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Abstract
The study of universal approximation properties
(UAP) for neural networks (NN) has a long his-
tory. When the network width is unlimited, only
a single hidden layer is sufficient for UAP. In con-
trast, when the depth is unlimited, the width for
UAP needs to be not less than the critical width
w∗

min = max(dx, dy), where dx and dy are the di-
mensions of the input and output, respectively. Re-
cently, (Cai, 2022) shows that a leaky-ReLU NN
with this critical width can achieve UAP for Lp

functions on a compact domain K, i.e., the UAP
for Lp(K,Rdy ). This paper examines a uniform
UAP for the function class C(K,Rdy ) and gives
the exact minimum width of the leaky-ReLU NN
as wmin = max(dx + 1, dy) + 1dy=dx+1, which
involves the effects of the output dimensions. To
obtain this result, we propose a novel lift-flow-
discretization approach that shows that the uni-
form UAP has a deep connection with topological
theory.

1. Introduction
The universal approximation theorem is important for the
development of artificial neural networks. Artificial neural
networks can approximate functions with arbitrary preci-
sion, this fact reveals the great potential of neural networks,
and provides important guarantees for its development. (Cy-
benko, 1989) produces the original universal approximation
theorem, stating that an arbitrarily wide feedforward neural
network with a single hidden layer and sigmoid activation
function can arbitrarily approximate continuous function.
(Hornik, 1991) later demonstrated that the key to the univer-
sal approximation property lies in the multilayer and neuron
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architecture rather than the choice of an activation function.
Then, (Leshno et al., 1993) show that for a continuous ac-
tivation function f : X → Rdy defined on a compact set
X ⊆ Rdx can be approximated by a single hidden layer
neural network, if and only if, the activation function is a
nonpolynomial function.

After solving the activation function’s theoretical problem,
the field of vision naturally shifted to a consideration of the
width and depth of the neural network. With the gradual de-
velopment of deep neural networks, researchers have begun
to pay attention to how to theoretically analyze the expres-
siveness of networks. (Daniely, 2017) simplifies the proof
that the expressive ability of the three-layer neural network
is superior to that of the two-layer neural network. For any
positive integer k, (Telgarsky, 2016) shows that there are
neural networks with Θ(k3) layers and fixed widths that
cannot be approximated by networks with O(k) layers un-
less they have Ω(2k) nodes 1. The universal approximation
theorem explains that deep–bounded neural networks with
suitable activation functions are universal approximators.
(Lu et al., 2017) explained that a neural network with a
bounded width can also be a universal approximator, such
as the width-(dx+4) ReLU networks, where dx is the input
dimension. (Lu et al., 2017) also shows that a ReLU network
of width dx cannot be used for universal approximation.

Many studies, such as (Beise & Da Cruz, 2020; Hanin &
Sellke, 2018; Park et al., 2021), have shown that for a nar-
row neural network (the width is not greater than the in-
put dimension), it is difficult to attain the UAP. (Nguyen
et al., 2018) noted that deep neural networks with a specific
type of activation function generally need to have a width
larger than the input dimension to guarantee that the net-
work can produce disconnected decision regions. For ReLU
networks, (Park et al., 2021) proved that the minimum width
for Lp-UAP is wmin = max(dx + 1, dy) and summarized
the known upper/lower bounds on the minimum width for
universal approximation. Furthermore, conclusions related
to the UAP of continuous functions have yet to be studied.

1Θ(k3) means that it is bound both above and below by k3

asymptotically; O(k) means that it is bounded above by k asymp-
totically; Ω(2k) means that it is bounded below by 2k asymptoti-
cally.
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Table 1. A summary of the known minimum width of feed-forward neural networks for universal approximation. †

References Functions Activation Minimum width
(Hanin & Sellke, 2018) C(K,R) ReLU wmin = dx + 1

(Park et al., 2021) Lp(Rdx ,Rdy ) ReLU wmin = max(dx + 1, dy)
(Park et al., 2021) C([0, 1],R2) ReLU wmin = 3
(Park et al., 2021) C(K,Rdy ) ReLU + STEP wmin = max(dx + 1, dy)

(Cai, 2022) Lp(K,Rdy ) Leaky-ReLU wmin = max(dx, dy, 2)
(Cai, 2022) C(K,Rdy ) ReLU + FLOOR wmin = max(dx, dy, 2)

Ours (Theorem 2.2) C(K,Rdy ) Leaky-ReLU wmin = max(dx + 1, dy) + 1dy=dx+1

Ours (Lemma 2.4) C(K,Rdx) Leaky-ReLU wmin = dx + 1

† dx and dy are the input and output dimensions, respectively. K ⊂ Rdx is a compact domain and p ∈ [1,∞).

