CEDAR: A Counter-Example Driven Agent with
Regular Restriction

Anonymous

Abstract

We introduce CEDAR, a Counter-Example Driven Agent with Regular Restrictions
in Minecraft, which learns and encodes informal specifications and skills as regular
languages. Our formalizer constructs deterministic finite automata (DFAs) to repre-
sent informal specifications by utilizing membership query responses from a Large
Language Model (LLM) and counterexamples provided by a human. The DFA
alphabet is derived from a global set of environmental events, with words in the
language representing expected event sequences. These learned DFAs are then used
by CEDAR’s skill learner to acquire the necessary skills to fulfill the specifications.
CEDAR supports both goal completion and lifelong learning by leveraging passive
and active DFA learning algorithms, respectively. The DFAs for skills are refined
through counterexamples generated from DFA simulations in the real environment.
Skills acquired by CEDAR can be adapted to new scenarios by modifying the
alphabet and can be logically verified to ensure they meet expected properties.
Empirical evaluations demonstrate that CEDAR surpasses state-of-the-art methods
in controllability, robustness, and extensibility.

1 Introduction

LLM-based agents have achieved significant success in control and planning within complex open-
world environments [[1, 12, 3} 14115, 16l 7} [8]]. Early research explored using LLM-generated structured
programming techniques to enhance robotic manipulation and gameplay [9, [10} [11} [12} [13]. To
improve the quality of the generated code, researchers are incorporating environment feedback
[14} [15], advanced prompts [[16} 6], and external knowledge retrieval [17, 3]

Despite these advancements in control, planning remains a significant challenge in open-world envi-
ronments [[18,[19} 20]. Various planning approaches have been developed, such as task decomposition
[LL} 3], elaborate prompts [8} [21], multi-modal information [22} 23| 24} 25]], and skill management
[L} 26} 3]]. Goal completion is a common way to evaluate the effectiveness of these planning methods
in open-world environments [1} 3} 24], as it requires understanding natural language and mapping
high-level commands to precise, executable actions in specific contexts. However, there is currently
no way to logically verify if the LLM-generated executable policy fully understands and obeys human
specifications, potentially leading to unexpected or harmful results [27} 28} 29].

Aligning Al systems with human values has always been a pivotal challenge in the LLM community
[30]. Various LLM-alignment methods have been proposed, categorized into data, training, and
evaluation [31]]. Data alignment includes using instruction datasets for supervised training [32]] and
interactive prompts post-training, such as CoT [16] and self-instruction [33]]. Training alignment uses
loss as a soft constraint on aligning human values with LLLM behaviors, such as RLHF [34]], DPO
[35], and LoRA [36]. Evaluation measures the misalignment of trained LLMs [31]. While complete
alignment with the aforementioned methods is challenging, unaligned Al systems can still be used
safely if misalignment is limited or supervised by another Al system [37]].

Preprint.

ezl Sfprediitciiton DFA Learner Skill Manager
Specifications 3 T e

(.*) Regular Expression m_ 71 Mine Block

ine Bloc

@l APIs/Skills Save Skil ‘ Craft CraftingTable
Retrieve symbols
LLM Sub-Alphabet ‘ Game Objects Update

ﬂ Fishing
o \Answe' @Obser\/ations *

CE I:EE

—_—— o

Human EQ

Hypothesis

Learner

- . Examples @ ~
Counter-example Passive Learner . GPT-4
Human Specification

Figure 1: CEDAR Workflow. CEDAR is built around three essential components: 1. DFA Learner
which leverages active learning algorithms for continuous, lifelong learning and passive learning
algorithms for goal-directed skill acquisition, to construct DFAs representing various skills. 2. Skill
Manager which manages the repository of learned skills and adapts them to new tasks by adjusting
the DFA’s alphabet as needed. 3. Verifier which ensures that the DFAs learned by the system conform
to human specifications. It converts these natural language specifications into DFAs and then cross-
checks them against the skill DFAs to detect any discrepancies.

To ensure that LLM-generated executable policies adhere to human instructions and bridge the
gap between natural and regular language, we implement a logic verifier. This is complemented
by methods like autoformalization [38],[39] and LLM-based automata learning [40, 41} [42]]. In this
paper, we utilize LLM-based automata learning to formalize informal specifications and address the
challenge of planning in open-world environments while adhering to human specifications.

To achieve this, we introduce CEDAR, a Counter-Example Driven Agent in Minecraft that learns
skills through DFA learning to align with informal specifications. CEDAR consists of three main
components: 1. DFA Learner, which learns skills in the form of DFAs based on formalized human
specifications utilizing DFA learning algorithms. The LLM oracle provides examples and answers
membership queries for passive and active DFA learners, respectively. 2. Skill Manager that is
responsible for storing the learned skills and extending them to new tasks by modifying the alphabet
of the corresponding DFA. 3. Verifier, which takes human specifications as input and formalizes
them into DFAs using a human-in-the-loop DFA learning paradigm where the human provides
counterexamples to the hypothesis learned by an LLM. The output formal specifications are given to
the DFA learner. Once the DFA learner has learned a skill, the verifier checks if this hypothesis DFA
violates any formalized human specifications and provides a counterexample.

Unlike traditional approaches that entangle control and planning—e.g., Voyager [1l], which generates
new programs and risks LLM misinterpretation—CEDAR uses DFA to represent and execute skills,
enhancing reliability and traceability in both task execution and lifelong learning. It incorporates
a verifier to enforce human specifications and a wrapped environment to ensure skill effectiveness.
When planning errors occur, counterexamples from either source guide the refinement of DFA policies.
CEDAR also supports skill generalization by simply modifying the DFA alphabet while preserving
its structure.

2 Background

Given a set of atomic propositions AP, the alphabet of a language can be defined by ¥ = 247, A
word w over an alphabet ¥ is a finite sequence of symbols in 2. We denote the empty word by . We
write * for the set of all finite words on ¥, and for w € ¥* we write |w| for its length. A language
L over ¥ is a subset of X",

A deterministic finite automaton (DFA) is a tuple A = (Q4, 2, ¢, 64, F4), where: Q is a finite
set of states; Y. is a pre-defined finite alphabet; ¢z € Q- is the initial state; 64 : Q4 x ¥ — Q4
is the transition function; and F* C Q- is the set of final (or accepting) states. The transition

function can be naturally extended from symbols to words 6A QA x ¥ = QM as) (¢,€) = g and

5(q, za) = §(6(q,), a). The language L(.A) accepted by a DFA A is defined as £(A) = {w € ©* :
5(qgt, w) € FAY}. A language is regular if it is accepted by a DFA.

