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ABSTRACT

The task of co-optimizing the body and behaviour of agents has been a long-
standing problem in the fields of evolutionary robotics and embodied AI. Previous
work has largely focused on the development of learning methods exploiting mas-
sive parallelization of agent evaluations with large population sizes, a paradigm
which is applicable to simulated agents but cannot be transferred to the real world
due to the assoicated costs with the production of embodiments and robots. Fur-
thermore, recent data-efficient approaches utilizing reinforcement learning can
suffer from distributional shifts in transition dynamics as well as in state and action
spaces when experiencing new body morphologies. In this work, we propose a new
co-adaptation method combining reinforcement learning and State-Aligned Self-
Imitation Learning to co-optimize embodiment and behavioural policies withing a
handful of design iterations. We show that the integration of a self-imitation signal
improves the data-efficiency of the co-adaptation process as well as the behavioural
recovery when adapting morphological parameters.

1 INTRODUCTION

Finding an optimal combination of body and morphology of agents has been a long-standing research
problem, finding its roots in the community of evolutionary robotics (Lipson & Pollack, 2000; Clune
et al., 2013; Doncieux et al., 2015). Originally, research in this area largely focused on the use and
development of evolutionary or genetic algorithms adapting body and control parameters at the same
time (Lipson & Pollack, 2000; Watson et al., 2002; Bongard, 2011; Buason et al., 2005; Kempen &
Eiben, 2022). This was and is largely inspired by observations made about the evolutionary principles
governing the adaptation of animal species in nature bringing forth animals with unique morphological
features and behaviours, such as Carparachne aureoflava, a spider capable of “wheeling” down sand
dunes to escape predators (Harvey & Zukoff, 2011; Western et al., 2023). More recent research (Hale
et al., 2019; Luck et al., 2019) has presented evidence of the benefits of considering the different
time-scales on which co-adaptation of body and behaviour occurs in the real world: adaptation of the
body is costly and time-consuming, as it involves growing appendices, organs and tissue in nature;
likewise in robotics, where even fast manufacturing methods like 3D-printing and casting require a
considerable amount of work-hours and material. However, adaptation of behaviour occurs at much
faster time-scales, enabled by fast and inexpensive changes to neurons in the brain or changes to
control parameters and artificial neural network weights in robots.

Recent years have brought forward several works considering the use of reinforcement learning (RL)
methods for the problem of co-adapting robots (Chen et al., 2021; Pigozzi et al., 2023; Sun et al.,
2023; Luck et al., 2019), usually with a fast behavioural adaptation process and slower morphology
adaptation. This allowed to develop methods capable of being deployed in principle on real-world
robotics due to their data-efficiency. However, data-efficient co-adaptation processes can suffer
considerably from the problem of distributional shift inherent to the co-adaptation problem setting.
Every new agent morphology the algorithms experiences brings with it changes to the transition
distribution, as well as to the semantics of state and action spaces. For example, changes to the
orientation of a robot leg lead to changes between the mapping of motor actions and of orientation
and movement of the robot leg. This can be detrimental to the co-adaptation process, as changes to
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the morphology can lead to catastrophic forgetting due to policy actions causing different motion
patterns between individual designs.

We propose a novel co-adaptation methodology tackling the aforementioned problems by combining
reward-driven reinforcement learning and self-imitation learning utilizing Wasserstein distances for
data-efficient adaptation of body and behaviour of agents. The idea of our approach is to not only
force the reinforcement learning algorithm to adapt body and behaviour for maximizing an objective
function such as forward velocity, but also to encourage the imitation of the agent’s ’ancestors’ and
their previous behaviours to increase learning stability and accelerate the co-adaptation progress.

In this paper1, we present the following contributions:
(C1) An extension of State-Alignment Imitation Learning (SAIL) (Liu et al., 2019) for mismatching
morphologies to State-Aligned Self-Imitation Learning for the problem of co-adapting the morphol-
ogy and behaviour of agents.
(C2) A novel co-adaptation method, Co-Adaptation with Self-Imitation Learning (CoSIL), uti-
lizing State-Aligned Self-Imitation Learning to optimize an agent’s morphology and behaviour
data-efficiently on fewer design iterations.
(C3) We demonstrate in an empirical study the benefits and limitations of CoSIL by evaluating its
performance versus a non-self-imitating baseline in a range of locomotion tasks.

2 BACKGROUND

Reinforcement Learning (RL): In a reinforcement learning setting, problems are formulated as a
Markov decision process (MDP) ⟨S,A, r, p⟩. We consider an environment-agent interaction fully
described by a set of possible states S ∈ Rm, a set of possible actions taken by the agent in a given
state A ∈ Rn, a reward function r : S×A 7→ R and a transition function p : S×A×R×S 7→ [0, 1].
The transition function defines the dynamics of the environment by providing a probability p(s′|s, a)
of each next state given the current state and the chosen action. In order to train an agent for a given
task, we model the desired behaviour as a reward function and use an optimization procedure to
design a policy π(a|s) ∈ [0, 1] which approximates the optimal action a to take in any given state s
as a probability distribution over A to maximize the cumulative rewards.

