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Abstract

Diversity is an essential metric for evaluating the creativity of outputs
generated by language models. Temperature-based sampling is a common
strategy to increase diversity. However, for tasks that require high precision,
e.g., mathematical reasoning, uncontrolled high temperature sampling, e.g.,
min-p or top-p, degrades reasoning quality. We demonstrate that the loss
of accuracy is caused by sampling incorrect continuations in sensitive
decoding positions. To address this, in this paper, we propose selective
sampling, a method that dynamically switches between greedy and high-
temperature sampling based on a sampling risk metric. This risk metric
estimates the likelihood of output errors when applying high-temperature
sampling on the current token position. To predict sampling risk, we
train a lightweight classifier on a small subset of verifiable problems. The
trained classifier can be integrated with the base language model with
minimal latency overhead. Experiments on mathematical reasoning tasks
demonstrate that selective sampling enhances the quality-diversity trade-
off, even in high-temperature settings.

1 Introduction

Recently, large language models (LLMs) have demonstrated unprecedented capabilities
in mathematical reasoning tasks by efficiently harnessing task-specific rewards (OpenAI
et al., 2024; Dubey et al., 2024; Yang et al., 2024; DeepSeek-AI et al., 2025). To maintain
high reasoning accuracy, prior work has primarily focused on deterministic decoding, e.g.,
greedy decoding, which generates outputs with the highest probability. However, this
approach often leads to pathological solutions by over-optimizing for a single objective, i.e.,
accuracy, at the expense of other desirable properties (Hashimoto et al., 2019). In particular,
deterministic decoding tends to reduce the diversity in generated outputs (Le Bronnec
et al., 2024; Kirk et al., 2024). This is problematic because human preferences are not always
aligned with those of greedy generations due to a lack of diversity and fluency (Zhang et al.,
2021; Holtzman et al., 2020).

Diversity is important for controllability in large language models: by having access to a
probabilistic sampler, a user can first generate multiple outputs, and then select the best ones
using a task-specific metric (Stiennon et al., 2020); a user can improve parallel exploration
of potential solutions (Yao et al., 2023), or control the generation process from a black-
box sampler according to additional constraints (Mudgal et al., 2024; Deng & Raffel, 2023;
Troshin et al., 2024). Temperature sampling is a common strategy to increase creativity and
diversity in many LLM inference frameworks such as vLLM (Kwon et al., 2023) or Hugging
Face (Wolf et al., 2020). However, it often comes at the cost of lower task accuracy compared
to deterministic decoding (Shi et al., 2024). This trade-off has motivated research on how to
narrow the quality gap between deterministic and temperature sampling (Holtzman et al.,
2020; Basu et al., 2021; Hewitt et al., 2022; Minh et al., 2025).
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Previous sampling methods, such as top-p and min-p sampling, truncate the next-token
distribution based on model confidence in order to improve the quality-diversity trade-off
in language generation. These sampling methods prioritize high-likelihood candidates to
improve output precision (Meister et al., 2023). However, one limitation of the truncation
sampling approaches is that they solely rely on model confidence to sample potential
candidate tokens. While the shape of the model output distribution over candidate tokens
can represent uncertainty, it is hard to distinguish between different types of uncertainty
(Baan et al., 2023), namely between variability due to numerous plausible continuations
(Giulianelli et al., 2023) and uncertainty about what the correct answer is. For example, if a
model assigns high probability to two different answers, are both of these answers plausible,
or is the model not confident which one is correct in a given context? As we demonstrate
in §3, sampling at certain decoding time steps can lead to incorrect continuations in cases
where the greedy continuations are correct. This shows that it is important to adopt different
decoding strategies across decoding positions to balance quality and diversity.

To balance both the diversity and quality of LLMs output, we propose selective sampling,
a method that dynamically switches between greedy and temperature sampling based on
a sampling risk metric. This metric measures the likelihood of output errors for a given
decoding timestep when applying temperature sampling to it. We train a lightweight
classifier on a small subset of verifiable problems to predict sampling risk. Our approach
preserves the original model outputs and is easy to implement, with the classifier integrating
into the base language model with minimal latency overhead. We empirically demonstrate
that temperature sampling with our classifier results in a better quality-diversity trade-off
compared to commonly used truncation-based and entropy-based sampling methods, both
under standard and high-temperature settings.

The structure of our paper is as follows: In §2 we review the fundamental theoretical
concepts behind the sampling methods explored in our study. In §3, we highlight the
gap we aim to fill by analyzing when existing sampling methods fail. In §4, we detail the
intuition and implementation of the selective sampling method. In §5 we outline the details
of our experimental setup, including models, tasks, and evaluation metrics. Then, in §6, we
present and discuss our results and findings. We describe related work in §7. Finally, we
summarize our conclusions in §8.

2 Preliminaries

In this section, we cover key concepts for sampling mechanisms, including temperature
sampling and its variants.

2.1 Temperature Sampling

At each step of decoding, the base model observes an already generated prefix x, and
predicts the logits zLM(·|x) ∈ R|V|. Logits are then used to form a sampling distribution
p(v|x), which may involve filtering, temperature, and other modifications (Minh et al., 2025;
Holtzman et al., 2020; Basu et al., 2021; Hewitt et al., 2022). In particular, temperature sampling
uses a scalar parameter to rescale the probabilities to make the distribution more peaked
(low temperature) or flatter (high temperature). The next token is then sampled from a
categorical distribution defined by p(v|x).

2.2 Temperature Sampling Variants

There are many heuristics for selecting a short-list of most likely token candidates, and
they rely on different statistics of the model distribution. Top-k always selects top k most
probable tokens (Fan et al., 2018). Top-p (Holtzman et al., 2020) selects top tokens whose
cumulative probability exceeds a hyperparameter p. Recently, Minh et al. (2025) proposed
min-p that uses the discounted probability of the top-1 token to define the probability
threshold. ϵ-sampling (Hewitt et al., 2022) allows any token with a probability greater than
ϵ. Some of the methods rely on the Shannon entropy of the model distribution (Shannon,

2



Published as a conference paper at COLM 2025

Question: Yara qualified for a spot on the soccer team ... and a water bottle for ¥3. How much did she spend on athletic gear?

Answer: 115

CoT Continuation: Yara bought a jersey for ¥24. The leggings cost ¥13 more than the jersey… So the cleats cost __

20 30 1 … the 50 6

Vocabulary

Probability

0

1

Greedy  : … So the cleats cost 20. The headbands cost ¥11 and she got a ¥1 discount … The 

final answer is 115

Non-Greedy : … So the cleats cost 30 - 20 = 10. The headbands cost ¥11 and she got a ¥1 

discount …The final answer is 105

0.5

Figure 1: High sampling risk example for the current decoding position. CoT Continuation
is generated by greedy decoding. Greedy continuation 20 results in a correct answer while
non-greedy continuation 30 leads to an incorrect answer. The full example is shown in
Appendix G, Figure 15.