2.1 Automata Learning

Language learning is a well-studied problem in both linguistics and computer science. In linguistics,
the focus is on how languages are acquired by humans and how grammar recognition sets humans
apart from other animals. On the other hand, in computer science, the focus has been on constructing
acceptors or generators for various classes of formal languages. Due to their favorable theoretical
properties, regular languages—and consequently, DFA learning—have garnered significant interest.
DFA learning can be divided into active learning and passive learning. In active learning algorithms,
the learning agent interacts with a teacher or oracle and receives feedback, e.g., in the form of
membership and equivalence queries. In contrast, in passive learning, the learning agent’s task is to
find a succinct representation that explains a finite set of accepting and rejecting words.

Active Learning Algorithms. Active learning algorithms [43| 44} 45|46, !47, 48] such as L*, are
pivotal in the domain of DFA learning. These algorithms keep asking an oracle, which provides an-
swers to membership queries (MQs) and Equivalence queries (EQs), to iteratively refine a hypothesis
automaton until it accurately constructs the target automaton. The concept of a Minimally Adequate
Teacher (MAT) introduced in [43]] is central to this process. A MAT is an oracle that can answer
both MQs—determining whether a given string is part of the target language—and EQs—providing
counterexamples when the current hypothesis does not match the target automaton.

In practice, oracles may provide incorrect answers to MQs and EQs. The method in [49] explores the
issues related to errors or omissions in MQ responses and the learning of finite variants of concepts
in polynomial-time exact learning using membership and equivalence queries. They demonstrate
that the class of regular languages, such as DFAs, is learnable in polynomial time with equivalence
and malicious membership queries. However, their approach becomes impractical when dealing
with the exponential increase in errors in MQs as the average length of the counterexamples grows.
Recently, [42] developed the concept of a probabilistic Minimally Adequate Teacher (pMAT), which
leverages a probabilistic oracle that may randomly give persistent errors while answering membership
queries for DFA learning. In this framework, the oracle responsible for answering equivalence queries,
denoted as Og(, consistently provides a valid counterexample, if one exists. In contrast, the oracle
for membership queries, O, may occasionally provide incorrect answers.

Passive Learning Algorithms. In contrast, passive learning algorithms like RPNI (Regular Positive
and Negative Inference) and its variants (e.g., RPNI-EDSM) infer a DFA from a set of positive
and negative examples without interactively querying an oracle. Instead, they rely on state merging
[50,151] to construct an initial hypothesis from both the positive and negative examples and refine it
to accept all given examples, often achieving a model that generalizes well to unseen data.

LLM-Based Oracles in DFA Learning. Due to recent progress in training large language models
(LLMs) to understand and translate natural languages, LLMs have catalyzed renewed attention
in grammatical inference, playing various roles including the teacher, learner, or oracle. In our
interactions with LLMs, we represent a query to the LLMs as a tuple (w, [yes, no]) where w € X*
is the word to be queried. To represent the cache that stores membership queries and equivalence
queries, we use Cyrg and C'gg. The access to result of a query x in the cache is denoted by C|x].

3 Method

The first step in learning a skill by constructing a DFA is to define the sub-alphabet relevant to the
corresponding skill. This sub-alphabet should include all actions AP, = {craft, mine, smelt, ...}
that contribute to completing the task, as well as events that can verify the success of an action or
constrain subsequent actions, which we denote by AP,,. = {inventory change, time, in water, ...}
Actions are generally defined as a combination of a verb and a noun or object, where the verbs
represent basic control primitives—derived from Mineflayer APIs or learned skills—and the nouns
correspond to game objects as defined by APy, = {log, barrel, bedrock, ...}. We utilize the same
control primitives as the popular MineCraft agent Voyager [[1], with slight modifications to the names

Specification

Text Embedding Global Alphabet

Control Primitives

Craft[] . "andesite” Inlventory Changes
exploreUntil[] "andesite_wall" Time of Day
ggtPIacedDback "attached_pumpkin_stem" Qn Ground

K|I.][] “barrel" : Life Status

Mine[] "basalt” : In Water

Place[] + “beacon” : In Lava

Shoot[] "bedrock” : Moygments
Smelt[] : Collisions
Get[JFromChest " o [, “

DepositJintoChest zombified_piglin_spawn_egg

Please use the symbols provided in *{} to construct an alphabet for a DFA
representing the specification "{}" in Minecraft. Follow these rules:

S mbols 1. Combine verbs with appropriate nouns: some verbs (e.g., “mine”,

y “exploreUntilFind") should only be paired with blocks, others (e.g., “smelt”,
"place") with items, and some (e.g., "kill") with entities.
2. Events should be stand-alone symbols and not combined with other
symbols.

v 3. If certain symbols are irrelevant to the specification, omit them.

Figure 2: Global Alphabet: comprises a comprehensive set of control primitives, game objects, and
events, from which relevant symbols are selected to form sub-alphabets tailored to specific tasks
using a RAG system.

to better prompt the LLM oracle. Quantitative distinctions are unnecessary, as DFAs can handle
repetitive symbols; for instance, Mine3acacia_log is equivalent to MineAcacia_log.

Given the vast number of APIs, learned skills, and over 1,000 game objects in Minecraft, the alphabet
size can become overwhelmingly large. Selecting symbols from this expansive global alphabet
APyiobal = APyt U APy, U AP, is fundamentally a task (specification) decomposition process,
breaking down a complex task into sub-tasks represented by symbols in the global alphabet. An
incorrect decomposition can make it impossible to learn an accurate DFA. To mitigate this challenge,
we employ a Retrieval-Augmented Generation (RAG) system, as illustrated in Figure[2] to identify
and select the most relevant APIs and game objects. This process begins by associating each symbol
in the global alphabet with a textual description. The RAG system leverages text embeddings of
these descriptions to efficiently retrieve potential candidates, which are then provided to LLMs to
construct the final alphabet. If the constructed alphabet is incomplete, the target DFA cannot be
learned, resulting in a DFA without an accepting state in practice. In such cases, the LLMs analyze
the incorrect DFA and the retrieval process is repeated to refine the alphabet.

