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ABSTRACT

Chemical foundational models pretrained on expansive materials databases have
the potential to significantly accelerate materials discovery relative to traditional
quantum-mechanical calculations. However, training and even fine-tuning these
models remains expensive and not widely accessible due to the vast amount of
data typically required and the complexity of optimization. To address this, we
propose a framework for improving the efficiency of the training and fine-tuning
of foundational models by prioritizing the most informative training samples and
density functional theory (DFT) calculations through Feature Informed Batch Se-
lection - FIBonAQi. Specifically, by using online batch selection strategies, such
as Diversified Batch Selection (DivBS) (Hong et al., 2024), originally tested on
vision and natural language processing models, FIBonAQi aims to make train-
ing and tuning of foundation ML models in chemistry more data efficient relative
to conventional uniform sampling strategies. We evaluate the proposed approach
both by training from scratch and fine-tuning scenarios. While more extensive
testing is needed, preliminary results suggest that online batch selection strate-
gies such as FIBonAQi-DivBS may be able to improve data efficiency in chemical
foundation model training.

1 INTRODUCTION

Atomistic simulations have experienced a significant paradigm shift with recent developments in
chemical graph neural networks (GNNs). Machine learning interatomic potentials (MLIPs) are one
family of such models designed to estimate the properties of chemical systems; these frequently
include energies, interatomic forces, and adsorption energies (Chanussot et al., 2021). MLIPs sig-
nificantly accelerate materials discovery workflows and reduce their cost by offering a cheaper al-
ternative to traditional quantum mechanical calculations such as density functional theory (DFT).
Further, “foundation” MLIPs trained on diverse materials databases offer a more universal applica-
bility and generalization. However, training and fine-tuning graph-based MLIPs is expensive, due to
the large number of parameters that must be optimized, and the amount of training data they require
for accurate inference, which is frequently generated by such quantum mechanical calculations. This
is particularly true of GNNs, which are notoriously data-hungry. Active learning loops attempt to
circumvent this problem by generating training samples only when they are requested by the model.
Yet this remains costly, as there are few widespread methods to identify samples worth generating
via DFT. One such method is DIRECT sampling (Qi et al., 2024), which selects a diverse subset of
training data by clustering structures in a reduced feature space before labeling them with DFT.

In addition to selecting a training set, efficient sample selection can also be applied dynamically
during training. Specifically, online batch selection algorithms, where batches are curated based
on some criteria with the object of improving or accelerating training, have seen success in other
applications of machine learning. For instance, Loshchilov & Hutter (2016) find that exponen-
tially weighting a training sample’s selection probability significantly accelerates model training on
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Figure 1: A: Schematic of the FIBonAQi framework. B, C.) A comparison of FIBonAQi-DivBS
sampling to standard uniform sampling on the task of fine-tuning the small MACE-MP-0 foundation
model on the OC20NEB, both with a selection ratio of 10% and a training batch size of 10. Solid
lines show means (10 seeds) and shaded areas indicate one standard deviation. One epoch is the
interval over which the superbatches have encompassed the entire dataset.

MNIST classification tasks when optimized via the ADAM and AdaDelta algorithms. More recently,
Hong et al. (2024) proposed an online batch selection scheme, termed Diversified Batch Selection
(DivBS), which creates batches by approximately and stochastically maximizing their orthagonal-
ized representativeness w.r.t. a chosen sample featurization scheme. They find that the gradients of
a sample’s loss w.r.t. the model’s last layer parameters serve as a particularly effective featurization
scheme, ameliorating training on both computer vision and natural language processing tasks.

Though batch curation for chemical MLIP active learning has been studied (Zaverkin et al., 2022;
Bailey et al., 2023), we note that there is a relative dearth of literature on the application of online
batch selection for training and fine-tuning in the chemical domain. Building on the success of online
batch selection algorithms in other machine learning applications, and in specific chemical contexts,
we propose a unified framework for both accelerating the fine-tuning of graph-based MLIPs, and
for designing more effective active learning loops. We term this Feature Informed Batch Selection
(FIBonAQi). Our approach addresses three key objectives:

The unification active learning and online batch selection: FIBonAQi bridges the previously
disparate domains of active learning loop improvement and batch selection by providing a general
means of enhancing MLIP training; we believe that these problems may be somewhat isomorphic,
and the presentation of a unified framework for such may therefore have utility.

