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ABSTRACT

Large Language Models (LLMs) are trained to support an increasing number of
languages, yet their predefined tokenizers remain a bottleneck for adapting models
to lower-resource or distinct-script languages. Existing tokenizer transfer meth-
ods typically rely on semantic heuristics to initialize new embeddings, ignoring
higher-layer model dynamics and limiting transfer quality. We propose Model-
Aware Tokenizer Transfer (MATT), a method that incorporates model internals
into the tokenizer transfer process. MATT introduces an Attention Influence
Modeling (AIM) objective that distills inter-token communication patterns from
a source model into a target model with a new tokenizer, providing an efficient
warm-up before standard language modeling. Unlike approaches that focus solely
on embedding similarity, MATT leverages attention behavior to guide embedding
initialization and adaptation. Experiments across diverse linguistic settings show
that MATT recovers a large fraction of the original model’s performance within
a few GPU hours, outperforming heuristic baselines. These results demonstrate
that incorporating model-level signals offers a practical and effective path toward
robust tokenizer transfer in multilingual LLMs.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shifted attention from training monolingual
models (Jiang et al., 2023; Touvron et al., 2023) to covering an increasing number of languages
(Grattafiori et al., 2024; Team et al., 2025). Such multilingual models have become valuable tools
for researchers and practitioners working with lower-resource languages. They can be used directly
for downstream tasks, help translate English datasets into the target language (Rybak, 2023), or
act as a robust baseline for further adaptation (Ociepa et al., 2024). Our work focuses on the last
scenario: adapting an existing LLM to a new language.

A major practical challenge in this setting is that every pretrained model is tied to a fixed tokenizer.
Alternative architectures that avoid a predefined vocabulary, such as the Byte-Latent Transformer
(Pagnoni et al., 2025) or H-Net (Hwang et al., 2025), are still in the experimental stage and not
yet widely adopted. Tokenizers for multilingual models are usually trained to cover many scripts at
once and inevitably favor high-resource languages. As a result, lower-resource languages, especially
those with distinct alphabets such as Georgian, often receive a very limited share of the vocabulary.
This mismatch leads not only to lower accuracy (Ali et al., 2024; Tamang & Bora, 2024), but also
to slower processing and inference, which are vital for the end users.

One practical way to mitigate this problem is tokenizer transfer: replacing the original tokenizer
of a pretrained model with a new one tailored to the target language and retraining the input and
output embeddings (de Vries & Nissim, 2020). Even models not explicitly trained for multilingual-
ity usually contain some cross-lingual knowledge thanks to shared alphabets or accidental language
contamination (Blevins & Zettlemoyer, 2022). Consequently, if we can initialize the new embed-
dings well, much of the original performance can be recovered and used as a strong starting point
for continual pretraining. At the same time, we should not expect this process to introduce entirely
new linguistic knowledge, since several studies show that most of the model’s knowledge is stored
in the feed-forward layers (Dai et al., 2022; Geva et al., 2021; Nichani et al., 2024).

Most existing tokenizer-transfer methods focus almost exclusively on the embedding layer. They
construct new embeddings as linear combinations of the original ones, differing mainly in how the
combination weights are computed (Minixhofer et al., 2022; Dobler & de Melo, 2023; Remy et al.,
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2023; 2024; Li et al., 2025). By ignoring the higher layers, these approaches overlook how the model
actually processes tokens. More recent work, such as Zero-Shot Tokenizer Transfer by Minixhofer
et al. (2024), leverages the full model by training a hypernetwork with a language modeling ob-
jective to predict embeddings. While effective, this strategy is computationally demanding because
language modeling requires full forward and backward passes through the model.

To overcome these limitations, we introduce Model-Aware Tokenizer Transfer (MATT), a method
that leverages the internal behavior of the pretrained model rather than relying only on surface
semantics. At the core of MATT is Attention Influence Modeling (AIM) objective.

AIM encourages the model with the new tokenizer to reproduce the inter-token interactions of the
original model’s attention layers. In effect, the original model acts as a teacher, while the model
with the new tokenizer serves as a student that learns to match its attention patterns. This procedure
distills structural knowledge about token relationships directly from the teacher, providing a richer
and more informative initialization than relying on an embedding layer alone.

MATT is orthogonal to existing heuristics based on semantic similarity and can be combined with
them. It acts as an efficient warm-up stage before conventional language model pretraining, reducing
the cost of adaptation while preserving model quality.

We evaluate MATT by transferring the tokenizers of Gemma 3 (Team et al., 2025) and Qwen 3
(Team, 2025) models to extended versions that increase compression and expand coverage for sev-
eral languages, including English, German, Japanese, Arabic, Swahili, and Ukrainian. Across mul-
tiple settings, MATT consistently recovers a substantial portion of the original model’s performance
on both generative and discriminative tasks, while requiring only a few GPU hours and outperform-
ing heuristic-based transfer methods.

Our contributions can be summarized as follows:

• Attention Influence Modeling (AIM): a novel distillation objective that aligns the attention
dynamics of two models with different tokenizers.

• Model-Aware Tokenizer Transfer (MATT): an efficient tokenizer-transfer method that ex-
ploits model dynamics instead of relying solely on semantic relationships, achieving state-
of-the-art results with substantially lower computational cost than language modeling ob-
jectives.

• Comprehensive evaluation: experiments across multiple languages and models demonstrat-
ing the effectiveness and efficiency of MATT.

2 RELATED WORK

Large Language Models and Vocabulary Size Large Language Models are becoming increas-
ingly multilingual. Early open-source models focused almost exclusively on English (Jiang et al.,
2023; Touvron et al., 2023; Almazrouei et al., 2023), but most recent releases include at least several
languages and offer partial support for many more. This shift toward multilinguality has changed
how researchers choose vocabulary size.