When a human specification is provided, it is converted into a text embedding and compared against
the embeddings of symbols in the global alphabet using cosine similarity. The RAG system then
retrieves the most relevant symbols from each category (control primitives, objects, and events)
and integrates them into the prompts, guiding the LLMs to generate the final sub-alphabet. Further
implementation details of our RAG system can be found in Appendix

3.1 DFA Learner

Once the sub-alphabet for a skill is defined, the learning process begins using DFA learning. We
employ RPNI-EDSM as our passive DFA learner for goal completion and the LAPR algorithm
from for active learning. As mentioned earlier, two types of DFAs need to be learned: those

representing human specifications and those representing skills. The former will be discussed in
Section [3.3] For skill learning, we address it in the contexts of goal completion and lifelong learning.

In the goal completion setting, given a sub-alphabet, the LLM oracle generates both positive and
negative examples, which are stored in a cache. The passive learner then constructs the DFA based on
these examples. Once the hypothesis DFA for a skill is built, it is tested by simulating the DFA in
a wrapper environment. This is the Equivalence Oracle, which wraps the Minecraft environment
with a logger and word extractor. The logger records all events available to the agent into log files,
while the word extractor translates the logs into words to identify any counterexamples that cannot be
accepted by the DFA skills. If the skill fails to achieve the goal, a counterexample is identified, and
its action sequence is added to the example cache. The learner then re-constructs the DFA, repeating
this process until no further counterexamples are found. The final DFA is stored in the Skill Manager.

In the lifelong learning setting, CEDAR begins with the RAG system instructing the LLM on the
initial actions, while any membership queries involving other actions are answered as false. In this
context, the Minecraft environment functions as an equivalence oracle. The active learning algorithm
continuously refines the skill through interaction with the environment. Initially, the RAG system
suggests a sequence of actions based on the current context and previously acquired knowledge. The
LLM evaluates these suggestions and executes the actions in the environment. Any deviations or
failures encountered during execution serve as counterexamples, which are a negative answer to
the equivalence query and are then used to refine the DFA. This iterative process ensures that the
skill adapts and improves over time, accommodating new scenarios and enhancing its robustness. By
leveraging active learning, CEDAR can dynamically adjust its strategies and extend its capabilities to
efficiently handle increasingly complex tasks. This approach not only accelerates the learning process
but also ensures that the learned skills are comprehensive and resilient.

3.2 Skill Manager

In the skill manager, a skill is stored as a tuple (A, v, n, E, D), where v € AP, represents a verb
in the global alphabet, n € AP,y is an object in the global alphabet, £ C AP, is a set of events
that occur upon the successful execution of the skill, and D C >* contains all of the examples
used to construct the DFA A. If the DFA is learned using passive learning algorithms, D stores all
the positive examples d* and negative examples d~. For DFAs learned actively, D records all the
membership queries {w | ¥* 5 w € Cpyq} and all the counterexamples {w | ¥* 3> w € Cgq}. The
positive examples d* = {w | w € Cpg and Opng(Crg) = yest U {w | w € Cpg and Afw] €
FA} include all words from membership queries with a positive response as well as all positive
counterexamples. The negative examples consist of the corresponding negative counterexamples.

To use DFAs as policies, we execute actions along the shortest path from the initial state to an
accepting state. If an action is invoked but absent from the program logs, it is considered a failure, and
the corresponding edge is temporarily removed from the DFA. A new shortest path is then computed
from the current state, and the process repeats.

Skill retrieval from the skill manager is straightforward: the input query (v’,n') is matched against
stored skills (v, n). If both match, the corresponding skill is returned. If the verbs differ, no skill is
returned. If the verbs match but the nouns differ, the manager retrieves all skills with the same verb,
placing them into the query context for the LLM to select the most relevant one—referred to as the
template DFA. The manager then modifies this DFA by substituting its noun-specific sub-alphabet
and updating all transition symbols §** and examples in D accordingly. The modified skill is then
returned, allowing generalization to unseen tasks. Although the modified DFA may not be entirely
correct, it significantly accelerates learning by providing a structured starting point and relevant
examples. Rather than constructing a DFA from scratch, the learner refines the given template.

3.3 Verifier

The verifier is responsible for ensuring that the learned skills align with the human specifications. In
this paper, human specifications are defined as any instructions provided by a human, encompassing
both goals and constraints on the agent’s policy, expressed in natural language. To address this
challenge, the verifier first translates the specifications from natural language into a regular language,
applying active DFA learning. Subsequently, the verifier checks whether the learned skills conflict
with any of the translated specifications and attempts to resolve any conflicts.

Human

You should sleep at night

DFA

bedFound

bedFound

%‘

midnight

midnight
>

Intersection

Q-

Concatenatior,

=

@ Equip Pickaxe

'&m

ine ¢ 1):)% °

Text Embedding]Sub-alphabet

Figure 3: DFA Intersection Operation: The intersection creates a new DFA that accepts only the
words accepted by both original DFAs. The top DFA represents the specification "Please sleep at
night," while the bottom DFA corresponds to the skill "Mine diamond_ore."

Given a set of human specifications, the formalizer begins by decomposing them into sub-
specifications, such as atomic propositions, using LLM queries. These sub-specifications are then
learned individually. As shown in Figure[3] the human specifications can be any instructions related to
Minecraft in natural language. As illustrated in Figure[T] the formalizer first retrieves a sub-alphabet
for each specification via a RAG system and uses the alphabet to learn a DFA that represents the
specification. In this process, we use active learning algorithms to learn the DFAs. During the learning,
the LLM functions as the MQ oracle, while humans serve as the EQ oracle. Due to the inherent
hallucinations in LLMs, errors in the LLM’s responses are inevitable. To address potential errors
in MQs, we employ the LAPR algorithm to maintain the consistency of the MQ and EQ caches.
Humans act as the EQ oracle to ensure that the learned DFA aligns with human expectations. The
ways for human to provide counter-examples is described in Section[6.3]in the appendix. However,
we avoid using humans for membership queries, as these queries can be lengthy and complex in game
settings, where LLMs can provide more efficient assistance.

