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Abstract

Plug-and-play (PnP) prior is a well-known class of methods for solving imaging
inverse problems by computing fixed-points of operators combining physical mea-
surement models and learned image denoisers. While PnP methods have been
extensively used for image recovery with known measurement operators, there
is little work on PnP for solving blind inverse problems. We address this gap by
presenting a new block-coordinate PnP (BC-PnP) method that efficiently solves
this joint estimation problem by introducing learned denoisers as priors on both the
unknown image and the unknown measurement operator. We present a new conver-
gence theory for BC-PnP compatible with blind inverse problems by considering
nonconvex data-fidelity terms and expansive denoisers. Our theory analyzes the
convergence of BC-PnP to a stationary point of an implicit function associated with
an approximate minimum mean-squared error (MMSE) denoiser. We numerically
validate our method on two blind inverse problems: automatic coil sensitivity
estimation in magnetic resonance imaging (MRI) and blind image deblurring. Our
results show that BC-PnP provides an efficient and principled framework for using
denoisers as PnP priors for jointly estimating measurement operators and images.

1 Introduction

Many problems in computational imaging, biomedical imaging, and computer vision can be formu-
lated as inverse problems involving the recovery of high-quality images from low-quality observations.
Imaging inverse problems are generally ill-posed, which means that multiple plausible clean images
could lead to the same observation. It is thus common to introduce prior models on the desired
images. While the literature on prior modeling of images is vast, current methods are often based on
deep learning (DL), where a deep model is trained to map observations to images [1–3].

Plug-and-play (PnP) priors [4,5] is one of the most widely-used DL frameworks for solving imaging
inverse problems. PnP methods circumvent the need to explicitly describe the full probability density
of images by specifying image priors using image denoisers. The integration of state-of-the-art
deep denoisers with physical measurement models within PnP has been shown to be effective in
a number of inverse problems, including image super-resolution, phase retrieval, microscopy, and
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medical imaging [6–13] (see also recent reviews [14,15]). Practical success of PnP has also motivated
novel extensions, theoretical analyses, statistical interpretations, as well as connections to related
approaches such as score matching and diffusion models [16–29].

Despite the rich literature on PnP, the existing work on the topic has primarily focused on the problem
of image recovery where the measurement operator is known exactly. There is little work on PnP for
blind inverse problems, where both the image and the measurement operator are unknown. This form
of blind inverse problems are ubiquitous in computational imaging with well-known applications
such as blind deblurring [30] and parallel magnetic resonance imaging (MRI) [31]. In this paper,
we address this gap by developing a new PnP approach that uses denoisers as priors over both the
unknown measurement model and the unknown image, and efficiently solves the joint estimation
task as a block-coordinate PnP (BC-PnP) method. While a variant of BC-PnP was proposed in the
recent paper [21], it was never used for jointly estimating the images and the measurement operators.
Additionally, the convergence theory in [21] is inadequate for blind inverse problems since it assumes
convex data-fidelity terms and nonexpansive denoisers. We present a new convergence analysis
applicable to nonconvex data-fidelity terms and expansive denoisers. Our theoretical analysis provides
explicit error bounds on the convergence of BC-PnP for approximate minimum mean squared error
(MMSE) denoisers under a set of clearly specified assumptions. We show the practical relevance of
BC-PnP by solving joint estimation problems in blind deblurring and accelerated parallel MRI. Our
numerical results show the potential of denoisers to act as PnP priors over the measurement operators
as well as images. Our work thus addresses a gap in the current PnP literature by providing a new
efficient and principled framework applicable to a wide variety of blind imaging inverse problems.

All proofs and some details that have been omitted for space appear in the supplementary material.

2 Background

Inverse Problems. Many imaging problems can be formulated as inverse problems where the goal
is to estimate an unknown image x 2 Rn from its degraded observation y = Ax + e, where
A 2 Rm⇥n is a measurement operator and e 2 Rm is the noise. A common approach for solving
inverse problems is based on formulating an optimization problem

bx 2 argmin
x2Rn

f(x) with f(x) = g(x) + h(x) , (1)

where g is the data-fidelity term that quantifies consistency with the observation y and h is the
regularizer that infuses a prior on x. For example, a widely-used data-fidelity term and regularizer
in computational imaging are the least-squares g(x) = 1

2 kAx� yk22 and the total variation (TV)
functions h(x) = ⌧ kDxk1, where D is the image gradient, and ⌧ > 0 a regularization parameter.