Studies show that larger vocabularies can improve model quality (Takase et al., 2025; Liang et al.,
2023), but they also slow training and inference. As a result, most current foundation models use
vocabularies of about 100 to 250 thousand tokens, with strongly multilingual models leaning to-
ward the upper end. This sweet spot, first popularized by XLM-RoBERTa (Conneau et al., 2020),
continues in more recent models such as Gemma (Team et al., 2025), Aya Expanse (Dang et al.,
2024), and even GPT-51. Going beyond this range rarely pays off: performance gains are small,
and efficiency drops sharply. As a result, tokenizers cannot achieve an optimal compression rate for
every language, creating a need for techniques that allow efficient transfer of tokenizers to specific
languages or domains without requiring very large vocabularies.

Heuristics-Based Embedding Initialization Methods When transferring a tokenizer to a new
language or domain, the main challenge is initializing embeddings for tokens that did not exist in

1https://github.com/openai/tiktoken
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the original model. Early work on tokenizer transfer (Artetxe et al., 2020; Gogoulou et al., 2022;
de Vries & Nissim, 2020) focused on proving that transfer was possible, so embedding initialization
received little attention. Simple strategies were used, including random initialization, taking the
mean of existing embeddings, sampling from their distribution, copying the embedding of a random
token, or using token frequency as a guide.

Later research began to exploit semantic relationships between tokens. WECHSEL (Minixhofer
et al., 2022) was an influential step: it trained FastText (Bojanowski et al., 2017) embeddings for the
source and target languages and used a translation vocabulary to identify the closest source tokens
for each new token. New embeddings were then initialized as weighted averages of these source
embeddings. Several methods followed a similar direction. OFA (Liu et al., 2024) and Tik-to-
Tok (Remy et al., 2023) refined the idea of using cross-lingual similarities, while Transtokenization
(Remy et al., 2024) created its own token-level translation dictionary with FastAlign (Dyer et al.,
2013). Hyper-OFA (Özeren et al., 2025) went further by training a hypernetwork to map tokens from
an external multilingual space into the model’s embedding space, avoiding the need for simplistic
linear combinations. TokAlign (Li et al., 2025) took a co-occurrence perspective, training two GloVe
(Pennington et al., 2014) models on the same corpus to learn a one-to-one alignment matrix between
tokens.

As LLMs became more multilingual, overlap between source and target vocabularies became an im-
portant resource. FOCUS (Dobler & de Melo, 2023) trains a FastText model on text tokenized with
the target vocabulary, then initializes new embeddings as similarity-weighted averages of overlap-
ping tokens. CLP Transfer (Ostendorff & Rehm, 2023) takes advantage of topological similarities of
the latent space across model sizes within the same family: embeddings are first trained on a smaller
related model and then aligned to the target model by measuring similarities with overlapping to-
kens.

Beyond Heuristics While heuristics provide a practical starting point, they have limitations. An
alternative is to train new embeddings directly by continuing language modeling with all other pa-
rameters frozen (de Vries & Nissim, 2020), but this is computationally costly.

Mini-Model Adaptation (Marchisio et al., 2023) reduces the cost by using only a subset of layers
and training the embeddings on a language modeling task. Other work (Chen et al., 2023) shows that
periodically resetting embeddings during pretraining makes models more robust to them, reducing
the effort needed to learn new tokens afterwards.

Another approach by Minixhofer et al. (2024) trains a universal hypernetwork for a given language
model by sampling tokenizers from a diverse distribution during the language modeling stage. Once
the hypernetwork is trained, we can initialize embeddings for various tokenizers effortlessly, achiev-
ing a solid baseline for further continual pretraining. However, training such a hypernetwork is a
compute-heavy task, requiring forward and backward passes through the whole model in every step
to update the hypernetwork weights, limiting its practicality in settings where we already have a
defined target tokenizer and the trained hypernetwork is not available beforehand.

3 METHOD

3.1 INTUITION

Large Language Models generate text one token at a time. Decoder-only transformers, which form
the backbone of most modern LLMs, follow the following steps: the embedding of the most recently
generated token is passed through a stack of attention and feed-forward layers, and finally projected
by the LM head to produce a probability distribution over the next token.

Assuming the input embedding of the last token is correct, the feed-forward layers will not damage
its representation. The main source of potential distortion lies in the attention layers, where each
token interacts with the context. Changing the tokenizer introduces new tokens into the context,
altering these interactions and thus the internal representations that drive next-token prediction. Our
goal is to train a model using a new tokenizer so that, despite these changes, its attention layers
produce output embeddings similar to those generated by the original tokenizer.

3
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3.2 PREREQUISITES

Consider an input string s and a tokenization function T , which produces a token sequence T (s) =
(t1, t2, . . . , tn) of length n.

In each attention layer2, the inputs are the query (Q), key (K), and value (V ) state matrices, pro-
ducing the output state matrix (O). Each of these can be seen as a collection of vector states for
every token ti:

Q =

 q1
q2
. . .
qn


n×h

K =

 k1

k2

. . .
kn


n×h

V =

 v1

v2

. . .
vn


n×h

O =

 o1

o2

. . .
on


n×h

,

where h is the hidden size.

Attention is computed as:

O = Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V = AV ,

where A is the attention matrix of shape n × n, that contains weights with which the value states
are aggregated into the output state.

We can break down the final matrix multiplication AV into a chain of value states (V ) averages for
each token, weighted by the attention matrix A. The output state for the token ti would then look
the following way:

oi = softmax
(
qiK

T

√
dk

)
V = Ai,:V =

n∑
j=1

Ai,jvj =

n∑
j=1

v∗
i,j ,

where v∗
i,j = Ai,jvj is a weighted value state for the token tj given the query token ti.

