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ABSTRACT

We study the multiple-policy evaluation problem where we are given a set of K
policies and the goal is to evaluate their performance (expected total reward over a
fixed horizon) to an accuracy € with probability at least 1 — §. We propose a sample-
efficient algorithm named CAESAR for this problem. Our approach is based on
computing an approximate optimal offline sampling distribution and using the
data sampled from it to perform the simultaneous estimation of the policy values.
CAESAR has two phases. In the first we produce coarse estimates of the visitation
distributions of the target policies at a low order sample complexity rate that scales
with O(%) In the second phase, we approximate the optimal offline sampling
distribution and compute the importance weighting ratios for all target policies by
minimizing a step-wise quadratic loss function inspired by the DualDICE (Nachum
et al.,2019) objective. Up to low order and logarithmic terms CAESAR achieves a
(df (s.0))?

us
s.a fin(s,a) >’Whered

sample complexity O ( Ij—; Zthl min,,, maxge[g] >,

is the visitation distribution of policy 7, p is the sampling distribution, and H is
the horizon.

1 INTRODUCTION

It is rumored that sometime before the fateful day of March 15, 44 BC, a soothsayer warned Caesar of
the impending dangers awaiting him at the Senate house. "Beware the Ides of March,” the soothsayer
is said to have uttered—a warning that Caesar famously ignored. Immortalized in Shakespeare’s play
”Julius Caesar,” this cautionary tale reminds us of the dangers of misjudgment and the unforeseen
consequences of strategic decisions. In Reinforcement Learning (RL), the stakes, while not mortal,
are still significant as agents navigate complex environments to optimize their actions.

This paper delves into the problem of policy evaluation, a fundamental problem in RL (Sutton &
Barto, 2018) of which the goal is to estimate the expected total rewards of a given policy. This process
serves as an integral component in various RL methodologies, such as policy iteration and policy
gradient approaches (Sutton et al.,|1999)), wherein the current policy undergoes evaluation followed
by potential updates. Policy evaluation is also paramount in scenarios where prior to deploying a
trained policy, thorough evaluation is imperative to ensure its safety and efficacy.

Broadly speaking there exist two scenarios where the problem of policy evaluation has been consid-
ered, known as online and offline data regimes. In online scenarios, a learner is interacting sequentially
with the environment and is tasked with using its online deployments to collect helpful data for policy
evaluation. The simplest method for online policy evaluation is Monte-Carlo estimation (Fonteneau
et al.,2013)). One can collect multiple trajectories by following the target policy, and use the empirical
mean of the rewards as the estimator. These on-policy methods typically require executing the policy
we want to estimate which may be unpractical or dangerous in many cases. For example, in a medi-
cal treatment scenario, implementing an untrustworthy policy can cause unfortunate consequences
(Thapa et al., [2005). In these cases, offline policy evaluation may be preferable. In the offline case,
the learner has access to a batch of data and is tasked with using it in the best way possible to estimate
the value of a target policy. Many works focus on this problem leveraging various techniques, such as
importance-sampling, model-based estimation, and doubly-robust estimators (Yin & Wang, [2020;
Jiang & Li, 20165 |Yin et al., 2021; Xie et al., 2019; |Li et al., [2015)).
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Motivated by applications where one has multiple policies to evaluate, e.g., multiple policies trained
using different hyperparameters, [Dann et al.| (2023) considered multiple-policy evaluation which
aims to estimate the performance of a set of K target policies instead of a single one. At first glance,
multiple-policy evaluation does not pose challenges beyond single-policy evaluation since one can
always use K instances of single-policy evaluation to evaluate the K policies. However, since
the sample complexity of this procedure scales linearly as a function of K this can be extremely
sample-inefficient as it neglects potential similarities among the K target policies.

Dann et al.[(2023) proposed an on-policy algorithm that leverages the similarity among target policies
based on an idea related to trajectory synthesis (Wang et al.l [2020). The basic technique is that if
more than one policy take the same action at a certain state, then only one sample is needed at that
state which can be reused to synthesize trajectories for these policies. Their algorithm achieves an
instance-dependent sample complexity which gives much better results when target policies have
many overlaps.

In the context of single off-policy evaluation, the theoretical guarantees depend on the overlap
between the offline data distribution and the visitations of the evaluated policy (Xie et al.,|2019;|Yin
& Wang, [2020; Duan et al., 2020). These coverage conditions, which ensure that the data logging
distribution (Xie et al., 2022) adequately covers the state space, are typically captured by the ratio
between the densities corresponding to the offline data distribution and the policy to evaluate, also
known as visitation ratios.

A single offline dataset can be used to evaluate multiple policies simultaneously. The policy evaluation
guarantees will be different for each of the policies in the set, depending on how much overlap the
offline distribution has with the policy visitation distributions. These observations inform an approach
to the multiple policy evaluation problem different from (Dann et al.,|2023) that can also leverage
the policy visitation overlap in a meaningful way. Our algorithm is based on the idea of designing a
behavior distribution with enough coverage of the target policy set. Once this distribution is computed,
i.i.d. samples from the behavior distribution can be used to estimate the value of the target policies
using ideas inspired in the offline policy optimization literature. Our algorithms consist of two phases:

1. Build coarse estimators of the policy visitation distributions and use them to compute a
mixture policy that achieves a low visitation ratio with respect to all K policies to evaluate.

2. Sample from this approximately optimal mixture policy and use these to construct mean
reward estimators for all K policies.

Coarse estimation of the visitation distributions up to constant multiplicative accuracy can be achieved
at a cost that scales linearly, instead of quadratically with the inverse of the accuracy parameter
(see Section [4.1)) and polynomially in parameters such as the size of the state and action spaces,
and the logarithm of the cardinality of the policy evaluation set. We propose the MARCH or
Multi-policy Approximation via Ratio-based Coarse Handling algorithm (see Algorithm [3) for
coarse estimation of the visitation distributions. Estimating the policy visitation distributions up
to multiplicative accuracy is enough to find an approximately optimal behavior distribution that
minimizes the maximum visitation ratio among all policies to estimate (see Section[4.2). The samples
generated from this behavior distribution are used to estimate the target policy values via importance
weighting. Since the importance weights are not known to sufficient accuracy, we propose the IDES
or Importance Density Estimation algorithm (see Algorithm I)) for estimating these distribution ratios
by minimizing a series of loss functions inspired by the DualDICE (Nachum et al., |2019) method
(see Section[4.3). Combining these steps we arrive at our main algorithm (CAESAR ) or Coarse and
Adaptive EStimation with Approximate Reweighing algorithm (see Algorithm 2)) that achieves a high
probability finite sample complexity for the problem of multi-policy evaluation.

2 RELATED WORK

There is a rich family of off-policy estimators for policy evaluation (Liu et al., 2018} Jiang & Li,
2016; Dai et al., 2020; [Feng et al.l 2021} Jiang & Huang, 2020). But none of them is effective
in our setting. Importance-sampling is a simple and popular method for off-policy evaluation but
suffers exponential variance in the horizon (Liu et al.| 2018). Marginalized importance-sampling
has been proposed to get rid of the exponential variance. However, existing works all focus on
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function approximations which only produce approximately correct estimators (Dai et al.| 2020) or
are designed for the infinite-horizon case (Feng et al.,|2021)). The doubly robust estimator (Jiang &
Li, 2016} |[Hanna et al.| 2017} |[Farajtabar et al., 2018)) also solves the exponential variance problem,
but no finite sample result is available. Our algorithm is based on marginalized importance-sampling
and addresses the above limitations in the sense that it provides non-asymptotic sample complexity
results and works for finite-horizon Markov Decision Processes (MDPs).

Another popular estimator is called model-based estimator, which evaluates the policy by estimating
the transition function of the environment (Dann et al., [2019; [Zanette & Brunskill, 2019). [Yin &
‘Wang| (2020) provide a similar sample complexity to our results. However, there are some significant
differences between their result and ours. First, our sampling distribution; calculated based on the
coarse distribution estimator, is optimal. Second, our sample complexity is non-asymptotic while
their result is asymptotic. Third, the true distributions appearing in our sample complexity can be
replaced by known distribution estimators without inducing additional costs, that is, we can provide
a known sample complexity while their result is always unknown since we do not know the true
visitation distributions of target policies.