The traditional inverse problem formulations assume that the measurement operator A is known
exactly. However, in many applications, it is more practical to model the measurement operator as
A(✓), where ✓ 2 Rp are unknown parameters to be estimated jointly with x. This form of inverse
problems are often referred to as blind inverse problems and arise in a wide-variety of applications,
including pralellel MRI [32–37], blind deblurring [30, 38, 39], and computed tomography [40–43].

DL. There is a growing interest in DL for solving imaging inverse problems [1–3]. Instead of
explicitly defining a regularizer, DL approaches for solving inverse problems learn a mapping from
the measurements to the desired image by training a convolutional neural network (CNN) to perform
regularized inversion [44–48]. Model-based DL (MBDL) has emerged as powerful DL framework
for inverse problems that combines the knowledge of the measurement operator with an image
prior specified by a CNN (see reviews [3, 49]). The literature of MBDL is vast, but some well-
known examples include PnP, regularization by denoising (RED), deep unfolding (DU), compressed
sensing using generative models (CSGM), and deep equilibrium models (DEQ) [50–54]. All these
approaches come with different trade-offs in terms of imaging performance, computational and
memory complexity, flexibility, need for supervision, and theoretical understanding.

The literature on DL approaches for blind inverse problems is broad, with many specialized methods
developed for different applications. While an in-depth review would be impractical for this paper,
we mention several representative approaches adopted in prior work. The direct application of DL
to predict the measurement operator from the observation was explored in [55, 56]. Deep image
prior (DIP) was used as a learning-free prior to regularize the image and the measurement operator
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in [57, 58]. Generative models, including both GANs and diffusion models, have been explored as
regularizers for blind inverse problems in [59, 60]. Other work considered the use of a dedicated
neural network to predict the parameters of the measurement operator, adoption of model adaptation
strategies, and development of autocalibration methods based on optimization [34–37, 61–64].

PnP. PnP [4, 5] is one of the most popular MBDL approaches based on using deep denoisers as
imaging priors (see also recent reviews [14, 15]). For example, the proximal gradient method variant
of PnP (referred to as PnP-ISTA in this paper) can be formulated as a fixed-point iteration [65]

xk  D�

�
zk

�
with zk  xk�1 � �rg(xk�1) , (2)

where D� is a denoiser with a parameter � > 0 for controlling its strength and � > 0 is a step-size.
The theoretical convergence of PnP-ISTA has been explored for convex functions g using monotone
operator theory [20, 22] as well as for nonconvex functions based on interpreting the denoiser as a
MMSE estimator [23]. The analysis in this paper builds on the convergence theory in [23] that uses
an elegant formulation by Gribonval [66] establishing a direct link between MMSE estimation and
regularized inversion. Many variants of PnP have been developed over the past few years [6–12],
which has motivated an extensive research on its theoretical properties [16,18,20,22,23,27–29,67–70].

Block coordinate regularization by denoising (BC-RED) is a recent PnP variant for solving large-scale
inverse problems by updating along a subset of coordinates at every iteration [21]. BC-RED is based
on regularization by denoising (RED), another well-known variant of PnP that seeks to formulate an
explicit regularizer for a given image denoiser [17, 19]. BC-RED was applied to several non-blind
inverse problems and was theoretically analyzed for convex data-fidelity terms.

PnP was extended to blind deblurring in [71, 72] by considering an additional prior on blur kernels
that promotes sparse and nonegative solutions. PnP was also applied to holography with unknown
phase errors by using the Gaussian Markov random field model as the prior for the phase errors [73].
Calibrated RED (Cal-RED) [43] is a recent related extension of RED that calibrates the measurement
operator during RED reconstruction by combining the traditional RED updates over an unknown
image with a gradient descent over the unknown parameters of the measurement operator. However,
this prior work does not leverage any learned priors for the measurement operator and does not
provide any theoretical analysis.