Multi-Body Reinforcement Learning: In multi-body reinforcement learning, we consider an
extension to the classic Markov Decision Process (MDP) suitable for modelling the fact that both
behaviour and morphological parameters are adapted. The Multi-Body MDP (MB-MDP) consists of
(S,A,Ξ, r, p(st+1|st, at, ξ), p(s0|ξ)) with state space S ∈ Rs and action space A ∈ Ra. Notably, in
a MB-MDP the set Ξ models the morphological parameter space, containing individual instances
of agent morphologies ξ ∈ Ξ. Throughout this paper, we will without a loss of generality consider
Ξ ∈ Rd for d continuous design parameters, such as limp lengths or width/size of agent body elements.
As changes to the physics of the agent morphology impact its dynamics, the transition function
p(st+1|st, at, ξ) depends on the current morphology parameter ξ. The reward function r(st, at, ξ)
may also implicitly depend on ξ via the transition function, or explicitly if the manufacturing costs
are taken into account, for example. The objective is to find a policy πθ(st, ξ) = at which maximizes
the finite-horizon expected discounted reward

R(ξ, π) = Est+1∼p(st+1|st,at,ξ)
s0∼p(s0|ξ)
at∼π(st,ξ)

[
T∑

t=0

γtr(st, at, ξ)

]
(1)

given an embodiment ξ, the policy π, and discount factor γ ∈ (0, 1).

Co-Adaptation of Agent Body and Behaviour: The previous formalism allows us to formulate
the joint optimization of behaviour and morphology of agents as

π∗, ξ∗ = argmax
ξ

max
π

R(ξ, π); (2)

in other words, we are interested in finding both the optimal morphology ξ∗ and optimal policy
π∗ given a reward function r(st, at, ξ). If we consider the semantics of the parameters and the

1Supplemental material can be found at url-removed-for-anonymity
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optimization time-scales (i.e., policy learning can be done faster than morphology adaptation), this
problem can be considered a bi-level optimization problem. Given the current morphology of the
agent in the inner optimization problem, we can solve the RL problem using Eq. (1). In the outer
optimization problem, given performances R(ξ, π) of past morphology-policy pairs (ξi, πi), we can
again utilize optimization methods or reinforcement learning to find new candidate morphologies ξ
to evaluate.

3 CO-ADAPTATION WITH SELF-IMITATION LEARNING

In this section, we will first introduce the individual components of Co-Adaptation with Self-Imitation
Learning (CoSIL) using State-Aligned Imitation Learning (SAIL) (Liu et al., 2019). We will end the
section with a description of the main algorithm.

3.1 SELF-IMITATION LEARNING ON CO-ADAPTATION SEQUENCES

Assume a MB-MDP (S,A,Ξ, r, p(st+1|st, at, ξ), p(s0|ξ)), as given in Section 2. Nat-
urally, a co-adaptation process will produce a sequence of morphology-policy tuples
{(ξ0, π0), (ξ1, π2), (ξ3, π3), · · · }. Given two morphology-policy pairs (ξi, πi) and (ξj , πj), we can
formulate the trajectory distributions

q(τ i) = p(s0|ξi)
T−1∏
t=0

p(st+1|st, at, ξi)πi(at|st, ξi) (3)

and

p(τ j |πj) = p(s0|ξj)
T−1∏
t=0

p(st+1|st, at, ξj)πj(at|st, ξj). (4)

We will now assume that the pair (ξi, πi) represents our expert, that is, the training on morphology ξi
has concluded and πi has learned an optimal movement strategy for ξi (i.e., π∗

i |ξi). If we are now
currently training on morphology ξj , where j > i, then we can force the policy πj to imitate the
previous agent by optimizing

min
πj

D(q(τ i), p(τ j |πj)), (5)

for a divergence measure D expressing the distance between these two probability distributions.
Importantly, we consider here that ξj is fixed and not optimized, otherwise (ξi, πi) is a trivial solution
to this problem. While different choices exist for this divergence measure, we will follow state
alignment-based imitation learning and use state-distribution matching via generative adversarial
learning.

3.2 FEATURE-STATE-DISTRIBUTION SELF-IMITATION LEARNING

As previously described, a core problem for imitation learning between agents with different body
morphologies is that the semantic of state and action spaces can shift considerably. If in one agent
morphology the motor action of 1.0 may lead to moving a limp upwards, in another morphology
it may cause it to go to the side, even if both agents are in the exact same state. Hence, using the
original state and action spaces are not necessarily suitable to use in imitation learning. Therefore,
we assume in the following a function ϕ : S → SF 2 which maps the state of the agent to a shared
feature space SF . In practice, such a feature space could be image-based or, as used in this paper,
based on motion capture markers placed on the body.

In our proposed self-imitation learning approach for co-adaptation, we are matching the state distri-
butions between previous expert behaviour and the current agent, a technique used successfully in
prior work (Fickinger et al., 2021; Rajani et al., 2023). Similarly, we use the marginal feature-space
state distributions for the expert trajectories from past morphologies

q(ϕ(s)) = Est+1∼p(st+1|st,at,ξi)
at∼πi(at|st,ξi)
s0∼p(s0|ξi)

[
1

T

T∑
t=0

1(ϕ(st) = ϕ(s))

]
(6)

2Note, that we use without loss of generality ϕ : S → SF for better readability and clarity. However,
ϕ : S × Ξ→ SF would be more accurate as the mapping also depends on the current embodiment of the agent.
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and for the current agent morphology

p(ϕ(s)|πj) = Est+1∼p(st+1|st,at,ξj)
at∼πj(at|st,ξj)
s0∼p(s0|ξj)

[
1

T

T∑
t=0

1(ϕ(st) = ϕ(s))

]
, (7)

with 1 being a Kronecker delta function, returning the value 1 iff ϕ(st) = ϕ(s)3 holds true and 0
otherwise. Using these state distributions we can now reformulate Eq. (5) with

D(q(ϕ(s)), p(ϕ(s)|πj)), (8)

where we can use divergences such as Kullback-Leibler’s, the Wasserstein distance, or the Jensen-
Shannon divergence. Eq. (8) will be our main objective for enabling self-imitation learning across
morphologies.

