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Figure 1: (a) PromptLoop uses latent feedback for stepwise prompt refinement, achieving functional
equivalence to diffusion model RL and effective reward alignment (shown with ImageReward). (b)
Multiple timestep-aware prompt updates during a single sampling yield stronger alignment.

ABSTRACT

Despite the recent progress, reinforcement learning (RL)-based fine-tuning of dif-
fusion models often struggles with generalization, composability, and robustness
against reward hacking. Recent studies have explored prompt refinement as a
modular alternative, but most adopt a feed-forward approach that applies a single
refined prompt throughout the entire sampling trajectory, thereby failing to fully
leverage the sequential nature of reinforcement learning. To address this, here
we introduce PromptLoop, a plug-and-play RL framework that incorporates la-
tent feedback into step-wise prompt refinement. Rather than modifying diffusion
model weights, a multimodal large language model (MLLM) is trained with RL to
iteratively update prompts based on intermediate latent states of diffusion models.
This design achieves a structural analogy to the Diffusion RL approach, while re-
taining the flexibility and generality of prompt-based alignment. Extensive exper-
iments across diverse reward functions and diffusion backbones demonstrate that
PromptLoop (i) achieves effective reward optimization, (ii) generalizes seamlessly
to unseen models, (iii) composes orthogonally with existing alignment methods,
and (iv) mitigates over-optimization and reward hacking.
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1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020b; Rombach et al., 2022) have now become the
state of the art for image generation. Recently, increasing attention has been directed toward rein-
forcement learning (RL)-based approaches (Sutton et al., 1998) that align these models with user
preferences through explicit reward optimization. Algorithms such as PPO (Schulman et al., 2017)
and DPO (Rafailov et al., 2023) have been applied directly to fine-tune diffusion model parame-
ters (Black et al., 2024; Wallace et al., 2024). With reward functions defined over aesthetic quality,
safety, human preference, or prompt alignment, these methods successfully steer model behavior
without requiring new training data. However, direct RL fine-tuning remains limited: improvements
often fail to generalize across models, additional enhancements are not easily composable once
fine-tuning is complete, and pathological behaviors such as reward hacking or over-optimization
can arise (Kim et al., 2025b).

In parallel, the rapid development of large language models (LLMs) (Brown et al., 2020; Grattafiori
et al., 2024; Guo et al., 2025) and multimodal large language models (MLLMs)(Liu et al., 2023;
Wang et al., 2024a; 2025b) has inspired a new research direction: refining the input prompts rather
than the diffusion model itself. These prompt-alignment methods either guide an LLM to improve
a user’s prompt or adopt iterative feedback loops for prompt refinement (Mañas et al., 2024; Kim
et al., 2025a; Khan et al., 2025). Building further, Hao et al. (2023) and Wu et al. (2025) propose
to fine-tune LLMs with RL, enabling them to generate goal-directed prompt modifications more
effectively. Compared to weight-level tuning, prompt refinement is attractive because prompts are
shared across all text-to-image (T2I) models, inherently supporting generalization and orthogonal
composability. Moreover, prompts, being abstract and discrete, may act as a buffer against reward
hacking by decoupling reward optimization from direct parameter updates (Lester et al., 2021; Xie
et al., 2022; Genewein et al., 2025). For a detailed discussion of related works, see Appendix A.
Nevertheless, prompt-based strategies remain structurally distinct from weight-level approaches. In
diffusion models, parameters interact directly with intermediate latent variables xt in a feedback
loop, where each denoising step conditions on xt to produce xt−1. By contrast, existing RL-based
prompt refinement methods typically operate in a feed-forward manner, producing a refined prompt
once and applying it uniformly across all timesteps, without leveraging the evolving latent trajectory.

To bridge this gap, we propose a generalized RL-based reward alignment framework called Prompt-
Loop that achieves structural analogy to weight-level fine-tuning while preserving the modularity of
prompt refinement (Fig. 2). Specifically, our method introduces a plug-and-play prompt refinement
module as a policy. This module leverages a MLLM to process feedback from the intermediate
latent xt as one of the states, analogous to diffusion RL formulations, and then refines the prompt ct
as the action injected into subsequent denoising steps. Thus, the sampling dynamics are adaptively
adjusted without direct fine-tuning of the diffusion model itself. Unlike approaches that either delay
feedback until after sampling or confine it to external loops, our method adopts a diffusion RL–style
closed-loop design that embeds refinement directly within a single diffusion pass, ultimately en-
abling fine-grained adaptive control and improved efficiency. Extensive experiments across diverse
diffusion models and reward functions demonstrate that our approach not only achieves effective
reward optimization, but also generalizes robustly to unseen models, composes orthogonally with
existing alignment methods, and mitigates over-optimization and reward hacking. These results es-
tablish PromptLoop as a practical and versatile approach to reward alignment for diffusion models.

Our contributions are summarized as follows:

• PrompLoops incorporates step-wise latent feedback into prompt refinement, achieving
structural analogy to parameter-level tuning without modifying model weights.

• We demonstrate broad generalization, effective reward optimization, and mitigation of re-
ward hacking across diverse models and reward functions.

2 PRELIMINARIES

Diffusion Models. Diffusion models (Ho et al., 2020; Song & Ermon, 2019; Sohl-Dickstein et al.,
2015) are a class of latent variable generative models that approximate the data distribution x0 ∼

2
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Figure 2: Closed-loop prompt refinement framework with RL. At each denoising step, the policy
MLLM takes the current state—posterior estimates, the user query, and prior refinements—and
generates an action, a refined prompt. The diffusion model then updates the state, and this loop
continues until the final image is produced and scored by the reward model.

pdata through a hierarchical latent process. The generative distribution is formulated as

pϕ(x0) =

∫
p(xT )