(Park et al., 2021) and (Cai, 2022) demonstrate the minimum
width of some neural networks for C-UAP using noncontin-
uous activation functions. If only continuous monotonically
increasing activation functions are used, the known mini-
mum width is restricted to the ReLU NN for function class
C([0, 1],R2), where the critical width is wmin = 3. Table 1
provides a summary of the known minimum width for UAP.

To determine the minimum width of uniform UAP on
C(K,Rdy ), we introduce a novel scheme called lift-flow-
discretization approach. Based on the close relationship
between uniform UAP and topology, the functions are em-
bedded in high-dimensional diffeomorphisms, and feed-
forward neural networks are used to approximate these
flow maps. Finally, we determine the minimum width of
leaky-ReLU neural networks for C-UAP on C(K,Rdy ) to
be wmin = max(dx + 1, dy) + 1dy=dx+1 .

1.1. Contributions

1. Theorem 2.2 states that the minimum width of leaky-
ReLU networks for C(K,Rdy ) is exactly max(dx +
1, dy) + 1dy=dx+1. This is the first time that the mini-
mum width for the universal approximation of leaky-
ReLU networks is fully provided. It is worth mention-
ing that the previous results for the minimum width for
the uniform approximation are based on discontinuous
activation functions. The conclusion of this paper is
based on continuous activation functions such as the
leaky-ReLU function.

2. Section 3 presents a novel approach for approximating
continuous functions using a feedforwrd neural net-
work from the perspective of topology. The lift-flow-
discretization approach of combining topology and
neural network approximation is the key to the proof in
this paper. Our approach is generic for strictly mono-
tone continuous activations, as they all correspond to
diffeomorphisms.

1.2. Related work

Width and depth bounds. Theoretical analyses of the ex-
pressive power of neural networks have taken place over the
years. (Cybenko, 1989) proposed a prototype of the early
classic universal approximation theorem. Continuous uni-
variate functions over bounded domains can be fitted with
arbitrary precision using the sigmoid activation function.
(Hornik et al., 1989; Leshno et al., 1993; Barron, 1994) ob-
tained similar conclusions and extended them to a large class
of activation functions, revealing the relationship between
universal approximation and network structure.

The effect of neural network width on expressiveness is an
enduring question. (Sutskever & Hinton, 2008; Le Roux &
Bengio, 2008) and (Montufar, 2014) reveal the impact of
depth and width, especially width, on the general approxi-
mation of belief networks, and networks with too narrow a
width cannot complete the approximation task. The width
has important research value for many emerging networks
and different activation functions. Conventional conclusions
tell us that networks with appropriate activation functions
under bounded depths are universal approximators. Corre-
spondingly, (Lu et al., 2017) proposed a general approxi-
mation theorem for ReLU networks with bounded widths.
(Hanin & Sellke, 2018) also studied in the ReLU network,
whose input dimension is dx, hidden layer width is at most
w and depth is not limited. To fit any continuous real-valued
function, the minimum value of w is exactly dx + 1.

For a deep neural network that satisfies the activation func-
tion σ(R) = R, to learn the disconnected regions, it is
usually necessary to make the network width larger than
the input dimension. If the network is narrow, the paths
connecting the disconnected regions yield high-confidence
predictions (Nguyen et al., 2018). (Chong, 2020) gives a
direct algebraic proof of the universal approximation theo-
rem, and (Beise et al., 2021) reveals the fundamental reason
why the universal approximation of network functions with
width w ≤ dx from Rdx to R is impossible.

(Park et al., 2021) gives the first definitive results for the
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critical width enabling the universal approximation of width-
bounded networks. The minimum width for the Lp func-
tions is max(dx + 1, dy) using the ReLU activation func-
tions. (Park et al., 2021) also shows that this conclusion
is unsuitable for the uniform approximation of the ReLU
network, but it still holds using the ReLU+STEP activation
function. (Cai, 2022) shows that minimum widths for the
C-UAP and Lp-UAP on compact domains have a universal
lower bound wmin = max(dx, dy). (Cai, 2022) also shows
the minimum width for the uniform approximation with
some additional threshold activation functions.