3.3 SEGMENT-LEVEL INTERPRETATION OF ATTENTION

To compare attention outputs across different tokenizers, we introduce a segmentation function S
that splits the input string s into segments (s1, s2, . . . , sm) while respecting a set of tokenization
functions τ :

S(s; τ ) = (s1, s2, . . . , sm), such that
∀T ∈ τ : T (s1) ◦ T (s2) ◦ · · · ◦ T (sm) = T (s),

where ◦ is a concatenation operator. This ensures that no segment boundary lies within any token
produced by any tokenization function in τ .

The most intuitive approach is a function that splits the input string into words, and the rest of the
section is explained in relation to this function. However, for some languages, word segmentation
can be ambiguous; thus, in practice, we define our segmentation function to always choose segments
of minimal length that still satisfy the above condition (see Appendix A for the algorithm).

Given S, we define weighted value states for a segment sk with respect to a query token ti:

si,k =
∑

{j : tj∈T (sk)}

v∗
i,j

The output state for token ti can then be expressed as a sum over segments:
2While we proceed with a single-head definition, it is directly applicable to multi-head, multi-query, or

grouped-query attention variants.
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oi =

n∑
j=1

v∗
i,j =

m∑
j=1

si,j

To move from token-level to segment-level interpretation, we replace individual query tokens with
segment representations. Since the output state of each token is designed to predict the next token,
it is natural to require that the output state of a segment should similarly carry enough information
to predict the next segment. Because the language modeling head still operates at the token level,
we approximate ”predicting the next segment” by predicting the first token of that next segment.

Consider a segment si whose tokens are T (si) = (ta, ta+1, . . . , tb). The final token tb produces
the output state used to generate the next token tb+1, which begins the following segment si+1. We
therefore define a function ℓT that maps a segment index to the index of its last token:

ℓT (i) = b

The query state of segment si is set equal to the query state of its last token:

qi = qℓT (i) = qb,

and the output state of the segment is computed from this query state:

oi = softmax
(
qiK

T

√
dk

)
V = softmax

(
qℓT (i)K

T

√
dk

)
V = oℓT (i) =

m∑
j=1

sℓT (i),j

3.4 ATTENTION INFLUENCE MODELING

As described in the Section 3.1, our goal is to train the model with a new tokenizer T ′ so that its
output states match those of the original model with tokenizer T .

Since we can enforce a common segmentation function S, we approximate this by requiring the
new model to produce the same segment-level outputs o′

i as the old ones – oi. A more detailed
objective also matches the weighted value states sℓT (i),j and s′ℓT ′ (i),j

of every segment sj for each
query segment si, with the causal constraint j ≤ i.

Given the above, we define the Attention Influence Modeling objectives (normal and simplified):

LAIM =
2

m(m+ 1)

m∑
i=1

i∑
j=1

L∗(sℓT (i),j , s
′
ℓT ′ (i),j),

LAIM∗ =
1

m

m∑
i=1

L∗(oi,o
′
i),

where L∗(x,y) can be any loss function, that brings x and y closer. In Section 4, we experiment
with MSE and Cosine Embedding losses.

Figure 1 illustrates an example of applying AIM to the text CH4 – formula for methane. In this
case, we use a word segmentation function together with different tokenization functions for a given
query state q5, where the segment s5 corresponds to methane.

Figure 2 presents the attention alignment matrix for the same text, where the weighted value states
v∗
i,j are grouped into segments. These segment-level representations are then matched and optimized

to be equal under the LAIM loss.
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Figure 1: Attention Influence Modeling (AIM) objective with word segmentation. For each input,
the weighted value vectors v∗

i,j of the original tokens tj are aggregated into segment-level vectors
si,k according to a chosen word-segmentation function. The model trained with the new tokenizer
produces its own segment representations s′i,k. The AIM objective encourages these new segment
representations to stay close to the segment representations si,k computed from the model using the
old tokenizer. All this happens with respect to the query state q5 of the 5th segment ( methane),
which is equal to the query state of its last token – hane.
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Figure 2: Token-level attention alignment between teacher and student models. The left matrix
shows the weighted value states of the teacher model using the original tokenizer T , and the right
matrix shows those of the student model using the new tokenizer T ′. Each square represents the
weighted value state v∗

i,j of tj for query token ti (i for rows, j for columns). Numbers (or matching
colors) within a matrix identify tokens that are aggregated into the same segment-level state si,k.
Numbers (or matching colors) across the two matrices indicate corresponding pairs sℓT (i),j and
s′ℓT ′ (i),j

used in the loss L∗ to align the teacher and the student attention representations.

3.5 TECHNICAL DETAILS

During training, the model with the old tokenizer T is kept frozen. The model with the new tokenizer
T ′ has all layers frozen except the input embeddings. As a small modification to the basic training
setup, we partially freeze the embedding matrix: tokens that are shared between the old and new
tokenizers are initialized from the original model and kept fixed, while only the embeddings of new,
non-overlapping tokens are updated during training.

To speed up convergence, we initialize new embeddings using FOCUS (Dobler & de Melo, 2023).
We train with AdamW (Loshchilov & Hutter, 2017), a constant learning rate of 1 × 10−4, and no
weight decay. However, it should be noted that we have not performed extensive hyperparame-
ter tuning, so using learning rate scheduling, adapting the learning rate, weight decay, and other
hyperparameters may yield significantly better results.

MATT offers a key advantage over standard language modeling with frozen non-embedding param-
eters: greater efficiency. Since AIM is defined at the attention-layer level, we can decide how much

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

of the model to include in the tokenizer transfer by selecting the layer depth at which AIM is applied.
Specifically, by choosing a value of n, we take only the first n layers into account. This allows us to
balance efficiency and performance.