The work that most aligns with ours is|Dann et al.| (2023)), which proposed an on-policy algorithm
based on the idea of trajectory synthesis. The authors propose the first instance-dependent sample
complexity analysis of the multiple-policy evaluation problem. Our algorithm offers a different per-
spective which uses off-policy evaluation based on importance-weighting and achieves a competitive
sample complexity with simpler techniques and analysis.

In concurrent work, |Amortila et al.| (2024b) proposed an exploration objective for downstream
reward maximization, similar to our goal of computing an optimal sampling distribution. However,
our approach utilizes coarse distribution estimators to approximate the objective, which is a novel
technique and an important contribution of our work.

Our algorithm also uses some techniques modified from other works which we summarize here.
DualDICE is a technique for estimating distribution ratios by minimizing some loss functions
proposed by (Nachum et al.l[2019). Our algorithm IDES is built on this idea. However, these are
significant differences, which are discussed in detail in Section Besides, we utilize stochastic
gradient descent algorithms and their convergence rate for strongly-convex and smooth functions
from the optimization literature (Hazan & Kale, 2011)). Finally, we adopt the Median of Means
estimator (Minsker}, |2023)) to convert in-expectation results to high-probability results.

3 PRELIMINARIES

Notations We denote the set {1,2,..., N} by [N]. {X,,}2_, represents the set { X1, Xo, ..., Xn}.
E. denotes the expectation over the trajectories induced by policy 7. O hides constants, logarithmic
and lower-order terms. We use V|[X] to represent the variance of random variable X . T, is the set
of all deterministic policies and conv(X’) represents the convex hull of the set X

Reinforcement learning framework We consider episodic tabular Markov Decision Processes
(MDPs) defined by a tuple {S, A, H, {P,}L, {rp}L v}, where S and A represent the state
and action spaces, respectively, with S and A denoting the respective cardinality of these sets. H
is the horizon which defines the number of steps the agent can take before the end of an episode.
Py, (+|s,a) € AS is the transition function which represents the probability of transitioning to the
next state if the agent takes action a at state s. And (s, a) is the reward function, accounting for the
reward the agent can collect by taking action a at state s. In this work, we assume that the reward is
deterministic and bounded 7, (s, a) € [0, 1], which is consistent with prior work |[Dann et al. (2023).
We denote the initial state distribution by v € AS.

A policy 7 = {m, }2L_| is a mapping from the state space to the probability distribution space over
the action space. 7, (a|s) denotes the probability of taking action a at state s and step h. The value
function V;7 () of a policy  is the expected total reward the agent can receive by starting from step
h, state s, and following the policy =, i.e., V7 (s) = E, [E{ih r1|s]. The performance J(7) of a
policy 7 is defined as the expected total reward the agent can obtain. By the definition of the value
function, we have J(m) = V{"(s|s ~ v). For simplicity, in the following context, we use V{™ to
denote V" (s|s ~ v).
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The state visitation distribution dJ (s) of a policy 7 represents the probability of reaching state s
at step h if the agent starts from a state sampled from the initial state distribution v at step [ = 1
and follows policy 7 subsequently, i.e., d}; (s) = P[s;, = s|s1 ~ v, 7). Similarly, the state-action
visitation distribution dj, (s, a) is defined as d} (s,a) = d} (s)m(a|s). Based on the definition of
the visitation distribution, the performance of policy 7 can also be expressed as J(7) = Vi =

S Y di (s a)ra(s, a).

Multiple-policy evaluation problem setup In multiple-policy evaluation, we are given a set of
known policies {7*}/_| and a pair of factors {€, §}. The objective is to evaluate the performance of

these given policies such that with probability at least 1 — 4, Vrr € {7*} |, [Vi™ — V| < ¢, where
V[ is the performance estimator.

Dann et al.|(2023)) proposed an algorithm based on the idea of trajectory stitching and achieved an
instance-dependent sample complexity,

~ [ H? Z 1 +SHQK

—FE
o 62 dmaw(s) €

; ey

(s,a)eK1:H

where d"" (s) = maxje[k] a" (s) and K" C S x A keeps track of which state-action pairs at step
h are visited by target policies in their trajectories.

Another way to reuse samples for evaluating different policies is to estimate the model. Based on
the model-based estimator proposed by |Yin & Wang|(2020), an asymptotic convergence rate can be

derived,
H u d™ (sn,an) 1
i ZE”k {h’h} Yo () ’ 2)
n = (s, an) Vn

where p is the distribution of the offline dataset and n is the number of trajectories in this dataset.

Though, it looks similar to our results, we have claimed in the Section that there are significant
differences.

3.1 CONTRIBUTIONS

‘We summarize our contributions as follows:

* We propose a novel, sample-efficient algorithm, CAESAR , for the multiple-policy evalua-
tion problem which achieves a non-asymptotic, instance-dependent sample complexity of
~ 7\'k
O Ij—; Zthl MaXie[K] D s.q W) A detailed discussion of this sample complex-
; HE
ity, along with a comparison to existing results, is provided in Section 3}

* We introduce the technique of coarse estimation and demonstrate its effectiveness in solving
the multiple-policy evaluation problem. We believe this technique has potential applications
beyond the scope of this work.

* We propose two algorithms, MARCH and IDES , as subroutines of CAESAR , both of
which may be of independent interest. MARCH provides a coarse estimation of the visita-
tion distribution for all deterministic policies, with a sample complexity of O(w),
despite the exponential number of deterministic policies. IDES offers an accurate estimation
of the marginal importance ratio by minimizing a carefully designed step-wise loss function
using stochastic gradient descent.

* We introduce a novel metric, termed [-distance, for the analysis of the MARCH algo-
rithm. We believe that S-distance may prove valuable in the design of efficient exploration
algorithms.

4 MAIN RESULTS AND ALGORITHM

In this section, we introduce CAESAR which is sketched out in Algorithm [2]and present the main
results. Different from on-policy evaluation, we build a single sampling distribution with which
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we can estimate the performance of all target policies using importance weighting. To that end,
we first coarsely estimate the visitation distributions of all deterministic policies at the cost of a
lower-order sample complexity. Based on these coarse distribution estimators, we can build an
optimal sampling distribution by solving a convex optimization problem. Finally, we minimize a
carefully designed step-wise loss function using stochastic gradient descent to accurately estimate the
importance-weighting ratio. In the following sections, we explain the steps of CAESAR in detail.

4.1 COARSE ESTIMATION OF VISITATION DISTRIBUTIONS

We first introduce a proposition that shows how we can coarsely estimate the visitation distributions
of target policies with lower-order sample complexity O(%) Although this estimator is coarse
and cannot be used to directly evaluate the performance of policies, which is our ultimate goal, it
possesses nice properties that enable us to construct the optimal sampling distribution and estimate
the importance weighting ratio in the following sections.

The idea behind the feasibility of computing these estimators is based on the following lemma which
shows that estimating the mean value of a Bernoulli random variable up to constant multiplicative
accuracy only requires O(1) samples.

Lemma 4.1. Let Z; be i.i.d. samples 7, " " Ber(p). Setting t > M, for some known
constant C > 0, it follows that with probability at least 1 — §, the empirical mean estimator

Py = %22:1 Zy satisfies, |p; — p| < max{e, §}.

Lemma can be used to derive coarse estimators of any policy dr = {d Jrd h=1 with constant
multlphcatlve accuracy with respect to the true visitation probabilities d™ = {dJ, M he1-

CK log(CK/ed)
€

Proposition 4.2. With number of trajectories n > = O(%) we can estimate d™ =

sk
{dy

N ok
2 ™ (s,a)—d}" (s,a)] < max{e, B2V vs e
S,a € A h € [H],k € K]

Proposition 4.2 works by running each target policy independently and applying Lemma.1} How-
ever, this would induce an exponential dependency on S, A, if for example we aim to coarsely
estimate all deterministic policies. To fix this we propose an algorithm named MARCH (see Ap-
pendix [A.2) that leverages the overlapping visitations of the policy set. Through a novel analysis, we

show that MARCH achieves coarse estimation of all deterministic policies with sample complexity
O( pOly(H,S,A) )

We next show that based on these coarse visitation estimators, we can ignore those states and actions
with low estimated visitation probability without inducing significant errors.