Our contributions. (1) Our first contribution is in the use of learned deep denoisers for regularizing
the measurement operators within PnP. While the idea of calibration within PnP was introduced
in [43], denoisers were not used as priors for measurement operators. (2) Our second contribution is
the application of BC-PnP as an efficient method for jointly estimating the unknown image and the
measurement operator. While BC-RED was introduced in [21] as a block-coordinate variant of PnP,
the method was used for solving non-blind inverse problems by using patch-based image denoisers.
(3) Our third contribution is a new convergence theory for BC-PnP for the sequential and random
block-selection strategies under approximate MMSE denoisers. Our analysis does not assume convex
data-fidelity terms, which makes it compatible with blind inverse problems. Our analysis can be
seen as an extension of [23] to block-coordinate updates and approximate MMSE denoisers. (4) Our
fourth contribution is the implementation of BC-PnP using learned deep denoisers as priors for two
distinct blind inverse problems: blind deblurring and auto-calibrated parallel MRI. Our code—which
we share publicly—shows the potential of learning deep denoisers over measurement operators and
using them for jointly estimating the uknown image and the uknown measurement operator.

3 Block Coordinate Plug-and-Play Method

We propose to efficiently solve blind inverse problems by using a block-coordinate PnP method,
where each block represents one group of unknown variables (images, measurement operators, etc).
The novelty of our work relative to [21] is in solving blind inverse problems by introducing learned
priors on both the unknown image and the uknown measurement operator. Additionally, unlike [21],
our work proposes a fully nonconvex formulation that is more applicable to blind inverse problems.

Consider the decomposition of a vector x 2 Rn into b � 1 blocks

x = (x1, · · · , xb) 2 Rn1 ⇥ · · ·⇥ Rnb with n = n1 + · · · + nb. (3)
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Algorithm 1 Block Coordinate Plug-and-Play Method (BC-PnP)
1: input: initial value x0 2 Rn, parameters � 2 Rb

+, and step-size � > 0.
2: for k = 1, 2, 3, · · · do
3: Choose an index ik 2 {1, · · · , b}
4: xk  xk�1 � �UikGik(xk�1)

where Gi(x) := UT

i G(x) with G(x) := 1
� (x� D�(x� �rg(x))).

5: end for

For each i 2 {1, · · · , b}, we define a matrix Ui 2 Rn⇥ni that injects a vector in Rni into Rn and its
transpose UT

i that extracts the ith block from a vector in Rn. For any x 2 Rn, we have

x =
bX

i=1

Uixi with xi = UT

i x 2 Rni , i = 1, · · · , b ,
bX

i=1

UiU
T

i = I. (4)

Note that (4) directly implies the norm preservation kxk22 = kx1k22+· · ·+kxbk22 for any x 2 Rn. We
are interested in a block-coordinate algorithm that uses only a subset of operator outputs corresponding
to coordinates in some block i 2 {1, · · · , b}. Hence, for an operator G : Rn ! Rn, we define the
block-coordinate operator Gi : Rn ! Rni as

Gi(x) := [G(x)]i = UT

i G(x) 2 Rni , x 2 Rn. (5)

We are in-particular interested in two operators: (a) the gradientrg(x) = (r1g(x), · · · ,rbg(x))
of the data-fidelity term g and (b) the denoiser D�(x) = (D�1(x1), · · · ,D�b(xb)), where the vector
� = (�1, · · · , �b) 2 Rb

+ consists of parameters for controling the strength of each block denoiser.
Note how the denoiser acts in a separable fashion across different blocks.

When b = 1, we have U1 = UT

1 = I and BC-PnP reduces to the conventional PnP-ISTA [23, 65].
When b > 1, we have at least two blocks with BC-PnP updating only one block at a time

xk
j =

(
xk�1
j when j 6= ik

D�j (x
k�1
j � �rjg(xk�1)) when j = ik

, j 2 {1, · · · , b}. (6)

As with any coordinate descent method (see [74] for a review), BC-PnP can be implemented using
different block selection strategies. One common strategy is to simply update blocks sequentially as
ik = 1 + mod(k � 1, b), where mod(·) denotes the modulo operator. An alternative is to proceed in
epochs of b consecutive iterations, where at the start of each epoch the set {1, · · · , b} is reshuffled,
and ik is then selected consecutively from this ordered set. Finally, one can adopt a fully randomized
strategy where indices ik are selected as i.i.d. random variables distributed uniformly over {1, · · · , b}.