We ablate the choice of MATT target layer in Appendix C and observe that using higher layers
improves performance until roughly the first quarter of the model, aligning with the formation of
coherent word-level representations as tokens are detokenized in early and middle layers, a behavior
noted in prior work as detokenization (Kaplan et al., 2024). Targeting the final layers causes slight
degradation, consistent with trends reported in Token Distillation Dobler et al. (2025), while middle
layers show a performance plateau. Because later target layers increase training time and memory
linearly (validated in our appendix ablations), we select one of the earliest layers within this plateau
to balance strong performance with minimal resource cost.

Since only input embeddings are trained, tied input–output embeddings are advantageous, as the
tuned input embeddings can be reused in the LM head. Models without tied embeddings still benefit
from input tuning, but to a significantly lesser extent; handling untied settings is left for future work.

4 EXPERIMENTS

We conducted a series of experiments across different languages, model families, and scales to
evaluate the effectiveness of the MATT method compared to existing heuristic- and optimization-
based approaches. In each experiment, we first trained a tokenizer with a higher compression rate
than the original one, merged it with the base tokenizer, and then applied tokenizer transfer to the
extended vocabulary. We have chosen Ukrainian as a language with Cyrillic alphabet that is not well
represented in the dictionaries of the major LLMs and on the other hand that is included in multiple
benchmarks, allowing for the inspection of the method’s performance in different scenarios. For
the multilingual setting we have chosen five typologically diverse languages – English, German,
Japanese, Arabic, and Swahili, which vary in resource availability, writing system, and language
family.

Additional experiments, including convergence speed tests (Appendix B) and ablation studies (Ap-
pendix C), are presented to complement the main results.

4.1 MAIN RESULTS

Our primary evaluation uses the Gemma 3 12B PT model (Team et al., 2025). We replaced its default
tokenizer with an extended version that improves Ukrainian coverage, raising the compression rate
from 2.98 to 4.44. This increase translates to an almost 50% speedup during inference. We compare
the following methods:

• WECHSEL – transfer using the English–Ukrainian vocabulary from the official imple-
mentation3.

• Transtokenizers – token alignment via FastAlign using parallel corpora (OpenSub-
titles (Lison & Tiedemann, 2016) and NLLB (NLLB Team, 2022)) and the official
transtokenizers4 toolkit.

• TokAlign – GloVe embeddings trained on 2 million Ukrainian documents (approximately
1.86 billion Gemma tokens) from the Kobza corpus (Haltiuk & Smywiński-Pohl, 2025),
used to create a one-to-one alignment matrix with the official implementation5.

• FOCUS – FastText embeddings trained on the same data as TokAlign, with initialization
performed via the deepfocus6 package.

• NTP – initialized with one of the above methods, and trained using the Next Token Predic-
tion (NTP) objective with non-embedding layers frozen. We compare several versions of
this baseline corresponding to 50%, 100%, and 150% of the training budget dedicated to
MATT.

3https://github.com/CPJKU/wechsel
4https://github.com/LAGoM-NLP/transtokenizer
5https://github.com/ZNLP/TokAlign
6https://github.com/konstantinjdobler/focus

7

https://github.com/CPJKU/wechsel
https://github.com/LAGoM-NLP/transtokenizer
https://github.com/ZNLP/TokAlign
https://github.com/konstantinjdobler/focus


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• MATT – initialized with FOCUS embeddings and trained on around 240 million Ukrainian
tokens from Kobza using the AIM objective with MSE loss on the 12th layer out of 34,
original embeddings are frozen, and all other hyperparameters remain unchanged (see Sec-
tion 3.5).

We evaluate performance on Belebele (Bandarkar et al., 2024), Global MMLU (Singh et al., 2025),
Long FLORES (Paniv, 2025), a modification of FLORES (NLLB Team, 2022; Goyal et al., 2021;
Guzmán et al., 2019), which elevates the sentence-level translation to document-level by aggregating
data points from the same sources, WMT24++ (Deutsch et al., 2025), and XL-SUM (Hasan et al.,
2021). We only evaluate the translations from English to Ukrainian with a specific intent to validate
the model’s performance on a generative task in the target language. Evaluation is performed with
the lm-evaluation-harness framework (Gao et al., 2024) with a 3-shot prompt.

Table 1: Performance of Gemma 3 12B PT model with different tokenizer transfer methods on
Belebele and Global MMLU (accuracy, %), Long FLORES, WMT, and XL-SUM (BLEU). The
”Avg Disc” column reports the average of Belebele and Global MMLU scores, as well as ”Avg
Gen” – of Long FLORES, WMT, and XL-Sum.

Model Training
Time

Belebele Global
MMLU

Long
FLORES

WMT XL-Sum Avg
Disc

Avg
Gen

Gemma 3 12B PT - 89.33 67.03 14.36 3.52 6.52 78.18 8.13
Heuristics

WECHSEL - 22.67 24.61 0.00 0.00 0.00 23.64 0.00
Transtokenizers - 61.89 46.03 0.04 0.09 0.02 53.96 0.05
TokAlign - 31.44 32.98 0.00 0.00 0.01 32.21 0.00
FOCUS - 48.78 37.14 1.01 0.88 0.20 42.96 0.70

Optimization Based
Transtokenizers w/ NTP 3h 30m 82.44 59.02 3.64 0.88 4.06 70.73 2.86
Transtokenizers w/ NTP 7h 00m 85.22 59.83 4.63 0.95 4.80 72.53 3.46
Transtokenizers w/ NTP 10h 30m 85.67 59.38 5.13 0.96 4.80 72.53 3.63
FOCUS w/ NTP 3h 30m 85.44 57.38 3.51 2.13 4.32 71.41 3.32
FOCUS w/ NTP 7h 00m 87.00 60.55 4.32 2.51 5.04 73.78 3.96
FOCUS w/ NTP 10h 30m 87.44 60.57 4.34 2.60 5.16 74.01 4.03
MATT 7h 00m 89.56 64.98 8.70 4.71 5.95 77.27 6.45

Table 1 shows a clear advantage of MATT over all other methods. While heuristic-based approaches
such as FOCUS and Transtokenizers can regain up to about 70% of the original model’s accuracy
on discriminative tasks, they reach no more than about 9% of the original generative performance.