T∏
t=1

p
(t)
ϕ (xt−1|xt) dx1:T , (1)

where the prior p(xT ) is typically a standard Gaussian distribution. The latent sequence {xt}Tt=1
is obtained via a forward noising process, which follows a Markov chain with a variance schedule
{βt}Tt=1:

q(xt|xt−1) = N (xt |
√
αtxt−1, (1− αt)I), q(xt|x0) = N (xt |

√
ᾱtx0, (1− ᾱt)I), (2)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. Training is carried out by learning to predict the injected
Gaussian noise ϵ using a neural network ϵ̂ϕ, which is often conditioned by c, known as ϵ-matching.
This is equivalent to denoising score matching (DSM) (Vincent, 2011; Song & Ermon, 2019), which
estimates the score function∇xt

log p(xt):

Lϵ−matching = Et,x0,ϵ

[
∥ϵ̂ϕ(xt, t, c)− ϵ∥22

]
, (3)

where xt =
√
ᾱtx0+

√
1− ᾱt ϵ with ϵ ∼ N (0, I). Once trained, the model iteratively reverses the

noising process as follows:

xt−1 = f(xt, zt, c, t) :=
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ̂ϕ(xt, t, c)

)
+ σtzt, (4)

where zt ∼ N (0, I) and σ2
t = 1−ᾱt−1

1−ᾱt
βt. This corresponds to the canonical DDPM sam-

pler (Ho et al., 2020). In general, f(·) can be replaced by a variety of alternative samplers such as
DDIM (Song et al., 2020a), PNDM (Liu et al., 2022), Euler (Karras et al., 2022), DPM-solver (Lu
et al., 2022).

3 PROMPTLOOP

3.1 MDP FORMULATION

In PromptLoop, as shown in Fig. 2, we aim to generate a refined text prompt ct−1 conditioned on
user input q and interpret intermediate visual states xt arising during the reverse diffusion process.
The refined text prompt is then used to generate the next visual sample xt−1. To this end, we adopt
a multimodal language model (MLLM) (Liu et al., 2023; Wang et al., 2024a; 2025b) that accepts
multimodal inputs and outputs refined prompts at each timestep. Then, our RL framework is to
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Diffusion RL PromptLoop (Ours)
State st (xt, q, t) (xt, ct, q, t)
Policy Diffusion model pϕ VLLM πθ

Action at xt−1 ∼ pϕ(·|st) ct−1 ∼ πθ(·|st)
Transition – xt−1 = f(xt, zt, ct−1, t)
Reward R r(x0, q) r(x0, q)

Table 1: Structural analogy and key differences
in MDP formulation between Diffusion RL and
our proposed PromptLoop framework.

[PromptLoop]
Policy 

(MLLM) RewardPrompt 𝑞 Environment
(diffusion)

𝒙!
𝒄"#$

𝒙"#$

(𝒙", 𝒄", 𝑞, 𝑡)
state action

transition 

[Diffusion RL]

RewardPrompt 𝑞 Policy & Env.
(diffusion)

𝒙!

𝒙"#$

(𝒙", 𝑞, 𝑡)
state

action & transition 

Figure 3: Latent feedback establishes a functional
correspondence with Diffusion RL, while Prompt-
Loop diverges by adjusting the diffusion dynam-
ics through time-step aware prompts as actions.

train the MLLM to maximize the reward at the final visual state x0. Formally, our Markov decision
process (MDP) is defined as the T -step reverse process with state st and actions at:

st = (xt, ct, q, t), at = ct−1, (5)

which are conditioned on an initial user prompt q, a previously updated prompt ct, and a visual state
xt. Then, an action is sampled from the MLLM policy as at ∼ πθ(· | st) and the visual state xt−1 is
updated using the frozen diffusion model with the updated prompt ct−1. A terminal reward r(x0, q)
is assigned at the final step.

This is in contrast to directly training the diffusion model’s parameters (Black et al., 2024; Wallace
et al., 2024) using RL, where MDP is defined with the state and action:

st = (xt, q, t), at = xt−1 (6)

where an action is sampled from the diffusion policy xt ∼ pϕ(·|st). The difference between the
original Diffusion-RL and our RL framework is detailed in Tab. 1 and Fig. 3.

Note that our MDP formulation provides a structural correspondence between diffusion-model-
based RL and the prompt refinement framework, enabled by a time-step-aware closed-loop latent
feedback mechanism. On the other hand, in direct fine-tuning of diffusion models using RL, the
diffusion model should be trained as the optimization target. This direct RL fine-tuning remains
limited: improvements often fail to generalize across models, additional enhancements are not eas-
ily composable once fine-tuning is complete, and pathological behaviors such as reward hacking
or over-optimization can arise. In our framework, the timestep-aware prompt-level actions can ap-
proximate the functional role of weight-level control, while retaining plug-and-play modularity,
generalization, composability, and robustness against reward hacking.

Furthermore, our approach has fundamental advantages over other prompt finetuning approaches.
Specifically, prior prompt-tuning approaches either lack an intrinsic feedback loop (Hao et al., 2023;
Wu et al., 2025; Wang et al., 2025a) or deliver feedback only after a full sampling (Mañas et al.,
2024; Kim et al., 2025a; Khan et al., 2025), making them fundamentally different from our MDP
formulation.

3.2 OPTIMIZATION

At the end of each episode (i.e., xT ,xT−1, . . . ,x0), the fully generated image x0 is evaluated by
a reward function r to produce a reward R = r(x0, q). This can encode diverse criteria such as
aesthetic quality (Schuhmann, 2025), safety (LAION-AI, 2023), prompt alignment (Radford et al.,
2021), or human preference (Wu et al., 2023; Xu et al., 2023). The diffusion model and the reward
model are both treated as black-box components: no gradient flows through them, and the policy is
updated solely based on observed rewards.

Policy gradient methods (Williams, 1992; Sutton et al., 1999) optimize this objective by estimating
gradients with respect to θ. A widely used algorithm is Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), which improves stability by constraining policy updates through a clipped surro-
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gate objective:

LPPO(θ) = Et

[
min

(
ρt(θ) Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ) Ât

)]
− βKL[πθold(· | st) ∥ πθ(· | st)] ,

where ρt(θ) =
πθ(at | st)
πθold(at | st)

.