Throughout this work, we will assume that each denoiser D�i is an approximate MMSE estimator for
the following AWGN denoising problem

zi = xi + ni with xi ⇠ pxi , ni ⇠ N (0, �2
i I), (7)

where i 2 {1, · · · , b} and zi 2 Rni . We rely only on an approximation of the MMSE estimator of
xi given zi, since the exact MMSE denoiser corresponds to the generally intractable posterior mean

D
⇤
�i

(zi) := E[xi|zi] =

Z

Rni

xpxi|zi
(x|zi) dx. (8)

Approximate MMSE denoisers are a useful model for denoisers due to the use of the MSE loss

L(D�i) = E
⇥
kxi � D�i(zi)k22

⇤
(9)

for training deep denoisers, as well as the optimality of MMSE denoisers with respect to widely used
image-quality metrics such as signal-to-noise ratio (SNR).

As a simple illustration of the generality of BC-PnP, consider b = 2 with the least-squares objective

g(x) =
1

2
ky �A(✓)vk22 with x := (v, ✓), (10)
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where v 2 Rn1 denotes the unknown image and ✓ 2 Rn2 denotes the unknown parameters of the
measurement operator. BC-PnP can then be implemented by first pre-training a dedicated AWGN
denoiser D�i for each block i and using it as a prior within Algorithm 1. It is also worth noting
that the functions g in (10) is nonconvex with respect to the variable x 2 Rn. In the next section,
we present the full convergence analysis of BC-PnP without any convexity assumptions on g and
nonexpansiveness assumptions on the denoiser D� .

4 Convergence Analysis of BC-PnP

In this section, we present two new theoretical convergence results for BC-PnP. We first discuss
its convergence under the sequential updates and then under fully random updates. It is worth
mentioning that BC-RED with fully random updates was theoretically analyzed in [21]. The novelty
of our analysis here lies in that it allows for nonconvex functions g and expansive denoisers D�i .
The nonconvexity of g is essential since most data-fidelity terms used for blind inverse problems
are nonconvex. On the other hand, by allowing expansive D�i , our analysis avoids the need for the
spectral normalization techniques that were previously suggested for PnP methods [21, 22].

In the following, we will denote as D⇤
� := (D⇤

�1
, · · · ,D⇤

�b
) the exact MMSE denoiser in (8). Our

analysis will require five assumptions that will serve as sufficient conditions for our theorems.
Assumption 1. The blocks xi are independent with non-degenerate priors pxi over Rni .

As a reminder, a probability distribution pxi is degenerate over Rni , if it is supported on a space of
lower dimensions than ni. Assumption 1 is required for establishing an explicit link between the
MMSE denoiser (8) and the following regularizer (see also [23, 66] for additional background)

h(x) =
bX

i=1

hi(xi), x = (x1, · · · , xn) 2 Rn, (11)

where each function hi is defined as (see the derivation in Section D.2 of the supplement)

hi(xi) :=

(
� 1

2� kxi � (D⇤
�i

)�1(xi)k22 + �2
i
� h�i((D

⇤
�i

)�1(xi)) for xi 2 Im(D⇤
�i

)

+1 for xi /2 Im(D⇤
�i

),
(12)

where � > 0 is the step size, (D⇤
�i

)�1 : Im(D⇤
�i

)! Rni is the inverse mapping, which is well defined
and smooth over Im(D⇤

�i
), and h�i(·) := � log(pzi(·)), where pzi is the probability distribution over

the AWGN corrupted observations (7). Note that the function hi is smooth for any xi 2 Im(D⇤
�i

),
which is the consequence of the smoothness of both (D⇤

�i
)�1 and h�i .

Assumption 2. The function g is continuously differentiable and rg is Lipschitz continuous with
constant L > 0. Additionally, each block gradientrig is block Lipschitz continuous with constant
Li > 0. We define the largest block Lipschitz constant as Lmax := max{L1, · · · , Lb}.

Lipschitz continuity of the gradient rg is a standard assumption in the context of imaging inverse
problems. Note that we always have the relationship (L/b)  Lmax  L (see Section 3.2 in [74]).
Assumption 3. The explicit data-fidelity term and the implicit regularizer are bounded from below

inf
x2Rn

g(x) > �1, inf
x2Rn

h(x) > �1. (13)

Assumption 3 implies that there exists f⇤ > �1 such that f(x) � f⇤ for all x 2 Rn. Since
Assumptions 1-3 correspond to the standard assumptions used in the literature, they are broadly
satisfied in the context of inverse problems.