There are two main advantages to representing human specifications and skills as DFAs. First, DFAs
derived from specifications can be used to check for compliance. As illustrated in Figure[I] these
DFAs match words extracted from newly generated game logs by the word extractor. If an error
occurs in this process, it indicates that at least one learned skill conflicts with the human specification.
To resolve this, we merge the alphabets of the two DFAs and take their intersection to construct a
new skill, as shown in Figure 3]

The intersection of two DFAs creates a new DFA that accepts only the words accepted by both
originals, ensuring specification compliance while preserving the skill’s functionality. For example, in
Figure[3] we combine two skills with compatible but orthogonal semantics: a temporal constraint (You
should sleep at night) and a task policy (Mine diamond). The resulting skill accepts only sequences
allowed by both automata. Formally, given two skills:

s1 = (A1,v1,n1, E1,D1), sz = (Az,v9,n9, Ea, Dy) 1)

their conjunctive merge and the corresponding acceptance condition are defined as:

Sconj = (An,v,n, E1 U Ey, Dy U Dy) 2)

YVwe X', weL(An) < we L(A)Awe L(Ag) 3)
where An = A; N A is the intersection DFA (a product automaton with accepting states Fy N F5),
v,n can be unified if semantically compatible or treated as null/abstract, E; U Es denotes the
combined success symbols, and D1 U Dy aggregates the evidence from both DFAs.

Second, representing skills as DFAs allows us to derive new skills through skill chaining, even
in the absence of human specifications. This is done by merging the accepting states of one DFA
with the initial state of another. As shown in Figure[3] one DFA describes how to craft and equip a
pickaxe, while the other describes how to mine a diamond. We refer to this as a concatenation merge.
By concatenating them, we obtain a new skill: mining a diamond starting from crafting a pickaxe.

Voyager Cedar Voyager Cedar
12

-
IN)

v 3 sunrise £ 20 TIITIL 204
< 101 1 noon 10 A =
= m 154 15
m 84 3 sunset 8 o
56 B midnight 6 =10 10,
[%] =
2 4 4 T
=l 9 5 5
T 24 24 T
< o
01 04 Z 0 0
0 6000 12000 18000 24000 0 6000 12000 18000 24000 l[] GOIOO IZ(IJUO 18600 24600 0 6000 12000 18000 24000
(a) (b) (c) (d)

Figure 4: Comparison of action counts and average health across time for Voyager and Cedar. The
human instruction here is to "craft a diamond pickaxe and keep collecting diamonds. Please sleep at
night. You are given a bed." (a) and (b) depict the number of actions per 1000 ticks for the Voyager
and Cedar agents; (c) and (d) show the average health of the agent per 1000 ticks for Voyager and
Cedar. The results were averaged over five trials that last three days each time on the same map.

Reusing the notation from Equation I} their concatenation and corresponding acceptance condition
are defined as:

Seon = (Ao, 0,1, E1 U Eg, Dy 0 Dy) 4)
Yw e X*, weL(A) < Ju,ve X suchthatw =u-v, u € L{A1), veE L(A) (5

where A, is formed by merging each accepting state of .A; with the initial state of A, (via state
relabeling), Dy o Dy = {w; - wa | w1 € L(A1),ws € L(A2)} (concatenated traces), and v, n can
be inherited or composed (e.g., "mine_pickaxe").

4 Empirical Result

In this section, we evaluate our method within the Minecraft game environment, demonstrating
its advantages over the popular Voyager [1]. We begin by assessing the CEDAR agent’s ability
to follow human instructions across various settings. Following this, we measure our method’s
performance in terms of the success rate in completing specific tasks. We then compare the lifelong
learning efficiency of our method against Voyager. Finally, we test the generality of our approach
by extending the learned skills to unseen tasks. The LLMs we used in the evaluation are gpt-4o for
task decomposition and answering membership queries, gpt-4o-mini for JSON translation, and
text-embedding-3-large for computing text embeddings.

4.1 Human Specification Following Study

In the experiments focused on following human specifications, both the Voyager and CEDAR agents
were given a goal with a specification to constrain the agent’s policy. In real-world scenarios, agents
often face potential dangers, represented here by randomly generated zombies at night in Minecraft.
Using sleep to bypass the night is an effective strategy in such situations. For this experiment, the
goal was to collect diamonds with the specification to sleep at night. The difficulty of the game is set
to normal for monster generation. Both Voyager and CEDAR were spawned in the same location
and world, and each was provided with a bed to eliminate the variable of bed crafting, allowing us
to focus on how well each agent understands and follows the human specification. The results in
Figure [demonstrate that CEDAR, which enforces strict adherence to human instructions using
DFAs, successfully prevents the agent from working during midnight. Notably, the CEDAR agent
maintains higher health levels during the night, reflecting its compliance with the sleep instruction,
while Voyager chooses to contend with monsters spawned at night.

In Minecraft, having a well-crafted plan that guides the agent on what to do and when to do it is
crucial for efficient exploration, as some activities are highly time-sensitive like villager trading and
honey collection. In this experiment, we assigned the agents the goal of exploring the world with
the specific instruction to mine minerals only at night. Since mining can be done at any time and
typically involves minimal monster encounters if not digging in natural caves or mines, the safer
daytime hours can be better utilized for other tasks. Figure []illustrates that CEDAR adheres to this
instruction, optimizing the use of daytime for item collection and reserving nighttime for mineral

Table 1: Statistics on the action count and objects gained for our approach and popular MineCraft
agent Voyager. The results are presented as mean + standard deviation (successful trials / total trials).