Optimization-based approaches show substantially stronger recovery. Among them, NTP yields
consistent results across different heuristic initializations. In its best configuration, NTP recovers
nearly 95% of the original model’s discriminative performance, though only about 50% of its gen-
erative capabilities. In contrast, MATT restores nearly 80% of the original generative performance
while maintaining accuracy on discriminative tasks close to the unmodified model. These results
demonstrate the superiority of the model-aware approach to tokenizer transfer, particularly given
the extremely low computational costs required.

The most notable observation is the minimal improvement of NTP when comparing 100% and
150% compute budgets (7 hours and 10.5 hours of training time respectively). NTP training rapidly
saturates, and MATT-level performance does not appear to be attainable within a reasonable budget.
We therefore stop further training due to our limited computational resources.

MATT also saturates quickly (see Appendix B), but at a substantially higher performance level. We
hypothesize that further gains are unlikely under embedding-only training and will require unfreez-
ing the model’s layers. This is largely driven by the scale of newly introduced tokens (over 80,000),
which meaningfully alters model dynamics and would likely benefit from full fine-tuning. Due to
computational constraints, we have conducted only limited experiments with continual pretraining
after MATT that provide early support for this hypothesis. A systematic comparison of embedding-
only adaptation and full model fine-tuning remains a direction for future work.
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4.2 MULTILINGUAL RESULTS

In the multilingual setting, we experiment with Gemma 3 4B PT and Qwen 3 0.6B (Team, 2025).
As shown in Table 2, the extended tokenizers consistently improve compression rates across all
languages, including modest gains for English, which directly translates to their processing and
generation speed, since a considerably smaller number of tokens is required to represent the same
text.

Table 2: Comparison of original and extended tokenizers. Compression rate is the average number
of characters represented by a single token (higher is better).

Tokenizer Vocabulary Size Compression Rate
ar de en ja sw
Gemma

original 262,145 2.8457 3.9734 4.3187 1.6846 2.9802
extended 387,980 3.9122 4.4997 4.3383 2.1267 4.2518

Qwen
original 151,669 2.5982 3.4737 4.3599 1.4852 2.5788
extended 298,833 3.9221 4.4886 4.4233 2.2867 4.2322

The transfer methods remain the same as in Section 4.1, except the training data is now drawn
from HPLT 2.0 Cleaned (Burchell et al., 2025). FOCUS uses 2 million documents (approximately
500 million tokens per language), and MATT – only about 50 million tokens per language. We
also experiment with an AIM* objective, Cosine Embedding loss, and training without freezing the
original embeddings. Performance is reported on Belebele, MMMLU (Hendrycks et al., 2020), and
Global MMLU. We additionally record the time and memory required to tune embeddings on a
single H100 GPU.

Table 3: Benchmark results for transferring original tokenizers to their extended versions across five
languages (Arabic, German, English, Japanese, Swahili). For the proposed MATT method, peak
VRAM usage and processing time required for the tokenizer transfer are also reported.

VRAM Time Belebele MMMLU Global MMLU Avg
Model GiB ar de en ja sw ar de en ja sw ar de en ja sw
Gemma 3 4B PT - - 69.33 68.00 82.00 67.44 59.67 39.24 43.77 53.89 41.20 35.71 45.25 47.50 59.00 47.25 38.00 53.15
FOCUS - - 32.89 52.44 80.33 42.00 25.56 27.89 36.89 53.81 32.77 28.23 30.25 36.75 59.50 33.00 26.75 39.94
MATT 16.6 4h 47m 62.44 72.56 80.67 58.00 54.67 37.05 44.79 53.82 38.68 36.10 40.50 47.50 60.25 40.00 39.50 51.10

w/ AIM* 10.9 3h 44m 63.78 70.33 80.78 56.11 54.89 37.22 44.17 53.86 39.15 35.69 37.75 45.50 59.75 40.50 42.25 50.78
w/ cosine 15.7 5h 01m 62.00 70.56 80.67 60.22 59.00 38.33 44.84 53.88 40.48 36.22 42.00 45.25 60.00 41.50 41.75 51.78
w/ unfrozen 20.4 5h 34m 59.78 68.78 80.56 56.22 55.89 38.24 44.77 53.96 40.97 37.95 40.25 48.50 60.00 45.00 41.75 51.51

Qwen3 0.6B - - 50.78 59.33 64.11 58.67 29.89 36.08 40.12 47.21 37.54 28.68 38.25 42.75 50.25 44.25 28.25 43.74
FOCUS - - 27.11 32.22 60.33 29.22 24.89 28.76 30.28 41.85 29.53 26.58 26.00 31.25 45.25 28.00 24.50 32.38
MATT 9.4 3h 38m 36.67 43.22 60.44 39.44 28.22 32.78 35.14 42.41 33.19 26.71 29.25 35.50 45.25 30.50 25.75 36.30

w/ AIM* 3.5 2h 45m 40.56 45.89 60.44 42.11 28.44 33.15 35.71 42.29 33.72 27.19 32.50 37.00 45.50 37.50 22.75 37.65
w/ cosine 8.6 3h 52m 39.89 46.67 60.33 43.22 28.89 32.77 35.76 42.28 33.41 27.38 33.50 35.75 45.50 35.25 24.50 37.67
w/ unfrozen 10.2 3h 38m 42.22 47.56 62.11 42.89 27.89 33.02 36.46 43.91 33.75 27.50 31.50 38.00 46.25 35.50 24.00 38.17

Table 3 shows that MATT substantially narrows the performance gap between a freshly initialized
model and the original, recovering most of the accuracy and occasionally surpassing the original.