The highlighting of the need for research in diverse chemical featurization schema: By propos-
ing FIBonAQi, we draw attention to the need for more research on chemical featurization algo-
rithms. Materials science is one of the few domains where large, well-developed foundation models
are being more widely available, removing the constraint of model-free featurization faced by Hong
et al. (2024). As such, diverse featurization strategies may yield context-dependent improvements
in MLIP training.

The facilitation of future innovations: FIBonAQi provides a common set of theoretical interfaces
which encompass existing batch selection algorithms and active learning strategies, and elucidates
ways these may be combined to ameliorate MLIP training.

2 FIBONAQI

FIBonAQi is an online batch selection framework designed to accelerate MLIP finetuning, improve
model performance, and ameliorate active learning loops via efficient, on-line batch selection. The
framework is summarized by the following steps, and is illustrated graphically in Fig. 1A.
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Superbatch Selection: Sets of samples of size ω, termed superbatches, are randomly drawn from
the selected materials repository; we have termed these superbatches to reflect their role as “batches”
from which the final training batches are drawn. Usually, instances of this framework are initialized
with some selection ratio, r. This is used to determine ω, given the desired final batch size β, via
the equation ω = β

r : r ∈ (0, 1];ω, β ∈ Z (1), where allowed values of r are restricted to those that
yield an integer ω.

Superbatch Featurization: All samples within the current superbatch are vectorized via a user-
selected featurization scheme. In the case of DivBS, this is simply the gradients of the model’s loss
function w.r.t. the weights and biases of the last layer of the model being trained.

Batch Selection: Batches of size β are drawn from the superbatch according to a user-chosen
selection algorithm, which accepts the featurized superbatch as an input. We focus this paper on the
greedy selection algorithm proposed by Hong et al. (2024).

(Optional) DFT labeling: If the used materials repository is composed of data generated by another
pretrained MLIP, FIBonAQi then selects the most informative batches, which are subsequently la-
beled using DFT. These “up-scaled” data points then become the final batch which is provided to
the model. This setup can naturally extend to an active learning loop (Qi et al., 2024; Zaverkin et al.,
2022), where the MLIP iteratively improves with newly acquired high-fidelity data.

The DivBS algorithm can be considered as an instance of the feature-informed batch selection ap-
proach used in FIBonAQi, where sample featurization is performed using any desired means, and
the selection scheme is the approximate orthogonalized representativeness maximization algorithm
described by Hong et al. (2024). This method is designed to select an array of sample structures
from a chemical repository (which can then be optionally refined via DFT simulation).

3 EXPERIMENTS

Figure 2: FIBonAQi-DivBS vs. uniform sampling for training MACE on MD17@CCSD over 136
epochs (batch size 10, 4750 samples). Inset: final half of training (1 seed).

We conduct experiments on two datasets: MD17@CCSD (Chmiela et al., 2017) and OC20NEB
(Wander et al., 2024). FIBonAQi is tested both on from-scratch training and fine-tuning a pretrained
model, for the MD17@CCSD and OC20NEB datasets, respectively. We also train and validate a
MACE model from scratch on exclusively benzene and aspirin from the MD17@CCSD dataset, to
further probe the versatility of FIBonAQi-DivBS. Lastly, as done by Hong et al. (2024), we vary
the selection ratio r of FIBonAQi-DivBS to explore its effect on training efficacy. We perform this
experiment using benzene samples drawn from the MD17@CCSD dataset.

MD17@CCSD. The MD17@CCSD dataset consists of small organic molecules including aspirin
(at CCSD level), as well as benzene, malonaldehyde, toluene, and ethanol (at CCSD(T) level). It
provides atomic coordinates, energies, and interatomic forces. Similar to conventional splits in the
literature for this dataset, we train MACE (Batatia et al., 2023) from scratch on this dataset using 950
samples per molecule for training and 50 for validation, all selected uniformly. This training was
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Figure 3: A: Uniform (100%) vs. FIBonAQi-DivBS (10%) tuning of MACE-MP-0 on 800
OC20NEB samples. B: Validation loss as shown in (A) with an adjusted, “effective” epoch, such
that one effective epoch marks training on a number of samples equivalent to the size of the entire
training dataset. (10 seeds).

done with an energy and force loss weight ratio of 1 to 100, a radial cutoff of 5.0 Å, 128 channels,
hidden irreps of 128x0e + 128x1o, and a learning rate of 0.001.

