
Under review as a conference paper at ICLR 2023

Quasi-Bayesian Nonparametric Density Es-
timation via Autoregressive Predictive Up-
dates

Anonymous authors
Paper under double-blind review

Abstract

Bayesian methods are a popular choice for statistical inference in small-data
regimes due to the regularization effect induced by the prior. In the context
of density estimation, the standard nonparametric Bayesian approach is
to target the posterior predictive of the Dirichlet process mixture model.
In general, direct estimation of the posterior predictive is intractable and
so methods typically resort to approximating the posterior distribution as
an intermediate step. The recent development of quasi-Bayesian predictive
copula updates, however, has made it possible to perform tractable predictive
density estimation without the need for posterior approximation. Although
these estimators are computationally appealing, they tend to struggle on
non-smooth data distributions. This is due to the comparatively restrictive
form of the likelihood models from which the proposed copula updates were
derived. To address this shortcoming, we consider a Bayesian nonparametric
model with an autoregressive likelihood decomposition and a Gaussian
process prior. While the predictive update of such a model is typically
intractable, we derive a quasi-Bayesian predictive update that achieves
state-of-the-art results on moderate-sized examples.

1 Introduction

Modelling the joint distribution of multivariate random variables with density estimators
is a central topic in modern unsupervised machine learning research (Durkan et al., 2019;
Kingma & Welling, 2013; Papamakarios et al., 2017). As well as providing insight into the
statistical properties of the data, density estimates are used in a number of downstream
applications, including image restoration (Zoran & Weiss, 2011), density-based clustering
(Scaldelai et al., 2022), and simulation-based inference (Lueckmann et al., 2021). In small-
data regimes, Bayesian methods are a popular choice for a wide range of machine learning
tasks, including density estimation, thanks to their attractive generalization capacities. For
density estimation, the typical Bayesian approach is to target the Bayesian predictive density,
pn(x) =

∫
f(x|θ)πn(θ)dθ, where πn denotes the posterior density of the model parameters θ

after observing x1, . . . , xn, and f denotes the sampling distribution.
De Finetti’s representation theorem (De Finetti, 1937; Hewitt & Savage, 1955) states that an
exchangeable joint density fully characterises a Bayesian model, which then implies a sequence
of predictive densities. Furthermore, Fong et al. (2021) recently showed that a sequence
of predictive densities can be sufficient for carrying out full Bayesian posterior inference.
The above provides theoretical motivation for an iterative approach to Bayesian predictive
density estimation by updating the predictive pi−1(x) to pi(x) given an observation xi for
i = 1, . . . , n. The idea of recursive Bayesian updates goes back to at least Hill (1968), but
was only recently made more widely applicable through the relaxation of the assumption of
exchangeability in favour of conditionally identically distributed (Berti et al., 2004) sequences.
Here, we focus on a particular class of one-step-ahead predictive updates pi−1(x)→ pi(x)
based on bivariate copulas, which were first introduced by Hahn et al. (2018) for univariate
data, and extended by Fong et al. (2021) to the multivariate setting and to regression

1

Under review as a conference paper at ICLR 2023

Figure 1: Density estimates of 600 observations from a chessboard distribution, reported with
mean and standard deviation of test log likelihoods. For larger training sizes, see Supplement
C.2. Our methods, AR-BP and ARnet-BP, outperform R-BP and AR neural networks.

analyses. This class of updates is inspired by Bayesian models and thus retains many
desirable Bayesian properties, such as coherence and regularization. However, we emphasize
that the copula updates do not correspond exactly, nor approximately, to a traditional
Bayesian likelihood-prior model, and we thus refer to them as quasi-Bayesian (Fortini &
Petrone, 2020). The most promising quasi-Bayesian density estimator proposed to date,
henceforth referred to as the Recursive Bayesian Predictive (Rd-BP), lacks flexibility to
model highly complex data distributions (see Figure 1). This is because the existing copula
updates rely on a Gaussian copula with a single scalar bandwidth parameter, corresponding
to a Bayesian model with a likelihood that factorizes over dimensions. We also note that
popular neural network based approaches, such as MAF (Papamakarios et al., 2017), and
RQ-NSF (Durkan et al., 2019) can struggle in small-data regimes (Figure 1).

Contributions. This motivates our main contribution, namely the formulation of a more
flexible auto-regressive (AR) copula update. In particular:

• By considering a Dirichlet Process Mixture Model (DPMM) with an AR likelihood
and a Gaussian process (GP) prior, we formulate a tractable copula update with
a novel data-dependent bandwidth based on the Euclidean metric in data space.
Our method, Autoregressive Recursive Bayesian Predictives (AR-BP), significantly
outperforms traditional density estimators on tabular data sets of moderate size.

• We observe in practice that the Euclidean metric used in AR-BP can be inadequate
for highly non-smooth data distributions. For such cases, we propose using an
AR neural network (Bengio & Bengio, 1999; Frey et al., 1998; Germain et al.,
2015; Larochelle & Murray, 2011) that maps the observations into a latent space
before bandwidth estimation. This introduces additional non-linearity through the
dependence of the bandwidth on the data, leading to a density estimator, ARnet-BP,
that is more accurate on non-smooth densities.

2 Background

We briefly recap predictive density estimation via bivariate copula updates, before describing
a particular such update inspired by DPMMs.

2.1 Univariate Predictive Density Updates

To compute predictive densities quickly, Hahn et al. (2018) propose an iterative approach.
For x ∈ R, any sequence of Bayesian posterior predictive densities pi(x) with likelihood f
and posterior πi, conditional on x1:i, can be expressed as

pi(x) =
∫
f(x|θ)πi(θ)dθ = pi−1(x)hi(x, xi), (1)

for some bivariate function hi(x, xi) (Hahn et al., 2018). Rearranging for hi, we have

hi(x, xi) = pi(x)
pi−1(x) = pi−1(x|xi)

pi−1(x) = pi−1(x, xi)
pi−1(x)pi−1(xi)

(2)

where pi−1(x, xi) = pi(x) pi−1(xi). Hahn et al. (2018) show that hi(x, xi) is the transforma-
tion of a bivariate copula density. A bivariate copula is a bivariate cumulative distribution

2

Under review as a conference paper at ICLR 2023

function (CDF) C : [0, 1]2 → [0, 1] with uniform marginal distributions. Sklar’s theorem
(Sklar, 1959) states that for any bivariate density p(y1, y2) with continuous marginal CDFs,
P1(y1) and P2(y2), there exists a unique bivariate copula C with density c such that

p(y1, y2) = c {P1(y1), P2(y2)} p1(y1)p2(y2).

Applying this copula factorization to (2) yields hi(x, xi) = ci{Pi−1(x), Pi−1(xi)}, where Pi−1
is the CDF corresponding to the predictive density pi−1, and ci is defined as the copula that
exists according to Sklar’s theorem for pi−1(x) and pi−1(xi). Given prior π and likelihood f ,
Equation 2 suggests that the update function can be written as

hi(x, xi) =
∫
f(x|θ)f(xi|θ)πi−1(θ)dθ∫

f(x|θ)πi−1(θ)dθ
∫
f(xn|θ)πi−1(θ)dθ · (3)

For each Bayesian model, there is thus a unique sequence of symmetric copula densities
ci(u, v) = ci(v, u). This sequence has the property that cn → 1 as n→∞, ensuring that the
predictive density converges asymptotically with sample size n.
In general, (3) is intractable due to the posterior so it is not possible to compute the iterative
update in (1). Alternatively, we will consider sequences of hi that match the Bayesian model
for i = 1, but not for i > 1. As mentioned above, this copula update no longer corresponds
to a Bayesian model, nor are the resulting predictive density estimates approximations to a
Bayesian model. Nevertheless, if the copula updates are conditionally identically distributed,
they still exhibit desirable Bayesian characteristics such as coherence and regularization, and
are hence referred to as quasi-Bayes. Please refer to Berti et al. (2004) for details.

2.2 Multivariate Predictive Density Updates

The above arguments cannot directly be extended to multivariate x ∈ Rd since hi cannot
necessarily be written as ci{Pi−1(x), Pi−1(xn)} for d > 1. However, (2) still holds, and
recursive predictive updates with bivariate copulas as building blocks can be derived explicitly
given a pre-defined likelihood model and a prior, which we now exhibit.
Hahn et al. (2018) and Fong et al. (2021) propose DPMMs as a general-use nonparametric
model. The DPMM (Escobar, 1988; Escobar & West, 1995) can be written as

f(x|G) =
∫

Θ
K(x|θ) dG(θ), with G ∼ DP(c,G0), (4)

where θ ∈ Θ = Rd are parameter vectors, K(x|θ) is a user-specified kernel, and the prior
assigned to G is a Dirichlet process (DP) prior with base measure G0 and concentration
parameter c > 0 (Ferguson, 1973). In particular, Fong et al. (2021) consider the base
measure G0 = N (0, τ−1Id) for some precision parameter τ ∈ R>0, and the factorized kernel
K(x|θ) = N (x|θ, Id) where Id is the d-dimensional identity matrix. The likelihood is then

f(x|G) =
∫ d∏

j=1
N
(
xj | θj , 1

)
dG(θ), (5)

where the dimensions of x are conditionally independent given θ. Following Hahn et al.
(2018), we denote the dimension j of a vector y with yj . We note that the strong assumption
of a factorised kernel form drastically impacts the performance of the regular DPMM and
also influences the form and modelling capacity of the corresponding copula update.
This model inspires the following recursive predictive density update pi(x) = hi(x, xi)pi−1(x)
for which the first d′ ∈ {1, . . . , d} marginals take on the form

pi

(
x1:d′

)
=

1− αi + αi

d′∏
j=1

c
(
uji−1(xj), vji−1; ρ0

) pi−1

(
x1:d′

)
, (6)

uji−1(xj) := Pi−1
(
xj | x1:j−1) , vji−1 := Pi−1

(
xji | x

1:j−1
i

)

3

Under review as a conference paper at ICLR 2023

where c(u, v; ρ0) is the bivariate Gaussian copula density with correlation ρ0 = 1/(1 + τ), p0
can be any chosen prior density, and αi =

(
2− 1

i

) 1
i+1 (see Supplement A and Fong et al.

(2021)). Note that the above update requires a specific ordering of the feature dimensions,
and the Gaussian copula follows from the Gaussian distribution in the kernel and G0 for
the DPMM. Unlike the DPMM, there are now no underlying parameters (beyond ρ0) in the
copula update as we have integrated out θ, so we do not carry out clustering directly. While
ρ0 is a scalar here, Fong et al. (2021) also consider the setting with a distinct bandwidth
parameter for each dimension. We refer to the resulting predictive density estimator as
Rd-BP, or simply R-BP if the dimensions share a single bandwidth.

3 AR-BP: Autoregressive Bayesian Predictives

For smooth data distributions, the recursive update defined in (6) generates density estimates
that are highly competitive against other popular density estimation procedures such as
kernel density estimation (KDE) and DPMM (Fong et al., 2021). Moreover, the iterative
updates provide a fast estimation alternative to fitting the full DPMM through Markov
chain Monte Carlo (MCMC). When considering more structured data, however, performance
suffers due to the choices of the factorized kernel K(·|θ) = N (·|θ, Id) and simple base measure
G0 = N (0, τ−1Id) in the DPMM. These choices induce a priori independence between the
data dimensions, and are thus insufficiently flexible to capture more complex dependencies.