(7)
Here, β is a hyperparameter controlling the strength of the KL penalty, and the advantage Ât mea-
sures how much better an action is than the expected value under the current policy. Especially,
Group Relative Policy Optimization (GRPO) (Guo et al., 2025) replaces the advantage estimator
with a group-normalized reward to stabilize training and reduce variance:

Ai =
ri −mean({rj(·)}Gj=1)

std({rj(·)}Gj=1)
, (8)

where {rj(·)}Gj=1 are the rewards of G sampled outputs for the same prompt. Therefore, we employ
the standard token-level Group Relative Policy Optimization (GRPO) (Guo et al., 2025). Each
training episode is initialized with user prompts drawn from a prompt-only dataset and proceeds via
an online, on-policy reinforcement learning procedure.

3.3 IMPLEMENTATION

As part of our implementation, we design the MLLM’s input to be denoised latent representations
rather than raw noisy states xt. Specifically, we convert the noisy visual latent state xt into its
denoised estimate x̂t, which lies closer to the data manifold and thus provides a more semantically
meaningful input to the policy model (Chung et al., 2022; Yu et al., 2023):

x̂t =
1√
ᾱt

(
xt+1 −

√
1− ᾱt ϵ̂ϕ(xt+1, ct, t)

)
. (9)

While our framework achieves structural equivalence, it introduces an additional computational
overhead: the policy model must be invoked during every denoising step of the diffusion process.
This requirement also significantly increases memory costs, as both the diffusion model and the pol-
icy MLLM must be co-resident on the accelerator (e.g. VRAM), or alternatively, incur large transfer
times under offloading. Such constraints not only limit practical applicability but also complicate
the seamless integration of our approach into existing user-level diffusion-based image generation
pipelines.

To mitigate these issues, we adopt a sparse refinement strategy, where prompt refinement steps are
defined as a set of timesteps R ⊆ {1, . . . , T} with |R| = NR. The policy model is applied only
at these steps rather than at every denoising step. For example, if the policy refines the prompt at
timestep t1 and the next refinement occurs at t2 with t1 > t2, then ct1−1:t2 = πθ(· | st1) and
remains fixed until the next refinement step. During training, R is sampled uniformly at random,
while during inference it is deterministically set at even intervals. This design allows the policy to
generalize to an arbitrary number of refinement steps during sampling.

We empirically observe that visual feedback from intermediate denoised states—though essential
during training—is not strictly necessary at inference. Once the policy has learned the transition
dynamics of the environment (i.e., the diffusion process coupled with the reward model), it can
generate effective refinements without explicit access to intermediate visual signals. Consequently,
refined prompts for all timesteps can be generated a priori, allowing the diffusion process to proceed
without interruptions during inference. This design yields substantial generalization capability and
efficiency gains while remaining fully compatible with existing diffusion model ecosystems, requir-
ing no modification to the generation loop and offering the same ease of integration as feed-forward
prompt optimization methods, yet uniquely retaining the advantages of closed-loop RL fine-tuning.

4 EXPERIMENTAL RESULTS

4.1 METHODS

Tasks. To evaluate our framework as a general black-box reward alignment system, we consider two
categories of reward models: single reward and composite reward. For the single reward setting, we
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+ PromptLoop+ RePrompt+ Qwen2.5-VLSDXL + ReFL

“A cut round spider”

“A giant robot with flashbang lights and weapons”

“An image of a doctor with a kid”

“A crocodile shaped like a donut”

“A beautiful natural woman”

Figure 4: Qualitative comparison of single-reward alignment, illustrating improvements over base-
line methods. (SDXL & ImageReward)

“Plague doctor mask, human, blond hairs, …”

NPNet Diffusion-DPO+ PromptLoop + PromptLoop SD1.5 + PromptLoop

“Apocalyptic scenes of a meteor storm over a volcano”

“A futuristic combat spaceship”

“A demon exiting through a portal from another dimension, …”

Figure 5: Qualitative results showing the orthogonality and generalizability achieved by applying
our method to unseen reward-alignment baselines (SDXL & ImageReward).
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Table 2: Quantitative evaluation on single-reward alignment with SD1.5 and SDXL, showing com-
parison with baselines and demonstrating orthogonality and generalizability.

Training setup Method ImageReward HPSv2 Aesthetics VLLM Score

SDXL
& ImageReward

SDXL 0.7244 0.2805 6.073 0.735
+ ReFL (Xu et al., 2023) 1.0119 0.2740 6.286 0.715
+ Qwen2.5-VL-3B (Bai et al., 2025) 0.5114 0.2739 6.279 0.741
+ RePrompt 1.0148 0.2796 6.518 0.763
+ PromptLoop (ours) 1.0948 0.2807 6.583 0.764

SDXL + Diffusion-DPO (Wallace et al., 2024) 0.9921 0.2868 6.015 0.731
+ PromptLoop (ours) 1.2898 0.2862 6.491 0.763

SDXL + NPNet (Zhou et al., 2025) 0.7357 0.2805 6.059 0.733
+ PromptLoop (ours) 1.1213 0.2811 6.561 0.762

SD1.5 (Rombach et al., 2022) 0.0816 0.2678 5.458 0.675
+ PromptLoop (ours) 0.4546 0.2688 5.813 0.723

SD1.5
& ImageReward

SD1.5 0.0816 0.2678 5.458 0.675
+ DDPO (Black et al., 2024) 0.6051 0.2726 5.562 0.693
+ ReFL (Xu et al., 2023) 0.6248 0.2748 5.577 0.691
+ Qwen2.5-VL-3B (Bai et al., 2025) -0.1720 0.2628 5.668 0.693
+ RePrompt 0.4344 0.2684 5.850 0.722
+ PromptLoop (ours) 0.6320 0.2701 5.853 0.725

SD1.5 + DDPO (Black et al., 2024) 0.6051 0.2726 5.562 0.693
+ PromptLoop (ours) 0.9842 0.2742 5.926 0.726

SD1.5 + Diffusion-DPO (Wallace et al., 2024) 0.3012 0.2717 5.568 0.687
+ PromptLoop (ours) 0.7920 0.2739 5.968 0.734

SD1.5 + ReFL (Xu et al., 2023) 0.6248 0.2748 5.577 0.691
+ PromptLoop (ours) 0.9271 0.2751 5.877 0.724

SDXL (Podell et al., 2023) 0.7244 0.2805 6.073 0.735
+ PromptLoop (ours) 1.0859 0.2807 6.535 0.763

Table 3: Quantitative evaluation on composite-reward alignment with SDXL-turbo, showing com-
parison with baselines and demonstrating orthogonality and generalizability.