Homeomorphism properties of networks. Residual net-
works (ResNets) are an advanced deep learning architec-
ture for supervised learning problems. (Rousseau & Fablet,
2018) shows that a continuous flow of diffeomorphisms gov-
erned by ordinary differential equations can be numerically
implemented using the mapping component of ResNets.

Neural ordinary differential equations (neural ODEs) turn
the neural network training problem into a problem of solv-
ing differential equations and can make the discrete ResNet
continuous. As a deep learning method, (Teshima et al.,
2020b) shows the universality of discrete neural ODEs with
the condition that the source vectors fi(z) ∈ H, where H is
a universal approximator for the Lipschitz functions. (Ruiz-
Balet & Zuazua, 2021) provide L2-UAP for neural ODE
ẋ = Wσ(Ax+ b). (Zhang et al., 2019) shows that neural
ODEs with extra dimensions are universal approximators
for homeomorphisms.

Invertible neural networks have diffeomorphic properties,
and many flow models can also be used as universal ap-
proximators. (Huang et al., 2018) shows that neural autore-
gressive flows are universal approximators for continuous
probability distributions. (Teshima et al., 2020a) indicates
that normalizing flow models based on affine coupling also
have UAP. (Kong & Chaudhuri, 2021) shows that resid-
ual flows are universal approximators in maximum mean
discrepancies.

1.3. Organization

We first define the necessary notation and the main results
and give the proof ideas in Section 2. In Section 3, we
present our lift-flow-discretization approach demonstrating
the minimum width to achieve C-UAP. The detailed proof
process is given in Section 4. Considering the influence of
the output dimension, the final proof is divided into four
parts. In Section 5, we give an outlook on the direction
of our current work. All formal proofs are provided in the
appendix.

2. Main results
We consider the standard feedforward neural network with
the same number of neurons at each hidden layer. We say a
σ-NN with depth L is a function with inputs x ∈ Rdx and
outputs y ∈ Rdy , which has the following form:

y = fNN,L(x) = yL (1)
=WL+1σ (WL (· · ·σ (W1x+ b1) + · · · ) + bL) + bL+1,

where bi are vectors, Wi are matrices and σ(·) is the acti-
vation function. We mainly consider the number of neu-
rons in all the layers to be the same N . In this case,
Wi ∈ RN×N , bi ∈ RN , i ∈ {1, · · · , L + 1}, except
W1 ∈ RN×dx , WL+1 ∈ Rdy×N and bL+1 ∈ Rdy . We
denote the set of all networks in Eq. (1) as NN,L(σ), and
NN (σ) =

⋃
L NN,L(σ). The activation function is crucial

for the approximation power of the neural network. Our
main results are for the following leaky-ReLU activations
function with a fixed parameter α ∈ R+ \ {1},

σ(x) = σα(x) =

{
x, x > 0,

αx, x ≤ 0.
(2)

2.1. Main theorem

Our main theorem is the following Theorem 2.2, which pro-
vides the exact minimum width of the leaky-ReLU networks
that process uniform universal approximations.

Definition 2.1. We say the leaky-ReLU networks with
width N have C-UAP or Lp-UAP if the set NN (σ) is dense
in C(K,Rdy ) or Lp(K,Rdy ), respectively.

Theorem 2.2. Let K ⊂ Rdx be a compact set; then, for the
continuous function class C(K,Rdy ), the minimum width
wmin of leaky-ReLU neural networks having C-UAP is ex-
actly wmin = max(dx + 1, dy) + 1dy=dx+1. Thus, NN (σ)
is dense in C(K,Rdy ) if and only if N ≥ wmin.

Before giving the proof, let’s emphasize the points of Theo-
rem 2.2. First, if the width N of the leaky-ReLU networks
is smaller than wmin, then there is a continuous function
f∗ ∈ C(K,Rdy ) that cannot be well approximated, i.e.
there is a positive constant ε > 0 such that ∥f − f∗∥ > ε
for all f ∈ NN (σ). For the case of K = [−1, 1]dx , dy = 1,
the function f∗ can be chosen as f∗(x) = ∥x∥2. The rea-
son will be given in the next section, which is based on the
topological properties of the level sets (Johnson, 2019).

Second, if N = wmin, then for any f∗ ∈ C(K,Rdy ) and
any ε > 0, we can construct a leaky-ReLU network fL with
width N and depth L such that ∥f − f∗∥ < ε. We will
introduce the construction scheme later.