3.1 Formulation of Autoregressive Bayesian Model

We therefore propose employing more general kernels and base measures in the DPMM and
show that these inspire a more general tractable recursive predictive update. In particular,
we allow the kernel to take on an autoregressive structure

K(x|θ) =
d∏
j=1
N
(
xj | θj

(
x1:j−1) , 1) , (7)

where θj : Rj−1 → R is now an unknown mean function for dimension xj , which we allow
to depend on the previous j − 1 dimensions of x. Correspondingly, specifying our DPMM
requires the specification of a base measure supported on the function space in which
(θ1, . . . , θd) is valued. We specify this base measure as a product of independent GP priors
on the functional parameters

θj ∼ GP(0, τ−1kj) for j = 1, ..., d where kj : Rj−1 × Rj−1 → R (8)
and kj can be any given covariance function that takes as input a pair of x1:j−1 values. In
practice, we use the same functional form of k for each j, so we will drop the superscript j.
For later convenience, we have also written the scaling term τ−1 explicitly. We highlight that
for j = 1, θ1 ∼ N (0, τ−1). Under this choice, the mean of the normal kernels in the DPMM
for each dimension j is thus a flexible function of the first j − 1 dimensions x1:j−1, on which
we elicit independent GP priors. The conjugacy of the GP with the Gaussian kernel in (7) is
crucial for deriving a tractable density update.
Remark. The proposed kernel in (7) is in fact more flexible than a general multivariate kernel,
K(x | θ) = N (x | θ,Σ). This is because the multivariate kernel also implies an AR form like
(7) but where the θj are restricted to be linear in x1:j−1; see Wade et al. (2014) for details.

3.2 Iterative Predictive Density Updates

Computing the Bayesian posterior predictive density induced by the DPMM with kernel
given by (7) and base measure given by (8) through posterior estimation is intractable and
requires MCMC. However, as before, we can utilize the model to derive tractable iterative
copula updates. In Supplement A.1, we show that the corresponding recursive predictive
density update pi(x) = hi(x, xi)pi−1(x) for the first d′ marginals takes on the form

pi

(
x1:d′

)
=

1− αi + αi

d′∏
j=1

c
(
uji−1(xj), vji−1; ρj(x1:j−1, x1:j−1

i)
) pi−1

(
x1:d′

)
, (9)

4

Under review as a conference paper at ICLR 2023

(a) Train: Estimate vj
i

= Pi−1(x1:j
i

) for each i

Initialise uj0(xi)← Φ(xj
i
)

For each preceding observation xk with k < i:
For each feature j:
Compute data-dependent bandwidth
ρj(x1:j

i
, x1:j
k

) (10)

Update conditional CDF uj
i
(xk): = P j

i
(xk) based

on the similarity between uj
i−1(xk) and vj

i−1 (19)

Set vj
i
← uj

i
(xi) for all j

(b) Test: Estimate predictive at test point pn(z)

Initialise uj0(z)← Φ(zj)

For each train observation xi:
For each feature j:
Compute data-dependent bandwidth
ρj(x1:j

i
, z1:j) (10)

Update conditional CDF uj
i
(z): = P j

i
(z) based on

the similarity between uj
i−1(z) and vj

i−1 (19)

Update predictive density pi−1(z)→ pi(z) (6)

Figure 2: Simplified summary of AR-BP. We repeat the training update for each train datum
xi to estimate vji = Pi−1(x1:j

i). These are needed at test time to update from pi−1(z)→ pi(z).
All steps are averaged over different feature and sample permutations. The main step that
induces autoregression in the observations is highlighted pink. Please see Supplement B.3
for detailed algorithms.

Figure 3: (a) Plots of αi(x, xi)ρ(x, xi) for R-BP and AR-BP for ρ0 ∈ {0.5, 0.7, 0.95}
(, ,) with new observation xi (). Note that ρ(x, xi) = ρ0 for R-BP, and ` = 1 for
AR-BP. (b) Density plots for R-BP and AR-BP trained on 4 sequential data points (). Both
figures show that the update of R-BP, unlike AR-BP, is not centred around the new datum.

with uji−1(xj), vji−1 defined as in (6), αi =
(
2− 1

i

) 1
i+1 , and the bandwidth given by

ρj(x1:j−1, x1:j−1
i) = ρ0k

(
x1:j−1, x1:j−1

i

)
, (10)

for ρ0 = 1/(1 + τ), and ρ1
i = ρ0. Where appropriate, we henceforth drop the argument x for

brevity. The conditional CDFs uji−1 can also be computed through an iterative closed form
expression similarly to (9) (Supplement B.3). Please see Figure 2 for a simplified overview of
the density estimation pipeline.
Note that the estimation is identical to the update given in (6) induced by the factorized
kernel, except for the main difference that the bandwidth ρ is no longer a constant, but is
now data-dependent. More precisely, the bandwidth for dimension j is a transformation of
the GP covariance function k on the first j−1 dimensions. The additional flexibility afforded
by the inclusion of k enables us to capture more complex dependency structures, as we do
not enforce a-priori independence between the dimensions of the parameter θ. Similarly
to the extension of R-BP to Rd-BP, we can also define ARd-BP by introducing dimension
dependence in ρ0. Finally, we highlight that extending R-BP to mixed data is possible as
given in Appendix E.1.3 of Fong et al. (2021), which also extends naturally to AR-BP.
Remark. The data-dependent bandwidth also appears when starting from other Bayesian
nonparametric models, such as dependent DPs and GPs (see Supplement A.2.2).

Our approach can be viewed as a Bayesian version of an online KDE procedure. To see this,
note that a KDE trained on i− 1 observations – yielding the density estimate qi−1(x) – can
be updated after observing the ith observation xi via qi(x) = (1− αi)qi−1(x) + αid (x, xi),

5

Under review as a conference paper at ICLR 2023

where αi = 1/i and d(·, ·) denotes the kernel of the KDE. Rather than adding a weighted
kernel term directly, AR-BP instead adds an adaptive kernel that depends on a notion of
distance between x and xi based on the predictive CDFs conditional on x1:i−1.
To better understand the importance of the data-dependent bandwidth, we can compare the
conditional predictive mean of R-BP and AR-BP in the bivariate setting X × Y . Under the
simplifying assumption of Gaussian predictive densities, we show in Supplement A.3 that
the conditional mean, µi(x), of Y | X is given by

µi(x) = µi−1(x) + αi(x, xi)ρ(x, xi)(yi − µi−1(xi)),

where αi(x, xi) = αic(Pi−1(x), Pi−1(xi); ρ)/[1− αi + αic(Pi−1(x), Pi−1(xi); ρ)]. Note that
ρ(x, xi) = ρ0 for R-BP. Intuitively, the updated mean is the previous mean plus a residual
term at yi scaled by some notion of distance between x and xi. For R-BP, this distance
between x and xi depends only on their predictive CDF values through αi(x, xi). This can
result in undesirable behaviour as shown in the upper plot in Figure 3(a), where the peak of
αi(x, xi), as a function of x, is not centred at xi. Counterintuitively, there is thus an x > xi
where µi(x) is updated more than at the actual observed x = xi. This follows from the lack
of focus on conditional density estimates for R-BP, which is alleviated by AR-BP. In the AR
case, ρ(x, xi) takes into account the Euclidean distance between x and xi in the data space.
We see in the lower plot in Figure 3(a) that the peak is closer to xi. Figure 3(b) further
demonstrates this difference on a toy example - we see that R-BP struggles to fit a linear
conditional mean function for n = 4, while AR-BP succeeds.

Training the update parameters In order to compute the predictive density pn(x∗),
we require the vector of conditional CDFs [vj1, . . . , v

j
n−1] where vji = Pi(xji+1 | x

1:j−1
i+1). Given

a bandwidth parameterization, obtaining this vector thus amounts to model-fitting, and each
vji requires i − 1 iterations (Supplement B.3), for i ∈ {1, . . . , n}. We note that the order
of samples and dimensions influences the prediction performance in AR density estimators
(Vinyals et al., 2015). In practice, averaging over different permutations of these improves
performance (Supplement B.3). Full implementation details can be found in Supplement B.

Computational complexity The above procedure results in a computational complexity
of O(Mdn2) at the training stage where M is the number of permutations. At test time,
we have already obtained the necessary conditional prequential CDFs vjn in computing the
prequential log-likelihood above. As a result, we have a computational complexity O(Mdn)
for each test observation. Note that the introduction of a data-dependent bandwidth does
not increase the computational complexity at train or test time relative to R-BP.

3.3 Parameterisation of the Bandwidth

The choice of covariance function in (8) provides substantial modelling flexibility in our
AR-BP framework. Moreover, the additional parameters associated with the covariance
function allow us to tune the implied covariance structure according to the observed data.
This formulation enables us to draw upon the rich literature on the choice of covariance
functions for Gaussian processes (Williams & Rasmussen, 2006). For simplicity we only
consider the most popular such choice here, but study the more flexible rational-quadratic
covariance in Supplement C.2. The radial basis function (RBF) covariance function is defined
as k`(x1:j−1, x

′1:j−1) = exp[−
∑j−1
κ=1{(xκ − x

′κ)/`κ}2], where ` ∈ Rd−1
>0 is the length scale.

Neural parameterisation As we saw in the motivating example of the density estimation
of a chessboard distribution in Figure 1, the RBF kernel can restrict the capacity of the
predictive density update to capture intricate nonlinearities if the training data size is not
sufficient. While the parameterization of the bandwidth in (10) was initially derived via
the first predictive update for a DPMM, all we require is that the bandwidth function
ρj : Rj−1 × Rj−1 → R lies in (0,1). We would also like ρj(x1:j−1, x

′1:j−1) to take larger
values when x1:j−1 and x′1:j−1 are ‘close’ in some sense. Motivated by this observation, we
now consider more expressive bandwidth functions that can lead to increased predictive

6

Under review as a conference paper at ICLR 2023

performance. In particular, we formulate an AR neural network fw : Rd → Rd×d′ for d′ ∈ N
with the property that the jth row of the output depends only on the first j−1 dimensions of
the input. Let Z = fw (x) and denoting zj to be the jth row of the matrix Z, the covariance
function is then computed as ρj(x1:j−1, x

′1:j−1) = ρ0 exp(−
∑j−1
κ=1||zκ − z

′κ||22).
Numerous AR neural network models have been extensively used for density estimation
(Dinh et al., 2014; Huang et al., 2018; Kingma et al., 2016). In our experiments, we use a
relatively simple model with parameter sharing inspired by NADE, an AR neural network
designed for density estimation (Larochelle & Murray, 2011). More advanced properties
like the permutation invariance of MADE (Papamakarios et al., 2017) create an additional
overhead that cannot be used in the copula formulation as the predictive update is not
permutation-invariant. We refer to Bayesian predictive densities estimated using AR neural
networks as ARnet Bayesian predictives (ARnet-BP).
Tuning the bandwidth function Recall that the bandwidths ρi(·, ·) are parameterised
by ρ0 and the parameters of the chosen covariance functions or neural embedders. For AR-BP,
these are the length scales ` of the RBF covariance function, while for ARnet-BP, these are
the parameters w of the AR neural network. We fit these tunable parameters in a data-driven
approach by maximising the prequential (Dawid, 1997) log-likelihood

∑n
i=1 log pi−1(xi) which

is analogous to the Bayesian marginal likelihood – the tractable predictive density allows us
to compute this exactly, and this approach is analogous to empirical Bayes. Specifically, we
use gradient descent optimisation with Adam (Kingma & Ba, 2014), sampling a different
random permutation of the training data at each optimisation step (Supplement B.3).

