
Fully Data-Driven Solving of Aerofoil-Wind Interactions in a
Single Training of a Single Multi-Output DeepONet

Sebastien Andre-Sloan1, Dibyakanti Kumar2, Anirbit Mukherjee1

1Department of Computer Science, The University of Manchester, UK
2Barclays, India

1 Introduction
In recent years, deep learning has emerged as a competitive method for solving PDEs numerically. It has
gained significant momentum, and ’AI for Science’ Karniadakis et al. (2021) has emerged as a distinctive
research direction. Data-driven methods for solving P.D.Es can broadly be classified into two kinds, (1)
those which train a single neural net to solve a specific P.D.E and (2) operator methods – which train
multiple nets in tandem to be able to solve in “one shot” a family of differential equations, with a fixed
differential operator and different “source / forcing” functions. The operator net was initiated in Chen &
Chen (1995) and its most popular deep neural version, the DeepONet, was introduced in Lu et al. (2021).
An unsupervised form of this idea was introduced in Wang et al. (2021). We note that the operator methods
are particularly useful in the supervised setup when the underlying physics is not known – as is the setup in
this work – and state-of-the-art approaches of this type, can be seen in works like Raonić et al. (2023).

In this work we demonstrate that on a realistic task of predicting fluid dynamics, operator networks can get
accuracies within one order of magnitude of other baselines, while only using 15% of the data used by the
baselines.

The AirfRANS Dataset (Bonnet et al., 2023) The dataset consists of 1000 simulations created
by their finite volume solver, OpenFOAM, solving the 2-dimensional incompressible Reynolds-Averaged
Navier-Stokes Equations, under the assumption of steady-state flow, where the temperature T and kinematic
viscosity ν are kept constant. The components being solved for are (u, v, p, νT ), where (u, v) is the velocity,
p is the reduced pressure, νT is the kinematic turbulent viscosity.

Each simulation has a different airfoil geometry and inlet velocity. Each simulation is a point cloud (a list
of points) of ∼ 180000 points, each with 12 values, (x, y, uin, vin, d, nx, ny, u, v, p, νT , b) where (i) (x, y)
is the coordinate position of the point (ii) (uin, vin) is the inlet velocity, which is the same for every point
in the cloud (iii) d is the distance from the airfoil (iv) (u, v) is OpenFOAM’s predicted velocity (v) p
is OpenFOAM’s predicted pressure divided by the specific mass and (vi) νT is OpenFOAM’s predicted
turbulent kinematic viscosity The other values, (nx, ny, β) is the normal to the airfoil surface with a boolean
attached that represents whether it is on the airfoil’s surface or not, but we don’t use these values.

Our DeepONet would be trained on 100 (N) of these airfoils given in the “scarce training” task of this
dataset.

Related Works Similar to Shukla et al. (2023), we choose 100 points on the surface of the airfoil (half
of the points Shukla et al. (2023) used) as a representation of the airfoil geometry. But unlike Shukla et al.
(2023), the angle of attack, which is given as the inlet velocity, varies for us. So, we append the inlet velocity
to the 100 surface points and thus each input to our branch net is of the dimension 202, denoted by bi for
1 ≤ i ≤ N . We also train only one DeepONet for all the components of the labels, unlike in Shukla et al.
(2023) where each component was predicted by a separate DeepONet. In Bonnet et al. (2023), the baseline
MLP used had a training dataset of size 3.96 × 108 and trained in ∼2h30min whereas our dataset had size
6.12 × 107, and trained in ∼1h10min.