Lemma 4.3. Suppose we have an estimator d(s,a) of d(s,a) such that |d(s,a) — d(s,a)| <
gEaX{f:;La)}' If d(s,a) > 5¢, then max{¢, d(sa} = S—Q), and if d(s,a) < 5¢, then
< 7€

Based on Lemma we can ignore the state-action pairs satisfying cZ(s7 a) < 5€’. Since if we
replace €’ by 1557, the error of performance estimation induced by ignoring these state-action pair is

at most 5. For simplicity of presentation, we can set d™(s,a) = d™(s,a) = 0if d"(s,a) < T
Hence, we have that,
Ak k d;]rk (S, a)
|[d} (s,a) —df;, (s,a)| < —y VseS,a€ A h e [H] k€ [K]. 3)

4.2 OPTIMAL SAMPLING DISTRIBUTION

We evaluate the qxpected total rewards of target policies by importance weighting, using sam-
ples {s%,a,sh, ab, .. sH,alH}f 1 drawn from a sampling distribution {z5}L ;. Specifically,

vrt=1yr Z h ) Wm(sz,alﬁ) k € [K]. To minimize the variance of our estimator
(see Appendlx , we find the optimal sampling distribution by solving the following convex
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Algorithm 1 Importance Density Estimation (IDES )

Input: Horizon H, accuracy e, target policy 7, coarse estimator {Jﬁ}le , {fin Y1, , feasible sets
{Dp}H_ | where Dy (s,a) = [0,2d7 (s, a)] and dataset .

Initialize w) =0, h = 1,..., H, and set uo(so, a0) = 1, Py(s|s0, ap) = v(s), o = fig = 1.
for h =1to H do

L L B e (d5(s,0)% | (dr_i(5,0))°
Set the iteration number of optimization, n;, = C}, (62 Zs}a phh(s,a) + fin_1(s,a) , where

C}, is a known constant.

for i =1tony do ‘ ‘ y
Sample {s},, a;, } from i, and {s}, _,aj,_y, s}, } from pup_y.
Calculate gradient g(w) '),

i—1 - i i

i1 wy (s,a)_, i Wh—1(8},_1,a}_1) y
g(w s,a) = ———I(s}, = s,a; =a) — — ; 7 m(als)I(s; = s).
( h )( ) ,uh(s,a) ( h h ) Mh—l(sh,pah,l) ( | ) ( h )

, , i
Update wj, = Projwep, {w, ~ —m,9(wy, ")}
end for ‘
Output the estimator @y, = ﬁ Sorh wh.
i=1

end for

optimization problem,

. . (d7 (s.0))”
., = arg min max =~ helH] @)
2% g,u kelK] - /,L(S7a) [ }

However, in some cases, the optimal * may not be realized by any policy (see Appendix [A.1.3).
Therefore, to facilitate the construction of the sampling distribution p*, we constrain py, to lie within
the convex hull of D = {d}; : m € 4.} which formulates the constrained optimization problem,

d?Tk 2
My, = argmin max M, h € [H]. ®)
peconv(D) FE[K] s.a M(sv a)
We denote the optimal solution to (5) as p; = acdy . Since d;{k is unknown, we can only

. N mEllger
solve the approximate optimization problem,

dATrk 2
fij, = arg min max 7( h (5,0))

, h € [H], (6)
ueconv(ﬁ) kelK] s,a M(SVQ)

where D = {JZ : 7 € Ilger ). We denote the optimal solution to (@) by iy = Y
Correspondingly, our real sampling distribution would be i} = " oody .

mEllger
€l get

Remark 4.1. Here, we assume an oracle which gives us the optimal solution of any convex optimiza-
tion problem. In this work, we focus on the sample complexity which aligns with most theoretical
works on reinforcement learning (Amortila et al.| |2024a}; |Liu et al.| |2025). We leave it as an open
problem of devising a both sample-efficient and computationally efficient algorithm.

The next lemma tells us that the optimal sampling distribution also has the same property as the
coarse distribution estimators.

~ . Trk
Lemma 4.4. prropertyholds: \d’,{k(s,a) —dzk(s,a)| < w, VseS,ac A he[H]ke
K], then |ii5 (s, a) — if(s, a)| < 222,
4.3 ESTIMATION OF THE IMPORTANCE DENSITY

In this section, we introduce the IDES algorithm for estimating the importance weighting ratios
which is sketched out in Algorithm[I} IDES is based on the idea of DualDICE [Nachum et al.| (2019).
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In DualDICE, they propose the following loss function
1

M (w) = §Es,a~u [w?(s,a)] — Egqnar [w(s, a)]. @)
The minimum of ¢ (-) is achieved at w™*(s,a) = %, the importance weighting ratio. We

want to emphasize that IDES is different from DualDICE in many aspects instead of as a simple
extension. Specifically, first, IDES employs coarse distribution estimators to tackle the on-policy
limitation of the second term in (7)), while DualDICE transforms the variable based on Bellman’s
equation which only works for infinite horizon MDPs. Second, IDES uses a step-wise objective
function, requiring step-to-step optimization and analysis, while DualDICE formulates a single loss
function. Third, although both IDES and DualDICE achieve a sample complexity of O(C/€?), the
value of C' in DualDICE’s bound is not sufficiently tight for our purposes, which involve deriving
instance-dependent guarantees. In contrast, we offer a precise analysis linking the value of C' in IDES
to the expected visitation ratios. Lastly, IDES provides high-probability results for visitation ratio
estimation, whereas DualDICE’s results hold only in expectation.

More precisely, we define the step-wise loss function of policy 7 at each step h as,

. 1 w?(s, a) wp—1(s',a’)
gh(’UJ) = 5E57UINI]}L |:ﬂh(s7a) — ES',a’Nﬂhfl,SNPh,1(~|s’,a’) za: mw(s,a)ﬂ(ab)

where jip, = >y, Grdj is the sampling distribution, and i, = > cp. dj‘,cfz is the optimal
solution to the approximate optimization problem (@), and we set [ig(so,a0) = 1, Po(s|so,a0) =
v(s),wo = fip = 1 for notation simplicity.

This loss function possesses two nice properties. First, it is v-strongly convex and £-smooth where

7 = ming 4 Z:Ej Zg ,€ =max, g ﬁ ZEZZ; Based on the property of our coarse distribution estimator,
i.e., % < ﬁ :”Efgg < %, which is a trivial corollary from Lemma ~ and £ are bounded as well as

their ratio, i.e. £ < % This property actually plays an important role in deriving the final sample
¥
complexity, which we discuss in Appendix [A.1.5]due to space constraints.

In the following lemma, we show that our step-wise loss function has friendly step-to-step error
propagation properties.
Lemma 4.5. Suppose we have an estimator wy,_1 at step h — 1 such that,

>

s,a

- wWp_1(8,a
fin_1(s, a)ﬁli()

—dr_,(s,a
,Uh_l(S,Cl) h 1( )

<e

b

then by minimizing the loss function (], (w) at step h to | VL (wn (s, a))|[1 < € we have,

>

s,a

s, ) 2D g g

< 2e.
ﬂh(sa Cl) B

Lemma[.5]indicates that using the distribution ratio estimator from the previous step allows us to
estimate the ratio at the current step, introducing only an additive error. Consequently, by optimizing
step-by-step, we can achieve an accurate estimation of the distribution ratios at all steps, as formalized
in the following lemma.

Lemma 4.6. Implementing Algorithm we have the importance density estimator % such that,
~ ZI)h (S, a) k €

E ——= —d7 < —, he[H] 8

; Mh(s’a)ﬂh(s,a) h (s,a)] = 4H7 G[ ] ( )

4.4 MAIN RESULTS

We are now ready to present our main sample complexity result for multiple-policy evaluation,
building on the results from previous sections. First, we introduce a Median-of-Means (MoM)
estimator (Minsker}, |2023), formalized in the following lemma, and a data splitting technique that
together can be used to convert (8] into a high-probability result (see Appendix [A.1.7).
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Algorithm 2 Coarse and Adaptive EStimation with Approximate Reweighing for Multi-Policy
Evaluation (CAESAR )

Input: Accuracy e, confidence 4, target policies {7*}< .

Coarsely estimate visitation distributions of all deterministic policies and get {cf” : 7 € Mget )
Solve the approximate optimization problem (6)) and obtain {d : 7 € et }-

Implement Algorithm |1{with data splitting and obtain MoM estimators {ﬁ)”,c ML
Build the final performance estimator { V" M by @
Output: {V;7 }< .