4 Related Work

Our work falls into the broad area of multivariate density estimation (Scott, 2015). While
AR networks have been previously used directly for the task of density estimation (Bengio
& Bengio, 1999; Germain et al., 2015; Larochelle & Murray, 2011), we use them to elicit a
data-dependent bandwidth in the predictive update to mitigate the smoothing effect observed
in AR-BP. Neural network based approaches, however, often underperform in small-data
regimes. Deep learning approaches that do target few-shot density estimation require complex
meta-learning and pre-training pipelines (Gu et al., 2020; Reed et al., 2017).
Our work directly extends the contributions of Hahn et al. (2018) and Fong et al. (2021)
through an alternative specification of the nonparametric Bayesian model in the recursive
predictive update scheme. R-BP has recently been used for nonparametric solvency risk
prediction (Hong & Martin, 2019), and survival analysis (Fong & Lehmann, 2022). Berti et al.
(2021a;b; 2004) also focus on univariate predictive updates in the Bayesian nonparametric
paradigm, specifically exploring the use of the conditionally identically distributed condition
as a relaxation of the standard exchangeability assumption. Other studies have investigated
quasi-Bayesian updates in the special case of the mixing distribution in nonparametric
mixture models (Dixit & Martin, 2022; Fortini & Petrone, 2020; Martin, 2018), though these
typically focus on univariate or low-dimensional spaces. See also Martin (2021) for a survey.
Finally, copulas are a well-studied tool for modelling the correlations in multivariate data (see
e.g. Kauermann et al. (2013); Ling et al. (2020); Nelsen (2007)). Copula density estimation
aims to construct density estimates whose univariate marginals are uniform (Gijbels &
Mielniczuk, 1990), and often focus on modelling strong tail dependencies (Wiese et al.,
2019). In contrast, we employ bivariate copulas as a tool to model the correlations between
subsequent subjective predictive densities, rather than across the data dimensions directly.

5 Experiments

We demonstrate the benefits of AR-BP, ARd-BP and ARnet-BP for density estimation and
prediction tasks in an experimental study with five baseline approaches and 13 different data
sets. The code and data used is provided in the Supplementary Material. See Supplement
C for additional experimental details and results, including a sensitivity study, an ablation
study, further illustrative examples, a preliminary investigation into image examples, and an
empirical study of the computational complexity of the proposed methods.

7

Under review as a conference paper at ICLR 2023

101 103 105

n

0

2

4

6

8

10

te
st

 N
LL

POWER, d=6

101 103 105

5

0

5

10

15 GAS, d=8

101 103 105

20

25

30

35
HEPMASS, d=21

101 103 105

20

40

60

MINIBOONE, d=43

101 103 1050

20

40

60

80 BSDS300, d=63

MAF RQ-NSF R-BP Rd-BP AR-BP ARd-BP ARnet-BP

Figure 4: Average NLL and standard errors over 10 runs for training sets of different size.
Our models outperform neural methods for data sets up to 10,000 samples.

5.1 Density Estimation

We compared our models against KDEs, DPMMs, masked autoregressive flows (MAFs)
(Papamakarios et al., 2017) and rational-quadratic neural spline flows (RQ-NSFs) (Durkan
et al., 2019). The baselines were hyperparameter tuned over multiple parameters. Unless
otherwise specified, we use respectively 10 permutations over samples and features to average
the quasi-Bayesian estimates. See Supplement C.1 for further information.

Small UCI data sets See Table 1 for the negative log-likelihood (NLL) estimated on five
UCI data sets (Asuncion & Newman, 2007) of moderate size, as investigated by Fong et al.
(2021). Our proposed methods display highly competitive performance: ARd-BP achieved
the best test NLL on four of the data sets, while ARnet-BP prevailed on ionosphere.

Table 1: Average NLL with standard error over five runs on five moderate UCI data sets

WINE BREAST PARKIN IONO BOSTON
n/d 89/12 97/14 97/16 175/30 506/13
KDE 13.69±0.00 10.45±0.24 12.83±0.27 32.06±0.00 8.34±0.00
DPMM (Diag) 17.46±0.6 16.26±0.71 22.28±0.66 35.30±1.28 7.64±0.09
DPMM (Full) 32.88±0.82 26.67±1.32 39.95±1.56 86.18±10.22 9.45±0.43
MAF 39.60±1.41 10.13±0.40 11.76±0.45 140.09±4.03 56.01±27.74
RQ-NSF 38.34±0.63 26.41±0.57 31.26±0.31 54.49±0.65 −2.20±0.11
R-BP 13.57±0.04 7.45±0.02 9.15±0.04 21.15±0.04 4.56±0.04
Rd-BP 13.32±0.01 6.12±0.05 7.52±0.05 19.82±0.08 −13.50±0.59
AR-BP 13.45±0.05 6.18±0.05 8.29±0.11 17.16±0.25 −0.45±0.77
ARd-BP 13.22±0.04 6.11±0.04 7.21±0.12 16.48±0.26 −14.75±0.89
ARnet-BP 14.41±0.11 6.87±0.23 8.29±0.17 15.32±0.35 −5.71±0.62

Benchmark UCI data sets A number of UCI data sets have become the standard evalu-
ation benchmark for deep AR models (Durkan et al., 2019; Huang et al., 2018; Papamakarios
et al., 2017). These include low-dimensional data sets with up to 63 features, but at least
29,000 observations. To investigate performance as a function of sample size, we trained
the models on subsets of the full data set. We do not report results for the KDEs and the
DPMM estimators here as these estimators performed significantly worse than the other
approaches. Similarly, we do not report deep learning results for sample sizes smaller than
102. See Supplement C.2 for complete results.
In the small-data regime, we observe that the R-BP methods significantly outperform the
neural density estimators (Figure 4). As the sample size increases, the gap in performance
decreases until eventually the neural density estimators outcompete the R-BP methods. The
performance between the R-BP methods and our proposed AR extensions is largely similar,
though we note that the AR-BP methods were generally more effective on the GAS dataset.

5.2 Supervised Learning

R-BP methods, including AR-BP, can be used for prediction tasks such as regression and
classification Fong et al. (2021). In short, this is achieved by estimating the conditional
predictive density pn(y|x) of the labels y directly by assuming a dependent Dirichlet process
likelihood. See Supplement B.2 for details. Again, we follow the experimental set-up of Fong
et al. (2021), and additionally report results on the MNIST data set, restricted to digits
of class 0 and 1. We report the conditional test NLL − 1

n′

∑
i log pn(y∗i |x∗i) for a test set

{(x∗1, y∗1), . . . , (x∗n′ , y∗n′)}. We compared our models against a GP, a linear Bayesian model

8

Under review as a conference paper at ICLR 2023

(Linear), and a one-hidden-layer multilayer perceptron (MLP) on several classification and
regression tasks. To get a distribution over the predicted outcome in the regression case, we
trained an ensemble over 10 MLPs. Our proposed methods were again highly competitive
(Table 2). ARd-BP performed best on two regression tasks and one classification task.
ARnet-BP was substantially better than the remaining methods on the CONCR data set
and also performed best on the PARKIN data set. On the other hand, the MLP model was
best on the MNIST data set.

Table 2: Average NLL over five runs reported with standard error for supervised tasks

Regression Classification
BOSTON CONCR DIAB IONO PARKIN MNIST01

n/d 506/13 1,030/8 442/10 351/33 195/22 12,031/784
Linear 0.87±0.03 0.99±0.01 1.07±0.01 0.33±0.01 0.38±0.01 0.003±0.000
GP 0.42±0.08 0.36±0.02 1.06±0.02 0.30±0.02 0.42±0.02 0.035±0.000
MLP 1.42±1.01 2.01±0.98 3.32±4.05 0.26±0.05 0.31±0.02 0.003±0.000
R-BP 0.76±0.09 0.87±0.03 1.05±0.03 0.26±0.01 0.37±0.01 0.015±0.001
Rd-BP 0.40±0.03 0.42±0.00 1.00±0.02 0.34±0.02 0.27±0.03 0.018±0.001
AR-BP 0.52±0.13 0.42±0.01 1.06±0.02 0.21±0.02 0.29±0.02 0.015±0.001
ARd-BP 0.37±0.10 0.39±0.01 0.99±0.02 0.20±0.02 0.28±0.03 0.017±0.001
ARnet-BP 0.45±0.11 −0.03±0.00 1.41±0.07 0.24±0.04 0.26±0.04 0.014±0.001

6 Discussion

Density estimation for high-dimensional data is a challenging task. Although Bayesian
methods generally perform well in the small sample setting, the conventional Bayesian
approach to density estimation via the posterior predictive is computationally intensive.
Here, we expand upon the expedient and tractable recursive copula updates of Fong et al.
(2021); Hahn et al. (2018) by incorporating regression methods, such as kernels and neural
networks. This introduces a data-dependent bandwidth, thus increasing the flexibility of
this class of models, with little computational overhead compared to R-BP. More generally,
it would be of interest to integrate other machine learning methods with recursive copula
updates. Furthermore, other Bayesian nonparametric models may inspire useful recursive
copula updates – see Appendix A.2 for an example based on a GP.
An appealing feature of AR-BP is that it requires no manual hyperparameter tuning. Further,
on small data sets, AR-BP shows state-of-the-art generalization and is faster than competing
deep learning models. It significantly increases the modelling capacity of the baseline R-BP
via a data-dependent bandwidth. Additionally, ARnet-BP provides a useful illustration of
how powerful neural network models can be incorporated into R-BP methods to improve
density estimation. Future work can investigate alternative architectures for structured data.
Our work adds to the rich body of density estimators and thus we do not anticipate any
additional negative societal impact arising from our proposal.
This strong performance of AR-BP (and other copula methods) in the small data regime
is likely due to its Bayesian-like regularization towards an initial density p0, as shown in
the weighted sum in (9). Its weaker performance in the large data regime may be due to
the importance of the sequence αi which governs how regularization decays, but further
theoretical work is needed to understand AR-BP’s asymptotic behaviour. A limitation
of R-BP methods, including AR-BP, is the quadratic time dependence on the number of
training observations. Subsampling techniques thus offer a particularly promising avenue
to reduce the overall computational cost and warrant further investigation. Although the
recursive updates depend on the sample and covariate ordering, it is possible to alleviate
this dependence though by estimating the R-BP over multiple permutations in parallel, as
we have done in the above experiments. Nevertheless, the algorithm is relatively fast: with a
single GPU, we were able to train models with 100,000 observations in less than an hour.
The use of a GP prior greatly increases the flexibility of our framework. Moreover, it opens
the door to future research to incorporate ideas from the vast GP literature to further boost
performance in high-dimensional settings. Our use of the RBF kernel was illustrative; other
kernels are discussed in Appendix C.2. For example, we anticipate that the use of recent
advances in convolutional kernels (Van der Wilk et al., 2017) would be particularly suited
for computer vision tasks.