Our analysis assumes that at every iteration, BC-PnP uses inexact MMSE denoisers on each block.
While there are several ways to specify the nature of “inexactness,” we consider the case where at
every iteration k of BC-PnP the distance of the output of D�i to D

⇤
�i

is bounded by a constant "k.
Assumption 4. Each block denoiser D�i in D� satisfies

kD�i(z
k
i )� D

⇤
�i

(zk
i )k2  "k, i 2 {1, · · · , b}, k = 1, 2, 3, · · · ,

where D
⇤
�i

is given in (8) and zk
i = xk�1

i � �rig(xk�1).
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For convenience, we will define quantities "2 := max{"21, "
2
2, · · · } and "2t := (1/t)

�
"21 + · · · + "2t

�

that correspond to the largest and the mean squared-distances between the inexact and exact denoisers.
Assumption 4 states that the error of the approximate MMSE denoiser used for inference is bounded
relative to the exact MMSE denoiser, which is reasonable when the approximate MMSE denoiser is a
CNN trained to minimize the MSE.

It has been shown in the prior work [23, 66] that the function h in (11) is infinitely continuously
differentiable over Im(D⇤

�). Our analysis requires the extension of the region where h is smooth to
include the range of the approximate MMSE denoiser, which is the goal of our next assumption.
Assumption 5. Each regularizer hi in (12) associated with the MMSE denoiser (8) is continously
differentiable and has a Lipschitz continuous gradient with constant Mi > 0 over the set

Im"(D
⇤
�i

) := {x 2 Rni : kx� D
⇤
�i

(z)k2  ", z 2 Rni}, i 2 {1, · · · , b}.

We will define Mmax := max{M1, · · · , Mb} to be the largest Lipschitz constant and Im"(D⇤
�) :=

{x 2 Rn : xi 2 Im"(D⇤
�i

), i 2 {1, . . . , b}} to be the set over which h is smooth. Assumption 5
expands the region where the regularizer associated with the exact MMSE denoiser is smooth by
including the range of the approximate MMSE denoiser. For example, this assumption is automatically
true when the exact and approximate MMSE denoisers have the same range, which is reasonable
when the approximate MMSE denoiser is trained to imitate the exact one.

Our first theoretical result considers the sequential updates, where at each iteration, ik is selected as
ik = 1 + mod(k � 1, b) with mod(·) being the modulo operator. We can then express any iterate ib
produced by BC-PnP for i � 1 as

xib = (xib
1 , · · · , xib

b ) = (x(i�1)b+1
1 , · · · , xib

b ).

Note that xib 2 Im"(D⇤
�) since each block is an output of the denoiser. We prove the following result.

Theorem 1. Run BC-PnP under Assumptions 1-5 using the sequential block selection and the step
0 < � < 1/Lmax. Then, we have

min
1it

krf(xib)k22 
1

t

tX

i=1

krf(xib)k22 
C1

t
(f(x0)� f⇤) + C2"

2
tb,

where C1 > 0 and C2 > 0 are iteration independent constants. If additionally the sequence of error
terms {"i}i�1 is square-summable, we have that rf(xtb)! 0 as t! 0.

Our second theoretical result considers fully random updates, where at each iteration, ik is selected
as i.i.d. random variables distributed over {1, · · · , b}. In this setting, we analyze the convergence
of BC-PnP in terms of the sequence {G(xk)}k�0. Note that it is straightforward to verify that
Zer(G) = Zer(rf), which makes this analysis meaningful. We prove the following result.
Theorem 2. Run BC-PnP under Assumptions 1-5 using the random i.i.d. block selection and the step
0 < � < 1/Lmax. Then, we have

min
1kt

E
⇥
kG(xk�1)k22

⇤
 E

"
1

t

tX

k=1

kG(xk�1)k22

#
 D1

t
(f(x0)� f⇤) + D2"

2
t ,

where D1 > 0 and D2 > 0 are iteration independent constants. If additionally the sequence of error
terms {"i}i�1 is square-summable, we have that G(xt)

a.s.��!0 as t!1.