3.3 IMITATION REWARD AND ENVIRONMENTAL REWARD

CoSIL makes use of two reward functions: rIL for the self-imitation reward, and rRL for the environ-
ment reward we aim to maximize as the main objective. While rRL is a fixed objective given by the
environment, rIL is a learned function which rewards the agent for a behavioural policy π minimizing
Eq. (8), given a demonstration dataset τE. Multiple choices exist for the imitation learning method
used to learn rIL. Candidates include the Adversarial Inverse Reinforcement Learning (AIRL) reward

rIL(ϕ(st), ϕ(st+1)) = log(ρ(ϕ(st)))− log(1− ρ(ϕ(st))), (9)

where ρ is a discriminator which differentiates between agent states and expert states, as well as
State-Aligned Imitation Learning (SAIL) using the Wasserstein distance with reward function

rIL(ϕ(st), ϕ(st+1)) = ρ(ϕ(st+1))− Es∼τE [ρ(ϕ(s))] , (10)

where ρ is a learned discriminator function (i.e., a neural network) modelling the Kantorovich’s
potential, assigning higher values to states similar to those seen in the expert dataset τE. Further
details about the training procedure to learn these reward functions can be found in (Fu et al., 2018)
for AIRL, as well as (Liu et al., 2019) for SAIL. In this paper, we will consider mainly the SAIL
reward in Eq. (10), as previous work has shown it performs better in this task setting (Rajani et al.,
2023).

3.4 POLICY LEARNING WITH SELF-IMITATION LEARNING

CoSIL makes use of Soft Actor Critic (SAC) (Haarnoja et al., 2018) as the reinforcement learning
backbone of the method with a slight adaptation to the learning rule for policy updates. As we have
two reward functions, rRL as the original objective and rIL as the self-imitation reward, we propose
to adapt SAC to learn two Q-functions with

LQRL
k

=
1

2
(QRL

k (st, at, ξ)− (rRL(ϕ(st), ϕ(st+1)) + γ( min
k=1,2

QRL
k (st+1, at+1, ξ)− α log(π(at+1|st+1, ξ))))

2,

(11)

LQIL
k
=

1

2
(QIL

k (st, at, ξ)− (rIL(ϕ(st), ϕ(st+1)) + γ( min
k=1,2

QIL
k (st+1, at+1, ξ)− α log(π(at+1|st+1, ξ))))

2.

(12)

Since both reward functions can differ in magnitude and to avoid imbalances during training, we
normalize both rewards using z-score normalization. This leads to the following loss function for the
policy π with two Q-networks:

Lπ =(1− ω) min
k=1,2

QRL
k (st, at, ξ) + ω min

k=1,2
QIL

k (st, at, ξ)− α log π (at | st, ξ) , (13)

in which we optimize the policy both for the objective-driven Q-function QRL and the self-imitation
Q-function QIL, weighted by the parameter ω. Each of the critics uses the double-Q trick proposed
by (Hasselt, 2010), by which the minimum output of an ensemble of two neural networks is taken as
the critic’s output.

3Note, that of course in continuous state spaces we measure if ϕ(s) is in a sphere of diameter ϵ around ϕ(st).
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3.5 MORPHOLOGY OPTIMIZATION

Similar to the behaviour learning process, we extend the morphology optimization objective to
incorporate self-imitation. Accordingly, we supplement the objective introduced in (Luck et al., 2019)
by adding the Q-function QIL

j with

max
ξ

E
s0∼p(s0|ξ)

[(1− ωopt) min
j=1,2

QRL
j (s0, πpop(a0|s0, ξ), ξ) + ωopt min

j=1,2
QIL

j (s0, πpop(a0|s0, ξ), ξ)],

(14)

where ωopt is used to weigh the importance of the self-imitation reward versus the environment
reward function. While in principle any optimization method can be used, we found the gradient-free
Particle Swarm Optimization (PSO) optimizer (Kennedy & Eberhart, 1995) to be the most efficient.

Algorithm 1 Co-Adaptation with Self-Imitation
Learning (CoSIL)
Input: DE = [τE

0 , ...], rRL and p

1: Initialize πind, πpop, QRL
ind, QIL

ind, QRL
pop, QIL

pop and rIL

2: ξ ← ξ0, Ξ← ∅, P← ∅, C← ∅, D← DE

3: while not converged do
4: for e = 1, ..., E do
5: Sample s0 from the environment
6: Sample a trajectory

τe,ξ = (s0, πind(a0|s0, ξ), s1, · · · )
7: Add {st,at, r

RL(st,at, ξ), st+1, ξ} to C
8: Sample a batch B from C
9: Update rIL, given B and D

10: Update QRL
ind and QIL

ind, given B and rIL

11: Update πind as in Eq. (13), given B and ωind
12: end for
13: Add the observation o to P, ∀o ∈ C
14: for u = 1, ..., Upop do
15: Sample a batch B from P
16: Update QRL

pop and QIL
pop, given B and rIL

17: Update πpop as in Eq. (13), given B and ωpop
18: end for
19: πind ← πpop, QRL

ind ← QRL
pop and QIL

ind ← QIL
pop

20: Add {ξ, [τ1,ξ, ..., τE,ξ]} to Ξ
21: ξ ← Morph-Opt(P,Ξ, QRL

ind, Q
IL
ind) with Eq.