9

Under review as a conference paper at ICLR 2023

Reproducibility Statement

Please refer to the accompanying code for all hyperparameters, seeds, and implementation
details. Additional information on the reproducibility can be found in the beginning of
Section 5, and Supplement C.1. Additional pseudo-code for all algorithms is displayed in
Supplement B.3.

Ethics Statement

This work builds upon density estimation for tabular data, and does thus not pose more
risks than existing density estimators. Further, all data sets used are public and do not
include sensitive information.

References
Arthur Asuncion and David Newman. UCI machine learning repository, 2007. 8, 27

Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-layer
neural networks. Advances in Neural Information Processing Systems, 12, 1999. 2, 7

Patrizia Berti, Luca Pratelli, and Pietro Rigo. Limit theorems for a class of identically
distributed random variables. The Annals of Probability, 32(3):2029–2052, 2004. 1, 3, 7

Patrizia Berti, Emanuela Dreassi, Fabrizio Leisen, Pietro Rigo, and Luca Pratelli. Bayesian
predictive inference without a prior. arXiv preprint arXiv:2104.11643, 2021a. 7

Patrizia Berti, Emanuela Dreassi, Luca Pratelli, and Pietro Rigo. A class of models for
Bayesian predictive inference. Bernoulli, 27(1):702–726, 2021b. 7

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert
Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for
machine learning software: experiences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pp. 108–122, 2013. 27

Nicolas Chopin. A sequential particle filter method for static models. Biometrika, 89(3):
539–552, 2002. 18

A Philip Dawid. Prequential analysis. Encyclopedia of Statistical Sciences, 1:464–470, 1997.
7

Bruno De Finetti. La prévision: ses lois logiques, ses sources subjectives, volume 7. 1937. 1

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014. 7

Vaidehi Dixit and Ryan Martin. A prticle filter algorithm for nonparametric estimation of
multivariate mixing distributions. arXiv preprint arXiv:2204.01646, 2022. 7

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
Advances in neural information processing systems, 32, 2019. 1, 2, 8, 27

Michael D Escobar and Mike West. Bayesian density estimation and inference using mixtures.
Journal of the american statistical association, 90(430):577–588, 1995. 3

Michael David Escobar. Estimating the means of several normal populations by nonparametric
estimation of the distribution of the means. PhD thesis, Yale University, 1988. 3

Thomas S Ferguson. A Bayesian analysis of some nonparametric problems. The annals of
statistics, pp. 209–230, 1973. 3

10

Under review as a conference paper at ICLR 2023

Edwin Fong and Brieuc Lehmann. A predictive approach to bayesian nonparametric survival
analysis. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings
of The 25th International Conference on Artificial Intelligence and Statistics, volume 151
of Proceedings of Machine Learning Research, pp. 6990–7013. PMLR, 28–30 Mar 2022.
URL https://proceedings.mlr.press/v151/fong22a.html. 7, 18

Edwin Fong, Chris Holmes, and Stephen G Walker. Martingale posterior distributions. arXiv
preprint arXiv:2103.15671, 2021. 1, 3, 4, 5, 7, 8, 9, 13, 14, 16, 17, 18, 20

Sandra Fortini and Sonia Petrone. Quasi-bayes properties of a procedure for sequential
learning in mixture models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 82(4):1087–1114, 2020. 2, 7

Brendan J Frey, J Frey Brendan, and Brendan J Frey. Graphical models for machine learning
and digital communication. MIT press, 1998. 2

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked
autoencoder for distribution estimation. In International Conference on Machine Learning,
pp. 881–889. PMLR, 2015. 2, 7

Iène Gijbels and Jan Mielniczuk. Estimating the density of a copula function. Communications
in Statistics - Theory and Methods, 19(2):445–464, January 1990. ISSN 0361-0926. doi:
10.1080/03610929008830212. URL https://doi.org/10.1080/03610929008830212. 7

Ke Gu, Yonghui Zhang, and Junfei Qiao. Ensemble meta-learning for few-shot soot density
recognition. IEEE Transactions on Industrial Informatics, 17(3):2261–2270, 2020. 7

David Gunawan, Khue-Dung Dang, Matias Quiroz, Robert Kohn, and Minh-Ngoc Tran.
Subsampling sequential monte carlo for static bayesian models. Statistics and Computing,
30(6):1741–1758, 2020. 18

P Richard Hahn, Ryan Martin, and Stephen G Walker. On recursive Bayesian predictive
distributions. Journal of the American Statistical Association, 113(523):1085–1093, 2018.
1, 2, 3, 7, 9, 13, 15, 28

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX.
2020. URL http://github.com/deepmind/dm-haiku. 27

Edwin Hewitt and Leonard J Savage. Symmetric measures on cartesian products. Transactions
of the American Mathematical Society, 80(2):470–501, 1955. 1

Bruce M Hill. Posterior distribution of percentiles: Bayes’ theorem for sampling from a
population. Journal of the American Statistical Association, 63(322):677–691, 1968. 1

Liang Hong and Ryan Martin. Real-time Bayesian non-parametric prediction of solvency
risk. Annals of Actuarial Science, 13(1):67–79, 2019. 7

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autore-
gressive flows. In International Conference on Machine Learning, pp. 2078–2087. PMLR,
2018. 7, 8

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pp.
448–456. PMLR, 2015. 27

Göran Kauermann, Christian Schellhase, and David Ruppert. Flexible copula density
estimation with penalized hierarchical b-splines. Scandinavian Journal of Statistics, 40(4):
685–705, 2013. 7

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 7

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 1

11

https://proceedings.mlr.press/v151/fong22a.html
https://doi.org/10.1080/03610929008830212
http://github.com/deepmind/dm-haiku

Under review as a conference paper at ICLR 2023

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural
information processing systems, 29, 2016. 7

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pp. 29–37. JMLR Workshop and Conference Proceedings, 2011. 2, 7, 18

Chun Kai Ling, Fei Fang, and J Zico Kolter. Deep archimedean copulas. Advances in Neural
Information Processing Systems, 33:1535–1545, 2020. 7

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke.
Benchmarking simulation-based inference. In International Conference on Artificial
Intelligence and Statistics, pp. 343–351. PMLR, 2021. 1

Ryan Martin. On nonparametric estimation of a mixing density via the predictive recursion
algorithm. arXiv preprint arXiv:1812.02149, 2018. 7

Ryan Martin. A survey of nonparametric mixing density estimation via the predictive
recursion algorithm. Sankhya B, 83(1):97–121, 2021. 7

R.B. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer New York,
2007. ISBN 978-0-387-28678-5. 7

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for
density estimation. Advances in neural information processing systems, 30, 2017. 1, 2, 7,
8, 27, 28, 30

Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, SM Eslami, Danilo Rezende,
Oriol Vinyals, and Nando de Freitas. Few-shot autoregressive density estimation: Towards
learning to learn distributions. arXiv preprint arXiv:1710.10304, 2017. 7

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks.
In Proceedings of the 25th international conference on Machine learning, pp. 872–879,
2008. 18

D Scaldelai, LC Matioli, SR Santos, and M Kleina. Multiclusterkde: a new algorithm for
clustering based on multivariate kernel density estimation. Journal of Applied Statistics,
49(1):98–121, 2022. 1

David W Scott. Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons, 2015. 7

M Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ.
Paris, 8:229–231, 1959. 3

Mark Van der Wilk, Carl Edward Rasmussen, and James Hensman. Convolutional gaussian
processes. Advances in Neural Information Processing Systems, 30, 2017. 9, 30

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence
for sets. arXiv preprint arXiv:1511.06391, 2015. 6

Sara Wade, Stephen G Walker, and Sonia Petrone. A predictive study of dirichlet process
mixture models for curve fitting. Scandinavian Journal of Statistics, 41(3):580–605, 2014.
4

Magnus Wiese, Robert Knobloch, and Ralf Korn. Copula & marginal flows: Disentangling
the marginal from its joint. arXiv preprint arXiv:1907.03361, 2019. 7

Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. MIT press Cambridge, MA, 2006. 6

Daniel Zoran and Yair Weiss. From learning models of natural image patches to whole image
restoration. In 2011 International Conference on Computer Vision, pp. 479–486. IEEE,
2011. 1

12

Under review as a conference paper at ICLR 2023

A Derivations

A.1 Derivation of AR-BP

For illustration purposes, we first start by summarising the derivation of the update without
autoregression, closely following Appendix E.1.2 in Fong et al. (2021).

A.1.1 No Autoregression (R-BP)

The multivariate DPMM with factorized kernel has the form

fG(x) =
∫ d∏

j=1
N (xj | θj , 1) dG(θ), G ∼ DP (a,G0) , G0(θ) =

d∏
j=1
N (θj | 0, τ−1).

Given

pi(x) = pi−1(x)hi(x, xi),

Hahn et al. (2018) and Fong et al. (2021) derive the predictive density updates for R-BP by
initally only considering the first step update h1

p1(x) = p0(x)h1(x, x1)·

From

hi(x, xi) =
∫
f(x|θ)f(xi|θ)πi−1(θ)dθ∫

f(x|θ)πi−1(θ)dθ
∫
f(xn|θ)πi−1(θ)dθ ,

it follows that

h1(x, x1) = E [fG(x) fG(x1)]
p0(x) p0(x1) (11)

where the expectation is over G coming from the prior. Following the stick-breaking
representation of the DP, Fong et al. (2021) write G as

G =
∞∑
k=1

wk δθ∗
k

where wk = vk
∏
j<k{1− vj}, vk

iid∼ Beta(1, a) and θ∗k
iid∼ G0. Fong et al. (2021) then derive

the numerator as

E

 ∞∑
j=1

∞∑
k=1

wj wkK(x | θ∗j)K(x1 | θ∗k)


=
(

1− E
[∞∑
k=1

w2
k

])
E [K(x | θ∗)]E [K(x1 | θ∗)] + E

[∞∑
k=1

w2
k

]
E [K(x | θ∗)K(x1 | θ∗)]

where they have used the fact that
∑∞
k=1 wk = 1 almost surely. As p0(x) = E [K(x | θ∗)], it

follows that (11) can be expressed as

1− α1 + α1
E [K(x | θ∗)K(x1 | θ∗)]

p0(x) p0(x1) ·

for some fixed α1. For R-BP, the kernel K factorises with independent priors on each
dimension, and p0(x) =

∏d
j=1 p0(xj) =

∏d
j=1N (xj | 0, 1 + τ−1), so

E [K(x | θ∗)K(x1 | θ∗)]
p0(x) p0(x1) =

d∏
j=1

E
[
K(xj | θ∗j)K(xj1 | θ∗j)

]
p0(xj) p0(xj1)

· (12)

13

Under review as a conference paper at ICLR 2023

Fong et al. (2021) then show that each univariate term corresponds to the bivariate Gaussian
copula density,

c(u, v; ρ) =
N2
{

Φ−1(u),Φ−1(v) | 0, 1, ρ
}

N {Φ−1(u) | 0, 1}N {Φ−1(v) | 0, 1} ,

where Φ is the normal CDF, and N2 is the standard bivariate density with correlation
parameter ρ = 1/(1 + τ). They then suggest an alternative sequence hi which iteratively
repeats h1, with the key feature that αi = (2− 1

i)
1
i+1 . See Appendix E.1.1. in Fong et al.