Lemma 4.7. Let x € R and suppose we have a stochastic estimator & such that E[|Z — z|] < {.
Then, if we generate N = O (log(1/9)) i.i.d. estimators {Z1,%2,...,TN} and choose Tpronr =
Median(i1, 22, . .., &N ), we have with probability at least 1 — 6,
|5i'MoM — $| S €.
With the importance density estimator 1:::((22)) , we can estimate the performance of policy 7*,
n H k, :
N | Wl (st,al) C
Pt = D3 St (4 a). ©
w20 2 o)

where {si,a}}" ; is sampled from fiy,.

We present our main result in the following theorem and leave its detailed derivation to Ap-
pendix [A.1.7

Theorem 4.8. Implement Algorithm[2} Then, with probability at least 1 — 6, for all target policies,
we have that |VfrlC - Vl’rk | < €. And the total number of trajectories sampled is,

S (HE L (df" (s,a))?
”O<6221§2%M ) (10)

h=1 M?L(S7a)

Besides, the unknown true visitation distributions can be replaced by the coarse estimator to provide
a concrete sample complexity.

5 DISCUSSION

In this section, we analyze our sample complexity, comparing it with existing results and offering
several noteworthy findings.

5.1 LOWER BOUND AND SOME SPECIAL CASES

For off-policy evaluation, the CR-lower bound proposed by Jiang & Li|(2016) (Theorem 3) demon-
strates that there exists an MDP such that the variance of any unbiased estimator is lower bounded

. 2
by Zthl E, [(dh(‘”‘”)) V[V,f(sh)]} , where 7 is the policy to evaluate and p is the sampling

tn(Sh,an)

distribution. Applying this result to multiple-policy evaluation problem gives us the lower bouncﬂ

2
k

. H d;{ (sh,ah) 7rk . .
min, maxge(x] Y1 Ep (ml(s;lah) V[V,™ (sn)]|. From the variance-unaware perspective,

where the variance of the value function is simply bounded by H?, our sample complexity matches
this lower bound since our sampling distribution is optimal (up to the dependency on H). And we
believe that a more refined variance-dependent result is achievable and leave it to future works.

"Here, we discuss the lower bound limited to the method based on a single sampling distribution. A more
general lower bound for the multiple-policy evaluation problem that bypasses this single sampling distribution
assumption is still an interesting open question.
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We then analyze the sample complexity in specific cases, which yield some notable results. First,
in the scenario where all target policies are identical, we have ™ = d,Vk € [K]. In this case, the
optimal sampling distribution is 4* = d, and the sample complexity becomes O(Ig—;), showing no
dependency on S or A which is consistent with the result from the Monte Carlo sampling method up
to the dependency on H.

Besides, building on our instance-dependent results, we can derive an instance-independent upper
bound for the multiple-policy evaluation problem. Let the sampling distribution 11}, be s%ax Zs)a dZ*“’“ ,

where 7, , = argmaxye(x) df; (s,a). Since pj is the optimal solution and ), is a feasible solution,
we have,
k
dT (s,a))?
max (dh (s,a)” h’*( @) < max »
RelK) £ pp(s,a) 7 kelK] S (s, a)

Sy

ke .
By the definition of 4}, we have 3, %7?23)2

complexity li is consistently upper-bounded by 0 (H ZQS A) . Notice that there is a hidden logarithm
term log(K/J) in the bound where K is number of policies we aim to evaluate. In the case where
we are tasked to evaluate all deterministic policies, K equals A°, leading to an upper bound of
O(%). This allows us to identify e—optimal policies for any reward function, effectively solving
the reward-free exploration problem (Jin et al., 2020). Our result matches their upper bound and also
aligns with the lower bound up to the dependency on H.

< SA which demonstrates that our sample

5.2 COMPARISON WITH EXISTING RESULTS

First, compared to the naive uniform sampling strategy over target policies as described in (Z)), our
method has a clear advantage. Our sampling distribution is optimal among all possible combinations
of the target policies, including the naive uniform strategy.

Next, we compare our result with the one achieved by Dann et al.| (2023) as described in (I). A
significant issue with the result by Dann et al.| (2023) is the presence of the unfavorable —=-7

dm,az(s) >
which can induce an undesirable dependency on K.

To illustrate this, consider an example of an MDP with two layers: a single initial state sq ; in the first
layer and two terminal states in the second layer s 1, S2 2. The transition function is the same for all
actions, i.e., P(s2,1|s1,1,a) = p and p is sufficiently small. Agents only receive rewards at state sz 1,
regardless of the actions they take. Hence, to evaluate the performance of a policy under this MDP, it
is sufficient to consider only the second layer. Now, suppose we have K target policies to evaluate,
where each policy takes different actions at state s ; but the same action at any state in the second
layer. Since the transition function at state s; ; is the same for any action, the visitation distribution
at state s 1 of all target policies is identical. Given that p is sufficiently small, the probability of
reaching s 1 is P[sa; € K?] = 1 — (1 — p)X ~ pK. According to the result (1)) by Dann et al.
(2023)), the sample complexity in this scenario is O(g) which depends on K. In contrast, since the
visitation distribution at the second layer of all target policies is identical, our result provides a sample
complexity of O(E%) without dependency on K. Nevertheless, it remains unclear whether our result
is universally better in all cases (omit the dependency on H).

5.3 NEAR-OPTIMAL POLICY IDENTIFICATION

Besides policy evaluation, CAESAR can also be applied to identify a near-optimal policy. Fixing
the high-probability factor, we denote the sample complexity of CAESAR by O(%), where

II is the set of policies to be evaluated and -y is the estimation error. We provide a simple algo-
rithm based on CAESAR in Appendix [A.4]that achieves an instance-dependent sample complexity
O(max,>. @(71'127)) to identify a e—optimal policy, where I, = {7 : V;* — Vi™ < 8v}. This result
is interesting as it offers a different perspective beyond the existing gap-dependent results (Sim-
chowitz & Jamieson, 2019} Dann et al.,|2021)). Furthermore, this result can be easily extended to the

multi-reward setting. Due to space constraints, we leave the detailed discussion to Appendix
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6 CONCLUSION AND FUTURE WORK

In this work, we consider the problem of multi-policy evaluation. We propose an algorithm, CAESAR
, based on computing an approximate optimal offline sampling distribution and using the data
sampled from it to perform the simultaneous estimation of the policy values. CAESAR uses
<k

n =0 Ij—; Zthl MaXke (K] Dgq %%;)2 trajectories and with probability at least 1 — ¢
we can evaluate the performance of all target policies up to an € error. The algorithm consists of
three techniques. First, we obtain a coarse distribution estimator at the cost of lower-order sample
complexity. Second, based on the coarse distribution estimator, we show an achievable optimal
sampling distribution by solving a convex optimization problem. Last, we propose a novel step-wise
loss function for finite-horizon MDPs. By minimizing the loss function step to step, we are able to
get the importance weighting ratio and a non-asymptotic sample complexity is available due to the
smoothness and strong-convexity of the loss function.

Beyond the results of this work, there are still some open questions of interest. First, our sample
complexity has a dependency on H* which is induced by the error propagation in the estimation of
the importance weighting ratios. Specifically, the error of minimizing the loss function at early steps,
e.g., h = 1 will propagate to later steps e.g., h = H. We conjecture a dependency on H? is possible
by considering a comprehensive loss function which includes the entire horizon instead of step-wise
loss functions which require step by step optimization. Second, as discussed before, we believe that a
variance-aware sample complexity is possible through a more careful analysis. Besides, considering
a reward-dependent sample complexity is also an interesting direction. For example, in an MDP
with sparse rewards where only one state-action has non-zero reward; a better sample complexity
than CAESAR ’s may be possible by focusing on state-action pairs with non-zero rewards. Finally,
we are interested to see what other uses the research community may find for coarse distribution
estimation. In our work, the coarse distribution estimator plays an important role throughout the
algorithm. We believe this type of estimator can be of independent interest.
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A APPENDIX

A.1 PROOF OF THEOREMS AND LEMMAS IN SECTION[4]

A.1.1 PROOF OF LEMMA 411

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s
inequality (Freedman, |1975), as stated in e.g., (Agarwal et al., 2014; Beygelzimer et al., 2011).

Lemma A.1 (Simplified Freedman’s inequality). Let X1, ..., X1 be a bounded martingale difference
sequence with | X,| < R. For any 8 € (0, 1) and n € (0,1/R), with probability at least 1 — &',

ZXZ<772E k’g}?/y) (11)

where B[] is the conditional expectatwrﬂ znduced by conditioning on X1, - , Xp_1.