Method Action Counts Underground Overground Items Gained Objects
VOYAGER 106 +5 152 +47 50 + 10 27T+ 7 229 +44
CEDAR (Ours) 138 + 10 195+ 31 136 £18 586 388 + 36

Table 2: Performance comparison between VOYAGER and CEDAR across different crafting tasks.
The results are presented as mean =+ standard deviation (successful trials / total trials). The values
represent the mean and standard error of the prompting iterations, and the fractions indicate the
number of goal completions out of total trials. The tasks to the left of the second vertical line are
included in the skill library for both agents.

Method Wooden Pickaxe Iron Pickaxe [Diamond Pickaxe Lava Bucket Compass
VOYAGER

w/o Skill Lib. 7+2(5/5) 2946 (5/5) 35412 (2/5) 294+9.6(4/5) 26+£2.9(3/5)
VOYAGER 44+25(5/5) 16.6+3.5(5/5) ‘ 26 + 11 (3/5) 23+5.4(5/5) 18+1.5(5/5)
CEDAR

w/o Skill Lib. 6+3())

5/5) 31+3(5/5) ‘ 41411 (3/5 28+4.5(5/5) 29+25(2/5
CEDAR (Ours) | 6+3(5/5) 11+55(5/5) | 20+6.5(5/5) 10+7.7(5/5) 10+2.1(5/5)

extraction. In contrast, Voyager fails to follow the instruction, leading to inefficient use of daytime.
Voyager frequently moves between underground and overground places, wasting time and resulting
in fewer actions and items collected. The objects obtained by Voyager are irregular, whereas CEDAR
predominantly collects underground blocks at night. Moreover, Table [T|shows the total amount of
objects collected by CEDAR exceeds that of Voyager. These results demonstrate the effectiveness of
CEDAR in better utilizing daytime opportunities by strictly following human instructions.

The spatial distribution of objects in Minecraft is highly dependent on biomes; staying within a
specific biome can significantly enhance the collection speed of resources native to that biome. In
this experiment, we instructed the agents to explore within a biome called windswept_forest. By
integrating biome symbols into the sub-alphabet for learning human specifications and skills, CEDAR
is able to comprehend biome information within game events and use it to constrain its activity area.

As shown in the agent activity area heatmap in Figure [6] the Voyager agent ignored the human
specification of staying within the windswept_forest biome (the area in green) and traversed
across different biomes. In contrast, the CEDAR agent effectively restricted its activities to the
designated biome, adhering to the given instruction.

Both the Voyager and CEDAR agents had sufficient information observed from the Minecraft
environment, yet Voyager failed to follow four types of human specifications. There are two main
reasons for this failure. First, Voyager decomposes human specifications into sub-tasks rather than a
set of constraints. This approach means that once the corresponding sub-task is completed, Voyager

Voyager Cedar Objects Gained (Voyager) Objects Gained (Cedar)

3 sunrise % [Underground Blocks

EPE [noon 12 i f’ 48 [Overground Blocks 28

& [sunset ° 3 ltems

by B midnight -

& 8 81 832 32

%

2 4 1 © 161 161

g L2

< c H

0 0 3 0l d ol [
0 6000 12000 18000 24000 0 6000 12000 18000 24000 0 6000 12000 18000 24000 0 6000 12000 18000 24000

(a) (b) (e) (d)

Figure 5: Comparison of action counts and collected objects across time for Voyager and CEDAR.
Subplots (a) and (b) depict the total number of actions per 1000 ticks for Voyager and CEDAR,
respectively. Subplots (c) and (d) present the distribution of underground blocks, overground blocks,
and items collected per 1000 ticks. The given instruction was "explore the world and collect as many
different items as possible, but you can only dig for minerals like iron and diamond at night." The
experiment was repeated on the same map and spawn location 5 times, with each trial lasting 3 days.

Bot Positions (Voyager) Bot Positions (Cedar)

200 200 | Figure 6: The background
5 colors denote various
150 1 150 1 biomes, and the heatmap
overlay represents the bot’s
100 1007 e activity. CEDAR follows
. the human instruction to
0 0
° &= ° “explore the world but stay
. & ol in the windswept forest.”
The heatmap intensity
504 ol 1nd1cate§ the fre.q.uency .of
| | ‘ I I I I I ‘ | ‘ I the bot’s activities, with
=50 0 50 100 150 200 =50 0 50 100 150 200 .

@ (b) deeper colors representing

swamp windswept_forest dark_forest birch_forest river old_growth_birch_forest forest areas Of hlgher aCtiVity

disregards it. In the first experiment shown in Figure[d] the Voyager agent did indeed sleep on the first
night, but subsequently forgot this constraint and continued collecting diamonds both day and night.
In contrast, CEDAR learns the specification as a regular language, which continuously reinforces
the instruction for the agent to sleep at night. Second, Voyager lacks a mechanism to ensure that the
generated program fully adheres to human specifications. In contrast, CEDAR enforces that the DFAs
of learned skills are free from counterexamples when tested against the DFAs of human specifications.
This approach provides validation that the learned skills align with the given human specifications.

4.2 Goal Completion Performance

We evaluated the goal-completion performance of our method by comparing success rates across
different tasks with Voyager. The results presented in Table 2] underscore two principal advantages of
CEDAR: (1) the skills acquired by CEDAR exhibit greater robustness, and (2) CEDAR is capable of
efficiently extending these learned skills to previously unseen tasks. CEDAR demonstrates efficiency
in task resolution when the relevant skills are already included in the skill library, necessitating only a
single LLM query to translate the goal into a regular language. For unseen tasks, CEDAR surpasses
Voyager by extending the learned skills through straightforward modifications to the alphabet of the
DFAs corresponding to those skills. However, a drawback of CEDAR is that it requires a greater
number of LLM prompting iterations to accurately learn a DFA for a given skill. This is due to its
iterative process of testing the DFA in the environment until no counterexamples remain, thereby
requiring continuous querying of the LLM for additional examples.