1948), among which η-sampling truncates words below an entropy-dependent probability
threshold (Hewitt et al., 2022). Zhang et al. (2024b) propose EDT (Entropy-based Dynamic
Temperature) sampling in which they dynamically adjust the temperature based on entropy.
These methods generally lead to better results than sampling directly from the unmodified
p(v|x), and improve diversity and accuracy. In §6, we find that even the best among them
still exhibit quality degradation when increasing the temperature. We provide a more
detailed description of the aforementioned methods in Appendix C.

3 When Do the Sampling Methods Fail?

In this section, we analyze the limitations of widely used sampling methods introduced in
§2 by focusing on their impact on specific decoding time steps. We aim to identify sensitive
positions where sampling significantly increases the risk of generating incorrect outputs
compared to greedy decoding. To quantify this, we propose a metric sampling risk that
measures the likelihood of output errors when replacing greedy tokens with sampled ones.
Our findings highlight the need for adaptive decoding strategies that switch selectively
between greedy and sampling to maintain output quality.

3.1 Sampling Risk

Motivated by the concept of regret in reinforcement learning (Bubeck & Cesa-Bianchi, 2012),
we want to know the risk of choosing a sampling method in the current state compared to
greedy decoding. We define sampling risk of a current prefix x as follows:

s-risk(x) := R(x)− Ev∼p [R ([x, v])] , (1)

where [x, v] denotes the concatenation of the current prefix with a sampled next token, and
R(x) is the reward obtained by continuing from x with only greedy tokens until the stopping
criteria is met. In our case, we use accuracy as a reward.1 A higher sampling risk value
indicates a greater likelihood of generating incorrect outputs when applying temperature
sampling for this decoding time step.

3.2 Case Studies of High Sampling Risk

To validate the definition of the sampling risk, we first conduct a case study to investigate
whether we can identify certain decoding time steps with high sampling risk. For this study,
we focus on an arithmetic reasoning task. We hypothesize that when a model produces an
arithmetic calculation, there are certain decoding steps with high sampling risk .

1Accuracy is measured by matching between predicted and gold final answers.
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Figure 2: Entropy vs. Sampling Risk. Red squares: Incorrect final answers; Blue dots:
Correct final answers. Overall, we show that introducing sampling methods for high-risk
token positions will lead to erroneous outputs.

3.2.1 Setup

We focus on an arithmetic reasoning task with the chain-of-thought GSM-Symbolic dataset
(Mirzadeh et al., 2025), and use the instruction-tuned LLaMa-3.1-8B model (Grattafiori et al.,
2024) as our language model. For this analysis, we subsampled 100 correct greedy outputs
from the CoT GSM-Symbolic dataset to ensure our observations were not limited to a few
cases. Within these outputs, we identified potentially risky token positions considering the
positions where the model’s top-1 token is an integer number. These positions are critical
for math tasks, as integer numbers often serve as intermediate results for arriving at the
final answer.

3.2.2 Findings

Figure 1 illustrates one high sampling risk example from the GSM-Symbolic dataset. It
shows that selecting a non-greedy token (e.g., 30) for the current greedy CoT continuation
leads to an incorrect answer. This suggests that sampling under the model distribution at
the selected integer positions tends to generate errors, as only a narrow set of candidates
can yield correct outputs.

To further examine the impact of sampling at the selected positions, we compare min-p and
top-p sampling with greedy decoding. Figure 2 shows the correlation between sampling
risk and entropy for different decoding settings. We focus on full CoT continuations that
produce correct answers with greedy decoding and compute sampling risk and entropy at
integer positions within these continuations. Overall, we show that there are certain decod-
ing time steps when sampling tends to result in incorrect outputs, which also correlate with
high model entropy. These results underscore the importance of the sampling risk metric in
guiding decoding methods to improve the quality-diversity trade-off.

4 Methodology: Selective Sampling

Motivated by the observation that high sampling risk leads to incorrect predictions (§3), in
this section, we propose the selective sampling strategy by training a classifier sθ(x) ∈ R+
to discriminate between safe and high-risk prefixes x.

4.1 Estimating Sampling Risk

We automatically label sampling risks defined in Equation (1) for a small training set to train
a classifier for selective sampling. For the training set, we either use a part of the training
splits of the considered problems (GSM8k, Minerva Prealgebra tasks), or we split the test set
into train and test (GSM-Symbolic task) in a proportion 60 : 40. For the GSM-Symbolic task,
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Question: Find the sum of all positive integers $n$ such that $1.2n-4.4<5.2$
Answer: 28

S-risk labels: We have that $1.2n-4.4<5.2$, so $1.2n<5.2+4.4=9.6$, and thus $n<\frac{9.6}{1.2}=8$. Therefore, the positive
integers $n$ satisfying the inequality are $1,2,3,4,5,6,7$. The sum of these integers is $1+2+3+4+5+6+7=\boxed{28}$.
Final Answer: The final answer is $28$. I hope it is correct.
Our classifier: We have that $1.2n-4.4<5.2$, so $1.2n<5.2+4.4=9.6$, and thus $n<\frac{9.6}{1.2}=8$. Therefore, the positive
integers $n$ satisfying the inequality are $1,2,3,4,5,6,7$. The sum of these integers is $1+2+3+4+5+6+7=\boxed{28}$.
Final Answer: The final answer is $28$. I hope it is correct.

Figure 3: S-risk labels: obtained sampling risk labels for the Minerva task validation
set; Our classifier: corresponding predictions from our classifier. Orange marks the high
sampling risk positions where the greedy action would be chosen.

we split the data using the original problem IDs, such that versions of the same problem
only appear in one subset.

For a given task, we assume that a training example contains a source prompt u, and we
can estimate sampling risk for a given decoding time step. We do not use any correct chain-
of-thoughts from the data, and only use the model outputs. We only use correct greedy
outputs for training. We mark a prefix x to be either risky or safe to sample from as follows:

y(x) =
{︃

1, if s-risk(x) < 1 − ϵ,
0, otherwise

, (2)

where we set ϵ = 0.05 in our experiments.

In practice, we observe that for the reasoning tasks we considered, greedy sampling often
produces high-quality outputs. Given a set of training prompts U = {u}N

i=1, we obtain the
subset of prompts and correct greedy continuations U+ = {(u, x)|u ∈ U, R(u) = 1}. Then,
for every (u, x) ∈ U+, we estimate sampling risks up to a maximal token position M (we
use at most M = 300). To estimate the sampling risk at position i for the current x:i, we
create a short-list of the top k most probable next tokens. We force decode each of the k
next token candidates {vj}k

j=1, and then we finish each candidate using greedy decoding
to estimate R([x, vj]). Here, we treat greedy continuation as a low-cost approximation to
the upperbound on the quality given a selected next token. Different ways to estimate this
property may be possible and may depend on the task or the domain.