(2021) for a derivation of this sequence αi.

A.1.2 With Autoregression (AR-BP)

For the derivation of the AR-BP update, we can follow the arguments in the previous section
until (12) where the factorised kernel assumption applies for the first time. For AR-BP, we
instead have

E [K(x | θ∗)K(x1 | θ∗)]
p0(x) p0(x1) =

d∏
j=1

E
[
K{xj | θ∗j(x1:j−1)}K{xj1 | θ∗j(x1:j−1)}

]
p0(xj) p0(xj1)

· (13)

The factorisation of the denominator follows from

p0(x) = E

 d∏
j=1

K{xj | θ∗j(x1:j−1)}

 =
d∏
j=1

E
[
K{xj | θ∗j(x1:j−1)}

]
as we have independent GP priors on each function θ∗j . For notational convenience we write
{y, x} in place of {xj , x1:j−1} in the following. With the autoregressive kernel assumption,
there is the additional complexity

E [N{y | θ(x), 1}N{y1 | θ(x1), 1}]

where θ(·) ∼ GP{0, τ−1k}. The marginal distribution of the GP is normal, so we have

[θ(x), θ(x1)]T ∼ N2(x, x1 | 0,Σx,x1)

where

Σx,x1 =
[

τ−1 τ−1k(x, x1)
τ−1k(x, x1) τ−1

]
·

Again from the conjugacy of the normal, we can show that

E [N{y | θ(x), 1}N{y1 | θ(x1), 1}] = N (y, y1 | 0,Kx,x1)

where

Kx,x1 =
[

1 + τ−1 τ−1k(x, x1)
τ−1k(x, x1) 1 + τ−1

]
·

Here p0(y) = E[N (y|θ(x))] is the same as above, since marginally θ(x) ∼ N (0, τ−1). Plugging
in y = P−1

0 {Φ(z)} again gives us the Gaussian copula density with correlation parameter

ρ1(x) = ρ0k(x, x1)

for ρ0 = 1/(1 + τ).

A.2 Derivation of Gaussian Process Posterior

In this section, we derive the copula sequence for the Gaussian Process, which is fully tractable.
This section is mostly for insight, but it would however be interesting to investigate any
potential avenues for methodological development.

14

Under review as a conference paper at ICLR 2023

A.2.1 First Update Step

We consider a univariate regression setting with {y, x}. For the GP, we have the model

fθ(y | x) = N (y | θ(x), σ2), θ(·) ∼ GP(0, τ−1k).

Like in the above, we can derive the function h1(x, x1). Following a similar argument to
the AR-BP derivation, the first step GP copula density is

N2
(
y, y1 | 0,K2 + σ2I

)
p0(y | x)p0(y1 | x1)

where Ki is the i× i Gram matrix, with kernel

k(x, x′) = τ−1 exp
{
−0.5(x− x′)2/`

}
.

Writing in terms of P0, we have

c {P0(y | x), P0(y1 | x1); ρ1(x)}

where c is again the Gaussian copula density, but we have the correlation parameter as

ρ1(x) =
exp

{
−0.5(x− x1)2/`

}
1 + τσ2 .

From this, we can derive the first step of the update scheme:

p1(y | x) = c{P0(y | x), P0(y1 | x1); ρ1(x)} p0(y | x)

where c(u, v; ρ) is again the Gaussian copula density, and p0(y | x) = N (y; 0, σ2 + τ−1).

A.2.2 All Update Steps

We can even derive the copula update scheme for i > 1, as the Gaussian process posterior is
tractable. After observing i− 1 observations, we have

π(θx, θxi | y1:i−1, x1:i−1) = N (µi−1,Σi−1)

where each element of Σi−1 has the entry

ki−1(x, x′) = k(x, x′)− k(x, x1:i−1)
[
Ki−1 + σ2I

]−1
k(x1:i−1, x

′)

where the subscript i− 1 indicates it is the posterior kernel and µi−1 is the posterior mean
vector of the GP at x and xi. Marginally, the GP copula after i− 1 data points is

N2
(
y, yi;µi−1,Σi−1 + σ2I

)
N
{
y;µyi−1, ki−1(x, x) + σ2

}
N
{
yi+1;µyi−1

i−1 , ki−1(xi, xi) + σ2
}

where µyi−1 is the posterior mean of the GP at x and likewise for µyi−1
i−1 . This is equivalent

to the bivariate Gaussian copula density c(u, v; ρi(x)), where as before u = Pi−1(y | x) and
v = Pi−1(yi+1 | xi+1). The correlation parameter is now

ρi(x) = ki−1(x, xi)√
{ki−1(x, x) + σ2}{ki−1(xi, xi) + σ2}

In summary, we have the update

pi(y | x) = c{Pi−1(y | x), Pi−1(yi | xi); ρi(x)} pi−1(y | x).

This gives the same predictives as fitting a full GP. While this update form does not offer any
computational gains, it gives us insight into the GP update. The copula update corresponds
to the regular normal update (Hahn et al., 2018) with a data-dependent bandwidth ρi(x)
which measures the distance between x and xi based on the posterior kernel. A potential
interesting direction of research is to seek approximations of the expensive ρi(x) to aid with
the computation of the GP.

15

Under review as a conference paper at ICLR 2023

A.3 Intuition for AR Copula

As in the main paper, we consider bivariate data, (x, y). As shown in Fong et al. (2021), the
update for the conditional density for R-BP takes the form

pi(y | x) = [1− αi(x, xi) + αi(x, xi) c {Pi−1(y | x), Pi−1(yi | xi); ρ}] pi−1(y | x), (14)
where

αi(x, xi) = αic{Pi−1(x), Pi−1(xi); ρ}
1− αi + αic{Pi−1(x), Pi−1(xi); ρ}

·

To show the effect of the AR update, we make simplifying assumptions to derive the
update for the conditional mean function, µi(x) =

∫
y pi(y | x)dy. Let us assume that

our predictive densities are normally distributed, that is Pi−1(y | x) = N (y | µi−1(x), σ2
y).

This is an accurate approximation if the truth is normal and we have observed sufficient
observations. Without loss of generalizability, we assume that σ2

y = 1. This then gives the
form Pi−1(y | x) = Φ(y − µi−1(x)), which will help us in the calculation of the bivariate
Gaussian copula. If we multiply by y and integrate on both sides of (14), we get

µi(x) = [1− αi(x, xi)]µi−1(x) + αi(x, xi)
∫

c (Pi−1(y | x), Pi−1(yi | xi); ρ) y pi−1(y | x) dy.

Plugging in Pi−1(y | x) = Φ{y − µi−1(x)} (and similarly for the density) to the above gives∫
c (Pi−1(y | x), Pi−1(yi | xi); ρ) y dy =

∫
N (y, yi | [µi−1(x), µi−1(xi)], 1, ρ)

N (yi | µi−1(xi), 1) y dy·

The above is simply the expectation of a conditional normal distribution, giving us∫
c (Pi−1(y | x), Pi−1(yi | xi); ρ) y dy = µi−1(x) + ρ(yi − µi−1(xi)).

Putting it all together, we thus have
µi(x) = µi−1(x) + αi(x, xi)ρ(yi − µi−1(xi)).

In the autoregressive case, we have
µi(x) = µi−1(x) + αi(x, xi)ρ(x, xi)(yi − µi−1(xi)),

where we use the notations ρi(x) = ρ(x, xi) interchangeably to highlight the dependence
of ρ on the distance between x and xi. Further assuming Pi−1(x) = N (x | 0, 1) returns a
tractable form for αi(x, x′), giving us Figure 3 in the main paper.

A.4 Derivation of Copula Update for Supervised Learning

We now derive the predictive density update for supervised learning tasks, closely following
the derivations of Fong et al. (2021) for the conditional methods in Supplements E.2 and
E.3. We assume fixed design points x1:n ∈ Rn×d and random response y1:n ∈ Rn.

A.4.1 Conditional Regression with Dependent Stick-Breaking

We follow Appendix E.2.2 in Fong et al. (2021), and derive the regression copula update
inspired by the dependent DP. Consider the general covariate-dependent stick-breaking
mixture model

fGx(y) =
∫
N (y | θ, 1) dGx(θ), Gx =

∞∑
l=1

wl(x) δθ∗
l
(x). (15)

For the weights, we elicit the stick-breaking prior wl(x) = vl(x)
∏
j<l{1− vj(x)} where vl(x)

is a stochastic process on X taking values in [0, 1], and is independent across l. For the
atoms, which are now dependent on x, we assume they are independently drawn from a
Gaussian process,

θ∗l (·) iid∼ GP(0, τ−1k),

16

Under review as a conference paper at ICLR 2023

where k is the covariance function. Once again, we want to compute
E
[
fGx(y) fGx1

(y1)
]

p0(y | x) p0(y1 | x1) ·

Following the stick-breaking argument as in Section A.1.1, we can write the numerator as
{1− β1(x, x1)}E [K{y | θ∗(x)}]E [K{y1 | θ∗(x1)}] + β1(x, x1)E [K{y | θ∗(x)}K{y1 | θ∗(x1)}]
where

K{y | θ∗(x)} = N{y | θ∗(x), 1}, θ∗(·) ∼ GP(0, τ−1k),
and

β1(x, x1) =
∞∑
k=1

E [wk(x)wk(x1)] .

As before, we have
E
[
fGx(y) fGx1

(y1)
]

p0(y | x) p0(y1 | x1) = c {P0(y | x), P0(y1 | x1); ρ1(x)}

where ρ1(x) = ρ0k(x, x1) and ρ0 = 1/(1 + τ). We thus have the copula density as a mixture
of the independent and Gaussian copula density. This then implies the copula update step
of the form

pi(y | x) = [1− βi(x, xi) + βi(x, xi) c {Pi−1(y | x), Pi−1(yi | xi); ρi(x)}] pi−1(y | x),

where we write ρi(x) = ρd+1
i (x). As in Fong et al. (2021), we turn to the multivariate update

for inspiration where we do not update Pn(x) and instead keep it fixed at P0(x) = Φ(x) (for
each dimension). This gives us

βi(x, xi) =
αi
∏d
j=1 c

{
Φ
(
xj
)
,Φ
(
xji

)
; ρji (x1:j−1)

}
1− αi + αi

∏d
j=1 c

{
Φ (xj) ,Φ

(
xji

)
; ρji (x1:j−1)

} · (16)

A.4.2 Classification with Beta-Bernoulli Copula Update

In the classification setting (Appendix E.3.1 in Fong et al. (2021)), Fong et al. (2021) assume
a beta-Bernoulli mixture for yi ∈ {0, 1}. As the derivation is written w.r.t ρ, we simply
replace ρ with our definition of ρji (x1:j−1), giving the update

pi(y | x) = (1− βi(x, xi) + βi(x, xi) b {qi−1, ri−1; ρi(x)}) pi−1(y | x)
where qi−1 = pi−1(y | x), ri = pi−1(yi | xi), ρi(x) as in Equation 10, βi(x, xi) similarly as in
(16), and finally the copula-like function b given by

b{qi−1, ri−1; ρi(x)} =


1− ρi(x) + ρi(x) qi−1 ∧ ri−1

qi−1 ri−1
if y = yi

1− ρi(x) + ρi(x) qi−1 − {qi−1 ∧ (1− ri−1)}
qi−1 ri−1

if y 6= yi·

B Methodology

In this section, we provide more details on the methodology referred to in the main part of
the paper.