5 Conclusion

This paper presents CEDAR, a Counter-Example Driven Agent with Regular Restrictions, developed
for the Minecraft environment. CEDAR incorporates human specifications formalized as DFAs,
enabling the agent to learn and refine skills in alignment with these specifications. By combining
passive and active DFA learning algorithms, the agent adapts to new tasks and improves existing
skills through interaction with the environment. Empirical evaluations suggest that CEDAR offers
improvements over prior methods such as Voyager, particularly in terms of controllability, robustness,
and extensibility. The use of DFAs helps maintain adherence to human instructions, reducing the like-
lihood of unintended behaviors. Additionally, CEDAR’s ability to extend learned skills to new tasks
by modifying the DFA alphabet contributes to its adaptability in open-world settings. By integrating
formal verification techniques with learning algorithms, this work explores how autonomous agents
can be made more reliable and responsive to human-specified constraints in complex environments.

References

[1] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023.

[2] Shunyu Liu, Yaoru Li, Kongcheng Zhang, Zhenyu Cui, Wenkai Fang, Yuxuan Zheng, Tongya
Zheng, and Mingli Song. Odyssey: Empowering agents with open-world skills, 2024.

[3] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang,
Bin Li, Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and Jifeng Dai. Ghost in the
minecraft: Generally capable agents for open-world environments via large language models
with text-based knowledge and memory, 2023.

[4] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023.

[5] Ming Yan, Ruihao Li, Hao Zhang, Hao Wang, Zhilan Yang, and Ji Yan. Larp: Language-agent
role play for open-world games, 2023.

[6] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023.

[7] Chen Feng Tsai, Xiaochen Zhou, Sierra S. Liu, Jing Li, Mo Yu, and Hongyuan Mei. Can large
language models play text games well? current state-of-the-art and open questions, 2023.

[8] Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents, 2024.

[9] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control, 2023.

[10] Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In 8th International
Conference on Learning Representations, ICLR, 2020.

[11] Zelin Zhao, Karan Samel, Binghong Chen, and Le Song. Proto: Program-guided transformer
for program-guided tasks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[12] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task
plans using large language models. In Workshop on Language and Robotics at CoRL 2022,
2022.

[13] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents, 2024.

[14] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas
Jackson, Linda Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue:
Embodied reasoning through planning with language models, 2022.

[15] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[16] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[17] Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F. Xu, Yiqing Xie, Graham Neubig,
and Daniel Fried. Coderag-bench: Can retrieval augment code generation?, 2024.

[18] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi.
AI2-THOR: an interactive 3d environment for visual AI. CoRR, abs/1712.05474, 2017.

[19] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge, 2022.

10

[20] Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan
Partsey, Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, Vladimir Von-
drus, Theophile Gervet, Vincent-Pierre Berges, John M. Turner, Oleksandr Maksymets, Zsolt
Kira, Mrinal Kalakrishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra,
Akshara Rai, and Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots,
2023.

[21] Chi Zhang, Penglin Cai, Yuhui Fu, Haoqi Yuan, and Zongqing Lu. Creative agents: Empowering
agents with imagination for creative tasks, 2023.

[22] Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin, Lu Sheng, Ruimao Zhang, Yu Qiao, and
Jing Shao. Mp5: A multi-modal open-ended embodied system in minecraft via active perception,
2024.

[23] Sipeng Zheng, Jiazheng Liu, Yicheng Feng, and Zongqing Lu. Steve-eye: Equipping llm-based
embodied agents with visual perception in open worlds, 2023.

[24] Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023.

[25] Zhonghan Zhao, Wenhao Chai, Xuan Wang, Li Boyi, Shengyu Hao, Shidong Cao, Tian Ye, and
Gaoang Wang. See and think: Embodied agent in virtual environment, 2024.

[26] Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks, 2023.

[27] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (1lm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, 4(2):100211, June 2024.

[28] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll.
A review of safe reinforcement learning: Methods, theory and applications, 2024.

[29] Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters.
Robust reinforcement learning: A review of foundations and recent advances. Machine Learning
and Knowledge Extraction, 4(1):276-315, 2022.

[30] Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu,
Yan Liu, and Deyi Xiong. Large language model alignment: A survey, 2023.

[31] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng
Shang, Xin Jiang, and Qun Liu. Aligning large language models with human: A survey, 2023.

[32] Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith
Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richard Nagyfi, Shahul ES,
Sameer Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu
Nguyen, and Alexander Mattick. Openassistant conversations — democratizing large language
model alignment, 2023.

[33] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions, 2023.

[34] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024.

11

[36] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[37] Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
Zhonghao He, Jiayi Zhou, Zhaowei Zhang, Fanzhi Zeng, Kwan Yee Ng, Juntao Dai, Xuehai
Pan, Aidan O’Gara, Yingshan Lei, Hua Xu, Brian Tse, Jie Fu, Stephen McAleer, Yaodong
Yang, Yizhou Wang, Song-Chun Zhu, Yike Guo, and Wen Gao. Ai alignment: A comprehensive
survey, 2024.

[38] Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models, 2022.

[39] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann.
Automated formalization of structured natural language requirements. Information and Software
Technology, 137:106590, 2021.

[40] Marcell Vazquez-Chanlatte, Karim Elmaaroufi, Stefan J. Witwicki, and Sanjit A. Seshia. [*Im:
Learning automata from examples using natural language oracles, 2024.

[41] Shayan Meshkat Alsadat, Jean-Raphael Gaglione, Daniel Neider, Ufuk Topcu, and Zhe Xu.
Using large language models to automate and expedite reinforcement learning with reward
machine, 2024.

[42] Lekai Chen, Ashutosh Trivedi, and Alvaro Velasquez. Llms as probabilistic minimally adequate
teachers for dfa learning, 2024.

[43] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87-106, 1987.

[44] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994.

[45] Ronald L Rivest and Robert E Schapire. Inference of finite automata using homing sequences.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
411-420, 1989.

[46] Rajesh Parekh, Codrin Nichitiu, and Vasant Honavar. A polynomial time incremental algorithm
for regular grammar inference. Technical Report TR 97-03, Artificial Intelligence Research
Group, Department of Computer Science, lowa State University, 226 Atanasoff Hall, Ames,
Towa 50011-1040, USA, January 17 1997.

[47] Francois Denis, Aurélien Lemay, and Alain Terlutte. Learning regular languages using rfsas.
Theoretical computer science, 313(2):267-294, 2004.

[48] Josh Bongard, Hod Lipson, and Stefan Wrobel. Active coevolutionary learning of deterministic
finite automata. Journal of Machine Learning Research, 6(10), 2005.