Training setup Method GenEval ImageReward HPSv2

SDXL-turbo
& RePrompt

SDXL-turbo (Sauer et al., 2024) 0.5445 0.7769 0.2915
+ Qwen2.5-VL-3B (Bai et al., 2025) 0.5212 0.6417 0.2893
+ RePrompt (Wu et al., 2025) 0.5101 0.7876 0.2912
+ PromptLoop (ours) 0.5483 0.8516 0.2938

SDXL (Podell et al., 2023) 0.5431 0.5518 0.2886
+ PromptLoop (ours) 0.5505 0.7420 0.2906

SD1.5 (Rombach et al., 2022) 0.4206 -0.1315 0.2783
+ PromptLoop (ours) 0.4399 -0.0375 0.2793

adopt ImageReward (Xu et al., 2023), a widely used neural network–based reward function for hu-
man preference and prompt alignment, along with incompressibility, compressibility, and aesthetic
score models (Black et al., 2024; Schuhmann, 2025). These rewards are applied to train Stable Dif-
fusion v1.5 (Rombach et al., 2022) (SD1.5) and Stable Diffusion XL (Podell et al., 2023) (SDXL)
using prompts from the Pick-a-Pic v2 dataset (Kirstain et al., 2023). For the composite reward set-
ting, we follow a RePrompt-style design (Wu et al., 2025), which combines ImageReward, VLLM-
reward (OpenAI, 2025), and additional task-specific signals such as format and length reward. This
composite reward style is intended to better capture human preference and object-focused align-
ment. Compared to the single reward setting, the composite reward is more complex and difficult to
optimize, since it requires balancing multiple heterogeneous objectives simultaneously. We use it to
train Stable Diffusion XL Turbo (Sauer et al., 2024) (SDXL-turbo),a distillation model designed for
few-step generation, with the prompt dataset introduced by Wu et al. (2025).

Evaluations. In evaluation, we validate our model’s capability along three aspects: performance,
orthogonality, and generalizability. For performance evaluation, we compare against baseline reward
alignment methods, including DDPO (Black et al., 2024), ReFL (Xu et al., 2023), Qwen2.5-VL-
3B (Bai et al., 2025), and RePrompt (Wu et al., 2025). For orthogonality, we apply our trained
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Table 4: Ablation study results showing the effectiveness of each proposed component.

Components ImageReward HPSv2 VLLM Score
SD1.5 0.0816 0.2678 0.675
+ policy model -0.2315 0.2617 0.681
+ GRPO training 0.4344 0.2684 0.722
+ multiple improvement 0.4912 0.2690 0.724
+ visual feedback 0.6320 0.2701 0.725

Prompt improvement steps
SDXL (0) 1 2 3 4 5

0.4

0.5

0.6

ImageReward

0.267

0.268

0.269

0.270

0.271 HPSv2

0 2 4 6
prompt improvement steps

0.720

0.725

0.730

VLLM Score

w/ visual feedback
w/o visual feedback

Figure 6: Ablation study demonstrating that incorporating visual feedback and increasing the num-
ber of refinement steps consistently enhances reward alignment. (Left: SDXL, Right: SD1.5; re-
ward: ImageReward)

policy model to other diffusion models that are fine-tuned or augmented with additional modules
for human preference alignment, demonstrating that our method can be applied orthogonally to
existing preference alignment techniques. Specifically, we evaluate on DDPO (Black et al., 2024),
Diffusion-DPO (Wallace et al., 2024), ReFL, and NPNet (Zhou et al., 2025). These experiments
demonstrate that our method can be applied orthogonally to diverse alignment techniques without
requiring retraining. For generalizability, we evaluate our trained policy model on different versions
of text-to-image diffusion models that were not seen during training. It is important to note that for
both orthogonality and generalizability, the policy model was only trained on the vanilla diffusion
model environment, which differs from the sampling variants.

4.2 RESULTS

Single Reward. After aligning SD1.5 and SDXL models with the ImageReward reward function,
we conducted quantitative evaluations (Tab. 2). The results demonstrate that our proposed method-
ology consistently outperforms baselines not only with respect to the target reward, but also across
most evaluation metrics. Crucially, our method is orthogonal, demonstrating broad compatibility
with a variety of human preference alignment strategies—including noise optimization, reinforce-
ment learning, and gradient-based optimization—regardless of their internal mechanisms. While it
may underperform on specific standalone metrics, its strength lies in complementing and enhancing
existing baselines.

The qualitative comparisons in Fig. 4, 5, which present SDXL results, highlight effective alignment
to the reward signal, composability of our method, and robustness against over-optimization, an
aspect not always captured by quantitative metrics. For instance, ReFL optimized the ImageRe-
ward signal through strategies resembling reward hacking from a human perspective. However, this
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degradation was not clearly reflected in commonly used metrics such as HPS or aesthetic scores.
Thus, the qualitative evaluation further underscores the value of our approach in revealing such
vulnerabilities.

Composite Reward. As one of the evaluation tasks, we consider RePrompt-style multi-reward
alignment, which imposes challenging conditions such as a few-step distillation model and object-
centric prompt alignment benchmarks (Tab. 3). Our framework achieves strong qualitative and quan-
titative results under these settings, showing consistently high performance across an object-centric
prompt alignment benchmark and multiple human-preference benchmarks. This indicates that our
method effectively avoids over-optimization while achieving robust alignment. Moreover, we ob-
serve similar generalization to diffusion models unseen during training.