Regarding the training objectives, the Cosine Embedding loss generally provides strong performance
across the discriminative benchmarks reported in Table 3. However, we note from preliminary
experiments that Mean Squared Error (MSE) tends to be more beneficial for generation-heavy tasks,
and therefore stands as our default choice.

A critical observation regarding the effectiveness of MATT is its behavior when the base model
exhibits near-random performance. As a self-distillation method, MATT is designed to recover the
original model’s capabilities rather than induce cross-lingual transfer for unseen languages. This is
evident in the results for Qwen3 0.6B on Swahili. Although the Qwen 3 family technically supports
Swahili, the 0.6B model shows minimal difference from random baselines, likely due to limited
model capacity and a small share in pretraining data mixture. Despite this unfavorable setting,
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MATT successfully recovers the majority of the original model’s performance, effectively leveraging
a weak original signal.

We also find that the choice of freezing embeddings has an impact on performance depending on
the adaptation scope. Unfreezing all embeddings yields the best results in this multilingual setting.
We attribute this to the need for greater model elasticity when adapting to five diverse languages
simultaneously. In contrast, freezing the original embeddings, as done in Section 4.1, remains the
practical choice for single-language adaptation, where the priority is often to preserve performance
on the original language (e.g., English) while extending coverage to another target language.

Based on these findings, we recommend distinct default configurations: for single-language adap-
tation with limited vocabulary extension, a combination of MSE loss, the standard AIM objective,
and frozen original embeddings is optimal. For multilingual adaptation, unfreezing the original em-
beddings is preferable to accommodate broader semantic shifts. The AIM* variant offers a good
compromise, reducing memory and runtime while only slightly lowering accuracy. Further VRAM
savings are possible with a custom kernel for AIM computation.

Finally, we observe a disparity in robustness relative to model size. Larger models appear more
resilient to embedding initialization shocks. This is illustrated by the FOCUS initialization results
on English: while Gemma 3 4B PT maintains high stability, Qwen3 0.6B suffers a notable perfor-
mance drop even when only a few new tokens are introduced. This suggests that larger parameter
counts may provide a buffer against the perturbations introduced during tokenizer transfer. How-
ever, this behavior may also be intrinsic to the specific model families, and thus requires further
experimentation.

5 CONCLUSION

In this work, we introduced MATT, a model-aware method for tokenizer transfer that leverages the
internal dynamics of LLMs. We applied MATT to extend the tokenizers of Gemma 3 and Qwen
3 models across multiple languages and settings, demonstrating that it consistently recovers a large
portion of the original model’s capabilities while requiring only a few GPU hours of training. Unlike
heuristic-based methods that rely solely on the embedding layer, MATT refines token representa-
tions with direct feedback from the model, thanks to the novel Attention Influence Modeling (AIM)
objective, allowing it to bridge the performance gap caused by tokenizer changes more effectively.

Our experiments highlight this advantage most clearly in the transfer of the 12 billion-parameter
Gemma 3 model to Ukrainian. With the extended tokenizer introducing over 80,000 new tokens,
MATT achieves an average score of 77.27 out of the original 78.18 on the discriminative tasks
and 6.45 out of 8.13 on the generative ones, outperforming both heuristic and optimization-based
baselines. This substantial improvement underscores the value of incorporating model dynamics into
tokenizer transfer and shows that high performance can be retained at a fraction of the computational
cost typically required for NTP training.

LIMITATIONS

The first limitation lies in the fact that MATT relies on tied input and output embeddings to fully
realize its advantages. We outline possible strategies to relax this requirement in the Appendix D.

Second, we do not perform continual pretraining with all weights unfrozen due to computational
constraints, and instead evaluate only models with initialized or trained embedding layers. This
is sufficient to compare MATT with existing baselines, whose primary goal is to provide a strong
starting point for further adaptation.

A further limitation is the need for an additional forward pass during optimization through the model
using the original tokenizer to obtain targets for the AIM objective. Although this adds computa-
tional overhead, the cost remains lower than a full forward pass through the entire model, as the
target layer is positioned roughly one-third of the way through the network.

Finally, we have not tested MATT on encoder-only architectures. In principle, applying it to such
models would only require removing the causal constraint in the AIM definition.
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centered machine translation. 2022.

Krzysztof Ociepa, Krzysztof WrĂłbel, Adrian GwoĹşdziej, Remigiusz Kinas, et al. Bielik
7b v0. 1: A polish language model–development, insights, and evaluation. arXiv preprint
arXiv:2410.18565, 2024.

Malte Ostendorff and Georg Rehm. Efficient language model training through cross-lingual and
progressive transfer learning. arXiv preprint arXiv:2301.09626, 2023.
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A SEGMENTATION ALGORITHM

Instead of relying on word-based segmentation, we use an offset-based segmentation strategy. De-
signing a consistent word segmentation across tokenizers is challenging because tokenizers often
differ in normalization rules, pre-tokenization steps, language coverage, etc. These differences make
it difficult to ensure that segment boundaries match at the word level.

The offset-based method addresses this by operating directly on character offsets in the original text.
Given two different tokenizations of the same string, along with the start and end positions of each
token, the algorithm searches for all possible split positions that never cut through the middle of any
token (see Figure 3).

This approach is universal: such a segmentation always exists, even if the worst case reduces to a
single segment spanning the entire input. It can also lead to more precise alignments because the
target tokenizer may break a word into several sub-tokens. By working with character offsets, we
can introduce mid-word segment boundaries whenever they yield a better match.

For example, consider the sentence CH4 is a formula for methane. Suppose the original tokenizer
produces the tokens for, m, and ula for the word formula, while the new tokenizer produces
form and ula. A word-level strategy would force alignment at the whole-word boundary, but an

offset-based method can instead match for and m with form, and ula with ula, which more
closely respects both tokenizations.

Algorithm 1 provides detailed pseudocode for implementation.