Lastly, the formula of wmin includes a characteristic func-
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Figure 1. Minimum width of leaky-ReLU networks for universal approximation. (a) Example of function from K ⊂ Rdx to Rdy . (b)
Feedforward neural networks with depth L and width N . (c) The minimum width of leaky-ReLU networks to reach UAP. (d) Proof parts
of the main result.

tion 1dy=dx+1,

1dy=dx+1 =

{
1, dy = dx + 1,

0, dy ̸= dx + 1,

which indicates that there is an obstacle of dimension. In
fact, this is caused by the topology of the manifolds.

2.2. Proof ideas

Now, we provide the proof scheme, while the details will
be given in the next section. As illustrated in Figure 1,
the result of Theorem 2.2 is split into four parts: Part 1
and Part 2 give a lower bound and an upper bound for the
general dimensions, Part 3 considers the exceptional case of
dy = dx + 1, and Part 4 considers the case of dy ≥ dx + 2.

Part 1 is based on the following lemma, which results
in a lower bound of leaky-ReLU network to be wmin ≥
max(dx + 1, dy).

Lemma 2.3. For any compact domain K ⊂ Rdx , the
leaky-ReLU networks with width N < max(dx + 1, dy)
do not have UAP for C(K,Rdy ), i.e. NN (σ) is not dense in
C(K,Rdy ).

The proof is based on the result of (Cai, 2022), which shows
a universal lower bound wmin ≥ max(dx, dy) for arbitrary
activations, and (Johnson, 2019), which shows that wmin ≥
dx + 1 for monotone and continuous activations such as
leaky-ReLU is sufficient.

Part 2 is based on the following lemma, which considers the
case of dx = dy = d. If dx and dy are not the same, we can
lift them to dimension d = max(dx, dy) by filling in zeros
for the auxiliary dimensions.

Lemma 2.4. For any continuous function f∗ ∈ C(K,Rd)
on compact domain K ⊂ Rd, and ε > 0, there is a leaky-
ReLU network fL(x) with depth L and width d + 1 such
that ∥fL(x)− f∗(x)∥ ≤ ε for all x in K.

Lemma 2.4 is our main result for Part 2, which shows that
leaky-ReLU neural network with width d+ 1 has enough
expressive power to approximate continuous function f∗

with dx = dy = d. The proof of Lemma 2.4 will be given
in Section 3 as it is based on our lift-flow-discretization
approach given in the next section.

The gap between the lower bound wmin ≥ max(dx +1, dy)
and the upper bound wmin ≤ max(dx + 1, dy + 1) is at
most one. When dy ≤ dx, it directly implies that wmin =
max(dx + 1, dy). Then, we consider the case of dy ≥
dx + 1. In this case, the lower and upper bounds read
dy ≤ wmin ≤ dy + 1, and the question is whether width
N = dy is sufficient for C-UAP.

Part 3 and Part 4 of our main result answer the question by
showing that width dy is enough for the case of dy ≥ dx+2
but not for the case of dy = dx + 1. The two cases are
heavily related to topology theory. Here, we give a short
example to show this phenomenon. Let f∗ ∈ C([0, 1],R2)
be a parameterized curve shaped like ’4’, which has a self
intersecting point. Then, f∗ cannot be approximated by
curve homeomorphic to a line segment. However, if f∗ ∈
C([0, 1],R3), the approximation is possible according to
our lift-flow-discretization approach. We will show this
example in detail in Section 4.

3. Lift-flow-discretization approach
Before presenting our proof of Part 3 and Part 4, we will first
provide our key approach for proving Part 3 and Part 4 in
Figure 1 which is called the lift-flow-discretization approach
in this section. We reformulate network (1) as follows:

fL(x) =WL+1ΦL(W1x+ b1) + bL+1, (3)

where ΦL is a map from RN to RN and W1x + b1 and
WL+1Φ + bL+1 are linear maps. Since we use the leaky-
ReLU activation and the weight matrix in (1), it can be
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assumed to be nonsingular, the map ΦL is a homeomor-
phism. Motivated by the recent work of (Duan et al., 2022),
which shows that leaky-ReLU networks can approximate
flow maps, we propose an approach to approximate func-
tions f∗ in C(K,Rdy ) by lifting it as a diffeomorphism
Φ and then we approximate Φ by flow maps and neural
networks.