The expressions for the constants in Theorems 1 and 2 are given in the proofs. The theorems
show that if the sequence of approximation errors is square-summable, BC-PnP asymptotically
achieves a stationary point of f . On the other hand, if the sequence of approximation errors is not
square-summable, the convergence is only up to an error term that depends on the average of the
squared approximation errors. Both theorems can thus be viewed as more flexible alternatives for the
convergence analysis in [21]. It is also worth mentioning that the theorems are interesting even when
the denoiser errors are not square-summable, since they provide explicit error bounds on convergence.
While the analysis in [21] assumes convex g and nonexpansive D� , the analysis here does not require
these two assumptions. It instead views the denoiser D� as an approximation to the MMSE estimator
D

⇤
�, where the approximation error is bounded by "k at every iteration of BC-PnP. This view is

compatible with denoisers trained to minimize the MSE loss (9).
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Figure 1: Illustration of the BC-PnP convergence using the sequential and random i.i.d. block
selection rules on CS-PMRI with the sampling factor R = 8. Leftmost two plots: Evolution of the
distance between two consecutive image and CSM iterates. Rightmost three plots: Evolution of the
RMSE and SSIM metrics relative to the true solutions across BC-PnP iterations. Note how both block
selection rules lead to a nearly identical convergence behaviour of BC-PnP in this experiment.

5 Numerical Validation

We numerically validate BC-PnP on two blind inverse problems: (a) compressed sensing parallel MRI
(CS-PMRI) with automatic coil sensitivity map (CSM) estimation and (b) blind image deblurring.
We adopt the traditional `2-norm loss in (10) as the data-fidelity term for both problems. We will
use x to denote the unknown image and ✓ to denote the unknown parameters of the measurement
operator. We use the relative root mean squared error (RMSE) and structural similarity index (SSIM)
as quantitative metrics to evaluate the performance.

We experimented with several ablated variants of BC-PnP, including PnP, PnP-GD✓, and PnP-
oracle✓. PnP and PnP-oracle✓ denote basic variants of PnP that use pre-estimated and ground truth
measurement operators, respectively. PnP-GD✓ is a variant of PnP based on [43], where ✓ is estimated
without any DL prior. It is worth noting that PnP-oracle✓ is provided as an idealized reference in
our experiment. As discussed in the following subsections, we also compare BC-PnP against several
widely-used baseline methods specific to CS-PMRI and blind image deblurring.

5.1 Compressed Sensing Parallel MRI

The measurement operator of CS-PMRI consists of complex measurement operators A(✓) 2 Cm⇥n

that depend on unknown CSMs {✓i} in Cn. Each sub-measurement operator can be parameterized as
Ai(✓i) = PF diag(✓i), where F is the Fourier transform, P 2 Rm⇥n is the sampling operator, and
diag(✓i) forms a matrix by placing ✓i on its diagonal. We used T2-weighted MR brain acquisitions
of 165 subjects obtained from the validation set of the fastMRI dataset [75] as the the fully sampled
measurement for simulating measurements. We obtained reference ✓i from the fully sampled
measurements using ESPIRiT [76]. These 165 subjects were split into 145, 10, and 10 for training,
validation, and testing, respectively. BC-PnP and baseline methods were tested on 10 2D slices,
randomly selected from the testing subjects. We followed [75] to retrospectively undersample the
fully sampled data using 1D Cartesian equispaced sampling masks with 10% auto-calibration signal
(ACS) [76] lines. We conducted our experiments for acceleration factors R = 6 and 8. We adopted
DRUNet [12] as the architectures of D� for training both the image and CSM denoisers. BC-PnP
and its ablated variants are initialized using CSMs ✓0 pre-estimated using ESPIRiT [76] and images
x0  A(✓0)Hy, where AH denotes the Hermitian transpose of A.

We considered several baseline methods, including ENLIVE [35], ESPIRiT-TV [76], Unet [77], and
ISTANet+ [51]. ENLIVE is an iterative algorithm that jointly estimates images and coil sensitivity
profiles. ESPIRiT-TV is an iterative algorithm that applies TV reconstruction method in (1). Unet is
trained to map raw measurements to desired ground truth without the knowledge of measurement
operator. ISTANet+ denotes a widely-used DU architecture. We tested ESPIRiT-TV and ISTANet+
using CSMs pre-estimated using ESPIRiT.