Data Pre-processing The training points for the trunk net, denoted by ti,j for 1 ≤ i ≤ N and 1 ≤ j ≤ P ,
are chosen by ensuring 70% of the points are at most 0.3 units away from the chord of the airfoil, as there

1



needs to be a focus on the region close to airfoil due to the rapid changes in that area of the domain. The
last 30% points are found anywhere else in the domain. Our setup has 3000 total points (P ) per each of the
100 (N) airfoils. The labels are denoted as (ui,j , vi,j , pi,j , (νT )i,j) for 1 ≤ i ≤ N and 1 ≤ j ≤ P . To balance the
variation in magnitude across the different label components, we scale the labels and train the DeepONet
on the scaled data. Let the mean and standard deviations of the labels over the whole training dataset
be (ϕp, ϕu, ϕv, ϕνT

) and (σp, σu, σv, σνT
) respectively. Then the normalized labels used are āi,j = ai,j−ϕa

σa
for

a ∈ {p, u, v, νT }.
Each inputs-label pair is created with (i) Input : The 200 coordinates from the airfoil boundary, the 2 com-
ponents of inlet velocity for the branch network, bi, and 2 coordinates for the position where the prediction
is needed is the trunk network input, ti,j . (ii) Output : The 4 scaled OpenFOAM predictions, namely the
velocity (ūi,j , v̄i,j), pressure p̄i,j , and turbulent kinematic viscosity (ν̄T )i,j .

This gives a total of 3 × 105 training points ((N = 102) × (P = 3 × 103)), each with 204 values for the input
to the DeepONet and 4 values for the labels.

2 The Results from a Multi-Output DeepONet
Let the branch net be NB and the trunk net be NT where, NB ∶ R202 → R4q,NT ∶ R2 → R4q. Both
networks have a depth of 3 and a width of 100, and we choose q = 100. The DeepONet, G̃ is the map,
R202×2 ∋ (b, t) ↦ G̃(b, t) ∶= (G̃1(b, t), G̃2(b, t), G̃3(b, t), G̃4(b, t)) ∈ R4, where, G̃i(b, t) = ∑mq

k=(m−1)q(NB(b))k ⋅
(NT (t))k,∀ m = 1, 2, 3, 4

2.1 Loss Function
The loss function used to train the DeepONet (G̃) is the MSE Loss on the above scaled training
dataset with the points representing the airfoils and inlet-velocity {bi}N

i=1, the trunk coordinates as
{ti,j}N,P

i=1,j=1 and the labels as {(ui,j , vi,j , pi,j , (νT )i,j)}N,P
i=1,j=1. Then the loss can be written as Ltrain(θ) =

1
NP ∑

N
i=1∑P

j=1 (∣ūi,j − G̃1(bi, ti,j)∣
2 + ∣v̄i,j − G̃2(bi, ti,j)∣

2 + ∣p̄i,j − G̃3(bi, ti,j)∣
2 + ∣(ν̄T )i,j − G̃4(bi, ti,j)∣

2).

2.2 Results
The ℓ2-error averaged over scaled test data is shown in Table 1, and the plots of the prediction on an airfoil
from the test data is given in Figure 1.

ū v̄ p̄ ν̄T

ℓ2-error 0.2812 0.1423 0.1727 0.2452
Table 1: The above table shows the ℓ2-error between the DeepONet and the OpenFOAM predictions.

Figure 1: The top row of plots are the OpenFOAM simulations and the bottom row is the DeepONet predicted
solutions.

2



References
Florent Bonnet, Ahmed Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. Airfrans: High fidelity

computational fluid dynamics dataset for approximating reynolds-averaged navier-stokes solutions, 2023.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on Neural
Networks, 6(4):911–917, 1995. doi: 10.1109/72.392253.

Karniadakis, G.E., and Kevrekidis. Physics-informed machine learning, 2021.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, mar 2021. doi: 10.1038/s42256-021-00302-5.

Bogdan Raonić, Roberto Molinaro, Tobias Rohner, Siddhartha Mishra, and Emmanuel de Bezenac. Convo-
lutional neural operators. arXiv preprint arXiv:2302.01178, 2023.

Khemraj Shukla, Vivek Oommen, Ahmad Peyvan, Michael Penwarden, Luis Bravo, Anindya Ghoshal,
Robert M. Kirby, and George Em Karniadakis. Deep neural operators can serve as accurate surrogates
for shape optimization: A case study for airfoils, 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science Advances, 7(40):eabi8605, 2021. doi:
10.1126/sciadv.abi8605.

3


	Introduction
	The Results from a Multi-Output DeepONet
	Loss Function
	Results