Benzene & Aspirin, MD17@CCSD. As described above, we train MACE from scratch using 950
samples drawn randomly from the benzene and aspirin molecules in the MD17@CCSD dataset. We
similarly use 50 samples uniformly drawn from each molecule as validation for that molecule. This
training was done with an energy and force loss weight ratio of 1 to 100, a radial cutoff of 5.0 Å,
256 channels, hidden irreps of 256x0e+256x1o+256x2e, and a learning rate of 0.01 (see Fig. A1).

OC20NEB. To test FIBonAQi in a realistic fine-tuning challenge, we use OC20NEB, which consists
of near-equilibrium and transition-state structures relevant to catalysis. Fine-tuning on this dataset
evaluates whether FIBonAQi can efficiently guide batch selection in a setting where a model has al-
ready learned a general representation and must adapt to a new but related distribution. We fine-tune
the small MACE-MP-0 (Batatia et al., 2024) on a small subset of 800 randomly sampled OC20NEB
configurations and evaluate its performance using a separate 100-sample validation set.

Varying Selection Ratio. To study how the selection ratio r impacts training efficacy, we train sev-
eral MACE models from scratch on 950 samples drawn uniformly from the MD17@CCSD dataset.
We use the same settings as when training on aspirin and benzene alone, except that we vary the
selection ratio r between trials (see Fig. A2).

Preliminary results suggest that FIBonAQi-DivBS may consistently outperform standard uniform
batch selection when provided with similar data selection ratios. This may be seen by the blue line
in Fig. 1B, which represents the validation loss of MACE-MP-0 fine-tuning via the FIBonAQi-
DivBS algorithm, whose mean lies strictly below the red line, which represents uniform sampling.
This trend appears to hold across different datasets, as evident in Fig. 2, which illustrates the training
of Mace on 4750 samples drawn from the MD17@CCSD. Of note is Fig 3A, which initially seems
to illustrate a failure of FIBonAQi-DivBS to outperform standard selection. However, one must
consider that during each “epoch” depicted, the model has access to only 10% of the data under
the FIBonAQI-DivBS scheme that the model has under its default scheme. As such, this behavior
is somewhat expected. When one adjusts for this by scaling relative to the amount of samples the
model has been trained on, as illustrated in Fig. 3B, one observes comparative performance broadly
similar to that shown in Fig. 1B. This behavior is not, innately, surprising. The gradient of the loss of
a particular sample w.r.t. a model’s last layer directly corresponds to how the model’s output space
must adjust. As such, gradient-based featurization schemes may perform better than input-based
ones at loss minimization.

Of concern is FIBonAQi’s computational overhead; each FIBonAQi-DivBS-based batch selection
requires a forward pass and a backward pass through the weights and biases of the model’s last layer
for each sample in the superbatch. The theoretical overhead of such back passes is small compared to
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training the model. Yet, the need for forward passes limits the gains available to last-layer gradient-
based sample selection methods, like DivBS, in our framework (Hong et al., 2024). As increasing the
selection ratio r directly reduces superbatch size ω, per Eqn. 1, and thus the computational overhead
of FIBonAQi-DivBS, we therefore study the effect of r on model performance. Preliminary results
suggest model performance may decrease as r increases, per the results shown in A2. However,
many more seeds must be averaged over for this result to be definitive. Interestingly, all values of r
seem to yield approximately better results than uniform selection. However, we cannot yet rule out
the effect of statistical noise due to a dearth of data.