(14).
22: Re-select the demonstrations D
23: C← ∅
24: end while

It is worth to note that evaluating QRL
j and QIL

j is
computational- and data-efficient because the Q-
function acts as a surrogate function, predicting
the performance of a design ξ based on past
experience and without requiring simulation.
Since the distribution p(s0|ξ) is generally un-
known, we replace it in practice with s0 ∼ R0,
where R0 is a replay buffer containing only start-
ing states. This approach also increases the real-
world applicability of the methodology.

3.6 CO-DESIGN
WITH SELF-IMITATION LEARNING

We present the proposed CoSIL method in Al-
gorithm 1. Two replay buffers are employed in
our system: a buffer C containing only obser-
vations collected from the current morphology,
and a buffer P containing observations obtained
from previous designs. As proposed in (?), we
then use two instances of the previously intro-
duced SAC algorithm, each with its own set of
actor and critic networks: a population agent
which is trained offline after each morphology
change with observations from P and an indi-
vidual agent which is trained online using obser-
vations from C. Every time a new morphology
is selected for evaluation, the individual agent
is initialized by copying the network parameters
from the population agent. We refer to the poli-
cies and critics belonging to the population and individual agents with the subscripts pop and ind,
respectively. This approach has been described by (Luck et al., 2019) to increase data-efficiency
and performance of reinforcement-learning-driven Co-Adaptation. The number of episodes used
to train online under each design is denoted as E, while Upop refers to the fixed amount of offline
updates to the population agent. DE refers to the initial expert observations, and D denotes the set of
demonstrations selected from previous morphologies for their optimal behavior using a selection-
heuristic. The heuristic we use to update the demonstration dataset in line 22 is to replace the 30% of
worst performing trajectories in D with an equal number of best performing trajectories from the last
ten episodes, if the latter’s episodic return is higher. Morph-Opt refers to the design optimization
procedure using PSO with the objective function presented in Eq. (14).

4 EXPERIMENTS

To understand the potential benefits and impact of using a self-imitation learning signal in the co-
adaptation setting we empirically evaluate CoSIL in a number of continuous control experiments
with adaptable design parameters. Due to the time, cost and resource constraints we focus primarily

5
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Figure 1: Designs in the HalfCheetah environment evolved by CoSIL, from left to right and continuing
on the second row. The sequence of designs was obtained from a randomly chosen seed.

Figure 2: Designs in the Humanoid environment evolved by CoSIL, from left to right. The sequence
of designs was obtained from a randomly chosen seed.

on evaluations in simulation in this paper, however, with a particular interest in potential benefits for
data-efficiency to allow for real-world robotic experiments in the future. In particular, we set out to
investigate the following research questions:
(RQ1) Is the use of self-imitation learning advantageous when co-optimising the behaviour and
morphology of agents and robots for a given environmental reward (rRL)?
(RQ2) What are the limitations of the approach? Is self-imitation learning always beneficial?
(RQ3) How does self-imitation compare against pure imitation learning for co-adaptation?

4.1 EXPERIMENTAL SETUP

In our experiments, we used variants of the OpenAI Gym library (Brockman et al., 2016) environments
Humanoid, Walker and HalfCheetah adapted to the co-adaptation setting, as previously proposed
(Rajani et al., 2023). These environments are implemented using the MuJoCo physics engine
(Todorov et al., 2012). Experiments are conducted on a computing cluster with GPU models NVIDIA
RTX4500. We employed 32GB of RAM and were constrained by 72 hours of real time usage per
experiment. The results are averaged across four distinct seeds. For both baselines and CoSIL we
start the training process from an initial training set (i.e., replay buffer) containing the experience of
five randomly sampled designs trained for the same number of episodes, for which standard SAC
was used. Similarly, the initial demonstration dataset for CoSIL was generated from a trained expert

Figure 3: Designs in the Walker environment evolved by CoSIL, from left to right. The sequence of
designs was obtained from a randomly chosen seed.

6
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(a) HalfCheetah
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(b) Walker

2 4 6 8 10
Morphologies

500

1000

1500

2000

2500

E
p

is
o
d

ic
 E

n
v
ir

o
n
m

e
n
t 

R
e
w

a
rd

CoSIL Co-Adaptation (rRL only)

(c) Humanoid-1000
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(d) Humanoid-300

Figure 4: Comparison between our proposed approach CoSIL (rIL and rRL) and Co-Adaptation (Luck
et al., 2019) (rRL only) on the four tasks HalfCheetah, Walker, Humanoid-1000 and Humanoid-300
in MuJoCo. Plots show the performance of each morphology measured by averaging the 20% best
episodes, and arranging the order of the morphologies by performance along the x-axis (see Appendix
for plots without ordering). Experiments were repeated four times with distinct seeds. While each
algorithm was trained for 1000 episodes on Humanoid-1000, in Humanoid-300 only 300 episodes
were used. Comparing Fig. (c) and (d) shows that CoSIL increases the data-efficiency considerably
when allowing for less episodes per morphology.

policy of a randomly selected design. Furthermore, a first experiment on a simulated Unitree Go1
robot can be found in Appendix D.