Ablation Studies. We conducted a series of ablation studies to validate the contributions of our
proposed components and to analyze the effects of key hyperparameters. All experiments were
performed on a single reward task (ImageReward) using the SD1.5 model. Tab. 4 summarizes the
results, where each major component was added incrementally to highlight its individual effect.
First, simply applying the policy model to improve prompts without training (+ policy model) de-
graded performance, as the model could not fully capture the task despite the use of a system prompt.
Training the policy model with GRPO (+ GRPO training) led to significant improvements across all
metrics. Incorporating multiple prompt refinements within a single diffusion trajectory (+ multiple
improvements, 5 steps) further boosted performance. Finally, introducing visual feedback substan-
tially increased the target reward without reducing other metrics, suggesting that it helps mitigate
reward hacking (+ visual feedback).

We also investigated the impact of the number of prompt refinement steps (Fig. 6). Increasing the
number of refinement steps improved not only the reward metric but also other evaluation metrics.
Importantly, increasing the number of refinement steps does not increase the number of diffusion
sampling steps. When trained without visual feedback, these improvements were much smaller or
absent. These findings highlight that visual feedback and iterative prompt refinement are indispens-
able components of our equivalence MDP formulation. Together, they establish the closed-loop
structure that mirrors direct RL on diffusion models, and the ablation results confirm that this for-
mulation is not only structurally well-founded but also empirically effective.

For further analyses, including timestep-wise prompt evolution analysis and additional qualitative
results, please refer to Appendix D.

5 CONCLUSION

In this work, we introduced PromptLoop, a plug-and-play framework for reward alignment of
diffusion models via step-wise prompt refinement with latent feedback. By leveraging a multi-
modal policy model trained with reinforcement learning, our method attains structural equivalence
to parameter-level fine-tuning while retaining the flexibility, generality, and modularity of prompt-
based alignment. Experiments demonstrate that PromptLoop achieves effective reward optimiza-
tion, generalizes seamlessly to unseen diffusion backbones, composes orthogonally with existing
alignment techniques, and mitigates over-optimization and reward hacking. These results position
PromptLoop not only as a structurally sound but also as a practically robust complement to weight-
level tuning. Overall, PromptLoop provides a simple yet effective path toward more reliable and
adaptable generative models, while its plug-and-play nature facilitates integration into user-facing
applications, underscoring strong potential for real-world deployment.
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A RELATED WORKS

Aligning Diffusion Models. Following the success of RLHF for LLMs, there has been growing
interest in aligning diffusion models with human preferences or arbitrary reward functions. Methods
such as DDPO (Black et al., 2024), Diffusion-DPO (Wallace et al., 2024), and DanceGRPO (Xue
et al., 2025) treat the diffusion sampling process as a Markov decision process (MDP), and train
the diffusion model using RL algorithms. In contrast to RL-based approaches that rely on black-
box rewards, other methods directly exploit the gradient of the reward or objective function. For
example, ReFL (Xu et al., 2023) optimizes sampling trajectories via reward gradients, applying the
reward to intermediate denoised estimates to avoid full backpropagation. ELLA (Hu et al., 2024)
introduces a timestep-aware connector module that maps encoded prompt embeddings before they
are fed into the diffusion model. More recently, Adjoint Matching (Domingo-Enrich et al., 2024)
casts reward fine-tuning as a stochastic optimal control (SOC) problem, optimizing with reward
gradients.

Prompt-based Improvements for Diffusion Models. In text-to-image generation, prompts serve
as a powerful control signal and have been widely leveraged as a means of alignment. Prior work
such as OPT2I (Mañas et al., 2024), RATTPO (Kim et al., 2025a), and TIR (Khan et al., 2025) ex-
plores LLM-based prompt refinement without fine-tuning, relying on feedback from evaluations of
fully generated images to suggest improved prompts. To align LLM-based prompt refinement more
closely with reward, Promptist (Hao et al., 2023), RePrompt (Wu et al., 2025), and PromptEn-
hancer (Wang et al., 2025a) fine-tune LLMs with reinforcement learning, treating the diffusion
model simply as a black-box reward model in a feedforward manner. RL-based alignment has also
been extended beyond diffusion models to autoregressive (AR) multimodal models, where methods
such as Visual-CoG (Li et al., 2025) and IRGL (Huang et al., 2025) adopt CoT-style approaches that
iteratively generate prompts and images through self-feedback to achieve reward alignment.

B DETAILED ALGORITHM

We summarize the procedure of PromptLoop in two parts. Algorithm 1 presents the training process,
while Algorithm 2 details the sampling procedure.

C IMPLEMENTATION DETAILS

C.1 FRAMEWORK AND TRAINING

We use Qwen2.5-VL-3B-Instruct (Bai et al., 2025) as the policy model, and Stable Diffusion
1.5 (Rombach et al., 2022) (SD1.5), XL (Podell et al., 2023) (SDXL), and XL-Turbo (Sauer et al.,
2024) (SDXL-turbo) as the text-to-image diffusion backbones, with the specific model chosen ac-
cording to the task setting. Generation resolution, classifier-free guidance (CFG) scale, inference
steps, and sampler were set to each model’s default configuration, except that we used the DDIM
sampler (Song et al., 2020a) for SD1.5 and 5 sampling steps for SDXL-turbo.

For GRPO training, we build on the TRL library1 and implement our framework on top of it. Train-
ing is performed with the GRPO algorithm using a learning rate of 5 × 10−6, batch size 8, group
size 8, and β (the KL-regularization coefficient) set to 0.005 for single-reward training and 0 for
composite-reward training, without PPO clipping (num-iterations = 1). We further apply parameter-
efficient fine-tuning (LoRA) (Hu et al., 2022) using the PEFT library2, with rank r = 16, scaling
factor α = 64, dropout 0.05, and updates applied to all linear projection layers in the transformer
blocks. All experiments are conducted in bf16 precision on four NVIDIA A100 80GB GPUs.