4.2 Selective Sampling

Our goal is to train a classifier to predict the sampling risk based on a representation
of the model’s context. LLMs’ hidden representations are known to be a rich source of
information for feature extraction (Duan et al., 2024; Mahaut et al., 2024). To obtain high-
quality context features for the classifier, we simply use the hidden representations of
the last token position. Namely, for a prefix x = [x1, · · · , xt], we use hidden states of
the base model from the residual stream, including the last input embedding, for the
last position t: f (x) = [h1, · · · , hL], where L is the number of layers in the base model.
Then, the classifier is applied on top of the frozen hidden states f (x). We parametrize a
simple linear binary classifier sθ( f (x)) = σ( 1

L ∑L
i=1 wT

i hi), where σ(y) = 1/(1 + e−y). Our
classifier is a simple linear model applied on top of the hidden states, introducing minimal
computational overhead. Most inference frameworks support access to the last hidden
states, and we implement it directly inside the vLLM implementation of the LLaMa model
(Kwon et al., 2023). During inference, we use our selective sampling classifier together with
a truncation sampling (we use min-p, p = 0.1). The aim is to investigate how our classifier
can complement the limitations of truncation sampling (§3).

We train our classifier in a teacher-forcing regime by passing the inputs to the model together
with target sampling risks. We use binary cross-entropy loss to train the classifier. We discuss
the training details in the Appendix A. Our implementation is released as open-source.2

2https://github.com/serjtroshin/selective_sampling
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5 Experiments

We conduct a comprehensive evaluation of selective sampling, comparing it to existing
sampling methods across multiple tasks. Our experiments aim to show the effectiveness
of selective sampling in improving both the quality and diversity of the model’s outputs,
particularly at higher temperatures.

5.1 Tasks

Following Grattafiori et al. (2024); OpenAI et al. (2024); Chen et al. (2024b), we evaluate on
commonly used mathematical reasoning benchmarks:

• GSM8K (Cobbe et al., 2021): A grade school math problem-solving benchmark.
• GSM-Symbolic (Mirzadeh et al., 2025): An extended variant of GSM8K with sym-

bolic templates, designed to provide a more reliable assessment of reasoning ability.
• Minerva MATH (Hendrycks et al., 2021): A dataset of competition-level mathemat-

ical problems. We conduct experiments on the PreAlgebra subset.

We follow the standard prompting formats implemented in Evaluation Harness (Gao et al.,
2024). For GSM8k and GSM Symbolic, we use the standard 8-shot chain-of-thought prompt-
ing configuration. For Minerva MATH, we use the 4-shot chain-of-thought prompting
configuration. Additionally, we experiment on MMLU-Pro question answering task (Wang
et al., 2024) with multiple choice answers and CoT (Appendix F.1).

5.2 Model

We use the instruction-tuned LLaMa-3.1-Instruct (8B) model (Grattafiori et al., 2024), selected
for its strong performance across various reasoning tasks.

5.3 Evaluation Metrics

Quality-diversity trade-off evaluation. We evaluate the model’s output based on two
key aspects: quality and diversity, using 25 samples per prompt. Quality is measured by
the accuracy of the final answer, indicating whether the model generates correct solutions.
For diversity, we compute the averaged distinct n-grams (Li et al., 2016), which quantifies
the proportion of unique n-grams relative to the total number of n-grams in the generated
responses, details in Appendix E. We follow Minh et al. (2025) and measure diversity only
over correctly generated samples in order to be less biased towards low-quality outputs.

To present results, we vary the temperature parameter and plot the quality metric on the
x-axis and the diversity metric on the y-axis. The best method would have both high-quality
and diverse predictions. To compare different methods, we look at the gap between the
diversity-quality plots, e.g., which method is better in terms of quality given a certain
diversity value and vice versa. In order to provide an aggregated metric integrating out
the temperature parameter, we also report the area under the quality-diversity plot (AUC)
using the trapezoidal rule3 implemented in scikit-learn (Pedregosa et al., 2011).

Fluency evaluation. To demonstrate the effectiveness of our method in generating diverse
yet coherent samples, we evaluate the noisiness of samples generated at high temperatures.
We use perplexity as a proxy for noise, with higher perplexity indicating a higher likelihood
of incoherent or nonsensical text, as suggested by previous studies (Zhang et al., 2024a;
Ankner et al., 2025; Marion et al., 2023). Perplexity scores were computed using the Llama-
2-7B-chat-hf model.4 For each task, we analyze a random subset of 100 instances, generating
25 samples per instance and calculating the average perplexity of the samples as the score

3We take the theoretical (0, 0) point to belong to all curves even if it is not realized by any hyperpa-
rameters in the experiment.

4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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Figure 4: Selective sampling with our classifier improves the diversity-quality trade-off
compared to the strong min−p truncation baseline. On the x-axis, we report the accuracy,
and on x-axis, we report the Diversity over correct samples. Size and color of the circles
mark the temperature parameter.

for that instance. The overall perplexity score is then computed as the average of the
per-instance scores.

6 Results

6.1 Diversity-Quality Results

We compare our selective sampling with baseline methods, including min-p sampling (Minh
et al., 2025), top-p sampling, top-k (Fan et al., 2018), (Holtzman et al., 2020), ϵ sampling
(Hewitt et al., 2022), η sampling (Hewitt et al., 2022) and EDT Zhang et al. (2024b). The
full plots are listed in Figures 13 and 14 (Appendix G), where we demonstrate that the
baselines methods usually follow the same diversity-quality trajectory, and that there is
no clear winner among the baseline methods. In Appendix D, we analyze the effect of the
hyperparameters for the baselines, and we choose min-p, with p = 0.1, as the main baseline
for comparison. In Table 1, we compare the cumulative aggregated diversity-quality scores
(AUC metric) for the quality-diversity plots.

In Figure 4, we demonstrate that the quality-diversity trade-off of min-p can be improved
using selective sampling for all three tasks. When the temperature is lower (τ ≤ 0.5), the
performance gap between min-p and ours is small. However, our method performs better
than min-p when the temperature value is increased.

Moreover, we estimate the average percentage of token positions where selective sampling
chooses greedy over temperature sampling, as shown in Table 2. We observe that selective
sampling tends to choose greedy decoding more often under higher temperature values
and harder tasks, such as Minerva. This observation is expected, as higher temperatures or
more challenging tasks tend to degrade the quality. Using greedy decoding more frequently
in such cases results in a more reliable strategy to maintain the output quality.

6.2 Fluency Results

Figure 5 illustrates the average perplexity scores across different temperature settings for
GSM8K, Symbolic GSM and Minerva Prealgebra. It also highlights the average accuracy of
the samples at each temperature value. As shown in the figure, our method consistently
produces significantly less noisy and more accurate samples, even at high temperatures,
compared to the min-p sampling method. Examples of samples generated by our method
versus min-p at τ = 2.0 are presented in Appendix G.