Figure 3: Offset-based segmentation algorithm visualization.
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Algorithm 1: Offset–Based Segmentation
Input: teacher offsets Ot, student offsets Os

Output: teacher segment ids St, student segment ids Ss

▷ initialize outputs and counters

1 St ← [ ], Ss ← [ ]
2 e← −1; ▷ current end
3 k ← −1; ▷ current segment id

▷ iterate until both queues empty

4 while Ot ̸= ∅ or Os ̸= ∅ do
▷ if one side empty, label all remaining tokens with current
segment id

5 if Ot = ∅ then
6 for each o in Os do
7 append k to Ss

8 break
9 else if Os = ∅ then

10 for each o in Ot do
11 append k to St

12 break

▷ peek next offsets

13 (ts, te)← peek(Ot), (ss, se)← peek(Os)

▷ continue with the same segment if overlap

14 if ts < e then
15 append k to St, pop(Ot)
16 e← max(e, te)
17 else if ss < e then
18 append k to Ss, pop(Os)
19 e← max(e, se)

▷ else start a new segment

20 else
21 k ← k + 1
22 append k to St and Ss, pop(Ot), pop(Os)
23 e← max(te, se)

24 return (St, Ss)

B CONVERGENCE SPEED

We repeated the experiment with Gemma 3 4B PT described in Section 4.2, but this time we saved
model checkpoints every 3,000 training steps. While the results in Table 3 were obtained after
250,000 steps, this setup allows us to observe how quickly the embeddings adapt to the new tokenizer
and to evaluate whether training can be substantially shortened.

The AIM objective provides a rich learning signal for tuning the embeddings. Using a mean squared
error (MSE) loss, the number of value pairs contributing to the objective is proportional to the
product of the head dimensionality, the number of attention heads, the number of possible segment
pairs, and the batch size. In the configuration used here – four documents per batch, each truncated
to 256 tokens – this amounts to hundreds of millions of pairs at every step of the training.

Table 4 presents the results for the first eight checkpoints on the Belebele benchmark across all
tested languages, while Figure 4 provides a visual view of the same trends.
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The data show that more than 50% of the final performance gains can be achieved in under 10% of
the total training steps, corresponding to fewer than five million tokens per language. This indicates
that training time could be cut dramatically with only a minor loss in accuracy, especially if an
adaptive data selection strategy is used to prioritize documents that contain a higher proportion of
previously unseen tokens.
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(d) Japanese

3 6 9 12 15 18 21 24
Training Tokens (millions)

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

Training Progress
FOCUS
250M tokens

(e) Swahili

Figure 4: Accuracy on the Belebele benchmark over training tokens for five languages, with hori-
zontal lines marking FOCUS initialization and full performance.

C ABLATION STUDIES

We apply the MATT method with AIM objective, transferring Gemma 3 4B PT to a Ukrainian-
centric tokenizer by Bohdan Didenko (2025), which increases the compression rate by around 50%.
We conduct several ablation studies to determine the optimal training configuration, evaluating per-
formance on the Belebele and Global MMLU benchmarks in the same setting as in Section 4. We
report the results in Table 5 and describe our insights below.

AIM objective on all layers deteriorates both efficiency and performance compared to only
the last one. Since AIM is defined for a single attention layer, we can apply it many times to any
subset of layers. To balance efficiency and accuracy, we compare defining the AIM objective over
all layers up to a target depth n against using only the final n-th layer. Results in Table 5 show that
restricting AIM to the last layer requires much less VRAM and training time, while also delivering
better downstream performance.
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Table 4: Performance on the Belebele benchmark during early training of Gemma 3 4B PT with
Model-Aware Tokenizer Transfer, showing rapid gains within the first 10% of steps compared to the
full run.

Belebele
Steps # Tokens # ar de en ja sw

0k 0M 32.89 52.44 80.33 42.00 25.56
3k 3M 34.78 56.89 80.33 45.33 30.33
6k 6M 36.44 59.22 80.44 48.00 36.44
9k 9M 37.00 63.44 80.44 50.56 37.67

12k 12M 40.78 64.56 80.44 49.11 40.56
15k 15M 42.56 65.56 80.44 48.11 42.00
18k 18M 44.22 67.00 80.44 49.11 42.22
21k 21M 45.89 67.56 80.56 49.67 43.22
24k 24M 48.00 68.89 80.56 49.67 44.33

250k 250M 62.44 72.56 80.67 58.00 54.67

Table 5: Ablation studies of MATT configurations. 3 and 5 denote the number of layers used for
AIM objective.

VRAM (GiB) Time Belebele Global MMLU
3 5 3 5 3 5 3 5

All Layers vs. Last Layer
all layers 17.3 26.5 1h 33m 2h 19m 32.56 35.11 28.63 29.00
last layer 9.1 10.1 0h 56m 1h 04m 37.22 60.11 29.95 34.80

Initialization Method
WECHSEL 9.1 10.1 0h 52m 1h 04m 42.22 59.78 29.82 33.56
FOCUS 9.1 10.1 0h 55m 1h 06m 37.11 60.89 30.10 34.72
Transtokenizers 9.1 10.1 0h 55m 1h 04m 52.44 60.89 32.43 34.75

FOCUS and Transtokenizers perform similarly on higher layers, while WECHSEL underper-
forms. Because MATT is independent of the embedding initialization method, different starting
points can be tested. We compare WECHSEL, FOCUS, and Transtokenizers. FOCUS and Transto-
kenizers perform similarly on higher layers, while WECHSEL lags behind (see Table 5). Although
Transtokenizers occasionally achieves the best scores, in other experiments, we find FOCUS to be
more stable across models, and therefore make it our default choice.