To optimize our framework, we use 2 training-prompt improvement steps and 5 sampling-prompt
improvement steps. Visual feedback is resized to 256 × 256 from the original denoised estimates
obtained during the sampling process and provided to the policy model. During sampling, we insert
the built-in token <|image pad|> as a placeholder to replace the visual feedback.

1https://github.com/huggingface/trl
2https://github.com/huggingface/peft
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Algorithm 1: Training PromptLoop
Input: Policy πθ, diffusion denoiser ϵ̂ϕ, sampler f , prompts pdata, reward R, # refinement steps

NR, GRPO group size G, total steps T
Output: Reward-aligned plug-and-play policy πθ

1 repeat
2 Sample q ∼ pdata
3 SampleR ∼ Unif({R ⊆ {1, . . . , T} : |R| = NR })
4 for g ∈ {1, . . . , G} do
5 c← q // init text prompt
6 τg ← [ ] // trajectory: (state, action) pairs
7 Sample xT ∼ N (0, I)
8 for t = T, T − 1, . . . , 1 do
9 if t ∈ R then

10 st ← (x̂t, c, q, t)
11 Sample c ∼ πθ(· | st) // prompt refinement
12 τg.append(st); τg.append(c)
13 end

// perform one sampler step
14 Sample zt ∼ N (0, I)
15 xt−1 ← f(xt, zt, c, t)

16 x̂t−1 ←
1√
ᾱt

(
xt −

√
1− ᾱt ϵ̂ϕ(xt, t, c)

)
17 end
18 rg ← R(x0, q) // reward calculation
19 end
20 Update πθ with GRPO using {(τg, rg)}Gg=1

21 until optimization complete

Algorithm 2: Sampling with PromptLoop
Input: Policy πθ, diffusion denoiser ϵ̂ϕ, sampler f , input prompt q, refinement steps

R ⊆ {1, . . . , T}
Output: Reward-aligned sample x0

1 Sample xT ∼ N (0, I)
2 c← q
3 for t = T, T − 1, . . . , 1 do
4 if t ∈ R then
5 st ← (x̂t, c, q, t)
6 Sample c ∼ πθ(· | st) // prompt refinement
7 end
8 Sample zt ∼ N (0, I)
9 xt−1 ← f(xt, zt, c, t)

10 x̂t−1 ←
1√
ᾱt

(
xt −

√
1− ᾱt ϵ̂ϕ(xt, t, c)

)
11 end
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C.2 PROMPTING POLICY MODELS

The policy models used for prompt refinement are guided by the instruction shown in Fig. 7, 8. As
described earlier, the policy model is conditioned on the raw user input, the previously applied im-
proved prompt, and the current timestep. In addition, we provide auxiliary information such as the
total number of timesteps and the name of the target reward function. The model is then required
to output an improved prompt that is suitable for the current denoising step. For the reward speci-
fication, we only provide the name of the reward (e.g., ImageReward, HPSv2), without detailed
definitions. This design leaves open the possibility of using the reward identifier as a mechanism for
multi-reward alignment in future work. For composite rewards, the increased complexity results in
longer prompts, which can hinder the diffusion model’s responsiveness. To address this, we employ
a dedicated prompt design that explicitly accounts for this issue.

Policy Model Prompt (Single Reward)

User Prompt:
You are helping to refine a prompt for an image generation diffusion model. At each timestep, you
are given the input prompt, lastly improved prompt with timestep, current timestep, total timesteps, a
target reward function, and the partially generated image at the current diffusion timestep. Your task
is to suggest an improved prompt that better aligns with the goal. Do not attempt to correct blurriness,
as the partially generated image is expected to be unclear during diffusion.

Respond only with a valid JSON object in the following format without any other text:

{
"improved_prompt": "<your improved prompt string>"

}

Input:

{
"input_prompt": {input_prompt},
"last_prompt": {applied_prompt},
"target_reward": {target_reward},
"current_timestep": {current_timestep},
"total_timesteps": {total_timesteps},

}

Figure 7: Prompt provided to the policy model for refinement. The instruction specifies the available
context (user input, last improved prompt, timestep information, and reward name), and the model
must output an improved prompt in JSON format.

C.3 REWARD MODELS

In the single-reward setting, we used ImageReward (Xu et al., 2023), incompressibility (Black et al.,
2024), compressibility (Black et al., 2024), and aesthetic score models (Schuhmann, 2025) without
any modification from their official implementations and checkpoints. For the composite reward
in the RePrompt-style setting, we adopted the same components—visual reasoning, length, and
structure rewards. The visual reasoning reward consists of ImageReward and a VLLM-based reward,
weighted equally, where the latter is implemented with gpt-5-mini-2025-08-07 (OpenAI,
2025). The evaluation prompt for the VLLM reward is shown in Fig. 9. This design complements
ImageReward by preventing reward hacking related to weak text alignment and aesthetic biases.
The length reward follows the original formulation without change, while the structure reward is
adapted to match our output format (JSON). Across all reward components, the scoring ranges and
configurations remain unchanged.
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Policy Model Prompt (Composite Reward)

User Prompt:
You are helping to refine a prompt for an image generation diffusion model.

[IMPORTANT] However, you must make minimal changes to the original user’s input and keep the
prompt as simple as possible. I strongly recommend not modifying the input prompt if possible.
[IMPORTANT]

Respond only with a valid JSON object in the following format without any other text:

{
"improved_prompt": "<your improved prompt string>"

}

Input:

{
"input_prompt": {input_prompt},
"last_prompt": {applied_prompt},
"target_reward": {target_reward},
"current_timestep": {current_timestep},
"total_timesteps": {total_timesteps},

}

Figure 8: Prompt provided to the policy model for refinement. The instruction specifies the available
context (user input, last improved prompt, timestep information, and reward name), and the model
must output an improved prompt in JSON format.