[49] Dana Angluin, Martin$ Krikis, Robert H Sloan, and Gyorgy Turdn. Malicious omissions and
errors in answers to membership queries. Machine Learning, 28:211-255, 1997.

[50] José Oncina and Pedro Garcia. IDENTIFYING REGULAR LANGUAGES IN POLYNOMIAL
TIME, pages 99-108.

[51] Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. Results of the abbadingo one dfa
learning competition and a new evidence-driven state merging algorithm. In International
Colloquium on Grammatical Inference, pages 1-12. Springer, 1998.

12

6 Appendix

6.1 Limitations

Our approach introduces several assumptions and limitations that warrant discussion:

Ambiguity in natural language. While our method does not assume human specifications are
perfectly accurate, it relies on the ability of humans to provide correct counterexamples when the
learned DFA misaligns with their intent. This assumes that humans can consistently judge whether a
sequence matches their intended specification, which may not hold in cases of subtle or ambiguous
semantics.

Residual LLM hallucinations. Although the LAPR algorithm can handle noisy membership queries
and both the environment and verifier can provide counterexamples, our method cannot fully eliminate
LLM hallucinations. If both the human and LLM share a similar misunderstanding of a task, the
resulting specification DFA may be incorrect. Thus, while hallucination effects are mitigated, they
are not completely resolved.

Limited evaluation iterations. Our experimental results are based on five runs per baseline to
evaluate performance in Minecraft. While this is generally sufficient in the Minecraft setting—where
each generated world presents substantial complexity for tasks like diamond mining—it introduces
some variability in results. Due to the high cost of querying OpenAl APIs, we were unable to run
more extensive trials.

6.2 RAG

RAG Implementation

Our RAG system is designed to enhance the reasoning and generation capabilities of language models
by integrating structured knowledge retrieval. It leverages a database of pre-processed text chunks or
symbol descriptions, embedding them into a vector space for efficient retrieval. The system supports
multiple retrieval methods, including k-Nearest Neighbors (kNN) and Elasticsearch-based indexing,
allowing for flexibility based on the deployment environment and use case.

The pipeline begins by chunking input data into manageable pieces, ensuring compatibility with the
model’s token limits. Each chunk is embedded using a state-of-the-art embedding model, capturing
semantic relationships for downstream retrieval. These embeddings are stored in a database alongside
their corresponding chunks. For retrieval, the system compares the embeddings of the user query
against the stored embeddings, either through kNN for cosine similarity or via Elasticsearch’s text
search capabilities. This ensures highly relevant results tailored to the query context.

The system also ensures robustness by incorporating mechanisms to rebuild and maintain consistency
between embeddings and the database. For instance, when new data is added or existing data
is modified, the embeddings and retrieval models are updated to reflect the changes accurately.
Additionally, the system includes mechanisms to index data into Elasticsearch for faster retrieval in
scenarios involving large datasets.

To handle symbol-specific tasks, a specialized module allows for the addition and retrieval of symbols,
including their semantic descriptions. Symbols can be retrieved based on their similarity to a query or
used in downstream tasks to generate context-aware responses.

Finally, the system integrates with language models for generating augmented responses. By append-
ing relevant retrieved chunks or symbols as context to the input query, it ensures that the language
model produces more accurate and knowledge-grounded outputs. This approach makes the system
suitable for tasks that require precise reasoning, such as answering domain-specific questions or
solving complex problems. The use of both structured and unstructured data ensures flexibility and
adaptability across a wide range of applications.

RAG Prompts
This is a prompting example we used in our RAG system.

1 {"role": "user", "content": "For this sub-goal (specificatiomn): \"
Mine [Logl: Mine a wood log from a nearby tree in the jungle

13

biome.\", what is the most appropriate object? You are
currently located at position (x: 4.50, y: 90.00, =z: 25.50) in
a jungle biome. It is facing yaw: -3.14 and pitch: -1.57. You
have health: 20, food: 20, and saturation: 5. The current time
of day is day. Your velocity is (x: 0.00, y: -0.08, z: 0.00).
Nearby entities include: a parrot at 19.77 blocks away, a
chicken at 23.00 blocks away. You are surrounded by blocks such

as stone, dirt, grass_block, coal_ore. Since the last
observation, you have lost 1 of dirt."}

RAG Performance Analysis

To evaluate the effectiveness of our RAG system in constructing a correct alphabet, we conducted
a series of tests. The RAG system is provided with a task description (specification) and tasked
with retrieving relevant symbols from the global alphabet. For the ground truth alphabet, we use the
alphabet derived from skill DFAs that have been validated in the Minecraft environment, ensuring the
correctness of the labels.

To compare the retrieved alphabet with the target alphabet, we use two metrics. The first metric is
Absolute Accuracy, which measures the proportion of symbols in the target alphabet A? that are

correctly predicted in the retrieved alphabet A. It is defined as:
|AL N A
|A*|
The second metric is the Overlap Coefficient, which calculates the size of the intersection divided by
the size of the smaller set:

|AY N Al
min(|.A*|, | A|)

We evaluated our RAG system on a subset of 44 skill DFAs. The system achieved an Absolute
Accuracy of 0.9372 and an Overlap Coefficient of 0.9208, both with a standard error of 0.10. These
results indicate that the retrieved symbols are highly similar to the target alphabet, providing a strong
guarantee for the RAG system to construct a correct alphabet for task specifications.

To further assess the effectiveness of the text embeddings used in the RAG system, we compared
the calculated text embedding similarities D with the predicted results X; < A; e A using cosine
similarity:
XD
XDl
The RAG system achieved a cosine similarity score of 0.45 (range [—1, 1]) with a standard error of
0.14, demonstrating that the retrieved results are highly relevant to the query task.

Metric Absolute Accuracy Overlap Coefficient Cosine Similarity
RAG System 0.9372 £ 0.10 0.9208 £ 0.10 0.4500 £ 0.14

Table 3: RAG Alphabet Construction Performance: The results are presented as average +
standard error.