Figure 1 illustrates the convergence behaviour of BC-PnP on the test set for the acceleration factor
R = 8. Figure 2 illustrates reconstruction results for the acceleration factor R = 6. Table 1
summarizes the quantitative evaluation of BC-PnP relative to other PnP variants and the baseline
methods. These results show that joint estimation can lead to significant improvements and that
BC-PnP can perform as well as the idealized PnP-oracle✓ that knowns the true measurement operator.
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Figure 2: Illustration of results from several well-known methods on CS-PMRI with the sampling
factor R = 6. The quantities in the top-left corner of each image provide RMSE and SSIM values
for each method. The squares at the bottom of each image visualize the error and the corresponding
zoomed area in the image. Note how BC-PnP using a deep denoiser on the unknown CSMs outper-
forms uncalibrated PnP and matches PnP-oracle✓ that knows the true CSMs.

Table 1: RMSE and SSIM performance of several methods on CS-PMRI. The table highlights the best
and second best results. The Calibration column highlights methods specifically designed to solve
the blind inverse problem. Note how the use of a DL prior over the measurement operator enables
BC-PnP to outperform PnP and PnP-GD✓ and approach the performance of the oracle algorithm.

Method Calibration (Y/N) R = 6 R = 8

RMSEx #SSIMx "RMSE✓ # RMSEx #SSIMx "RMSE✓ #
ENLIVE [35] 3 0.371 0.763 — 0.419 0.730 —
ESPIRiT-TV [76] 3 0.218 0.884 0.256 0.361 0.818 0.356
Unet [77] 7 0.218 0.904 — 0.195 0.907 —
ISTANet+ [51] 7 0.110 0.946 — 0.140 0.928 —
PnP 7 0.111 0.950 0.256 0.171 0.924 0.356
PnP-GD✓ [43] 3 0.116 0.950 0.254 0.163 0.926 0.355
BC-PnP (Ours) 3 0.091 0.961 0.247 0.122 0.946 0.337
PnP-oracle✓? 7 0.069 0.969 0.000 0.082 0.962 0.000

? not available in practice for blind inverse problems.

5.2 Blind Image Deblurring

The measurement operator in blind image deblurring can be modeled as A(✓)x = ✓ ⇤ x, where ✓ is
the unknown blur kernel, x is the unknown image, and ⇤ is the convolution. We randomly selected
10 testing ground truth image from CBSD68 [80] dataset. We generated 25⇥ 25 Gaussian kernels
with � = 101. We tested the algorithms on 2 Gaussian kernels. We used a pre-trained image denoiser,
as in the experimental setting of [12]. The kernel denoiser was trained on 10,000 generated kernels at
several noise levels. We adopted DnCNN with 17 layers as the architectures of D� for training kernel
denoisers. BC-PnP and its ablated variants are initialized with the blur kernels ✓0 pre-estimated using
Pan-DCP [39] and images x0  A(✓0)Ty.

We compared BC-PnP against several baseline methods, including Pan-DCP [39], SelfDeblur [58],
DeblurGAN [78], USRNet [79]. Pan-DCP is an optimization-based method that jointly estimates
image and blur kernel. SelfDeblur trains two deep image priors (DIP) [81] to jointly estimate the blur
kernel and the image. DeblurGAN is a supervised learning-based method that lacks the capability for
kernel estimation, but can reconstruct images via direct inference. USRNet is a DU baseline that was
tested using blur kernel estimated from [39]. The results of DeblurGAN and USRNet are obtained by
running the published code with the pre-trained weights.

Figure 3 illustrates the reconstruction results with a Gaussian kernel. Figure 3 demonstrates that
BC-PnP can reconstruct the fine details of the snake skin, as highlighted by the white arrows, while
both Pan-DCP and PnP produce smoother reconstructions. Additionally, BC-PnP generates a more
accurate blur kernel compared to the ground truth kernel, whereas Pan-DCP and SelfDeblur yield blur
kernels with artifacts. Table 2 presents the quantitative evaluation of the reconstruction results using

1We used github.com/shangqigao/BayeSR for generating the kernels.
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0.10/0.41/0.36

Pan-DCP
0.20/0.19/1.20

SelfDeblur
0.10/0.45/—

PnP
0.09/0.53/0.14

BC-PnP (Ours)
0.09/0.52/0.00

PnP-oracle✓
RMSEx/SSIM/RMSE✓

Ground-truth

0.000

0.375

0.750

Figure 3: Illustration of results from several well-known methods on blind image deblurring with the
Gaussian kernel. The squares at the top of each image show the estimated kernels. The quantities in
the top-left corner of each image provide RMSE and SSIM values for each method. The squares at
the bottom of each image highlight the error and the corresponding zoomed image region. Note how
the BC-PnP using a deep denoiser on the unknown kernel significantly outperforms the traditional
PnP method and matches the performance of the oracle PnP method that knows the true blur kernel.
Note also the effectiveness of BC-PnP for estimating the unknown blur kernel.