4 DISCUSSION

By incorporating the DivBS algorithm (Hong et al., 2024) into FIBonAQi, we propose a framework
for more efficiently tuning chemical foundation models. FIBonAQi takes steps toward more efficient
MLIP training by narrowing the focus to batches with greater predictive value, while simultaneously
supporting a wide range of model architectures and optimization settings. While our results show
promise, they remain preliminary and require further validation across different datasets, architec-
tures, and seeds. Fig. A1 and A2 for instance, display that models trained with FIBonAQi-DivBS
seem to outperform those trained by standard methods. Still, the impact of statistical noise cannot
yet be excluded, especially in the case of Fig. A2, where the effect of varying the selection ratio
remains unclear. Future work will extend our analysis to additional datasets, metrics, and model
variants (Liao et al., 2024; Musaelian et al., 2023; Batzner et al., 2022; Chen & Ong, 2022).

While FIBonAQi-DivBS appears to be generally more data-efficient than uniform selection, a more
rigorous examination of its computational overhead is required. Hong et al. (2024) find that Di-
vBS is significantly superior to uniform selection in the performance-speedup trade-off; however,
the difficulty of accessing per sample gradients with PyTorch-based MLIPs has required us to leave
this to future work. We also intend to examine alternative featurization approaches for both batch
selection and active learning loops. These could be better suited to a uniquely chemical context;
for example, a M3GNet encoder could be employed, similar to what was done by Qi et al. (2024).
Additional effort is required to reduce the computational overhead of FIBonAQi, which is not nec-
essarily intensive in theory, but is so in its current incarnation. Still, FIBonAQi-DivBS requires the
entire training materials repository used to be evaluated each epoch, representing a non-insignificant
cost for most practical applications. As such, model distillation may be an interesting direction of
future research. Namely, if a coarse approximation of the model’s inference on each sample may be
used to approximate the gradient of that loss w.r.t. the last layer’s parameters, for example via model
distillation, this would constitute a significant improvement over FIBonAQi-DivBS.

It should also be noted that if FIBonAQi generally yields similar convergent performance as uniform
selection, it may be possible to inadvertently yield worse model validation performance in that high-
epoch limit; this may be because FIBonAQi could only train the model some fixed ratio of the dataset
per “epoch.” As such, per effective epoch, it is probable that samples are repeated, especially as
gradients approach zero. Including input featurization may help resolve this, as well as a selection
ratio schedule. It should be noted that as the selection ratio approaches 100%, FIBonAQi’s overhead
typically decreases. This is because, in that limit, superbatch size decreases to meet the size of the
final batch, meaning less featurization computation must occur. Moreover, even if FIBonAQi does
not result in improved convergent performance, it may still find utility in architecture design settings,
where it is desirable to train a model on significant amounts of data without achieving convergence
to gain an approximate understanding of a model’s capabilities. Lastly, it is widely understood
that, in the large data limit, even marginal improvements in validation performance often necessitate
much larger training datasets (Merchant et al., 2023). If, therefore, FIBonAQi yields only marginal
improvements at convergence, it represents a significantly larger effective training set size.
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APPENDIX: SUPPLEMENTAL EXPERIMENTS

A B C

FD E

Figure A1: MACE training comparison on A-C) Aspirin and D-F) Benzene: Default sampling (Red)
vs. FIBonAQi-DivBS (Blue, 10% selection ratio). Trained on 950 MD17@CCSD samples, with a
batch size of 2, and validated on 50. Metrics shown vs. effective epochs, where one ”effective”
epoch is equivalent to training on a number of samples equal to that in the data set, as defined in
Fig.3. A,D) Force MAE (meV/Å), B,E) Energy MAE, C,F) Validation Loss. Solid colored lines
represent means, while shaded areas represent 1 standard deviation. Default results are averaged
over 3 seeds, while those of FIBonAQi-DivBS herein are averaged over 2. The first 5 effective
epochs are omitted from the figure.

A B C

Figure A2: MACE training comparison on benzene, using FIBonAQi-DivBS, with various selection
ratios r. Model performance is evaluated on A.) mean absolute error of forces (meV/Å), B.) mean
absolute error of energy per atom (meV), and C.) validation loss. Uniform (r = 100%) selection
was averaged over 3 seeds, whereas all other trials comprise of 1 seed. An “effective” epoch is
defined as in Fig. 3, and refers to the duration over which the model has been trained on a number of
samples equivalent to the total size of the training-set. The first 5 effective epochs are omitted from
the figure, as their inclusion skews the Y axis scaling toward over emphasizing initial errors, which
may be largely a function of model initialization.
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