B.1 Generative Modelling

First, we consider three approaches to generative modelling

1. Inverse sampling
2. Importance sampling
3. Sequential Monte Carlo (SMC)

17

Under review as a conference paper at ICLR 2023

B.1.1 Inverse Sampling

Univariate setting As noted by Fong et al. (2021), we can sample from x∗ ∼ Pn(x) by
inverse sampling, that is

u ∼ U [0, 1], x∗ ∼ P−1
n (u).

As we cannot evaluate P−1
n (u) directly, we instead solve an optimisation problem

x∗ = argmin
x
|Pn(x)− u|

Multivariate setting The univariate procedure can be repeated iteratively in the multi-
variate setting given the conditional distribution

u1 ∼ U [0, 1], x1 = P−1
n (u1)

u2 ∼ U [0, 1], x2 = P−1
n (u2 | x1)

. . .

ud ∼ U [0, 1], xd = P−1
n (ud | x1:d−1)

B.1.2 Importance Sampling

In practice, inverse sampling is unstable and is highly dependent on the performance of the
optimization. An alternative approach to data generation is importance sampling. This
includes two steps

1. Sampling a set of particles z1, . . . , zB from the initial predictive p0.
2. Re-sampling z1, . . . , zB with replacement based on the weights w1 =
pn(z1)/p0(z1), . . . , wB = pn(zB)/p0(zB).

B.1.3 Sequential Monte Carlo

Importance sampling will perform poorly if pn and p0 are far apart. Instead, we propose
a SMC procedure. A similar SMC sampling scheme has been proposed for univariate
imputation of censored survival data by Fong & Lehmann (2022). Here, the goal is parameter
inference, and thus only requires implicit sample observations by drawing the marginal
CDF ujn from a uniform distribution. In our case, we generate new explicit data directly
by sampling from the data space. Please see Algorithm 6 for a complete overview. As this
sampling approach is similar to evaluating the density at test data points (Algorithm 5), we
highlighted the differences in blue. In short,

1. We sample a set of particles z1, . . . , zB from the initial predictive p0, and set the
particle weights to w[0]

k = 1 for all k = 1, . . . , B

2. We update the predictive pi−1 → pi, and the particle weights w[i]
k = w

[i−1]
k ·

pi

(
z

[i−1]
k

)
/pi−1

(
z

[i−1]
k

)
for each training observation

3. If the effective sample size (ESS) is smaller than half of the number of particles, we
resample z1, . . . , zB and w[i]

1 , . . . , w
[B]
1 based on their weights.

Note that particle diversity can be improved by introducing move steps, for example using
Markov kernels Chopin (2002); Gunawan et al. (2020).
In Figure 5, we see that inverse sampling struggles on a simple GMM example. On the
other hand, importance sampling and SMC provide reasonable samples. Similar sampling
schemes have been proposed for Restricted Boltzmann Machines (Larochelle & Murray,
2011; Salakhutdinov & Murray, 2008) where samples can only be drawn from the model
approximately by Gibbs sampling.

18

Under review as a conference paper at ICLR 2023

x1

x2

True Samples

x1

Final Samples

(a) Inverse Sampling

x1

x2

True Samples

x1

Initial Samples

x1

Final Samples

(b) Importance Sampling

x1

x2

True Samples

x1

Initial Samples

x1

Final Samples

(c) Sequential Monte Carlo

Figure 5: 100 samples generated from ARd-BP trained on 50 samples from a GMM with
4 components. All three sampling approaches manage to preserve the multi-modal data
distribution.

19

Under review as a conference paper at ICLR 2023

B.2 Supervised Learning

We briefly recap how joint density estimation can be extended to conditional supervised
learning (regression and classification), as outlined by Fong et al. (2021). Please see Supple-
ment A.4 for the derivation. Given fixed design points x1:n and random response y1:n, the
problem at hand is to infer a family of conditional densities {fx(y) : x ∈ Rd}.

B.2.1 Regression

For the regression case, Fong et al. (2021) posit a Bayesian model with the nonparametric
likelihood being a covariate-dependent stick-breaking DPMM:

fGx(y) =
∫
N (y | θ, 1) dGx(θ), Gx =

∞∑
k=1

wk(x) δθ∗
k
, (17)

where wk(x) follows an x-dependent stick-breaking process. Our contribution is to assume an
autoregressive factorisation of the kernel and independent GP priors on θ∗k. See Supplement
A.4.1 for the derivation of the predictive density update that is now given by
pi(y | x) = [1− βi(x, xi) + βi(x, xi) c {Pi−1(y | x), Pi−1(yi | xi); ρi(x)}] pi−1(y | x), (18)

where ρi(x) = ρd+1
i (x) and β as in (16).

B.2.2 Classification

For yi ∈ {0, 1}, Fong et al. (2021) assume a beta-Bernoulli mixture. As explained in
Supplement A.4.2 and Fong et al. (2021), this gives the same update as in the regression
setting with the difference that the copula c in (18) is replaced with

b{qi−1, ri−1; ρi(x)} =


1− ρi(x) + ρi(x) qi−1 ∧ ri−1

qi−1 ri−1
if y = yi

1− ρi(x) + ρi(x) qi−1 − {qi−1 ∧ (1− ri−1)}
qi−1 ri−1

if y 6= yi,

where ρi(x) = ρd+1
i (x), qi−1 = pi−1(y | x), ri−1 = pi−1(yi | xi) and ρy ∈ (0, 1).

B.3 Implementation Details

Please see Algorithm 1 for the full estimation procedure, Algorithm 2 for the optimisation of
the bandwidth parameters, Algorithm 4 for the fitting procedure of the predictive density
updates, and eventually Algorithm 5 for the steps during test-time inference. All algorithms
are written for one specific permutation of the dimensions, and are repeated for different
permutations.
Note that at both training time and test time, we need to consider the updates on the scale
of the CDFs, that is for the terms such as uji (xj), which appear in the update step (9). Given

uji (xj) = Pi(xj |x1:j−1) =
∫ xj

−∞
pi(x1:j−1, x

′j)/pi(x1:j−1)dx
′j ,

and (9), the CDFs uji (xj) take on the tractable update

uji =
{

(1− αi)uji−1 + αiH
(
uji−1, v

j
i−1; ρji

) k−1∏
r=1

c
(
uri−1, v

r
i−1; ρri

)} pi−1
(
x1:k−1)

pi (x1:k−1) , (19)

and set vji−1 = uji−1(xi) which holds by definition, where we dropped the argument x for
simplicity from ρji and u

j
i , and H(u, v; ρ) denotes the conditional Gaussian copula distribution

with correlation ρ, that is

H(u, v; ρ) =
∫ u

0
c(u′, v; ρ)du′ = Φ

{
Φ−1(u)− ρΦ−1(v)√

1− ρ2

}
·

20

Under review as a conference paper at ICLR 2023

The Gaussian copula density c(u, v; ρ) is given by

c(u, v; ρ) =
N2
{

Φ−1(u),Φ−1(v) | 0, 1, ρ
}

N{Φ−1(u) | 0, 1}N{Φ−1(v) | 0, 1} ,

where Φ is the normal CDF, and N2 is the standard bivariate density with correlation
ρ ∈ (0, 1).

Ordering Note that the predictive density update depends on the ordering of both the
training data and the dimensions. This permutation dependence is not an additional
assumption on the data generative process, and the only implication is that the subset
of ordered marginal distributions continue to satisfy (6) (main paper). In the absence of
a natural ordering of the training samples or the dimensions, we take multiple random
permutations, observing in practice that the resulting averaged density estimate performs
better. More precisely, for a given permutation of the dimensions, we first tune the bandwidth
parameters, and then calculate density estimates based on multiple random permutations of
the training data. We then average over each of the resulting estimates to obtain a single
density estimate for each dimension permutation, and subsequently take the average across
these estimates to obtain the final density estimate. Importantly, our method is parallelizable
over permutations and thus able to exploit modern multi-core computing architectures.

Algorithm 1 Full density estimation pipeline
Input:

x1:n: training observations;
xn+1:n+n′ : test observations;
M : number of permutations over samples and features to average over;
nρ: number of train observations used for the optimisation of bandwidth parameters;

Output:
pn(xn+1), . . . pn(xn+n′): density of test points

1: procedure full_density_estimation
2: Compute optimal bandwidth parameters . O(Mn2

ρd ·#gradient steps)

3: Compute vj,(m)
i for i ∈ {1, . . . , n}, j ∈ {1, . . . , d},m ∈ {1, . . . ,M} . O(Mn2d)

4: Evaluate density at test observations xn+1:n+n′ . O(Mnn′d)
5: end procedure

21

Under review as a conference paper at ICLR 2023

Algorithm 2 Estimate optimal bandwidth parameters
Input:

x1:n: training observations;
M : number of permutations over samples and features to average over;
nρ: number of train observations used for the optimisation of bandwidth parameters;
maxiter: number of iterations;
R(0): initialisation of bandwidth parameters:
-R(0) = {ρ(0)

0 , l
(0)
1 , . . . , l

(0)
d−1} (by default, ρ(0)

0 ← 0.9, l(0)
1 ← 1, . . . , l(0)

d−1 ← 1) for AR-BP,
-R(0) = {ρ(0)

0 , w} (by default, ρ(0)
0 ← 0.9, and w initialised as implemented in Haiku by

default) for ARnet-BP
Output:
R(maxiter): optimal bandwidth parameters

1: procedure optimal_bandwidth_and_lengthscales
2: Subsample {x′1, . . . , x′nρ} from x1:n
3: for s← 1 to maxiter do
4: _, {p(m)

i−1 (x′i)}i,m ← fit_conditional_predictive_cdf(
R(s−1), {x′1, . . . , x′nρ},M , fit_density=True)

5: Compute L(x′1, . . . , x′nρ) = −
∑M
m=1

∑nρ
i=1 log p(m)

i−1(x′i)

6: R(s) ← adam_step(R(s−1), L)
7: end for
8: return R(s)

9: end procedure

22

Under review as a conference paper at ICLR 2023

Algorithm 3 Single copula update
Input:

z: observation to update the log density;
xi: observation to update with;
i: sample index;
j: feature index;
uji−1(z): predictive CDF for z;
v
j,(m)
i−1 : prequential CDF;
ρji (z1:j−1)=None: bandwidth;
R=None: bandwidth parameters;