Transtokenizers method may have an upper hand due to its better utilization of English embeddings,
as it learns an English-Ukrainian token-level dictionary from parallel corpora and utilizes it to trans-
fer embeddings from English tokens to their Ukrainian counterparts. Whereas FOCUS utilizes the
tokens’ overlap to train a FastText model over it, and although it contains English tokens as well,
the FastText training corpus contains little data that encompasses both English and Ukrainian text
in the same document. This could potentially limit the FOCUS to pay attention mostly to Ukrainian
overlapped tokens, given the limited usability of English tokens’ embeddings.

MATT, in the way it uses existing embeddings, is conceptually closer to FOCUS than Transtokeniz-
ers, as it models inter-token communication of original tokens, focusing predominantly on Ukrainian
ones. As denoted in Appendix B, MATT quickly converges, requiring little data to recover a large
part of the original model’s performance. This means that small differences in the initialization
(the difference between average scores for FOCUS and Transtokenizers is less than 10% in the
case of Gemma 3 12B PT; see Table 1) are evened out during training. This can also be seen with
WECHSEL, which performs considerably worse compared to FOCUS or Transtokenizers (Table 1),
but achieves only slightly worse results after a round of MATT training, especially on higher lay-
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ers (see Table 5). The final observation is presented in Table 1, where we see that even the NTP
baseline starting from the Transtokenizers initialization, which is initially better, achieves similar
performance to the NTP over FOCUS.

Minor efficiency differences in Table 5 are likely due to external factors such as checkpointing
overhead.

AIM on higher layers leads to better results, but saturates at around one third of the model’s
depth. MATT allows selecting how deep into the model the AIM objective is applied, creating a
natural trade-off between efficiency and accuracy. We evaluate different target depths and find that
performance steadily improves as AIM is applied to higher layers (see Figure 5), but gains saturate
once the objective reaches roughly one third of the model’s total depth. In contrast, memory con-
sumption and training time continue to grow almost linearly with the number of layers, highlighting
the cost of deeper alignment.
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Figure 5: Effect of applying the AIM objective to different numbers of layers. The plots show the
trade-off between model performance (a) and computational efficiency (b) as the application depth
increases.

D ADDRESSING THE TIED EMBEDDINGS REQUIREMENT

The use of tied embeddings varies greatly both between the model families and model sizes. For
example, Llama 3.2 1B and Llama 3.2 3B (Grattafiori et al., 2024) both utilize tied embeddings to
reduce the number of parameters, whereas a larger Llama 3.1 8B does not. In contrast, the Gemma
family (Team et al., 2024a;b; 2025) consistently uses tied embeddings across all sizes.

A significant amount of model pretraining research conducts very little to no experimentation on the
effects of embedding tying (Jiang et al., 2023; Touvron et al., 2023; Groeneveld et al., 2024; Team,
2025). And those that do (Bai et al., 2023) offer a limited explanation of the reasons behind their
choice, referring to preliminary results that are not reported in the paper.

More recent research suggests that embedding tying is more effective both from a theoretical stand-
point (Bertolotti & Cazzola, 2024) and in achieving lower validation loss and better performance
on downstream tasks (Allal et al., 2025). This leads us to believe that the share of models with tied
embeddings may increase in the coming years, making our method even more relevant.

We conducted additional experiments on Mistral 7B v0.1 (Jiang et al., 2023), which does not tie
embeddings. The results are presented in Table 6. The original Mistral’s tokenizer has a vocabulary
size of 32,000 and achieves a compression rate of 2.24 on Ukrainian data. We transfer Mistral to an
extended vocabulary comprising over 177k tokens (a 5.5x increase, with a 4.10 compression rate).
We compare the original model’s performance to the FOCUS initialization, NTP optimization over
both input and output embeddings, MATT with different compute budgets, and MATT combined
with further NTP optimization, where we first train input embeddings using MATT, and then train
only output embeddings using the NTP objective to match the budget of the NTP baseline.

MATT is unable to reach the NTP baseline (an average BLEU score of 1.55), even in a two-stage
setting (with an average BLEU score of 0.63). The experiment increases the vocabulary size by more
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Table 6: Benchmark results for Mistral 7B v0.1 with untied embeddings. Training time for ”MATT
w/ NTP (out)” reflects time spent separately on MATT and NTP on output embeddings, respectively.

Model Training
Time

Long
FLORES

WMT XL-Sum Avg

Mistral 7B v0.1 - 7.07 1.91 4.12 4.37
FOCUS - 0.14 0.06 0.09 0.10
FOCUS w/ NTP 4h 17m 2.06 0.75 1.85 1.55
MATT 2h 04m 0.21 0.08 0.40 0.23
MATT 4h 08m 0.16 0.09 0.37 0.21
MATT 5h 19m 0.17 0.06 0.38 0.20
MATT w/ NTP (out) 2h 04m + 2h 32m 0.54 0.59 0.76 0.63

than five times, drastically changing the model’s dynamics, which additionally contributes to why
training input and output embeddings jointly is of greater advantage than our two-stage approach.
This also leads to a significant performance drop to the point where metrics are close to random
generation, preventing a meaningful comparison of certain settings, such as MATT with different
compute budgets. We leave designing another experiment with a more favorable configuration for
future research.

Another potential way to handle untied embeddings is to follow Token Distillation (Dobler et al.,
2025), which combines distillation on the last hidden layer with the NTP objective to optimize both
input and output embeddings, albeit at the cost of higher computational requirements.

We also conducted preliminary experiments with a mapping technique that transfers input embed-
dings to the output embeddings space. In this setup, the output embeddings for new tokens were
initialized using the mapped input embeddings after MATT fine-tuning. However, this approach
underperformed compared to initializing with FOCUS and then fine-tuning only input embeddings
with MATT. This can be attributed to low-capacity mapping models and requires further research.

Despite these early results, the search space remains large, and we believe that more effective strate-
gies for untied embeddings are likely to be found with further exploration.
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