6.3 Ablation Studies

Classifier features. Above, we demonstrated that our classifier trained on top of the last
hidden states can improve the quality-diversity trade-off. While our classifier uses more
information from the context, compared to the baselines, it is built on top of the model’s
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Figure 5: Our approach produces low perplexity samples and maintains better quality than
the min-p baseline even at high temperatures. Numbers inside the plots represent accuracies
(as percentages).

Symbolic Minerva
Method GSM8k GSM Prealgebra

top-p 0.32 0.32 0.21
min-p 0.38 0.40 0.25
top-k 0.38 0.40 0.23
η sampl. 0.37 0.40 0.24
ϵ sampl. 0.37 0.40 0.24
EDT 0.35 0.36 0.24
Ours 0.42 0.47 0.30

Table 1: The area under the quality-
diversity plot of various sampling strate-
gies: an aggregated metric of the quality-
diversity trade-off. Our method outper-
forms the baselines on this metric.
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Figure 6: We show that our n-gram model,
which does not use any internal model rep-
resentations, can also slightly improve upon
the min-p baseline.

Temperature GSM8k Symbolic Minerva

1.0 0.02 0.10 0.37
2.0 0.05 0.12 0.39
3.0 0.17 0.20 0.44

Table 2: Percentage of greedy decoding token positions under different temperatures and
tasks for selective sampling. Under higher temperatures or harder tasks, selective sampling
chooses greedy decoding more than high-temperature sampling.

hidden representations. To complement the main experiment and to check whether we can
train the classifier solely using the current context as the feature, we introduce a simple
n-gram-based model, a classifier trained over the last n input embedding representations.
We provide the architectural details in Appendix B. For the Minerva evaluation set, the
n-gram classifier obtains 79% accuracy and 0.72% ROC AUC, which is worse compared to
the classifier trained on the hidden states (85% accuracy, and 0.78 ROC AUC). In Figure 6, we
present the results for selective sampling with the n-gram classifier, where we demonstrate
that the n-gram classifier is slightly better compared to the min-p baseline, in term of
diversity-quality trade-off, for the smaller temperature values range τ ∈ (0; 2]. However,
the n-gram classifier does not reach the performance of our hidden states classifier. We
think it is easier for the model trained on top of the hidden states to generalize to the unseen
contexts, especially in the higher temperature regime.

Classifier sensitivity. To assess the sample complexity of training the classifier, in Ap-
pendix F.2 we compare performance with random subsamples of the training set. We
observe that performance convergens at around 500 training prompts, suggesting that
variations in training data do not pose problems to the framework.
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Figure 7: Generalization experiment with evaluation on Symbolic GSM and Minerva Math
(Prealgebra) tasks. “Ours (all tasks)” is a classifier trained on all 3 datasets. “Ours (from X
to Y)” denotes a transfer experiment, where we train the classifier on task X and test on Y.

Diversity metric choice. To verify that our results are not overdependent on the choice
of the diversity metric, we follow the RFT (Yuan et al., 2023) and use the diversity metric
as the average normalized Levenshtein distance between all pairs of correct responses and
compare our approach to min-p sampling. We find that our method improves the quality-
diversity trade-off, in line with the findings from the n-gram-based diversity evaluation (see
Figure 11 in Appendix F.3).

6.4 Entropy-based (EDT) baseline.

In this experiment, we modify the EDT (Zhang et al., 2024b) approach, where we use a
binary threshold similar to our approach to switch between greedy and high-temperature
settings. From the additional results (see Figure 12 in Appendix F.4), we observe that
the threshold-based entropy baseline does not outperform the entropy-based dynamic
temperature sampling (EDT), and our method outperforms both variants of entropy-based
sampling approaches, which highlights the benefit of the trained classifier head versus
using entropy.

6.5 Task Generalization of the Selective Sampling Classifier

In this experiment, we ask (1) whether we can transfer a classifier trained on one task to
another task, (2) whether we can train a single classifier to be applied on many tasks. Regard-
ing (1), we observe that selective sampling trained on the Minerva dataset outperforms the
min-p baseline for the GSM Symbolic task on diversity-quality, suggesting that our classifier
can generalize between these tasks (see Figure 7). Regarding (2), we train a single classifier,
Ours (all tasks), on 800 examples from each of the 3 datasets: GSM8k, GSM Symbolic, and
Minerva, and evaluate the model on the GSM Symbolic task. We observe that the quality
of the Ours (all tasks) model closely matches that of Ours trained only on GSM Symbolic
(see Figure 7, left). The same effect is observed when we evaluate the same all tasks model
on the Minerva dataset (see Figure 7, right). This shows that we can use the same single
classifier on multiple tasks.

7 Related work

In this section, we review prior work relevant to our study, focusing on sampling techniques
from large language models (LLMs), methods for adjusting sampling parameters, and
approaches to mitigating hallucinations. These areas collectively informed our approach for
improving the quality and diversity of LLM outputs.

Sampling from LLMs. In the context of sampling from LLMs, various techniques (Holtz-
man et al., 2020; Basu et al., 2021; Hewitt et al., 2022; Minh et al., 2025) are proposed to
improve the fluency, coherence, reduction of repetitiveness, and diversity of LLM responses.

9
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Renze (2024) finds that in context of problem solving through LLMs there is little difference
between the existing sampling methods for [0, 1] temperature range. Wang & Zhou (2024)
observe that LLMs can reason through sampling by considering alternative decoding paths.
Minimum Bayes Risk (MBR) decoding (Kumar & Byrne, 2004) improves the quality of
the model by countering the pathological behavior of MAP inference (Freitag et al., 2022;
Suzgun et al., 2023; Wu et al., 2025; Jinnai et al., 2024).

Adjusting LLM sampling. There are several relevant approaches to improve sampling
quality and creativity by adjusting the temperature of the model. Liu et al. (2024) propose
to dynamically choose sampling hyperparameters based on the context, where they use a
prompted LLM to predict the hyperparameters at each step in a zero-shot regime. They
assume LLMs already understand sampling risk. Their approach requires maintaining two
models during the inference, which doubles the computation. Chang et al. (2023) develop a
dynamic temperature sampling to improve the context grounding for question answering
tasks, and Zhang et al. (2024b) improve upon this work by dynamically adjusting the
temperature parameter based on the base model entropy. In our work, we use the approach
of Zhang et al. (2024b) as an entropy-based baseline. In the context of code generation, Zhu
et al. (2024) notice that challenging code tokens tend to appear at the beginning of a code
block and propose to adjust the temperature based on the model confidence.