4.2 SELF-IMITATION LEARNING FOR CO-OPTIMIZATION OF AGENT DESIGN AND BEHAVIOUR

First, we evaluate the general efficiency of Co-Adaptation with Self-Imitation Learning (CoSIL) over
a standard co-adaptation algorithm (Co-Adaptation) (Luck et al., 2019) using only the environmental
reward function rRL (RQ1). For this, we evaluate CoSIL and Co-Adaptation in three environments,
namely HalfCheetah, Walker and Humanoid. As we can see in the results presented in Figure
4, the use of both self-imitation reward rIL and environmental reward rRL generally leads to the
uncovering of better performing morphologies. However, as we can see in Figure 4-4a the gap
between Co-Adaptation and CoSIL is relatively small in simpler tasks such as HalfCheetah, while
CoSIL noticeable outperforms the baseline in tasks such as Walker and Humanoid which require a
larger amount of coordination and reflexes to maintain the pose of the agent. Thus, we conclude that
it is not always beneficial to combine Co-Adaptation with a self-imitation training signal, which is
associated with a higher cost of computation (RQ2). Self-imitation seems to be especially beneficial
in tasks of higher complexity and difficulty: noticeably, in Walker (Fig. 4-4b) CoSIL uncovers
considerably better performing morphologies than Co-Adaptation, outperforming the latter by a large
margin.

In Figure 1, we present sample images taken of ten morphologies evolved by CoSIL for a randomly
chosen seed in the HalfCheetah environment. The evolution process can be followed from left to

7
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Table 1: Average performance of CoSIL and three baselines on the Walker task. CoSIL (no-update)
does not update the set of past expert demonstrations; Coadapt (rRL only) (Luck et al., 2019) uses
only the environmental reward; COIL (rIL only) (Rajani et al., 2023) uses only the imitation reward.

CoSIL Coadapt CoSIL (no update) COIL
Design 1 2340.06 2072.92 2340.06 105.65
Design 5 5027.85 4888.67 4866.31 4323.15
Design 10 5897.35 5340.30 5712.51 4837.46
Design 15 6237.85 5460.68 5951.12 4971.22
Design 20 6599.13 5546.25 6053.81 5112.78
Design 24 6851.80 5608.66 6107.24 5151.46

right, where the second row of designs follows after the first. Similarly, in Figures 2 and 3, we present
the same visualisations for the Humanoid and Walker environments, respectively.

4.3 INCREASED DATA-EFFICIENCY

Figure 5: Comparison of the proposed method
CoSIL versus baselines and ablations on the
Walker task: CoSIL (no-update) does not update
the set of past expert demonstrations; Coadapt (rRL

only) (Luck et al., 2019) uses only the environmen-
tal reward; COIL (rIL only) (Rajani et al., 2023)
uses only the imitation reward. It can be seen that
the proposed method outperforms the baselines
and ablation.

Furthermore, we investigate the impact of
self-imitation learning on data-efficiency in
the most difficult Humanoid task (RQ1). For
this we perform two experiments in which both
CoSIL and Co-Adaptation optimize behaviour
and morphology, in one experiment allowing for
only 300 episodes per morphology (Fig. 4-4d),
and in another for 1000 episodes (Fig. 4-4c).
It is evident from this experiment that while
CoSIL suffers from some performance degra-
dation in the initial designs, the discovery of
high performing morphologies and behaviours
is largely undisturbed in the later training
stage. On the other hand, Co-Adaptation suffers
considerably from a shorter amount of training
time on morphologies (Fig. 4-4d), and is not
able to recover and discover similar performing
morphologies and behaviours than with more
training data (Fig. 4-4c).

4.4 SELF-IMITATION LEARNING VERSUS IMITATION LEARNING FOR CO-ADAPTATION

In this study we investigate in particular the performance differences of using self-imitation learning
versus standard imitation learning for the co-adaptation of design and behaviour. Specifically, we
compare the use of self-imitation learning with two previous approaches, namely Co-Adpatation
(Luck et al., 2019) and COIL (Rajani et al., 2023). As already mentioned, Co-Adaptation (Luck
et al., 2019) optimizes solely for the environmental reward rRL. COIL (Rajani et al., 2023) on the
other hand uses only an imitation reward rIL derived from a fixed set of expert demonstrations.
Furthermore, we compare to a version of CoSIL in which we do not update the set of demonstrations,
i.e., we only perform imitation learning and no self-imitation learning by using only the initial set
of expert demonstrations, which we name CoSIL (no update). However, this version of CoSIL still
uses both imitation reward rIL and environmental reward rRL, which positions it methodological
between CoSIL and COIL. The comparison between these approaches on the Walker task can be
found in Figure 5 and in Table 1. As expected, the pure imitation learning approach from expert
demonstrations COIL (black) reaches an overall lower performance, as it is not directly optimizing
for the environmental reward. On the other hand, using the proposed approach without self-imitation
learning by not updating the set of demonstrations leads to a better performance that standard Co-
Adpatation using environmental rewards, but is outperformed by the proposed approach utilizing
self-imitation learning.
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4.5 IMPACT OF FEATURE-SELECTION
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Figure 6: Evaluation of the impact of marker se-
lection in the HalfCheetah task: CoSIL - foot only
uses only foot markers, while CoSIL - knee,foot
uses the knee marker in addition. It can be seen
that marker selection has a clear impact on perfor-
mance, and in fact using too many markers impacts
the performance of CoSIL negatively.