VLLM Reward Model Prompt

User Prompt: You are an expert evaluator of text-to-image alignment. Your primary goal is to check
whether the image faithfully matches the input prompt. Pay special attention to object identity, count,
attributes (such as color, size, shape), and spatial relationships.
Penalize any elements that are not requested in the prompt — unnecessary decorations, background
additions, or irrelevant visual noise. Missing or incorrect objects should also lower the score.
The best images are object-centric: focused on the entities and relationships specified in the prompt,
while also being visually coherent and pleasant.

Please rate this image on a scale of 0-10 (10 being perfect) and explain your reasoning. Please
put your score in <score> score </score>. Prompt: {p}

Figure 9: Prompt template for the VLLM reward in the RePrompt-style composite setting, guiding
fine-grained alignment checks and producing a structured score.

C.4 EVALUATIONS

Baselines. We use the official public PyTorch implementations of DDPO3 and ReFL4, training them
on the same dataset and reward model as PromptLoop. For ReFL on SD1.5, we perform full model
fine-tuning, whereas for DDPO and ReFL on SDXL we adopt LoRA-based training. Reported per-
formance values correspond to checkpoints where evaluation rewards match those of PromptLoop.
Qwen2.5-VL-3B is incorporated without GRPO training, relying solely on prompting (including
visual feedback and multi-turn refinement), while maintaining the overall framework. RePrompt
is implemented by removing visual feedback and multi-turn refinement from PromptLoop; reason-

3https://github.com/kvablack/ddpo-pytorch
4https://github.com/zai-org/ImageReward
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ing is also omitted to ensure fair comparison under equivalent conditions. For Diffusion-DPO5 and
NPNet6, we directly used their officially released checkpoints and inference code without modifica-
tion.

Metrics. For the single-reward setting, we evaluate models using ImageReward (Xu et al., 2023),
HPSv2 (Wu et al., 2023), and an aesthetic scoring model (Schuhmann, 2025). These metrics as-
sess prompt alignment, consistency with human preference, and robustness to over-optimization.
We follow the standard evaluation protocols provided in the public implementations without any
modifications.

In addition, we compute VLLM scores using a pretrained multimodal large language model,
Qwen2.5-VL-3B-Instruct (Wang et al., 2024a). The evaluation is performed locally with carefully
designed prompts that balance human-preference alignment and aesthetic quality. Input images are
resized to 512× 512 before being fed into the model. The evaluator is instructed to provide a score
between 0 and 10, with 10 indicating perfect quality. Scores are subsequently normalized to the
range [0, 1] during post-processing. The full evaluation prompt is shown in Fig. 10.

For all these metrics, the evaluation prompts are drawn from the validation split of the Pick-a-Pic v2
dataset.

VLLM Score Metric Prompt

User Prompt:
You are an expert image evaluator. Your task is to judge an image based on two equally weighted
aspects:

1. Faithfulness to Prompt: Does the image accurately reflect the user’s input prompt in terms
of objects, attributes, style, and composition?
2. Aesthetic Quality: Is the image visually appealing, well-composed, and artistically pleasant from a
human perspective?

Please rate this image on a scale of 0-10 (10 being perfect) and explain your reasoning. Please
put your score in <score> score </score>. Prompt: {prompt}

Figure 10: Evaluation prompt used for computing VLLM scores. The scoring model jointly consid-
ers prompt faithfulness and aesthetic quality, and outputs a rating from 0 to 10, which is subsequently
normalized to the range [0, 1] in a post-processing step.

In the composite-reward setting, we additionally evaluate on the GenEval benchmark (Ghosh et al.,
2023), which emphasizes object-centric aspects of text-to-image generation. We directly adopt
the prompts and evaluation procedures provided by the GenEval benchmark without modifica-
tion. When measuring ImageReward, HPSv2, we also use the prompts and the sample counts from
GenEval.

D ADDITIONAL RESULTS

D.1 PROMPT EVOLVEMENT ANALYSIS

Since our method controls the sampling dynamics of the diffusion model through textual prompts,
the evolution trajectory over diffusion timesteps optimized via reinforcement learning remains inter-
pretable, unlike Hu et al. (2024). To analyze this, we examine the outputs of a policy model trained
on SDXL with ImageReward as a single reward signal. Tab. 5 illustrates how the optimized prompts
evolve as the diffusion timesteps progress.

Not every case follows the exact same trajectory, but a consistent overall pattern emerges across ex-
amples. At early timesteps, prompts typically emphasize meta-level descriptors highlighting quality,
style, and realism (e.g., “photorealistic,” “vivid colors”), establishing a broad atmospheric framing.

5https://github.com/SalesforceAIResearch/DiffusionDPO
6https://github.com/xie-lab-ml/Golden-Noise-for-Diffusion-Models
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Table 5: Comparative analysis of prompt evolvement at different timesteps. Early prompts em-
phasize broad atmospheric qualities, intermediate prompts expand into concrete details, and later
prompts either preserve these specifics or revert to prototypical descriptors.

Initial (t = 981.0) Middle (t = 581.0) Final (t = 181.0)

Corgi Dog ...corgi wearing a hat and sun-
glasses, sitting on a beach chair,
with a picturesque beach and
ocean in the background.

...corgi puppy wearing a mul-
ticolored bucket hat and sun-
glasses, sitting on a plush beach
chair with its paws on the cush-
ion, set against a background
of a vibrant sandy beach,
choppy waves, and lush tropi-
cal scenery...

...corgi wearing a colorful straw
hat and large sunglasses, sit-
ting on a sunlit beach chair
with a tropical beach land-
scape, including palm trees and
the ocean waves in the back-
ground.

City Night Scene ...lively city street at night with
bright lights, towering skyscrap-
ers, and people walking, with vi-
brant colors and realistic light-
ing effects, in the background
there are numerous illuminated
signs and decorations.

...bustling city street at night
with bright lights, tall buildings,
and people walking, realistic-
looking photo with vibrant col-
ors and detailed textures.

...lively city street at night with
bright lights, tall buildings
with illuminated signs, bustling
crowds, and vibrant city lights
surrounding it, realistic photo-
like scene with warm and
inviting glow.