6.3 Human Given Counter-Examples
Humans can provide counterexamples (CEs) in 3 ways:

1. Annotations: Humans can review videos or trajectories of the skills practiced by the CEDAR
agent in the real environment and mark incorrect trajectories. These marked trajectories are
then used as CEs.

2. Demonstrations: Humans can provide demonstrations by playing Minecraft. The human
actions are recorded in the program logs, which can be converted into formal CEs.

3. Formal Counterexamples: For simpler DFAs that can be visualized as graphs, humans can
directly provide formal CEs by inspecting these graphs.

14

PeH . 99 0 2
®®® 09 |o
98D 89 0 PeH. 89

(a) Annotation (b) Demonstration (c) Formal CE

988/ 799

Figure 7: Three Ways for Human to Give Counter-Examples

6.4 Simulation Counter-Examples

Item Accuracy | Standard Error
Dirt 0.9727 0.1629
Birch Log 0.8636 0.3432
Grass Block 1.0000 0.0000
Birch Leaves 0.9909 0.0949
Stone 0.9727 0.1629
Coal Ore 1.0000 0.0000
Iron Ore 1.0000 0.0000
Copper Ore 0.9909 0.0949
Gold Ore 0.9636 0.1872
Redstone Ore 0.9636 0.1872
Emerald Ore 0.4909 0.4999
Diamond Ore 0.9818 0.1336
Lapis Ore 0.9636 0.1872
Andesite 0.9818 0.1336
Granite 0.9636 0.1872
Sand 0.8727 0.3333
Average 0.9358 0.1692

Table 4: Success Rate and Standard Errors of Counterexample Discovery in Minecraft Simula-
tions. The table shows the accuracy and standard errors for different items.

To further evaluate the correctness of the learned skills and their alignment with human specifications,
we simulate these skill DFAs in the real environment and refine them using counter-examples collected
during the process. However, due to the complexity of the environment, some corner cases may not
be encountered by the agent within a limited number of iterations. To address this, we conducted
experiments to measure the success rate of collecting counter-examples.

For the experimental setup, we first generated incorrect DFAs by randomly adding or removing
transitions from correct skill DFAs. The skill DFAs selected for this experiment are designed to
locate specific objects and collect them, providing a practical context for evaluating the success
rate of counter-example discovery. Since these modified DFAs do not match the dynamics of the
real environment, counter-examples must exist. We then simulated these DFASs in the environment
to identify whether any counter-examples could be collected. For each DFA, we simulate it 110
times. A counter-example occurs when the DFA’s behavior diverges from the expected outcome in
the real environment. For instance, consider the mine_stone DFA, which is expected to collect a
cobblestone upon reaching its accepting state. If, during simulation, the accepting state is reached but
no cobblestone is present in the bot’s inventory, this trajectory constitutes a counter-example.

The results in Table 4] demonstrate that the RAG system effectively identifies counterexamples during
DFA simulations in Minecraft, with most items achieving an accuracy higher that 0.96 and a standard
error less than 0.2, indicating consistent detection. Notable exceptions include Birch Log and Sand,
which achieved an accuracy higher than 0.86 with a standard error around 0.3, and Emerald Ore,
which had the lowest accuracy at 0.49 with a standard error of 0.4999. These variations highlight the
challenges of certain items in aligning with the DFA dynamics. On average, the system achieved an
accuracy of 0.9358 with a standard error of 0.1692, underscoring its overall reliability and precision
in identifying counterexamples across diverse scenarios.

15

104 —8— mean
std B
0.8 - Counts
- L
in
- 0.6
= -
m
5
U 0.4 1
= L
0.2
0.0 1
T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0

CE Length
Figure 8: Mean, Std of CE Collection Probability with Lengths of CEs

We observed in Figure [8| that the probability of collecting CEs decreases as the length of the CEs
increases. This is because shorter CEs indicate that the skill DFA fails early in its execution, requiring
fewer interactions with the environment. In contrast, longer CEs suggest that the skill DFA is mostly
correct, with errors occurring only after extended interactions with the environment. However, this
is not a significant concern, as the majority of CEs are short, with lengths less than 7. Within this
range, the probability of collecting a CE is consistently above 0.6, ensuring that CEs can reliably be
collected within multiple simulation attempts.

16

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe CEDAR’s core contributions:
formalizing informal specifications as DFAs using LLM-based automata learning, lever-
aging passive and active DFA learners for skill acquisition and refinement, and enforcing
human-aligned behavior through counterexample-guided verification. The described compo-
nents—DFA Learner, Skill Manager, and Verifie—match the system’s implementation and
experimental scope. The claims regarding controllability, robustness, and generalizability
are well-aligned with the technical methods and evaluations presented.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a separate sub-section in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

17

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not introduce new theoretical results or theorems. All correct-
ness guarantees related to DFAs are based on well-established principles in automata theory
and are introduced in background section.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide source code, detailed algorithmic descriptions, and a comprehen-
sive explanation of our framework. These components are sufficient to reproduce the main
experimental results and validate the core claims of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

18

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the source code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https!
//mips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all the experiment settings in the empirical results section and
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use standard deviation errors and other metrics to estimate the potential
statistical noises.

Guidelines:

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Our experiments rely on OpenAl’s hosted LLMs (GPT-40 and GPT-40-mini),
which require no local compute resources. Since all LLM interactions were conducted
via API, reproduction only depends on access to the same models, not specific hardware
configurations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

20

https://neurips.cc/public/EthicsGuidelines

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We release our code under the MIT license. All external assets used in our work,
including OpenAl’s LLMs and Minecraft, are properly credited and used in accordance with
their respective licenses and terms of service.

Guidelines:

21

13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: There is no new assets introduced in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: This paper does not involve crowdsourcing nor research with human subjects.

22

paperswithcode.com/datasets

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLMs as oracles in both passive and active DFA learning, providing
membership query responses and generating examples.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Automata Learning

	Method
	DFA Learner
	Skill Manager
	Verifier

	Empirical Result
	Human Specification Following Study
	Goal Completion Performance

	Conclusion
	Appendix
	Limitations
	RAG
	RAG Implementation
	RAG Prompts
	RAG Performance Analysis

	Human Given Counter-Examples
	Simulation Counter-Examples