Mitigating LLM hallucinations. A broader related line of work improves the quality of
LLMs output by mitigating hallucination (Guerreiro et al., 2023; Duan et al., 2024; Mahaut
et al., 2024; Chen et al., 2023). To detect hallucinations, Duan et al. (2024) and Mahaut et al.
(2024) use LLM hidden states to estimate its reliability. Chen et al. (2024a) and Meng et al.
(2025) adjust the next token prediction distribution to improve the factuality and overall
quality by using the model entropy. Kossen et al. (2024) propose semantic entropy probes to
approximate semantic entropy from the hidden states to mitigate hallucination. Moreover,
Li et al. (2023b) introduce extra models to guide the decoding while Li et al. (2023a) shift the
activation during the inference to improve the truthfulness of LLMs.

8 Conclusion

Our work investigates temperature sampling from LLMs in the context of reasoning tasks.
We highlight that fully relying on model confidence might lead to low-quality outputs.
To complement the confidence estimate of a base model, we introduce the sampling risk
metric to estimate the risk of choosing a sampling action instead of greedy, based on the
expected future task-specific reward. We then propose a selective sampling approach that
switches between sampling and greedy decoding at each decoding time step based on
the predicted sampling risk. To achieve this, we train a simple classifier to estimate the
risk during inference. We demonstrate that our selective sampling strategy can improve
the quality-diversity trade-off compared to the commonly used baselines, such as min-p
truncation sampling. We hope our work will encourage further improvements on the
important quality-diversity tradeoff in language modeling.

9 Limitations

Our work exhibits a few limitations. First, while our classifier for selective sampling is easy
to implement, the classifier is model-dependent, which makes our approach not directly
transferable between different models compared to the baseline methods. Second, we
focus on the mathematical reasoning tasks, because they provide a simple way to estimate
correctness using verifiable rewards (accuracy of the final answers). We do not incorporate
the correctness of the CoTs as part of the quality metric, which would be much harder
to evaluate. We are looking forward to exploring more open-ended and creative writing
tasks in the future, with more subtle variations in sampling risks. Third, for the diversity
evaluation, we only use a commonly used and intuitive n-gram-based diversity measure.

10
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Reproducibility Statement

Our code is based on open-source software libraries for training and evaluation of LLMs:
vLLM (Kwon et al., 2023), Evaluation Harness (Gao et al., 2024), Hugging Face (Wolf et al.,
2020). We conduct the experiments on commonly used datasets available via Hugging
Face (Wolf et al., 2020). We use the prompt formats defined in Evaluation Harness (Gao
et al., 2024). Regarding the used datasets, the GSM8k dataset (Cobbe et al., 2021) is openly
available under the MIT license. Minerva MATH Prealgebra subset is part of the MATH
dataset (Hendrycks et al., 2021), and by using it, we refer to the Fair Use case discussed
in Hendrycks et al. (2021). Due to a recent controversy about the copyright status of the
MATH dataset, we can only release data or models trained on GSM8K and GSM-symbolic.
We will revisit the release of the Minerva MATH part of the data if this situation changes.
This may affect the reproducibility of part of our experiments (mainly those in which we
compare our classifier train on top of the hidden states with its n-gram ablation). We call for
more alternative evaluation datasets designed with the intention of being used for research
and released with open licenses.

Ethics Statement

While we mitigate the degradation in quality for high temperature sampling, we have not
measured whether this mitigation also affects toxicity or other undesirable properties of
text. We therefore recommend the same care that users should take with any other LLM
generation systems. Our method depends on the definition of task reward, which does not
account for all important characteristics users might value. Since sampling risk is estimated
with a classifier, it could possibly be that by suppressing certain outputs our method affects
the fairness and broader diversity of the outputs.
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Appendix

A Classifier Training

We train our classifier using Hugging Face.5 We train our classifier with the Adam optimizer
(Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.95, ϵ = 1e−12. We use learning rate 0.001,
weight decay 0.01, and batch size 100, number of epochs 50. We use binary cross-entropy
loss. We freeze all parameters of the base model and only train classifier weights. To create
the labelled dataset, we use only k = 8 next token candidates to limit the complexity of
the dataset creation, which is equivalent to using top-k filtered p distribution for the regret
estimation, and we use the temperature τ = 3.0) to estimate the sampling risk.

For preliminary experiments, we measure the quality of the binary classification with our
hidden states classifier using the validation set (100 samples from the training set). For
GSM8k/Minerva our classifier obtains 93%/85% accuracy, and 0.73/0.78 ROC AUC. We
visualize the predictions of our model along with original labels in Figure 3. Overall, we
observe that our classifier approximates well the labels in the dataset. We hypothesize
that further data refinement and noise reduction can benefit classifier training. We report
dataset statistics in the Table 3 (for training, we leave only the samples with a correct greedy
solution).

Subset GSM8k GSM Symbolic Minerva

train 4487 2300 893
val 100 100 100
test 1319 2000 871

Table 3: Dataset sizes for GSM8k, GSM Symbolic, and Minerva

B N-gram Classifier

We implement the n-gram classifier as a feed-forward network applied on top of the last n
input embeddings (we chose n = 10 based on the classification quality on the validation set).
The network consists of the 1D Convolution layer with m = 256 filters, which aggregates the
last n embeddings followed by the LayerNorm (Ba et al., 2016), and the GeLU nonlinearity
(Hendrycks & Gimpel, 2023). Then we apply an m × m linear layer following by the the
LayerNorm and the GeLU, and finally followed by the last linear layer to project into single
number.

C Sampling Methods

C.1 Truncation Sampling Methods

Temperature samping modifies the logits by introducing the temperature parameter τ:
zτ

LM(·|x) = τ · zLM(·|x). Truncated temperature sampling as implemented in commonly
used frameworks (vLLM; Kwon et al., 2023) works by considering only short-list of token

5https://huggingface.co/docs/transformers/en/main_classes/trainer
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candidates V′ ⊆ V at each decoding step (Minh et al., 2025; Holtzman et al., 2020; Basu
et al., 2021; Hewitt et al., 2022) :

z(v|x) =
{︃

zτ
LM(v|x), if v ∈ V′,
−∞, otherwise.

(3)

and the next token is sampled from the categorical distribution:

p̃τ(v|x) = exp(z(v|x))
∑

v′∈V′
exp(z(v′|x)) . (4)

Min-p sampling. To maintain coherence at high temperatures, Minh et al. (2025) intro-
duced min-p sampling, a dynamic method that adapts its truncation threshold according to
the model’s confidence at each decoding step. At each step, min-p identifies the maximum
probability token in the distribution:

pmax = maxv∈V p(v|x). (5)

The truncation threshold is subsequently determined by scaling a base parameter p ∈ (0, 1]
by pmax: pscaled = p × pmax, and V′ (eq. (3)) is determined by V′ = {v ∈ V : p(v|x) ≥
pscaled}

Top-p sampling. Also known as nucleus sampling, this method samples from the "nu-
cleus" of high-probability tokens by restricting the sampling pool to the top tokens whose
cumulative probability exceeds a hyperparameter p (Holtzman et al., 2020): V′ = {v ∈ V :
∑ p(v|x) ≥ p}

Top-k sampling. The sampling pool in this method consists of the most probable top k
tokens (Fan et al., 2018): V′ = {v ∈ V : rank (p(v|x)) ≤ k}

ϵ-sampling. This method allows any token with a probability greater than a threshold ϵ
(Hewitt et al., 2022): V′ = {v ∈ V : p(v|x) > ϵ}

C.2 Entropy Sampling Methods

For language models, Shannon entropy, defined as H[p] = −∑v∈V p(v) log(p(v)) measures
the uncertainty in predicting the next token in a sequence (Shannon, 1948). Truncation
sampling methods impose fixed thresholds to limit the set of candidate tokens during
generation. While these methods can improve output quality by filtering out low-probability
tokens, they may also over-restrict choices in low entropy distributions, potentially reducing
diversity. Entropy sampling methods adjust the sampling process based on the model’s
entropy, aiming to improve the quality-diversity trade-off.