Table 2: Quantitative evaluation of BC-PnP in blind image deblurring. We highlighted the best and
second best results, respectively. The Calibration column highlights methods specifically designed to
solve the blind inverse problem. Note how the use of a prior over the measurement operator enables
BC-PnP to nearly match the performance of the oracle algorithm.

Method Calibration (Y/N)
RMSEx #SSIMx "RMSE✓ # RMSEx #SSIMx "RMSE✓ #

Pan-DCP [39] 3 0.087 0.835 0.283 0.114 0.733 0.246
SelfDeblur [58] 3 0.219 0.495 0.775 0.176 0.553 0.831
DeblurGAN [78] 7 0.090 0.823 — 0.118 0.716 —
USRNet [79] 7 0.106 0.855 — 0.114 0.769 —
PnP 7 0.082 0.857 0.283 0.106 0.763 0.246
PnP-GD✓ [43] 3 0.082 0.857 0.283 0.108 0.767 0.246
BC-PnP (Ours) 3 0.055 0.921 0.097 0.098 0.794 0.107
PnP-oracle✓? 7 0.051 0.929 0.000 0.088 0.817 0.000

? not available in practice for blind inverse problems.

a Gaussian kernel, indicating that BC-PnP outperforms the baseline methods and nearly matches the
SSIM and RMSE values of PnP-oracle✓ that is based on the ground truth blur kernel.

6 Conclusion

The work presented in this paper proposes a new BC-PnP method for jointly estimating unknown
images and unknown measurement operators in blind inverse problems, presents its theoretical
analysis in terms of convergence and accuracy, and applies the method to two well-known blind
inverse problems. The proposed method and its theoretical analysis extend the recent work on
PnP by introducing a learned prior on the unknown measurement operator, dropping the convexity
assumptions on the data-fidelity term, and nonexpansiveness assumptions on the denoiser. The
numerical validation of BC-PnP shows the improvements due to the use of learned priors on the
measurement operator and the ability of the method to match the performance of the oracle PnP
method that knows the true measurement operator. One conclusion of this work is the potential
effectiveness of PnP for solving inverse problems where the unknown quantities are not only images.

Limitations

The work presented in this paper comes with several limitations. The proposed BC-PnP method is
based on PnP, which means that its performance is inherently limited by the use of AWGN denoisers
as priors. While denoisers provide a convenient, principled, and flexible mechanism to specify priors,

9



they are inherently self-supervised and their empirical performance can thus be suboptimal compared
to priors trained in a supervised fashion for a specific inverse problem. PnP running over many
iterations can also have higher computational complexity compared to some end-to-end alternatives,
such as DU with a small number of steps. Our analysis is based on the assumption that the denoiser
used for inference computes an approximation of the true MMSE denoiser. While this assumption is
reasonable for deep denoisers trained using the MSE loss, it is not directly applicable to denoisers
trained using other common loss functions, such as the `1-norm or SSIM. Finally, as is common
with most theoretical work, our analysis only holds when our assumptions are satisfied, which might
limit its applicability in practice. Our future work will investigate ways to improve on the results
presented here by exploring new PnP strategies for relaxing assumptions for convergence, considering
end-to-end trained variants of BC-PnP based on DEQ [53, 54], and exploring BC-PnP using explicit
regularizers [26–28].

Broader Impact

The expected impact of this work is in the area of imaging inverse problems with potential applications
to computational imaging. There is a growing interest in computational imaging to leverage pre-
trained deep models for estimating the unknown image as well as the unknown parameters of the
imaging system. The ability to better address such problems can lead to new imaging tools for
biomedical and scientific studies. While novel DL methods, such as the proposed BC-PnP approach,
have the potential to enable new technological capabilities, they also come with a downside of being
more complex and requiring higher-levels of technical sophistication. While our aim is to positively
contribute to humanity, one can unfortunately envisage nonethical use of imaging technology.
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