Lemma A.2 (Anytime Freedman). Let {X;}$°, be a bounded martingale difference sequence with
|X:| < R forallt € N. Forany ' € (0,1), andn € (0,1/R), there exists a universal constant
C > 0 such that for all t € N simultaneously with probability at least 1 — ¢,

C log(t/é’)
X, <y EyX7]+ (12)
> i< 03 Edxp+ S8
where By[-] is the conditional expectatzon lnduced by conditioning on X1,--- , Xy_1.

Proof. This result follows from Lemma Fix a time-index ¢ and define 6; = 43 t2 Lemma
implies that with probability at least 1 — 0y,

S <03 3] 4 B,

A union bound implies that with probability at least 1 — 22:1 0y >1—4,

i i log(12¢2 /5
ZXZ < nZEé [XZQ] + Og(n/)
= =1

St
%) U;Ee x2] + Clogét/é’).
holds for all t € N. Inequality (¢) holds because log(12t%/6") = O (log(td")).
[
Proposition A.3. Let ' € (0,1), 8 € (0,1) and Zy,--- , Zr be an adapted sequence satisfying

0<z, < Bfor all ¢ € N. There is a universal constant C' > 0 such that,
T

T BC' 1o / T 50" 1o ,
(-3 Egz - B <577 < (14 Y Rz + 2P
t=1 =1 =1

with probability at least 1 — 20’ simultaneously for all T € N.

Proof. Consider the martingale difference sequence X; = Z; — E;[Z;]. Notice that | X;| < B. Using
the inequality of Lemma we obtain that for all n € (0,1/B?)

Clog(t/'
ZXK < nZIE [X2] + log:/ )

(i) /

)

We will use this notation to denote conditional expectations throughout this work.

13
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for all t € N with probability at least 1 — §’. Inequality (i) holds because E,[X?] < B?E[|X,|] <
2B%E,[Z;] for all t € N. Setting ) = % and substituting Zzzl X, = Zzzl Zy — Ey[Zy],

t

t 2 /
S Z0< (14 8) S Bz + 22 CL0e) Cl;g(t/ 7) (13)
=1 =1

with probability at least 1 — ¢’. Now consider the martingale difference sequence X, = E[Z;] — Z;
and notice that | X;| < B2. Using the inequality of Lemma[A.2] we obtain for all € (0,1/B2),

Sx; < S B (xp)?) + CLosl/0)

{=1 {=1 N
C'log(t/d’
| Clog(t/d)

Setting 7 = 52 and substituting 3°y_, X, = >;_, E[Z/] — Z, we have,

‘ 23201og(t/5')
E[Z,] < = - =7/ (14)
g et <3z

with probability at least 1 — ¢’. Combining Equations [13|and |14]and using a union bound yields the
desired result.

O

Let the Z, be i.i.d. samples Z, i Ber(p). The empirical mean estimator, p; = % 22:1 Z, satisfies,
2C" log(t/d") 2C" log(t/d")
pt Bt

with probability at least 1 — 26’ for all ¢ € N where C’ > 0 is a (known) universal constant. Given
e>0sett > wbﬂ%‘f/é) (notice the dependence of ¢ on the RHS - this can be achieved by setting

(1—=8)p— <p<(A+pB)p+

t> %fm,) for some (known) universal constant C > 0).
In this case observe that,
(1=B)p—€¢/8<pe < (1+B)p+e/s.
Setting 8 = 1/8,
Tp/8 —€/8 <Py < 9Ip/8+€/8,

so that,

p—Dr <p/8+¢/8,
and

Pt —p<p/8+¢€/8,
which implies [p; — p| < p/8 + ¢/8 < 2max(p/8,¢/8) = max(p/4,€¢/4).

A.1.2 DERIVATION OF THE OPTIMAL SAMPLING DISTRIBUTION (4]

Our performance estimator is,
H k, .
.k 1 < ar (st,at) .
|V Zh \Thy Thl (gt gl ke [K].
1 n;hil /th(sz’a;l) T(Sh’ah)’ [ ]

14
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Denote Zf_l %’“j";rh(sh, aj,) by X;. And for simplicity, denote E (s, o)y .....(sm,am)~pn DY

[E,., the variance of our estimator is bounded by,

u d7r (st al) ’
E.[X7]=E A (s, af,)
g : <hz:1 fn (8}, ap,) po

[ T (drt (st at) ’
<E ho On i i
- Z:: (Mh (s, ap) rh(sh,ah))
" 2
Z Sh’ah)
hel Mh sh,ah)

H dw"’(z‘ 1)
Sp,a
— d};k [ 7 i

1n (8} ap,)

The first inequality holds by Cauchy — Schwarz inequality. The second inequality holds due to the
assumption 7, (s, a) € [0, 1].

Denote Zthl E .« [dh(%ah)] by puk. Applying Bernstein’s inequality, we have that with
h

p,h(sh,a} )

probability at least 1 — § and n samples, it holds,

2Hp,, 1 log(1/6) n 2M; log(1/9)
n 3n ’

V- vl <

k
H d;: (sh,ah)
where M}, = maxX,, a,,.. sp.an D het TS rh(Sh, an).

To achieve an e accuracy of evaluation, we need samples,
8Hp, 1 log(1/6)  4Mj;log(1/6)
3 + .
€ e
Take the union bound over all target policies,
8H maxje (k) Pu,k log(K/(S) AM log(K /)
€2 3e ’

Nk <

n, <
where M = max¢(x) Mg-

We define the optimal sampling distribution p* as the one minimizing the higher order sample
complexity,

un k€K (s, a)

(dzk(s’a))z h=1,... H.

—argmlnmax ~ 7 h=1,...,
Hh ke[K] sa /J'h(87a)

"
py, = argmin max E (s a) [h(s,a)]
h

A.1.3 AN EXAMPLE OF UNREALIZABLE OPTIMAL SAMPLING DISTRIBUTION

Here, we give an example to illustrate the assertation that in some cases, the optimal sampling
distribution cannot be realized by any policy.

Consider such a MDP with two layers, in the first layer, there is a single initial state s; 1, in the second
layer, there are two states s 1, 52 2. The transition function at state s ; is identical for any action,
P(s2,1]81,1,a) = P(s2,2|51,1,0) = % Hence, for any policy, the only realizable state visitation
distribution at the second layer is da(s2,1) = da(s2,2) = %

Suppose the target policies take K > 2 different actions at state s ; while take the same action at
state sg 2.

15



Under review as a conference paper at ICLR 2025

By solving the optimization problem (@), we have the optimal sampling distribution at the second
layer,

K? 1
p3(s2,1) = 11 K2 15(52,2) = 1+ K2

which is clearly not realizable by any policy.
A.1.4 PROOF OF LEMMA [4.3]
Proof. The gradient of ¢} (w) is

Vw«&@fz<w>::gj§j§§ = () P(sl o )als)

wp—1(s',a’)
fin-1(s",a’)"

s’ a’

Suppose by some SGD algorithm, we can converge to a point wjy, such that the gradient of the loss
function is less than e,

A :[’lh(87 o / Wh— 1( al)
VI (b — ~ 5 a, S|s,a )wla — | fe
V€5 (@n )1 52&: iin(s,0) sz:a’ﬂh 1 P(sls’,a')m(als )/ih (5, a)
By decomposing,
fin(s. ) ' Y (afs) 21 )
- n—1(s’,a")P(s|s',a")m(als) ————=
/ffh(57 sz:a"u 1 ( ‘ ) ( ‘ ):uhfl(slva/)
in(sia (s, )

=|E )wh( a) —dj(s,a) +dj(s,a) Z,uh 1(s',a ) P(s|s',a")m(als)

s’ a’

fin-1(s',a")

fin(s;a) . / wp—1(s",a’)
> = wp(s,a) — dj (s,a d7 (s,a) — s a")P(s|s',a")m(a|s) ————=
= ,LLh(S,(Z) h( ) h( ) h Sza://’bh 1 ( | ( | )N’h 1( a)
W (s,a)
= s,a)————= —dj (s,a
Mh( ),uh(s,a) h( )
/
P(s]s’,a’) dr_.(s',d sawh1<)>.
|3 atale) (0 4(5) = () T2
Hence, we have,
_ Wp(s,a) o
bn(s,a)————= —d; (s,a
; h( )u;,(s,a) h( )
< b S| Pl rtals) (011 (1) () )
s,a |s’,a’ Ph 1( ’a)
< et 3 |d o) = finoa (s, ) 210
o al fin-1(s', a’
< 2e.