η-sampling. η-sampling truncates words below an entropy-dependent probability thresh-
old (Hewitt et al., 2022): η = min(ϵ, α exp(−H[p])), using α ∈ [0, 1] and the hyperparameter
ϵ. Token shortlist is then determined as V′ = {v ∈ V : p(v|x) > η}.

EDT sampling. Entropy-based Dynamic Temperature sampling method dynamically ad-
justs the temperature parameter according to the model’s entropy and can be combined with
truncation sampling methods as an initial step (Zhang et al., 2024b). With the recommended
hyperparameters α = 0.8 and θ ∈ [0, 1], they shrink the original temperature τ by f (H[p]),

namely T(τ, H[p]) = τ α
θ

H[p] . Intuitively, when the entropy is large, the shrinkage factor
f (H[p]) approaches 1, and when the entropy is small, it approaches 0.

D Sampling Hyperparameter Settings

For comparing sampling methods: top-k, top-p, min-p, η/ϵ, and entropy-based dynamic
sampling (EDT), we report their optimal results with conducted tests on different hyperpa-
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rameters in Table 4. Results are selected based on the AUC scores over the quality-diversity
plot, reflecting the overall quality-diversity trade-off.

For top-p sampling, we report top-p = 0.7 and conducted tests on p = 0.7, 0.8, 0.9. For min-p
sampling, we report min-p = 0.1 for all experiments and conducted tests on p = 0.1, 0.2, 0.3.
For η and ϵ sampling, we test ϵ and η values 0.0002 and 0.0009, found 0.0009 to score better
for both values and report this in our experiment results.

For EDT sampling, we report θ = 0.1 for all experiments, and conducted tests on θ = 0.1, 1.0.

E Averaged Distinct N-gram Diversity

Given a set of test instances S = {s}M
i=1, each with a response set RK = {r}K

i=1. Following
Minh et al. (2025), we first filter out incorrect samples for each instance in order to be
less biased towards low-quality outputs, and we end up with a set of C correct samples
RC = {r}C

i=1 per instance, where C may vary across instances. Then, for n ∈ {1, 2, 3, 4, 5},
we calculate the averaged distinct n-gram diversity for each instance as follows:

averaged distinct n-gram (s) =
5

∑
n=1

set(n-gram(RC))

n-gram(RC)
.

The total test-set diversity is the average diversity over all instances:

diversity(RC) =
M

∑
i=1

averaged distinct n-gram (si).

F Additional Experiments

F.1 MMLU (Social Tasks)

We perform an additional experiment on the MMLU-Pro question answering task (Wang
et al., 2024) with multiple choice answers and CoT. We choose the subset of following tasks:
law, philosophy, history, psychology, which are more different from the math tasks from our
main experiments. As we can see from the results in Figure 8, and Figure 9, (a) our method
slightly outperforms the min-p baseline in terms of diversity-quality trade-off and (b) better
preserves the quality for higher temperatures, which broadens the potential scope for our
method.

F.2 Sensitivity to the training dataset

To verify that our classifier training is not too sensitive for the variations in training data,
we perform an additional experiment for classifier training by randomly subsampling 100,
500, 1000 examples of the training set for the GSM Symbolic task. We measure the accuracy
for sampling risk classification on the validation set. From Figure 10, we observe that
subsampling 1000 or 500 examples reduces accuracy marginally from 0.9 to 0.89. Taking 100
examples leads to a slight overfitting and 0.87 accuracy.

F.3 Ablation of the diversity metric

Following RFT (Yuan et al., 2023), we use a diversity metric as the average normalized
Levenshtein distance between all pairs of correct responses and compare our approach to
min-p sampling. We find that our method improves the quality-diversity trade-off, in line
with the findings from the n-gram-based diversity evaluation (see Figure 11).

F.4 EDT ablation experiment

In this section, we perform an additional ablation experiment for the modified the EDT
(Zhang et al., 2024b) approach, where we use a binary threshold similar to our approach to
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Figure 8: Additional result on MMLU Pro task on 4 social subsets.
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Figure 9: Additional result on MMLU Pro task on 4 social subsets: quality-temperature
trade-off.

switch between greedy and high-temperature settings. In particular, given a threshold t, we
evaluate the threshold-based entropy baseline (if H[p] < t, then τ′=0.0, else τ′=τ), using t.
from [0.5, 1, 2]. From the additional results Figure 12, we observe that the threshold-based
entropy baseline does not outperform the entropy-based dynamic temperature sampling
(EDT). Our method outperforms both variants of entropy-based sampling approaches,
which highlights the benefit of the trained classifier head versus the entropy.

G Examples

In Figure 15, we provide a high sampling risk example from the Symbolic GSM task. In
Figure 16, we provide additional examples with τ = 2.0 for the samples for GSM8k. Overall,
we observe that for higher temperatures, our methods produces more fluent outputs.
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Figure 10: Training data sensitivity analysis on the GSM Symbolic task: accuracy vs the size
of the training set.
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Figure 11: Quality-diversity trade-off plot with Levenshtein diversity metric.
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Figure 12: Quality-diversity trade-off plot with Levenshtein diversity metric.
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Method Diversity-Quality AUC
GSM8K Minerva

top-k 20 0.38 0.23

top-p 0.7 0.28 0.20
top-p 0.8 0.31 0.20
top-p 0.9 0.32 0.21

min-p 0.1 0.38 0.25
min-p 0.2 0.37 0.25
min-p 0.3 0.37 0.25

ϵ-sampl. 0.0002 0.35 0.23
ϵ-sampl. 0.0009 0.37 0.24

η-sampl. 0.0002 0.36 0.23
η-sampl. 0.0009 0.37 0.24

EDT θ=0.1 0.35 0.24
EDT θ=1.0 0.32 0.24

Table 4: Baselines hyperparameter values. Diversity-quality AUC Scores for GSM8K and
Minerva Prealgebra. Bold denotes the chosen hyperparameter value for main results.

