieval performance. 451

Previous works have calculated the similarity 452

between pseudo-queries and user-queries using 453

BM25 or BERT models to determine the final rel- 454
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Contriver Dragon
BEIR Metrics LLM-Aug FT LLM-Aug FT

ArguAna
R@3 30.3 31.2 49.8 42.2
nDCG@10 33.2 30.1 50.3 36.7

FiQA
R3 28.7 35.4 43.8 12.3
nDCG@10 28.7 34.6 42.5 12.5

Quora
R@3 84.9 87.2 92.1 91.6
nDCG@10 83.1 83.6 88.3 88.1

SCIDOCS
R@3 24.3 23.1 32.1 18.9
nDCG@10 24.6 23.2 31.8 19.5

SciFact
R@3 60.1 59.0 70.2 52.2
nDCG@10 58.0 57.4 68.0 49.5

Table 6: The performance comparison of training-free LLM-augmented retriever vs domain-finetuned retriever

evance score of the query to document through455

relevance score fusion (Chen et al., 2021; Wen456

et al., 2023). An alternative method for gener-457

ating pseudo queries involves generating pseudo458

query embeddings through K-means clustering al-459

gorithms (Tang et al., 2021) or some fine-tuned460

models (Li et al., 2023b). Large pre-trained lan-461

guage models have demonstrated their ability to462

generate high-quality text data (Anaby-Tavor et al.,463

2020; Kumar et al., 2020; Meng et al., 2022; Schick464

and Schütze, 2021; Papanikolaou and Pierleoni,465

2020; Yang et al., 2020). Some previous works466

have leveraged the generation capabilities of lan-467

guage models to create synthetic training data for468

retriever models finetuning (Bonifacio et al., 2022;469

Jeronymo et al., 2023; Nogueira et al., 2019; Wang470

et al., 2023). In our research, we employ large lan-471

guage models to generate pseudo queries similarly;472

however, these synthetic queries are utilized not473

during the training phase but at the inference stage474

of the retrieval system, specifically pre-calculated475

for the construction of the retrieval index. Our ap-476

proach is training-free, requiring no finetuning, and477

leverages the foundational knowledge of LLMs for478

query generation, as well as the existing capabil-479

ity of retrievers for calculating similarity scores.480

By eliminating the need for training, we can mini-481

mize costs and ensure that the method generalizes482

effectively across various scenarios.483

5 Conclusion484

This paper presents a model-agnostic and training-485

free framework for information retrieval, termed486

LLM-augmented retrieval, which significantly en-487

hances the performance of existing retriever mod-488

els. By leveraging document-level embeddings489

that capture contextual information derived from 490

LLM-generated synthetic queries, titles, this ap- 491

proach demonstrates adaptability across various 492

retriever model architectures. Empirical evalua- 493

tions on multiple models and datasets have yielded 494

state-of-the-art results, substantiating the efficacy 495

of LLM-augmented retrieval in improving infor- 496

mation retrieval quality and generalizing to new 497

domains. 498

Future research directions may include refining 499

the proposed framework by incorporating more di- 500

verse contextual information into document-level 501

embeddings, exploring sophisticated measures for 502

similarity scoring, and developing complex meth- 503

ods for integrating multiple chunks or queries into 504

a single field embedding. These potential avenues 505

for further investigation hold promise for continued 506

advancements in the field of information retrieval. 507

6 Limitations 508

This study encounters several limitations, notably 509

the increased computational resources required in 510

generating relevant queries and titles for the origi- 511

nal documents. In some instances, the size of the 512

augmented texts may approach or equal that of the 513

original documents, which could pose a significant 514

computational burden. This limitation may hinder 515

the applicability of this approach in environments 516

where computational resources are constrained. 517

Another potential limitation concerns the risk of 518

hallucination in large language models, which can 519

introduce inaccuracies into the augmented corpus 520

relative to the original documents. Hallucination 521

remains a persistent challenge in the field of large 522

language model research and could compromise 523

the integrity of the retrieval process. 524
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7 Disclaimer of AI Assistant525

AI assistants (ChatGPT and Llama) are used in526

coding and writing of this paper.527
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I will give you an article below. What are some search queries or questions that are relevant for this article
or this article can answer?
Separate each query in a new line.
This is the article: {document}
Only provide the user queries without any additional text. Format every query as ’query:’ followed by the
question. Don’t write empty queries.

Table 7: Prompt for generating relevant queries for documents

I will give you an article below. Create a title for the below article.
This is the article: {document}
Only provide the title without any additional text. Format the reply starting with ’title:’ followed by the
question. Don’t write empty title.

Table 8: Prompt for generating titles for documents.
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