Output:
ui(z)

1: procedure CDF_Update
2: Compute

ρji (z1:j−1)← ρ0kR

(
z1:j−1, x1:j−1

i

)
where kR denotes the user-defined kernel if ρ =None

3: Compute the bivariate Gaussian copula density

c{uji−1(z), vj,(m)
i−1 ; ρj} ←

N2

{
Φ−1(uji−1(z)),Φ−1(vj,(m)

i−1) | 0, 1, ρji (z1:j−1)
}

N{Φ−1(uji−1(z)) | 0, 1}N{Φ−1(vj,(m)
i−1) | 0, 1}

4: Compute the conditional Gaussian copula CDF

H
{
uji−1(z), vj,(m)

i−1 ; ρji (z1:j−1)
}
← Φ

Φ−1(uji−1(z))− ρji (z1:j−1)Φ−1(vj,(m)
i−1)√

1− ρji (z1:j−1)2


5: Compute αi = (2− 1

i)
1
i+1

6: Compute uji (z) = P ji (z|z1:j−1) by

uji (z)←
{

(1−αi)uji−1(z)+αiH
(
uji−1(z), vj,(m)

i−1 ; ρji (z)
)
j−1∏
l=1

c

(
uli−1(z), vl,(m)

i−1 ; ρji (z)
)}

· 1
/{

1− αi + αi

d∏
j=1

c

(
uji−1(z), vj,(m)

i−1 ; ρji (z)
)}

7: return ui(z)
8: end procedure

23

Under review as a conference paper at ICLR 2023

Algorithm 4 Estimate prequential CDFs at train observations
Input:
R: bandwidth parameters
x1:n: training observations;
M : number of permutations over features to average over;
compute_density (by default, False);

Output:
{vj,(m)
i−1 }i,j,m, {p

(m)
i−1 (xi)}i,m if compute_density, else {vj,(m)

i−1 }i,j,m

1: procedure fit_conditional_predictive_cdf
2: for m← 1 to M do
3: Sample permutation π1 ∈ Π(n), π2 ∈ Π(d)

4: Change the ordering of the training observations {x(m)
1 , . . . , x

(m)
n } ←

{π1(x1), . . . , π1(xn)} and the features x← [π2(x1), . . . , π2(xd)] . For
simplicity we will drop the superscript in the following

5: for j ← 1 to d do
6: for k ← 1 to n do
7: Initialise uj0(xk)← Φ(xjk) . u also depends on the permutation m,

but since we do not reuse u after m is updated, we drop the index for
simplicity

8: end for
9: end for

10: for i← 1 to n do
11: Set vj,(m)

i−1 ← uji−1(xi) for j ← 1 to d
12: for k ← 1 to i do
13: for j ← 1 to d do
14: uji (xk)=cdf_update(xk, xi, i, j, uji−1(xk), vj,(m)

i−1 , R)
15: end for
16: if compute_density then
17:

p
(m)
i (xk)←

1− αi + αi

d∏
j=1

c
(
uji−1(xk), vj,(m)

i−1 ; ρji (xk)
) p

(m)
i−1 (xk)

18: end if
19: end for
20: end for
21: end for
22: return {vj,(m)

i−1 }i,j,m, {p
(m)
i−1 (xi)}i,m if compute_density else {vj,(m)

i−1 }i,j,m
23: end procedure

24

Under review as a conference paper at ICLR 2023

Algorithm 5 Evaluate density at test observations
Input:
R: bandwidth parameters
xn+1:n+n′ : test observations;
{{x(1)

1 , ..., x
(1)
n }, . . . , {x(M)

1 , ..., x
(M)
n }}: sets of permuted train observations;

{vj,(m)
i }i,j,m: prequential conditional CDFs at train observations;

M : number of observations over features to average over;
Output:
{pn(xn+1), . . . , pn(xn+n′)}

procedure eval_density
for m← 1 to M do

for j ← 1 to d do
for k ← 1 to n′ do

Initialise uj0(xn+k)← Φ(xjn+k)
end for

end for

for i← 1 to n do
for k ← 1 to n′ do

for j ← 1 to d do
uji (xk)=cdf_update(xn+k, xi, i, j, uji−1(xn+k), vj,(m)

i−1 , R)
end for
Compute density

p
(m)
i (xn+k)←1− αi + αi

d∏
j=1

c
(
uji−1(xn+k), vj,(m)

i−1 ; ρji (xn+k)
) p

(m)
i−1 (xn+k)

end for
end for

end for

. Average density over permutations
for i← n+ 1 to n+ n′ do

pn(xi)← 1
M

∑M
m=1 p

(m)
n (xi)

end for
return {pn(xn+1), . . . , pn(xn+n′)}

end procedure

25

Under review as a conference paper at ICLR 2023

Algorithm 6 Sample new observations
Input:
R: bandwidth parameters
{z[0]

1 , . . . , z
[0]
B }: initial samples from proposal distribution;

{q(z[0]
1), . . . , q(z[0]

B)}: proposal density evaluated at initial samples;
{{x(1)

1 , ..., x
(1)
n }, . . . , {x(M)

1 , ..., x
(M)
n }}: sets of permuted train observations;

{vj,(m)
i }i,j,m: prequential conditional CDFs at train observations;

Output:
{z[n]

1 , . . . , z
[n]
B } and {pn(z[n]

1), . . . , pn(z[n]
B)}

1: procedure sample
2: for m← 1 to M do
3: for k ← 1 to B do
4: for j ← 1 to d do
5: Initialise uj0(z[0]

k)← Φ(z[0]
k)

6: end for
7: Initialise w[0]

k ← p0(z[0]
k)/q(z[0]

k)
8: end for
9: end for

10: for i← 1 to n do
11: for k ← 1 to B do
12: for m← 1 to M do
13: for j ← 1 to d do
14: uji (xk)=cdf_update(z[i−1]

k , xi, i, j, uji−1(z[i−1]
k), vj,(m)

i−1 , R)
15: end for
16: Compute density

p
(m)
i

(
z

[i−1]
k

)
←

1− αi + αi

d∏
j=1

c
(
uji−1(xn+k), vj,(m)

i−1 ; ρji (z
[i−1]
k)

) p
(m)
i−1

(
z

[i−1]
k

)

17: end for
18: pi(z[i−1]

k)← 1
M

∑M
m=1 p

(m)
i (z[i−1]

k)
19: w

[i]
k ← w

[i−1]
k · pi

(
z

[i−1]
k

)
/pi−1

(
z

[i−1]
k

)
20: end for
21: ess ←

(∑
k w

[i]
k

)2
/
(∑

k w
[i]2
k

)
22: if ess < 0.5 ·B then
23: {z[i]

k }k ←resample_with_replacement
(
{z[i−1]
k }k, {w[i]

k }k
)

24: w
[i]
k ← 1 for k = 1, . . . , B

25: else
26: z

[i]
k ← z

[i−1]
k for k = 1, . . . , B

27: end if
28: end for
29: return {z[i]

k }k
30: end procedure

26

Under review as a conference paper at ICLR 2023

C Experiments

C.1 Experimental Details

The UCI data sets (Asuncion & Newman, 2007) we used are: wine, breast, parkinson
(PARKIN), ionosphere (IONO), boston housing (BOSTON), concrete (CONCR), diabetes
(DIAB), and digits.

Code We downloaded the code for MAF and NSF from https://github.com/
bayesiains/nsf, and the code for R-BP from https://github.com/edfong/MP/tree/
main/pr_copula, and implemented EarlyStopping with patience 50, and 200 minimal, and
2000 maximal iterations. Note that we chose the autoregressive version of RQ-NSF over the
coupling variant as the former seemed to generally outperform the latter in Durkan et al.
(2019). The neural network in ARnet-BP was implemented with Haiku (Hennigan et al.,
2020). The remaining methods are implemented in sklearn (Buitinck et al., 2013). For the
DPMM with VI (mean-field approximation), we use both the diagonal and full covariance
function, with default hyperparameters for the priors. The code used to generate these
results is available as an additional supplementary directory.

Initialisation We initialise the predictive densities with a standard normal, the bandwidth
parameter with ρ0 = 0.9, the length scales with l2 = 1, ..., ld−1 = 1, and the neural network
weights inside ARnet-BP by sampling from a truncated normal with variance proportional
to the number of input nodes of the layer (Ioffe & Szegedy, 2015).

Data pre-processing For each dataset, we standardized each of the attributes by mean-
centering and rescaling to have a sample standard deviation of one. Following Papamakarios
et al. (2017), we eliminated discrete-valued attributes. To avoid issues arising from collinearity,
we also eliminated one attribute from each pair of attributes with a Pearson correlation
coefficient greater than 0.98.

Hyperparameter tuning We average over M = 10 permutations over samples and
features. The bandwidth of the KDEs was found by five-fold cross validation over a grid of
80 log-scale-equidistant values from ρ = 0.1 to 100. For the DPMM, we considered versions
with a diagonal (Diag) and full (Full) covariance matrix for each mixture component. We
optimized over the weight concentration prior of the DPMM by five-fold cross validation
with values ranging from 10−40 to 1. The model was trained with variational inference
using sklearn. The hyperparameters of MAFs and RQ-NSFs were found with a Bayesian
optimisation search. For MAF and RQ-NSF, we applied a Bayesian optimisation search
over the learning rate {3 · 10−4, 4 · 10−4, 5 · 10−4}, the batch size {512, 1024}, the flow steps
{10, 20}, the hidden features {256, 512}, the number of bins {4, 8}, the number of transform
blocks {1, 2} and the dropout probability {0, 0.1, 0.2}. On each data set, the hyperparameter
search ran for more than 5 days. Please see Table 3 for the optimal parameters found. For
the benchmark UCI data sets, we did not tune the hyperparameters for neither MAF nor
RQ-NSF but instead used the standard parameters given by Durkan et al. (2019). The kernel
parameters of the GP are optimised during training, the α resp. λ intialization parameter of
the linear model over the range from 1 to 2 resp. 0.01 to 0.1, and the hidden layer sizes of
the MLP over the values {64, 128, 256}.

Compute We run all BP and neural network experiments on a single Tesla V100 GPU,
as provided in the internal cluster of our department. In total, these experiments required
compute of approximately 4000 GPU hours. The remaining experiments were run on a single
core of an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, using up a total of 100 hours.