A.1.5 PROOF OF LEMMA [4.6]

Proof. The minimum wy;; of the loss function ¢ (w) is w} (s, a) = Z;ﬁ Z; fin (s, a) if wp,_; achieves

optimum. By the property of the coarse distribution estimator, we have,

A (5.0) < 450 i (5.0) = S5,
; 5

wy(s,a) =
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We can define a feasible set for the optimization problem, i.e. wy,(s,a) € [0, Dy(s,a)], Di(s,a) =
2(2}{ (s,a).

Next, we analyse the variance of the stochastic gradient. We denote the stochastic gradient as gy, (w),
{si,al,..., s%,aly} atrajectory sampled from fiy, and {s7,a], ..., s}, a}, } a trajectory sampled
from fip_1.

. . wh,l(sifl,afzil)
gh(w)(87a) == (8 a) H(S;L = 870‘2 = a’) - J J
Hh\S, Mh—1(5h717ah71)

m(als)I(s] = s).
The variance bound becomes

Vign(w)] < Ellgn(w)] < Y- (s, f“(s’“)f*ﬂh—l(s’“) (W)

fin(s,a)
(dh(s a))? (JZ—1(87G>)2
<O<Z W50 na(s,0) ) =

where the last inequality is due to the bounded feasible set for w and the property of coarse distribution
estimator ji, (s, a) < 3/ (s, a).

s,a

Based on the error propagation lemma[4.5] if we can achieve ||V} (n)[1 < g7z from step h = 1
to step h = H, then we have,

>

s,a

fin(s,a) 22(5:2)

—d7(s,a)| <
Mh(&a) h( )

€
—,Vh=1,2,...H
_4Ha ) &y ’ i

which can enable us to build the final estimator of the performance of policy 7 with at most error e.

By the property of smoothness, to achieve | V{7 (wp)]]1 <
G (wpy) <

< 477> we need to achieve (] (wy,) —
325 H4 where ¢ is the smoothness factor, because,

2
€
Ve () |IT < 26067 () — €5 (wy)) < .
Ve (on) IR < 2606 (n) — i) < o
Lemma A.4. For a A\—strongly convex loss function L(w) satisfying ||w*|| < D for some known D,
there exists a stochastic gradient descent algorithm that can output W after T iterations such that,

. X 2G?
BIL(0) ~ L)) < Sy

where G2 is the variance bound of the stochastic gradient.

Invoke the convergence rate for strongly-convex and smooth loss functions, i.e. Lemma[A.4] we have
that the number of samples needed to achieve (7 (wy,) — €7 (wj;) <

o<fH4fz)
Y o€

We have shown in Section that é <3 5 this nice property helps us to get rid of the undesired

62 3
32eH 15

ratio of the smoothness factor and the strongly-convexity factor, i.e. m“i“((jj)) of the original loss

function (7) which can be extremely bad. Replacing G2 by our variance bound (15| , we have,

=0 (H (Z (dF(5,0)” @zl(s,a»?)) |

fin(s,a)  fin-1(s,a)

For each step h, we need the above number of trajectories, sum over h, we have the total sample

complexity,
( ZZ dh S, a ) )

h=1 s,a 'uhsa
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To evaluate K policies, we need trajectories,

o4 H Ik 2
0o 0 (S5 e 3 G )7
€2 i ReElK] S

Nh(’S’a)

A.1.6 PROOF OF LEMMA [4.7]

Proof. By Markov’s inequality, we have,

Efl — pl]

Pl — p| > €) < <

=

The event that |fipsoar — 14| > € belongs to the event where more than half estimators fi; are outside
of the desired range |fi; — p1| > €, hence, we have,

N

N . N
Pllinrors — 4| > ) < B I~ > ) > ).
i=1
Denote I(|fi; — p| > €) by Z; and E[Z;] = p,
al N
P(|finrorr — 1| > €) = P(Z Zi Z 5)
al 1
SR PICERES R
<e —2N(3-p)?
N
<e ®

)

where the first inequality holds by Hoeffding’s inequality and the second inequality holds due to
p < i. Set § = e~ %, we have, with N = O(log(1/0)), with probability at least 1 — 4, it holds
|fnrors — 1] < e O

A.1.7 PROOF OF THEOREM[4.§]

Here, we explain how Theorem is derived. We first show how the Median-of-Means (MoM)
estimator and data splitting technique can conveniently convert Lemma.6|to a version holds with
high probability.

For step h, Algorithmcan output a solution wy, such that E[(] (wp) — €] (w})] < —< . We can

= 32¢A7
apply Lemmal4.7)on our algorithm which means that we can run the algorithm for N = O (log(1/4))
times. Hence, we will get N solutions {wy, 1, Wn 2, - - ., Wh,N }. Set Wx, pmonm as the solution such

that (7 (wp, pronr) = Median((F (wp,1), 07 (Wn,2), - - -, 07 (p,n)). Based on Lemma[4.7} we have
that with probability at least 1 — 9, it holds £} (W, aronr) — £ (w);) < 322% With a little abuse of
notation, we just denote Wy, arons by Wy, in the following content.

Now we are ready to estimate the total expected rewards of target policies, With the importance

weighting ratio estimator — Dn(8:9) from Algorithm 1 we can estimate the performance of policy 7%,
fin(s,a)

wy s,al P g
ZZ Mh PRy (), ap), (16)

i=1 h=1 h Sh’ah)

where {si,a}} ; is sampled from fiy,.
s,a  fip(s,a)

~ ek
Lemma A.5. With samples n = O (Ij; ZhH:1 maxie[x] Y W), we have with proba-

bility at least 1 — 6, |V;™ — Vi'| < 5, ke [K]
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Proof. First, we can decompose the error |Vl”k - Vlﬂk\ = \Vf’k - IE[Vf’k] + ]E[ka] — Vf’k| <

V7" — E[V7"])| + |[E[VF] — Vi |. Then, by Bernstein’s inequality, with samples n =

~ h7l'k A . A

O (f; Zthl MaXke (K] D s q W), we have, |V1”k - E[V{“k]| < ¢ Based Lemma
O

we have, E[Vlﬂk} - Vfrk| <3

Remember that in Section .1} we ignore those states and actions with low estimated visitation
distribution for each target policy which induce at most § error. Combined with Lemma|A.5] our

estimator Vl’“k finally achieves that with probability at least 1 — 4, |V1’Tk - V1”k| <ek€[K].
And for sample complexity, in our algorithm, we need to sample data in three pro-

cedures. First, for the coarse estimation of the visitation distribution, we need
O(%) samples.  Second, to estimate the importance-weighting ratio, we need samples

O HE yH (@ (500 | build the final perf '
T Yo MaXye(k] ZS,QW . Last, to build the final performance estimator (9)), we

. ik
need samples O (Ig; Zthl MaXie[K] D s q W) . Therefore, the total trajectories needed,

fn(s,a)

~ H4 H dTl'k 2
n=0|— Z max (g (s,0))" h*(s,a)) .
€ kelK] 4 wr (s, a)
Moreover, notice that,
dﬂk 2 dﬂ’k 2 2 dT 2
i 3 GG (G (00?25 o (@) -
Re[K] £= (s, a) RelK] £= (s, a) 16 <= pj,(s,a)

where p; is the optimal solution of the optimization problem @), the first inequality holds due to i,
is the minimum of the approximate optimization problem (6] and the second inequality holds due
to df (s,a) < 3d7(s,a). Based on (17), we can substitute the coarse distribution estimator in the
sample complexity bound by the exact one,

~ 4 H ok 2
n=0 7 Z max (4 (5,0)) .
€2 el wr(s,a)
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A.2 LOWER ORDER COARSE ESTIMATION

Algorithm 3 Multi-policy Approximation via Ratio-based Coarse Handling (MARCH)
Input: Horizon H, accuracy ¢, policy 7.

Coarsely estimate d; such that dist?(dy,d;) < e, where 8 = L.
forh=1to H —1do
1. Coarsely estimate pp, such that |fiy(s,a) — pp(s,a)| < max{e,c- up(s,a)}, where ¢ =

SHTSTAT and‘c =3
2. Sample {s},, aj,, s}, 1 }i—y from pp,.
3. Estimate dp,4+1(s,a) by dpgi1(s,a) = 230 I(s) .y = s)in (s}, ab).
end for
Output: {d;,} .