Mountain View ...stunning mountain landscape
with snow-capped peaks, vibrant
pine trees, and a clear blue sky,
with stunning lighting and vi-
brant colors.

...stunning mountain landscape
with snow-capped peaks, vibrant
pine trees, a clear blue sky with
fluffy clouds, realistic photo,
warm sunset lighting, beautiful
natural scenery.

...stunning mountain landscape
with snow-capped peaks, vibrant
pine trees, and a clear blue sky
in the background, with color-
ful lighting effects and a fluffy
cloud in the sky.

As inference advances to intermediate timesteps, these high-level descriptors give way to more con-
crete and fine-grained details, such as object properties, environmental elements, or specific lighting
conditions, resulting in richer and more grounded descriptions. Toward later timesteps, we observe
two dominant tendencies: in some cases, prompts continue to preserve the specificity around salient
elements of the scene, while in others they collapse back into prototypical atmospheric cues (e.g.,
“warm glow,” “serene atmosphere”). This overall progression—from evaluative abstraction, to con-
crete specificity, and finally toward either preserved details or prototypical generalities—highlights
how reinforcement-learned prompt evolution balances descriptive richness with compact, high-level
guidance throughout the diffusion trajectory.

Interestingly, the RL-optimized prompt evolvement trajectory aligns with well-known scheduling
strategies of classifier-free guidance (CFG). In diffusion models, it is established that the early steps
focus on generating coarse global structures, while later steps refine finer details (Yu et al., 2023).
Consistent with this, prior studies have demonstrated that applying a strong CFG too early can be
harmful, leading to a variety of scheduling strategies. Two dominant families of approaches exist:
those that monotonically increase CFG strength throughout the sampling process and those that in-
crease CFG up to intermediate timesteps before decreasing it again toward the final steps (Wang
et al., 2024b; Kynkäänniemi et al., 2024; Papalampidi et al., 2025). Since stronger CFG effectively
enforces sharper and more detailed conditioning, our results suggest that the RL-trained policy im-
plicitly learns both types of dynamics at the textual level, adapting prompt specificity in ways that
mirror optimal CFG schedules. This emergent behavior, despite not being explicitly instructed, is
intriguing.

D.2 MORE QUALITATIVE SAMPLES

We present qualitative samples corresponding to the quantitative evaluation of single-reward align-
ment on SD1.5 and composite-reward alignment on SDXL-turbo reported in Tab. 2 and Tab. 3, which
could not be included in the main text due to space constraints. Specifically, Fig. 11, 13 illustrates
comparisons against baseline reward alignment methods, Fig. 12, 14 highlights the orthogonality
of our approach to other reward alignment techniques. The results, consistent with the quantitative
findings, demonstrate clear advantages in prompt alignment and human preference, while also high-
lighting the orthogonality and generalization capability of our approach. In addition to ImageRe-
ward as a single-reward task, we also trained models using aesthetic quality (Schuhmann, 2025),
compressibility, and incompressibility rewards (Black et al., 2024), as shown in Fig. 15. These ex-
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SD1.5 + PromptLoop+ RePrompt+ Qwen2.5-VL+ DDPO + ReFL

“A oriental dragon man wearing a European armour, full body”

“A pair of female hands lying on a wooden table, Aerial view, stock photo”

“Disease Monitoring: Through big data technology, trends in specific disease can …”

“Fantasy castle on a hilltop”

“RAW photo, a portrait photo of 50 y.o. Japanese man in clothes, night Tokyo, …”

Figure 11: Qualitative comparison of baseline methods (SD1.5 & ImageReward).

periments further demonstrate that our proposed framework can be generally applied across diverse
reward types.

E LLM USAGE

Large Language Models (LLMs) were used solely as an editorial aid to improve the clarity and
readability of the manuscript. Specifically, LLMs assisted in polishing grammar, refining sentence
structure, and ensuring consistency in style. They were not used in any aspect of research ideation,
experimental design, data analysis, or in the generation of substantive scientific content. All ideas,
results, and interpretations presented in this paper are the responsibility of the authors.
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DDPO Diffusion-DPO
“A cake with butterflies and rainbows”

“A space car is flying over a futuristic modern city”

“Armored knight holding sword”

“Car made of zebra skin”

“Detailed concept tart of a medieval dungeon exterior, on a rainy day”

+ PromptLoop + PromptLoop ReFL + PromptLoop

Figure 12: Qualitative results demonstrating the orthogonality of our method compared with reward-
aligned baselines (SD1.5 & ImageReward).
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+ PromptLoop+ RePrompt+ Qwen2.5-VLSDXL-Turbo

“a photo of three oranges”

“a photo of a bench”

“a photo of a computer mouse and a spoon”

“a photo of a stop sign and a bottle”

Figure 13: Qualitative comparison of composite-reward alignment, illustrating improvements over
baseline methods. (SDXL-turbo & RePrompt)

+ PromptLoopSD1.5+ PromptLoopSDXL

“a photo of a frisbee above a truck”

“a photo of two trains”

“a photo of an oven and a bed”

“a photo of a person and a sink”

Figure 14: Qualitative results showing the orthogonality and generalizability achieved by applying
our method to unseen reward-alignment baselines (SDXL-turbo & RePrompt).
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SD1.5 + PromptLoop
Incompressibility

SD1.5 + PromptLoop
Compressibility

SD1.5 + PromptLoop
Aesthetics

“A 3D fractal high detail, …” “Anime from the 80s”“3 white horses … crossing a lush forest … ”

“Nightmare creature” “A silhouette of a dong looking at the stars, …”“A beautiful Indian woman by the beach”

“A princess walking on a lake over the water” “A jade statue of an adorable cat”“A flower meadow in the style of van Gogh”

“Fantasy castle on a hilltop, sunset” “A giant robot with flashing lights and weapons”“A glowing mushroom in the forest”

“A flying island, surrounded by clouds, …” “A fisherman fishing on a no man’s lake in …”“An aerial view of beautiful futuristic city”

Figure 15: Qualitative results demonstrating the applicability of our framework to diverse reward
signals.
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