We perform an additional experiment evaluat-
ing the impact the selection of features to match
with self-imitation learning has on CoSIL. For
this we evaluate CoSIL on the HalfCheetah task
while using two distinct sets of features for the
self0imitation process. Specifically, we train
CoSIL using features extracted from markers
at bot the knee and foot of HalfCheetah, while
the second approach uses only foot markers. In
both cases, we extract the velocity and height-
normalised position relative to the base joint
for each marker, and use these as morphology-
independent features. As can be seen in Figure 6
the selection of the feature set has a clear impact
on the performance of CoSIL. Furthermore we
can note that indeed a minimal set of features,
here the features extracted from the foot marker,
leads to a better performance. We hypothesise
that this allows for a better imitation learning
agnostic to the specific morphological parame-
ters, imposing less restrictions to the possible
movements the policy can learn to maximize the environmental reward.

5 RELATED WORK

Evolutionary Robotics: Designing robot hardware with evolutionary principles has been a long-
standing research effort. Seminal work by (Lipson & Pollack, 2000) explored using genetic algorithms
to co-adapt a simple controller architecture of agents trying to crouch forward as fast as possible.
Similarly, earlier works by (Sims, 1994) used competition as a reward signal in a genetic algorithm
to adapt the bodies of two robots fighting against each other in a virtual arena. Approaches for
evolutionary robotics have been successfully applied to a number of different robotic platforms,
primarily in simulation (Bongard, 2013), although recent works have identified that developing
methods applicable to real world evolution remains an open challenge (Doncieux et al., 2015). Recent
work has focused primarily on the fast changeability of robotic platforms as means to allow real
world evolution of robots, such as extendable legs (Nygaard et al., 2021) or modularity (Hale et al.,
2019; Alattas et al., 2019), although this constrains the range of possible robot designs considerably.

Co-Adaptation with Reinforcement Learning: Recent works have increasingly sought to improve
data-efficiency and applicability of co-adaptation by using a reinforcement learning method as
its main component. Seminal work by (Ha, 2019) introduced a policy gradient framework to
jointly co-adapt the body and behaviour of agents in simulation with REINFORCE (Williams,
1992). (Schaff et al., 2019) extended this approach by proposing a deep reinforcement learning
co-adaptation algorithm. Increased data-efficiency was achieved by (Luck et al., 2019) with the
introduction of an off-policy deep reinforcement learning method using the Q-value function for
design candidate evaluations. Another recent work (Gupta et al., 2021) employed deep reinforcement
learning with mass-parallelization of agent populations in simulation, hence ignoring data-efficiency,
using evolutionary techniques to investigate the Baldwin effect and Lamarckian evolution, for
example.

Imitation Learning: Imitation learning has been a key technique in robot learning to enable agents
to repeat behaviour demonstrated by humans (Fang et al., 2019; Asfour et al., 2008). Early techniques
such as Behaviour Cloning (Pomerleau, 1988; Bain & Sammut, 1995) use a supervised learning
strategy to extract motion policies replicating demonstrated behaviour. Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016) measures the success of an imitator using an
adversarial deep learning approach, employing a logistic loss to differentiate between the policies of
the agent and the demonstrator. Other adversarial imitation learning algorithms have been devised in
an attempt to perform well under changing state and action space representations, as well as different
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transition functions. Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018) produces
disentangled rewards with respect to the environment dynamics. In contrast with the usage of the
Jensen–Shannon divergence (Lin, 1991) in GAIL, State Alignment-based Imitation Learning (SAIL)
(Liu et al., 2019) attempts to minimize the Wasserstein distance (Villani, 2009) between the state
distributions induced by the demonstrator and the agent’s policies. Closest to our work, (Rajani
et al., 2023) proposed a first approach integrating morphological agnostic imitation learning into the
co-adaptation process to adapt agent behaviour and design without an environmental reward and only
given human expert demonstrations. Similarly, for our proposed method we include an imitation
signal in the learning process. Crucially, however, CoSIL employs also the goal-oriented reward as
primary objective for policy and design optimization, using imitation learning as secondary guidance
to imitate the agent’s previous behavior (i.e., self-imitation).

6 LIMITATIONS

While we can show that CoSIL increases the performance of co-adaptation with the help of a self-
imitation reward, there are obvious limitations to this approach. We can argue that CoSIL increases
data-efficiency and achieves higher performance with less morphologies, a key advantage given that
the construction and manufacturing of robot prototypes in the real world is a costly and time-intensive
endeavour. However, it is worth to point out that CoSIL adds a considerable computational overhead.
In addition to multi-body reinforcement learning, CoSIL requires the costly training of discriminator
networks in order to generate rewards via rIL. In our experiments, we run CoSIL as long as possible
on the available cluster infrastructure for a time duration of 72 hours. Standard co-adaptation with
reinforcement learning (Coadapt) was capable of evaluating designs almost twice as fast than CoSIL;
nonetheless, the converged performance of CoSIL was still higher. Hence, as we describe in our
analysis about the limitations of CoSIL, one may not want to employ our proposed self-imitation
learning approach on problems with low task complexity or low dimensionality in the morphology
space as it is the case with the HalfCheetah task. Furthermore, our approach introduces another set of
hyper-parameters, here the weights ω and ωopt, which may have to be fine-tuned for any given task.
This could be alleviated in future work by introducing an automatic adaptation method.