0.0 0.2 0.4 0.6 0.8
Accuracy

0.1

0.2

0.3

0.4

0.5

Di
ve

rs
ity

 o
ve

r c
or

re
ct

GSM8k

min-p 0.1
min-p 0.2
min-p 0.3

0

1

2

3

4

Te
m

pe
ra

tu
re

 v
al

ue

GSM8k Min-p

0.0 0.2 0.4 0.6 0.8
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

Di
ve

rs
ity

 o
ve

r c
or

re
ct

GSM8k

min-p 0.1
top-p 0.9
top-p 0.7
top-p 0.8
top-p 0.95

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
m

pe
ra

tu
re

 v
al

ue

GSM8k Top-p

0.0 0.2 0.4 0.6 0.8
Accuracy

0.1

0.2

0.3

0.4

0.5

0.6

Di
ve

rs
ity

 o
ve

r c
or

re
ct

GSM8k

min-p 0.1
top-k 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
m

pe
ra

tu
re

 v
al

ue

GSM8k Top-k

0.0 0.2 0.4 0.6 0.8
Accuracy

0.1

0.2

0.3

0.4

0.5

Di
ve

rs
ity

 o
ve

r c
or

re
ct

GSM8k

min-p 0.1
eta 0.0002
eta 0.0009

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
m

pe
ra

tu
re

 v
al

ue

GSM8k η−sampl.

0.0 0.2 0.4 0.6 0.8
Accuracy

0.1

0.2

0.3

0.4

0.5

Di
ve

rs
ity

 o
ve

r c
or

re
ct

GSM8k

min-p 0.1
epsilon 0.0002
epsilon 0.0009

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
m

pe
ra

tu
re

 v
al

ue

GSM8k ϵ−sampl.

0.0 0.2 0.4 0.6 0.8
Accuracy

0.1

0.2

0.3

0.4

0.5

Di
ve

rs
ity

 o
ve

r c
or

re
ct

GSM8k

min-p 0.1
EDT Theta 0.1
EDT Theta 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Te
m

pe
ra

tu
re

 v
al

ue

GSM8k EDT

Figure 13: We compare different hyperparameters for the baseline methods on the GSM8k
task.
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Figure 14: We compare different hyperparameters for the baseline methods on the Minerva
task.
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Question: Yara qualified for a spot on the soccer team, so she went shopping for some athletic gear. She bought a jersey 
for ¥24, a pair of soccer leggings for ¥13 more than the jersey cost, and a pair of cleats that were originally ¥30 but 
were on sale for two-thirds price. She had a coupon for ¥1 off the package of ¥11 athletic headbands that she also bought. 
Finally, she got a duffle bag for ¥42 but with a 50% discount, and a water bottle for ¥3. How much did she spend on 
athletic gear?

Target: 115

Yara bought a jersey for ¥24. The leggings cost ¥13 more than the jersey, so they cost 24 + 13 = 37. The cleats were 
originally ¥30 but were on sale for two-thirds price. Two-thirds of 30 is (2/3) * 30 = 20. So the cleats cost __

CoT Risk Token Position: 71

Yara bought a jersey for ¥24 … Two-thirds of 30 is (2/3) * 
30 = 20. So the cleats cost 20

P (20 | Prefix) = 0.68 P (30 | Prefix) = 0.32

Yara bought a jersey for ¥24 … Two-thirds of 30 is (2/3) * 
30 = 20. So the cleats cost 20. The headbands cost ¥11 and 
she got a ¥1 discount, so they cost 11 - 1 = 10. The duffle 
bag was originally ¥42 but she got a 50% discount, so it 
cost 42 * (1/2) = 21. The water bottle cost ¥3.

Now we add up the costs: 24 + 37 + 20 + 10 + 21 + 3 = 115. 
The final answer is 115

Correct Answer Incorrect Answer
Yara bought a jersey for ¥24 … Two-thirds of 30 is (2/3) * 
30 = 20. So the cleats cost 30 - 20 = 10. The headbands cost 
¥11 and she got a ¥1 discount, so they cost 11 - 1 = 10. The 
duffle bag was originally ¥42 but she got a 50% discount, so 
it cost 42 - (42/2) = 42 - 21 = 21. The water bottle cost 
¥3. So the total cost is 24 + 37 + 10 + 10 + 21 + 3 = 105. 
The final answer is 105

Yara bought a jersey for ¥24 … Two-thirds of 30 is (2/3) * 
30 = 20. So the cleats cost 30

(a) Example 1

Q: Chen operates the cash register exactly seven times as fast as her less-experienced colleague Uma. Roya, being more 
experienced than Uma but less experienced than Chen, operates at the same speed as the average of Uma and Chen. Daily, Uma 
processes 22 customers. What is the total weekly production for the three if they work all days of the week?

A: 1848

Since Uma processes 22 customers per day, and there are 7 days in a week, Uma's weekly production is 22 * 7 = 154 
customers.

Chen operates 7 times as fast as Uma, so Chen's daily production is 22 * 7 = 154 customers. Chen's weekly production is 
154 * 7 = 1078 customers.

Roya operates at the same speed as the average of Uma and Chen. The average of Uma and Chen's daily production is ( __

Risk Token Position: 103

Since Uma processes 22 … The average of Uma and Chen's 
daily production is (22

P (22 | Prefix) = 0.88 P (154 | Prefix) = 0.12

Since Uma processes 22 … The average of Uma and Chen's 
daily production is (22 * 7 = 154 customers. Chen's weekly 
production is 154 * 7 = 1078 customers.

Roya operates at the same speed as the average of Uma and 
Chen. The average of Uma and Chen's daily production is (22 
+ 154) / 2 = 88 customers. So Roya's daily production is 88 
customers. Roya's weekly production is 88 * 7 = 616 
customers.

The total weekly production for the three is 154 (Uma) + 
1078 (Chen) + 616 (Roya) = 1848 customers. The final answer 
is 1848

Correct Answer Incorrect Answer
Since Uma processes 22 … The average of Uma and Chen's daily 
production is (154 + 154) / 2 = 308 / 2 = 154 customers. So 
Roya's daily production is also 154 customers. Roya's weekly 
production is 154 * 7 = 1078 customers.

The total weekly production for the three is Uma's 
production + Chen's production + Roya's production. 154 + 
1078 + 1078 = 2310. The final answer is 2310

Since Uma processes 22 …The average of Uma and Chen's daily 
production is (154

(b) Example 2

Figure 15: High-Risk sampling examples from GSM-Symbolic. Left: Top-1/Greedy genera-
tion on high-risk decoding position. Right: Non-greedy generation on high-risk decoding
position.
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Q. Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs only 60% of the price. Kylar 
wants to buy 16 glasses. How much does he need to pay for them?

A. 64

First, let's find out which glasses cost 60%. There are 16 glasses in total and every 2nd 
glass counts. 