C.2 Additional Experimental Results

Computational analysis For the computational study, we consider data sampled from
a Gaussian mixture model (GMM). By default, we set the number of training samples to
n = 500, the number of test samples to n′ = 500, the number of features to d = 2, the number

27

https://github.com/bayesiains/nsf
https://github.com/bayesiains/nsf
https://github.com/edfong/MP/tree/main/pr_copula
https://github.com/edfong/MP/tree/main/pr_copula

Under review as a conference paper at ICLR 2023

Table 3: Hyperparameters for MAF and RQ-NSF

data batch
size

learning
rate

flow
steps

hidden
nodes

bins transform
blocks

dropout
M
A
F

WINE 10000 0.0003 20 512 - 1 0.2
BREAST 10000 0.0004 20 512 - 1 0.2
PARKINSONS 10000 0.0004 20 512 - 1 0.2
IONOSPHERE 10000 0.0003 20 512 - 1 0.2
BOSTON 10000 0.0003 10 512 - 1 0.2
CONCRETE 1024 0.0003 10 512 - 1 0.2
DIABETES 10000 0.0004 20 512 - 1 0.2
CHECKERBOARD 10000 0.0003 20 512 - 1 0.2

R
Q
-N

SF

WINE 10000 0.0004 20 512 8 1 0.2
BREAST 10000 0.0005 10 512 8 1 0.2
PARKINSONS 10000 0.0005 20 512 8 1 0.2
IONOSPHERE 10000 0.0003 10 512 8 1 0.2
BOSTON 10000 0.0003 10 512 8 1 0.2
CONCRETE 1024 0.0004 20 256 8 2 0.1
DIABETES 256 0.0004 10 512 8 2 0.2
CHECKERBOARD 1024 0.0004 10 512 8 2 0.1

of mixture components to K = 2, and the number of feature and samples permutations to 1.
In Figure 6, we plot the compute in elapsed seconds w.r.t changes in these parameters.

Sensitivity analysis For the sensitivity study, we consider the same simulated GMM data
as in the computational study, and plot the results in Figure 7. As expected, we observe that
the test NLL decreases in n, and in the number of permutations. It also decreases in the
number of mixture components. One possible explanation for this is that, as noted by Hahn
et al. (2018), R-BP can be interpreted as a mixture of n normal distributions. The NLL
decreases in d, as the mixture components are easier to distinguish in higher dimensional
covariate spaces.

Ablation study Figure 7 shows the test NLL of ARnet-BP and AR-BP for the above
GMM example, as a function of the number of sample permutations, and number of feature
permutations. We see that averaging over multiple permutations is crucial to the performance
of AR-BP. In Table 4, we also show results on the small UCI datasets for:

• a different choice of covariance function, namely a rational quadratic covariance
function, defined by k(x, xi) =

(
1 + ||x−xi||22

2γ`2

)−γ
, where `, γ > 0 and

• a different choice of initial distribution, namely a uniform distribution (unif).

Table 4: Average NLL with standard error over five runs on five UCI data sets of small-to-
moderate size

WINE BREAST PARKIN IONO BOSTON
n/d 89/12 97/14 97/16 175/30 506/13
ARd-BP 13.22±0.04 6.11±0.04 7.21±0.12 16.48±0.26 −14.75±0.89
AR-BP (RQ) 13.53±0.02 7.39±0.06 8.79±0.08 21.26±0.08 4.49±0.00
ARd-BP (RQ) 13.36±0.04 6.18±0.03 7.85±0.08 20.25±0.09 −20.41±1.28
ARd-BP (unif) −5.18±0.04 −15.51±0.11 −16.58±0.06 −47.77±3.77 −10.73±1.63

We observe that none of these ablations consistently outperforms ARd-BP.

Benchmark UCI data sets As we only presented a subset of the results on the benchmark
data sets introduced by Papamakarios et al. (2017) in Section 5, we present more results
for density estimation on the complete data set in Table 5. These results underscore

28

Under review as a conference paper at ICLR 2023

0 50000 100000
n

8

10

12

14

16

18

tim
e

(s
)

Compilation

0 50000 100000
n

10

12

14

16
Optimization

0 50000 100000
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Training

0 50000 100000
n

5

10

15

20

25
Testing

0 10 20 30
d

12
13
14
15
16
17
18

tim
e

(s
)

0 10 20 30
d

10.0

12.5

15.0

17.5

20.0

22.5

0 10 20 30
d

0.02

0.04

0.06

0.08

0 10 20 30
d

2.5

3.0

3.5

4.0

4.5

0 10 20 30
sample permutations

11

12

13

14

15

tim
e

(s
)

0 10 20 30
sample permutations

9.5

10.0

10.5

11.0

11.5

12.0

0 10 20 30
sample permutations

0.020

0.025

0.030

0.035

0.040

0 10 20 30
sample permutations

3.25

3.50

3.75

4.00

4.25

4.50

0 10 20 30
feature permutations

13

14

15

16

17

18

tim
e

(s
)

0 10 20 30
feature permutations

20

40

60

80

100

120

0 10 20 30
feature permutations

0.035

0.040

0.045

0.050

0.055

0 10 20 30
feature permutations

3.4

3.6

3.8

4.0

4.2

4.4

4.6

(a) AR-BP

0 50000 100000
n

20.0

22.5

25.0

27.5

30.0

32.5

tim
e

(s
)

Compilation

0 50000 100000
n

0

50

100

150

200

250
Optimization

0 50000 100000
n

1

2

3

4

5

6

Training

0 50000 100000
n

0

10

20

30

Testing

0 10 20 30
d

18

20

22

24

26

28

tim
e

(s
)

0 10 20 30
d

40

60

80

100

120

140

0 10 20 30
d

1.2

1.4

1.6

1.8

2.0

0 10 20 30
d

1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 10 20 30
sample permutations

20

22

24

26

tim
e

(s
)

0 10 20 30
sample permutations

60

70

80

90

0 10 20 30
sample permutations

1.2

1.3

1.4

1.5

0 10 20 30
sample permutations

2.0

2.5

3.0

3.5

0 10 20 30
feature permutations

22

24

26

28

30

32

tim
e

(s
)

0 10 20 30
feature permutations

0

500

1000

1500

2000

2500

3000

0 10 20 30
feature permutations

1.6
1.8
2.0
2.2
2.4
2.6
2.8

0 10 20 30
feature permutations

2.5

3.0

3.5

4.0

4.5

(b) ARnet-BP

Figure 6: Computational study: computational time measured in elapsed seconds for a
simple GMM example.

29

Under review as a conference paper at ICLR 2023

102 104

n

1.2

1.4

1.6

1.8

te
st

 N
LL

100 101 102

d

0.9

1.0

1.1

1.2

1.3

1.4

101 102

K

1.20

1.25

1.30

100 101 102

sample permutations

1.20

1.25

1.30

100 101 102

feature permutations

0.93

0.94

0.95

0.96

Model
AR-BP
ARnet-BP

Figure 7: Sensitivity analyis: Average test NLL over 5 runs reported with standard error for
a simple GMM example over a range of simulation and parameter settings.

(a) True data (b) R-BP (c) Rd-BP (d) AR-BP

(e) ARd-BP (f) ARnet-BP (g) MAF (h) RQ-NSF

Figure 8: Scatter plot and density estimates of 60,000 observations sampled from a chessboard
data distribution. Test log likelihoods are R-BP: 2.25±0.0, Rd-BP : 2.19±0.0, AR-BP: 2.21±0.0,
ARd-BP: 2.10±0.0, ARnet BP : 2.19±0.0, MAF : 2.09±0.0, RQ-NSF : 2.05±0.0.

that 1) MAF and RQ-NSF outperform any other baseline, the more data is available; 2)
KDE underperforms in high-dimensional settings; 3) DPMM is not suitable for every data
distribution. Note that evaluation of the R-BP variants take at least 4 days to run on any of
the data sets with more than 800,000 observations which is why we omitted those results
here.

Table 5: Average NLL with standard error over five runs on benchmark UCI data from
Papamakarios et al. (2017)

POWER GAS HEPMASS MINIBOONE BSDS300
n/d 1,659,917/6 852,174/8 315,123/21 29,556/43 1,000,000/ 63

Gaussian 7.73±0.00 3.59±0.00 27.93±0.00 37.20±0.00 56.45±0.00
KDE 29.39±0.00 −9.61±0.00 26.44±0.00 43.88±7.52 63.70±10.00
DPMM (Diag) 0.51±0.01 1.20±0.02 25.80±0.00 39.16±0.01 37.55±0.02
DPMM (Full) 0.33±0.00 −5.57±0.04 23.40±0.02 18.82±0.01 4.47±0.00
MAF 0.52±0.00 −2.21±0.54 21.10±0.04 12.81±0.08 2.76±0.17
RQ-NSF 0.00±0.01 −6.41±0.14 19.46±0.08 12.51±0.19 2.44±0.56

Image examples We provide preliminary results on two image datasets, digits and MNIST,
in Table 6. Note that the AR-BP copula updates investigated here were not designed with
computer vision tasks in mind. The rich parameterization allows the model to overfit to the
data leading to a prequential negative log-likelihood of at least -684 at train time while the
test NLL is considerably higher. ARnet-BP, on the other hand, helps to model the complex
data structure more efficiently. We expect that further extensions based on, for instance,
convolutional covariance functions (Van der Wilk et al., 2017) may prove fruitful.

30

Under review as a conference paper at ICLR 2023

Table 6: Image datasets: average test NLL over five runs displayed with standard error

DIGITS MNIST
MAF −8.76±0.10 −7.14±0.48
RQ-NSF −6.17±0.13 −8.49±0.03
R-BP −8.80±0.00 −9.04±0.07
Rd-BP −7.46±0.12 −7.73±0.07
AR-BP −8.66±0.03 −7.31±42.54
ARd-BP −7.46±0.18 −8.32±61.92
ARnet-BP −7.72±0.28 −9.20±0.10

Figure 9: Illustration of the importance of an autoregressive kernel. We trained the models
on 500 data points sampled according to a sine wave distribution (given in Figure 10).
We visualise the predictive density after observing a different number, n, of observations,
highlighting the last five points with . We observe that for highly non-linear relationships
between x1 and x2, the optimal bandwidth of R-BP is quite high (ρ = 0.93) which results in
strong overfitting. Even when we choose ρ0 = 0.93 for AR-BP and ARnet-BP, we observe
that these models learn the true data distribution with fewer samples than R-BP does.

Toy examples Figure 8 shows density estimates for the introductory example of the
checkerboard distribution in a large data regime. We observe that neural-network-based
methods outperform the AR-BP alternatives. Nevertheless, AR-BP performs better than the
baseline R-BP. An illustration of this behaviour on another toy example is also given in Figure
9. Figure 10 shows density estimates from AR-BP on a number of complex distributions.

Figure 10: Scatter plots of 60,000 samples from different data distributions in the first row,
and corresponding autoregressive predictive density estimates in the second row.

31

	Introduction
	Background
	Univariate Predictive Density Updates
	Multivariate Predictive Density Updates

	AR-BP: Autoregressive Bayesian Predictives
	Formulation of Autoregressive Bayesian Model
	Iterative Predictive Density Updates
	Parameterisation of the Bandwidth

	Related Work
	Experiments
	Density Estimation
	Supervised Learning

	Discussion
	Derivations
	Derivation of AR-BP
	No Autoregression (R-BP)
	With Autoregression (AR-BP)

	Derivation of Gaussian Process Posterior
	First Update Step
	All Update Steps

	Intuition for AR Copula
	Derivation of Copula Update for Supervised Learning
	Conditional Regression with Dependent Stick-Breaking
	Classification with Beta-Bernoulli Copula Update

	Methodology
	Generative Modelling
	Inverse Sampling
	Importance Sampling
	Sequential Monte Carlo

	Supervised Learning
	Regression
	Classification

	Implementation Details

	Experiments
	Experimental Details
	Additional Experimental Results