7 CONCLUSION

We presented a new co-adaptation method named Co-Adaptation with Self-Imitation Learning
(CoSIL) which introduces the idea of using a self-imitation reward within a reward-driven co-
adaptation framework using deep reinforcement learning for the purpose of jointly adapting the
morphology and behaviour of embodied agents. To achieve this, we used State-Aligned Imitation
Learning (SAIL) (Liu et al., 2019), introduced a method to select and match expert data from
previously seen morphology-policy combinations, and employed separate Q-value functions for
the objective and imitation rewards to increase data-efficiency when optimizing the morphology
parameters. In experiments on morphology-adaptable agents in simulation, we showed that by
imitating previously seen behaviour we can combat the distributional shift in dynamics, action
and state spaces. Furthermore, we are able to demonstrate that self-imitation in combination with
reward-driven co-adaptation can outperform both classical co-adaptation with rewards and pure
imitation learning approaches. However, CoSIL requires a larger amount of computational effort due
to additional deep neural network training, which makes it not preferable for simple co-adaptation
problems. Nevertheless, with the methodology proposed in this paper we make a further step towards
the useful integration of imitation learning techniques into co-adaptation techniques using deep
reinforcement learning. Several interesting avenues for future work are opened up by our work, such
as the use of quality-diversity approaches for selection of self-demonstrations, or further investigations
of using a self-imitation reward during design optimization.
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A IMPLEMENTATION DETAILS

In tables 2, 3 and 4, we provide the hyper-parameter values used throughout our experiments for
CoSIL, SAC and SAIL, respectively. In Table 5, we specify the versions of the key Python packages
we used to run these experiments. The code we developed to implement CoSIL and to perform our
analysis is publicly available at [censored URL for anonymity].

Table 2: CoSIL hyper-parameters used in all experiments.

Hyper-parameter Value
Batch size 256
Replay buffer capacity 2× 106

Number of episode demonstrations {10,20,40}

Table 3: SAC hyper-parameters used in all experiments.

Hyper-parameter Value
γ 0.99
τ 0.005
Learning rate 0.0003
α 0.2
Automatic entropy tuning False
Hidden size of networks 256
Q-networks weight decay 10−5

Table 4: SAIL hyper-parameters used in all experiments.

Hyper-parameter Value
Batch size 64
Normalization type Z-score
Number of SAIL offline pre-training up-
dates after a morphology change

104

Learning rate 0.0003
Hidden size of the networks 256
Weight decay of the discriminator 10−5

Weight decay of the inverse dynamics
model

10−5

Table 5: Versioned Python software packages.

Package Version
gpy 1.10.0
gpyopt 1.2.6
gym 0.26.2
mujoco-py 2.1.2.14
numpy 1.23.0
pyswarms 1.3.0
python 3.10.9
torch 1.13.1

B ENVIRONMENTS

In this section we give an overview of the environments used, inspired by previous environments
proposed in Luck et al. (2019) and Rajani et al. (2023).
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B.1 HALFCHEETAH

We extend the standard HalfCheetah task to be morphological adaptable by allowing the
change of lengths of the leg-segments. The original leg-lengths of HalfCheetah are
[.145, .15, .094, .133, .106, .07], where the first three numbers represent the lengths of the back
leg, and the latter the lengths of the segments in the front leg. We allow the segment-lengths to be
changeable in within the lower and upper bounds of [x · 0.2, x · 2.0] for a length parameter x. The
environmental reward function is given by

rRL = max

(
xt − xt−1

∆t
− 0.1 · |at|21, 0

)
, (15)

where xt is the x-position of the torso and ∆t the simulation time-step. For HalfCheetah we train
each morphology for 100 episodes and use ω = ωopt = 0.1. As features we use the length-normalised
position and velocity of the foot marker in respect to the base-length of the respective leg. In
HalfCheetah we use a demonstration dataset of 10 trajectories/episodes.

B.2 WALKER

For walker we adapt the morphological parameters (torso-length, leg-segment-top, leg-segment-
bottom, foot-length) with the original parameters [.6, .45, 0.5, .2]. Similarly to HalfCheetah, these
parameters are adaptable within the bounds of [x · 0.2, x · 2.0] for a length parameter x. The
environmental reward function is given by

rRL = (torso-height > 0.5) ·
(
1 +

xt − xt+1

∆t

)
− 0.1 · |α|2, (16)

with α being the orientation of the Walker torso. For HalfCheetah we train each morphology for 200
episodes and use ω = ωopt = 0.2. As features we use the length-normalised position and velocity of
the foot marker in respect to the base-length of the respective leg. In Walker, we use a demonstration
dataset of 20 episodes/trajectories.

B.3 HUMANOID

In Humanoid we allow the symmetric adaptation of the parameters (thigh-length, shin-length, upper-
arm-length, lower-arm-length), with the original parameters [0.34, 0.3, 0.16, 0.16]. These parameters
are adaptable within the bounds of [x · 0.2, x · 2.0] for a length parameter x. The reward function is
given with

rRL = 1.25(xt − xt−1)− 0.1|at|21 −min(0.5× 10−6cfrc ext2t , 10) + 5, (17)

where cfrc extt are the external forces acting on the body of the robot at timestep t. For Humanoid
we train each morphology for either 300 or 1000 episodes, depending on the experiment, and use
ω = ωopt = 0.2 for CoSIL. As features we use the length-normalised position and velocity of the
foot markers and hand markers in respect to the base-length of the respective leg or arm. In Walker,
we use a demonstration dataset size 40 episodes/trajectories.