In this section, we first provide our algorithm MARCH for coarse estimation of all the deterministic
policies and then conduct an analysis on its sample complexity.

MARCH is based on the algorithm EULER proposed by [Zanette & Brunskilll (2019).

Lemma A.6 (Theorem 3.3 in Jin et al.| (2020)). Based on EULER, with sample complexity
O(w), we can construct a policy cover which generates a dataset with the distribution [
such that, with probability 1 — §, if d7*%"(s) > 57 then,
dj** (s, a)
2HSA

where dj"**(s) = max, d} (s),d;**" (s, a) = max, dj, (s, a).

tn(s,a) > (18)

With this dataset, we estimate the visitation distribution of deterministic policies by step-to-step
importance weighting,

n

A 1 i Nl i
dh+1(55 a) = ; ZH(5h+1 = s)wh(simah)v

=1

dh (S,a)
ﬂh (570') :

where {s},, a},, s} | }7_ are sampled from y and 1 (s,a) =

We state that MARCH can coarsely estimate the visitation distributions of all the deterministic
policies by just paying a lower-order sample complexity which is formalized in the following
theorem.

Theorem A.7. Implement Algorithm|3|with the number of trajectories n = O(M), with
probability at least 1 — ¢, it holds that for any deterministic policy T,

T (s,a),d}(s,a)| < max{e, %s’a)}, VseS,ae€ A h e [H]|,

where d™ is the distribution estimator:

Proof. Our analysis is based a notion of distance defined in the following.

Definition A.1 (8—distance). For x,y > 0, we define the S—distance as,

dist?(z,y) = min |z —y|.
ac /%,

Correspondingly, for x,y € R",
n
dist? (x,y) = Z dist? (x;, ;).
i=1
Based on its definition, we show in the following lemma that 5—distance has some properties.
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Lemma A.8. The f—distance possesses the following properties for (z,y, z,v > 0):

L dist? (ya, vy) = vdist’ (z,y); (19)
2. dist’ (x1 + m2,y1 + y2) < dist® (w1, 1) + dist? (z2,y2); (20)
3. distP P2 (x, 2) < distP (x,y) - Ba + dist™(y, ). (21)
Proof. See Appendix [A.3.1] O

The following lemma shows that if we can control the 5—distance between Z, x, then we can show &
achieves the coarse estimation of x.

Lemma A.9. Suppose dist'*?(z,y) < ¢, then it holds that,

Je < 2max{(1+ L)Eaﬁy}'

—y|<By+(1+
|z —y| < By + ( 1175

118

Proof. See Appendix O
The logic of the analysis is to show the S—distance between dy, and dj, can be bounded at each layer
by induction. Then by Lemma we show {dj, }11_, achieves coarse estimation.

Suppose at layer h, we have dj, such that dist(1+6)h(dh, dp) < €, where 3 = . For notation
simplicity, we omit the superscript m. The analysis holds for any policy.

We use importance weighting to estimate dh+17
1 n
dnia(s,0) = =" Wshyy = s)m(als)in (s}, aj),
i=1

J;L(s,a)

where Wy (s, a) = 7520

‘We also denote,
Ethl(s? a‘) = E(Gh JAh Sh+1)~ [k [H(Sh+1 = s)wh(s}h (Lh)]~
By 1) in LemmalA.8] we have,

distOTD" 2 (dyr, dpsr) < distOT) (dpgr, dpsn) (1 + B) + dist " (1, disr) -
A

(22)

Next, we show how we can bound these two terms (A) and (B). Note that for (s,h) where
dpr®®(s) < g7, the induced S—distance error is at most e. Therefore, we can just discuss state-action
pairs which satisfy Lemma[A.6|

Bound of (A) We first show the following lemma tells us that the importance weighting is upper-
bounded.

Lemma A.10. Based on the definition of u, the importance weighting is upper bounded,
d d

wp(s,a) = n(s:0) < 2HSA#

pn(s; a) e (s, a)

Hence, we can clip Wy (s, a) at 2HS A such that Wy (s,a) < 2HSA.

<2HSA.

Let’s define the random variable Z}11(s,a) = I(spy1 =_s)Wn(Sk,an), then dni1(s,a) =
LS 1 Zi 1 (s, a). Since W (sh, an) is bounded by Lemma A.10}, we have,

V[ Zni1(s,a)] < E[Zn41(5,0)%] < 2HSAE[Z),41(s,a)].
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By Berstein's inequality, we have with probability at least 1 — 4§,

2V[Zp+1(s,a)] log(1/0) n 2HS Alog(1/6)
n 3n

ldnt1(s, a) = Eldnia(s, a)]| < \/

- \/ AHSAE[d)y 11 (s, a)] log(1/6) | 2HSAlog(1/9)

n 3n

)

to achieve the estimation accuracy |dp 41 (s, a) — E[dn41(s,a)]| < max{e, ¢ - Eldn41(s,a)]}, we

need samples n = O (H£54),

Based on the above analysis, we can achieve,

(5., (5, )] < max{e’, T 1 (s, )}

at the cost of samples o) (HSA>

Be’

We now show dist' ™8 (dy 11, dny1) < SA€. We discuss it in two cases,

L. |dhi1 (s, a), dpyii(s,a)| < € (23)
2. |dns1(s,a), dpyi(s,a)] < §Eh+1(s,a). (24)

For those (s,a) which satisfies , since [1 — 2,1 + g] € [1+ﬁ’1 + f], by the definition of
[S—distance, we have,

dist*™ P (dj 1 (s,a),dpy1(s,a)) = 0. (25)
For other (s, a) which satisfies (23], we have,
dist'" ™ (dp41(s,a), dpi1(s,a)) < |dnia(s,a), dnsa (s, a)] < €.

Since there are at most S A state-action pairs, the error in the second case is at most S A¢’. Combine
these two cases, we have,

dist'™™ P (dpy 1, dpyr) < SAE.
By setting € = 5—:4, we have,

(A) = dist' P (dp 1, dni) (1 + B < (14 8)" e, (26)

and the sample complexity is O ( HSA) )

dn(s,a)

Bound of (B) Next we show how to bound term (B). Denote (s, a) Pra)

have,

by dp(s,a), we

. h -3
(B) = dist'*7) +1(dh+17alh+1)
= Zdzst(1+ﬁ (dny1(s,a),dnyi(s,a))

_Z:dzst(ﬁ'ﬁ)h+1 ZPh s,als’,a')dp(s',a’ th s,als’,a")dp (s, a’))

s’ a’ s’ a’

< Z S dist™ 2" (P (s,als', a)dn (s, a'), P (s, als', a')dn(s', )

s,a s’,a’

=>" Y P(s,als, a')dist " (dy (s, d), du(s' "))

s,a s’,a’

= dist@+A"" (Jh, dn),
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where the first two equality holds by definition, the inequality holds by (20)) in Lemma|A.8| the third
equality holds by (19) in Lemmaand the last one holds by Y-, , P (s,als',a') = 1.

Now we analyse dist 18" (d,, dy,).

dn(s,a) dp(s,a)

fin(s,a) n(s,a)”

dist(1+ﬁ)}L+l(Jh,dh Zﬂh S, a)dwt(HB)hH(
S,a
By coarse estimation, we have |fij, (s, a) — pp(s,a)| < max{€’,c- up(s,a)}. Similarly, we discuss
it in two cases,

L |an(s, a), pn(s,a)| < e (27)
| n(s,a), pn(s, a)l S pun (s ). (28)
For those (s, a) which satisfies (27)), by Lemma[A.10) have
dzst(1+5 h+1(d}( ) dh(saa) < | h(S,CL) _ dh(saa) | < 2HSA.
(5,0) un(5,a) = in(s,)  n(sr ) =
Hence, we have,
' e dh(s a) dp(s,a)
distA+9" " (d s,a),dp(s,a)) = pp(s,a dist@+A"! ’
(A 5,) (5. 0)) = pn(5) (), Sl
2HS A€
< 2HS Ay (s,0) < ==,
where the last inequality holds by ¢ - up(s,a) < €.
Next, For those (s, a) which satisfies (28)), we have,
1—-1c)= < <(I+co)—F—.
=95 “meme =T 5Gw
Setc = g, since [1 — g, 1+ g] € [1+B , 1+ ], by definition of S—distance, we have,
1 1
distI+A) (= )=0. (29)

Mh(87 a) ’ Mh(S, a)
And we assume by induction that dist(1+5)" (dn(s,a),dn(s,a)) < e, together with we have,
dn(s,a) dn(s,a)

fin(s,a)” pn(s, a)
Combine the results of two cases together, we have,

(B) = dist 9" (d, dy) < e, + AH2S? A%
we have,

dzst(H’B)hH( < €. (30)

Set € = IEeTazs

(B) <en+e (31)
at the cost of samples O(M).
Now we are ready to show the bound of S—distance at layer i + 1. Plug 26)(31) into (22), we have,
dist A" (At dipgr) < distOTP (dysr, dpgr) (1 + B) + dist D" (i1, dpgr)
< (1+8)" e+ e+ ep.