 So it will be a case of the sequence, one, 60%, one, 60%.  Starting with just the first one, 
we have a total of 8 of the 100% glasses. Since (8 * 5)= $40 For every (2nd) one there's a 
60% discount so a 100% price minus (60 * 5)  that we will apply 8 of those so ($5 - (60 * 
$5) = $1 For every 2nd glass in a pair set that is 8 times $1 so we get that as $8 

Add those together - $40 + $8 we get a final of $48  For 8 of those set total that means for 
this set of 8 glasses are that $48 There is a total of 16 glasses 

8 of those are the 100% price and the other is $48 for a total set of 8 and since its in the 
same ratio. 8 of $5 will be ($5) * ($8) = $40 and then $48 added together = $88 Those are 
(8) of (100%) and also of  $5 and the other 8 as previously calculated.

So overall in those pairs they equal ((8 * 5) + (8*1)) = $88 and (8 * 5) =  $40 So a total of 4 
sets ((8 * 5)+ (8* 1)) = ((8 * 5) + (8 * 1) ) * (4) to get total glasses price which equals (($88)) * 4 
($88)) * (4)  ($88 *4) for total and that we get: $352

Kylar wants to buy 16 glasses. For every second glass, which are the even number glasses, 
the price is 60% or 0.60 * $5 = $3. For every odd number glass the price stays the same, at 
5.  

We first count the total glasses for which we pay the full price ($5). Those are 8 (from the 
original set) odd numbers from 1 to 16: 1,3,5,7,9,11,13,15. 

8 even numbers cost the half ($3), so 8 x $3 is $24, or 

8 odd numbers also costs the full ($5), 8 x 5 is 40. Now all of $24  & $40 should be 
combined.

 Combining those sums, you have  $64

One glass is $5, and the second glass is 60% of the price, which is $5 x 0.60 = $3. To find 
the number of glasses in the sequence, if the first glass is #1, the second glass is #2. We 
can count forward the number of glasses until 16 glass and identify how many of them at 
which price: #1($5) - #2($3), #3($5) - #4($3), and so forth. From these, we find, that $5 is 
priced for all odd numbers, while $3 is priced for the even numbers in the counting of the 
set {#1-$5; #3- $5, and so forth ending with  #15-$5 } and only the even numbers {#2-$3; 
#4- $3, and so forth ending with #14- $3} in set {#1-$5; #2- $3} and so forth {#3- $5 ; #4- $3 
}and ending #15,  and #16 ($5 and $3 respectively) glasses at $5 and $3 prices and Kylar 
plans to buy 8 glasses of each.  

  Number of glasses: 

First glasses ($5): {#1, 3, 5, 7, 9, 11, 13, 15}. Count: 8 glass.

  ($5) + (8 *$5)  Total value of $5 priced glasses $45 

   The second set of glasses ($3): {#2, 4, 6, 8, 10, 12, 14, 16}. 

 ($3 * 8) for total 8  priced glasses of  value of 24 $.

 Adding value $45 (odd priced), of glass and $24 (even price of a) glass to the  total make 
the sum

total =$45 + $24 =$69  

The final answer is $69.

First, let's find out which glasses cost 60%. There are 16 glasses in total and 
every 2nd glass counts. 

 So it will be a case of the sequence, one on, one on for every 2. 

Glass number is the position of glass when in a counting list. 2 is on place 2. On 
(position #), two Off  

On-Position (counting#) off position # number and list begin again so can find  
second cost with counter function. List begin 1 as #one glasses bought 


 we have position count ( Counter= glass list counter) = # on Counter = List numb  

 in a position each cost depends when = you order like so buy first one . $  =  

 Number= five start case…

 

 … absurd placement poetry contributions memorial conflicting never dr 
communicating winner organisation begins diagram exert upgrading proven 
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expansion screened highlight morning points clothing members silver roots 
forward revenge ob endurance funeral exemption exceeding retired invaded 
driving our cancer deserving l sought developments

doc_id = 5


First we need to find the cost for 8 normal and 8 discounted glasses separately.

 Normal glass costs 5 dollars each.

 Normal cost: 8 * 5 = 40

 Discounted glasses will each cost only 0.6 times the price. i.e each of these will be 3.

 Discounted glass cost: 8 * 3 = 24 

Adding normal and discounted glasses:

 total glass cost = Normal cost + discounted glass cost = 40 + 24 = 64  

The final answer is 64

GSM8k


Kylar wants to buy 16 glasses. For every second glass, which are the even 
number glasses, the price is 60% or 0.60 * $5 = $3. For every odd number glass 
the price stays the same, at 5.  

We first count the total glasses for which we pay the full price ($5). Those are 8 
(from the original set) because from 1 through 8 is half of 16 which includes the 
number of glass price equaling five dollars, odd and even glass together then 
Kylar purchases an additional 6 even glasses for $3, making the following two 
rows using variables  

 Number and Price or Cost = (2x dollars:full price - odd)

                       x additional 3 ( $ per glass the cost for additional /half glasses. 
Using just Kylar needs purchase/already known even odd ones listed order into 
solution!) 

           Number:2 

           of Glasses using Numbers from Kylars store price ordered correct order 
both were full ($ 5)

                    {even Cost 6 remaining remaining another }….


 … resulting etc dollars higher bought going four are go can answer start divided 
then less dollar trying they learn needs want after still all half seem full can didn  
addition certainly term now both addition dont try best information new there 
needs subtract using numbers let found gave fairly over will price has will more 
possible such makes add adding big gave some come quite addition find problem 
proper above still 51 will way clearly lowest second division based * pay   all 
greater known came we took again so example) get clear great present usually 
true meaning following show ending lot numbers extra both common simpler x 
shown general mostly correctly prior two addition amounts under our compare 
below right short related buy future move we enough end information good in 
earlier individual divided fully today four

Ours min-p

Figure 16: Example from GSM8k for Ours with temperature 2.0 versus min-p with temper-
ature 2.0. Our model is more stable with higher temperatures compared to uncontrolled
min-p, which fails co produce coherent outputs for some prompts with temperature 2. We
skip part of the output for min-p since it is too long.

25


	Introduction
	Preliminaries
	Temperature Sampling
	Temperature Sampling Variants

	When Do the Sampling Methods Fail?
	Sampling Risk
	Case Studies of High Sampling Risk
	Setup
	Findings


	Methodology: Selective Sampling
	Estimating Sampling Risk
	Selective Sampling

	Experiments
	Tasks
	Model
	Evaluation Metrics

	Results
	Diversity-Quality Results
	Fluency Results
	Ablation Studies
	Entropy-based (EDT) baseline.
	Task Generalization of the Selective Sampling Classifier

	Related work
	Conclusion
	Limitations
	Classifier Training
	N-gram Classifier
	Sampling Methods
	Truncation Sampling Methods
	Entropy Sampling Methods

	Sampling Hyperparameter Settings
	Averaged Distinct N-gram Diversity
	Additional Experiments
	MMLU (Social Tasks)
	Sensitivity to the training dataset
	Ablation of the diversity metric
	EDT ablation experiment

	Examples