C PERFORMANCE OF COSIL

As mentioned in the main paper, we show in Figure 4 the performance of each morphology sorted
by its performance. This allows for a better comparison between CoSIL and baselines, as we found
the morphology-optimisation process to be affected by the occasional miss-selection of the design
optimisation process, something affecting both the baseline and CoSIL. We show the raw unsorted
performance data of each morphology as encountered by the co-adaptation processes in Figure 7. It
can be seen that while the mean performance is similar, standard deviations are noticeably increased
due to the aforementioned effect. However, we find that CoSIL still outperforms the baseline. Figure
8 shows the progression of morphological parameters optimized by CoSIL in the two tasks Walker
and Humanoid-300.
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(a) HalfCheetah
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(b) Walker
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(c) Humanoid-1000
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(d) Humanoid-300
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(e) HalfCheetah
(unsorted)
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(f) Walker
(unsorted)
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(g) Humanoid-1000
(unsorted)
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(h) Humanoid-300
(unsorted)

Figure 7: Comparison between our proposed approach CoSIL (rIL and rRL) and Co-Adaptation (Luck
et al., 2019) (rRL only) on the four tasks HalfCheetah, Walker, Humanoid-1000 and Humanoid-300
in MuJoCo. Plots show the performance of each morphology measured by averaging the 20% best
episodes, and arranging the order of the morphologies by performance along the x-axis (see Appendix
for plots without ordering). Experiments were repeated four times with distinct seeds. The top row
(a-d) show the performance of each morphology evaluated from worst (left) to best (right). The
bottom row (e-h) shows the performance of each morphology as encountered during the optimization
process, and number of episodes evaluated. While each algorithm was trained for 1000 episodes
on Humanoid-1000, in Humanoid-300 only 300 episodes were used. Comparing Fig. (c) and (d)
shows that CoSIL increases the data-efficiency considerably when allowing for less episodes per
morphology.

(a) Walker
Parameter 1

(b) Walker
Parameter 2

(c) Walker
Parameter 3

(d) Walker
Parameter 4

(e) Humanoid-300
Parameter 1

(f) Humanoid-300
Parameter 2

(g) Humanoid-300
Parameter 3

(h) Humanoid-300
Parameter 4

Figure 8: Progression of morphology parameters optimised by CoSIL for the two tasks Walker and
Humanoid-300.
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D CO-ADAPTATION OF UNITREE GO1 ROBOT

Figure 9: The simulated Uni-
tree Go1 robot in the Mujoco
Physics simulator performing
forward locomotion when us-
ing the reward in Eq. (19).

For further evaluation of the presented methodologies on a more
challenging system we create a co-adaptable simulation of the Uni-
tree Go1 quadruped as manufactured by Unitree Robotics. The
model of the robot is based on URDF and CAD files provided by
the Mujoco Menagerie. The robot has 12 degrees-of-freedom, with
3 force-controlled joints in each leg. We introduce five design vari-
ables in total: Four design variables ξ1:4 ∈ [0.04, 0.4] influence the
length of the bottom leg-segment of the robot, which is in contract
with the ground. To further increase the difficulty of the task, we also
allow the adaptation of the movement range of the top-most joint
of the robot which is here an abduction joint, which can be changed
with ξ5 ∈ [0.01, 0.8] radians for all four legs simultaneously. This
introduces another change to the action and state spaces: Adapting
this design variable allows for either a reduced or enhanced move-
ment range of the abduction joint. Due to the increased complexity
of the robot platform and difficulty, the following reward function
was used to encourage stable, upright and forward locomotion

forward = (0.5 + (h > hinit − 0.2) + (h > hinit − 0.1) · 0.25 (18)

+ (h > hinit · 0.25))) ·
(
3.0 ·∆+

x

∆t
+ 0.1

)
upright =− 0.05 · (|αy|2 + |αx|)− 0.5 · (|αy| > 1.0)

control =− 0.001· ∥ a ∥2
rRL = forward + upright + control, (19)

where h is the curren height of the robot, hinit the height of the robot when standing, ∆+
x the positive

displacement of the robot along the x-axis, ∆t the time between two steps, αx the rotation of the robot
along its x-axis, and αy along its y-axis, both in radians. a is here the 12-dimensional action vector
with a ∈ [−1, 1]12. For each selected morphology we evaluate 500 episodes, with each episode being
600 steps long at most. We used furthermore an early termination signal if the quadruped fell down,
i.e. we terminated when |αx| > 1.8 or h ≤ hinit − 0.25.
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(a) Performances of discovered morphologies from
worst (left) to best (right) for both methods.
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(b) Performance of CoSIL and rRL-only Co-adaptation
throughout the co-adaptation process.

Figure 10: Performance of the proposed co-adaptation method utilizing self-imittaion learning
(CoSIL, orange) versus co-adaptation without (Coadapt, blue, rRL only). It can be seen in both figures
(a) and (b) that CoSIL is not only able to uncover more better-performing robot morphologies, but also
outperforms objective-only-driven co-adaptation learning without being as affected by distributional
shifts in action- and state-spaces as co-adaptation. Standard deviations and menas were computed
over four experiments.
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D.1 RESULTS

Using the experimental setup of the Unitree robot in the Mujoco physics simulator we evaluate both
the proposed co-adaptation method with self-imitation learning versus the standard reward-driven
co-adaptation process. We performed for each methods four experiments with different seeds and
allowed experiments to run for approximately 250 hours. The result confirm the previous experiments,
that CoSIL shows better performance in more complex task and agent settings, such as humanoid and
the Unitree Go1 robot. The results indicate that CoSIL is more resistant against the distributional
shifts in action- and state-spaces when switching between morphologies (Fig. 10b). Furthermore,
CoSIL is able to uncover better performing combinations of morphology and behaviour than reward-
only-driven co-adaptation, highlighting the increased sample- and data-efficiency achievable with
self-imitation learning in a co-adaptation setting.
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