Start from dist 17 (dy,dy) < e, we have,

h—1
dist " (dp,dp) < he ey (1+ B2 (32)
=1
Remember that 8 = - and due to (1 + )" < e (h < H), we have,
dist® (dp, dp) < H(1 + €2)e. (33)

Recall Lemma[A9] and based on (33)), we have,
ldn(s,a) — dp(s,a)] < 2max{H(1 + ¢*)e, (¢* — 1)dn(s,a)}.

By just paying multiplicative constant, we can adjust the constant above to meet our needs, i.e. in
Theorem [A 7] O
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A.3 PROOF OF LEMMAS IN SECTION[A.2]
A.3.1 PROOF OF LEMMA[A S

Proof. 1. The first property is trivial.

dist? (yz,yy) = min |ayz — vy
a€lg,0]

min y|ax — y|
agl5,6]

= ydist? (z,y).
2. Let «; be such that,
dist1+5(xi,yi) = |ojz; —yil, i =1,2.

Notice that a3 = aq - -7 + ag - 72~ satisfies a3 € [, 9] € [%,ﬁ} and az(z1 + x3) =

a1x1 + asxa, therefore,

dist’(x1 + x9,y1 +y2) = min_|a(ar +22) — y1 — ye
a€[5,8]

IA

las(z1 + 22) — y1 — Yo

= |a1my + o2 — Y1 — Y2l

< larzr — yi| + |aazs — yof

= distP(z1,y1) + dist’ (zq,12).
The first inequality holds due to the definition of 5—distance. The second inequality is the triangle
inequality.

3. We prove the third property through a case-by-case discussion.

(1). 51w52 < z < B1B2x. In this case, the result is trivial, since distPrP2 (z,2) = 0 and S—distance is

always non-negative.
(2). p1P2x < z. If y < z, then,
distPP2 (z, 2) < dist?? (z, 2) < dist™(y, 2).
We are done.
If x <y < Bz, then distf(ac,y) =0, and z > 51 P2z > P2y, hence,
distP?(y,2) = 2z — Boy > 2 — B1Box = dist? P2 (z, 2).
We are done.
Ify > pix,z € [ﬁ—yz,b’gy], then,
dist (,y) B2 + dist™ (y, 2) = Ba(y — fr2)
>z — p1faw
= dist?P2 (z, 2).
We are done.
Ify > 61z,2 ¢ [%,ﬁby], then,
distP' (z,y)Bs + dist (y, z) > Ba(y — Brz)
>z — Bifax
= dist™P2 (. 2).
We are done.
3). z < ﬁ A symmetric analysis can be done by replacing (51, 52 by é, ﬁ—lz which gives the

result,

1
dist?P2 (z, z) < dist? (x, y)ﬂ— + dist?? (y, 2)
2
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Since 3> > 1 and dist® (x,y) > 0, we have dist” (z, y)é < dist? (z,y) B2, hence,

dist?1P2(z, 2) < dist? (z,y)Bs + dist® (y, 2),

which concludes the proof. O

A.3.2 PROOF OF LEMMA [A.O]

Proof. We prove the lemma through a case-by-case study.
(). z < y. If dist' T8 (2, ) = 0, then (1 + 3) > y > x, therefore,
[z —yl=y—a < Bz <Py
If dist'*#(x,y) > 0, then dist'+P(z,y) = y — (1 + ), therefore,
lo —y| =y — x = dist'P(z,y) + Bz < e+ Bz < e+ By.

Q). y < x. If dist' TP (x,y) = 0, then -2 < y < x, therefore,

1+5
2~y <o Lo <y H1-——) =4
z—yl=2— r— —— - — ) =PBy.
Y y=r717p=Y 1+~
If dist'*P(z,y) > 0, then y < ts < = and dist' TP (z,y) = Ti5 — ¥ Moreover, since
dist'*P(x,7) < e, we have 15 < € +y. Therefore,
|z —yl=z—y
1
= dist' P (z,y) + (1 — T
(@) + (- 1)
= dist'*t? z,y) + _r
(2,9) ﬂ1+ﬂ
<e+ €+
S By
B
=(1+ €+ Py.
( 1+5) By

Combine the results above together, we have,

Je < 2max{(1+ L)e,ﬂy}.

x—yl < + (14
|z —y| < By + ( 115

B
1+8
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A.4 DISCUSSION ON POLICY IDENTIFICATION

In this section, we discuss on the application of CAESAR to policy identification problem, its
instance-dependent sample complexity and some intuitions related to the existing gap-dependent
results.

We first provide a simple algorithm that utilizes CAESAR to identify an e—optimal policy. The
core idea behind the algorithm is we can use CAESAR to evaluate all candidate policies up to an
accuracy, then we can eliminate those policies with low estimated performance. By decreasing the
evaluation error gradually, we can finally identify a near-optimal policy with high probability.

For notation simplicity, fixing the high-probability factor, we denote the sample complexity of

CAESAR by @«(,E , where II is the set of policies to be evaluated and -y is the estimation error.

Algorithm 4 Policy Identification based on CAESAR
Input: Alg CAESAR , optimal factor ¢, candidate policy set I1.
for i = 1 to [log,(4/€)] do
1. Run CAESAR to evaluate the performance of policies in II up to accuracy v = %
2. Eliminate 7/ if 377 € II, V;™ — V™ > 2, update II.
end for
Output: Randomly pick 7° from II.

Theorem A.11. Implement Algorithmd| we have that, with probability at least 1 — 8, 7° is e—optimal,
ie.,

Vi -V <e

And the instance-dependent sample complexity is O(maxwz6 egw) ), where IL, = {m : V* = V" <
8y}

Proof. On the one hand, based on the elimination rule in the algorithm, by running CAESAR with
the evaluation error ~, the optimal policy 7* will not be eliminated with probability at least 1 — 4.

Since max,ery Vfr — ‘A/fr* <V +y— (VF —9) <2v.

On the other hand, if Vl*_ — Vfri > 4+, then 7* will be eliminated with probability at least 1 — §.
Since max,en Vi* — Vi > Vit — v — (V™ +7) > 2.

Therefore, by running Algorithm 4] the final policy set is not empty and for any policy 7 in this set, it
holds, V;* — V™ < e with probability at least 1 — 6.

Next, we analyse the sample complexity of Algorithm 4 Based on above analysis, within every
iteration of the algorithm, we have a policy set containing 8y—optimal policies, and we use CAESAR
to evaluate the performance of these policies up to -y accuracy. By Theorem[4.8] the sample complexity

is %. Therefore, the overall sample complexity is,

L) _ 5rmax O
27: 7’ SO(WZG 72 )

O

This result is quite interesting since it provides another perspective beyond the existing gap-dependent
results for policy identification. And these two results have some intuitive relations that may be of
interest.

Roughly speaking, to identify an e—optimal policy for an MDP, the gap-dependent regret is described
as,

Hlog K
02 gaph(s,a))’

h,s,a
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where gapi (s, a) = Vi (s) — Q5. a).

The value gap gapy (s, a) quantifies how sub-optimal the action a is at state s. If the gap is small, it
is difficult to distinguish and eliminate the sub-optimal action. At the same time, smaller gaps mean
that there are more policies with similar performance to the optimal policy, i.e. the policy set IL, is
larger. Both our result and gap-dependent result can capture this intuition. We conjecture there exists
a quantitative relationship between these two perspectives.

An interesting proposition of Theorem [A.TT]is to apply the same algorithm to the multi-reward

. T . . ~ o .
setting. A similar instance-dependent sample complexity can be achieved O(max.>c %) with

the difference that HZY2 contains policies which is 8y—optimal for at least one reward function. This
sample complexity captures the intrinsic difficulty of the problem by how similar the near-optimal
policies under different rewards are which is consistent with the intuition.
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