For any function f∗ in C(K,Rdy ) and any ε > 0, our lift-
flow-discretization approach includes three parts:

1) (Lift) A lift map Φ ∈ C(RN ,RN ), which is an orien-
tation preserving (OP) diffeomorphism such that

∥f∗(x)− β ◦ Φ ◦ α(x)∥ ≤ ε/3, ∀x ∈ K, (4)

where α and β are two linear maps. Without loss of
generality, we can assume that the Lipschitz constants
of α and β are less than one. Within this notation, we
say the map Φ is a lift of f∗.

2) (Flow) A flow map ϕτ ∈ C(RN ,RN ) corresponding
to a neural ODE

z′(t) = v(z(t), t), t ∈ (0, τ), z(0) = x, (5)

which satisfies ∥Φ(x) − ϕτ (x)∥ ≤ ε/3 for all x in
α(K).

3) (Discretization) A discretization map ψ ∈
C(RN ,RN ) is a leaky-ReLU network in NN (σ) that
approximates ϕτ such that ∥ψ(x)− ϕτ (x)∥ ≤ ε/3 for
all x in α(K).

As a result, the composition β ◦ ψ ◦ α =: fL is a leaky-
ReLU network with widthN , which approximates the target
function f∗ such that

∥f∗(x)− β ◦ ψ ◦ α(x)∥ ≤ ε, ∀x ∈ K. (6)

3.1. Theory of the lift-flow-discretization approach

Note that the existence of ϕτ and ψ are guaranteed by the
following lemmas based on the results of (Caponigro, 2011)
and (Duan et al., 2022). We need to construct the lift map
Φ, which will be constructed case by case.

Lemma 3.1. Let Φ be an orientation preserving diffeomor-
phism of RN , Ω be a compact set in RN and ε > 0. Then,
there is an ODE with tanh neural fields, whose flow map is
denoted by ϕτ (x0) = z(τ),

ẋ(t) = v(x(t), t) (7)

≡
M∑
i=1

ai(t) tanh(wi(t) · x(t) + bi(t)), t ∈ [0, τ ],

x(0) = x0 ∈ RN , M ∈ Z+,

#(%)

'(!(%)

(!(%)

Lift map

ODE

Neural ODE

)"<*/6

)#<*/6

$$! $!"# $$$% $#

% = '

Figure 2. Sketch of the lift-flow-discretization approach. The target
map Φ(x) is approximated by a flow map ϕ̃τ (x) of an ODE, which
is further approximated by a flow map ϕτ (x) of a neural ODE (7).

where ai, wi ∈ RN and bi ∈ R are piecewise constant
functions of t, such that ∥ϕτ (x0)− Φ(x0)∥ < ε for all x0
in Ω.

Lemma 3.1 ensures Step 2 (‘flow’) of our lift-flow-
discretization approach, where we use the flow map of a
neural ODE to approximate a given orientation preserving
diffeomorphism.

The formal proof of the lemma can be seen in the appendix.
Here, we provide the main idea of the proof. First, we refer
to (Caponigro, 2011) to prove that for any ε > 0, there exists
a flow map at the endpoint of time ϕ̃τ (x) of an ODE such
that ∥ϕ̃τ (x)− Φ(x)∥ < ε/2 for all x ∈ α(K), then we use
neural ODE (7) to approximate ϕ̃τ (x), there exist (a,w, b)
such that the flow map (denoted as ϕτ (x)) of Eq. (7) satisfies
∥ϕτ (x)− ϕ̃τ (x)∥ < ε/2, then ∥ϕτ (x)− Φ(x)∥ < ε.

Lemma 3.2. Let ϕτ ∈ C(RN ,RN ) be the flow map in
Lemma 3.1 and Ω be a compact set in RN and ε > 0. Then,
there is a leaky-ReLU network ψ ∈ NN (σ) with width N
and depth L such that ∥ϕτ (x0)− ψ(x0)∥ < ε for all x0 in
Ω.

This lemma ensures Step 3 (discretization) of our lift-flow-
discretization approach, where we find a neural network to
approximate ϕτ in Step 2.

The formal proof, motivated by (Duan et al., 2022), can
be seen in the appendix. The main idea is to solve the
ODE (7) by a splitting method and then approximate each
split step by leaky-ReLU networks. Consider the following
splitting for v in (7), v(x, t) ≡

∑N
i=1

∑d
j=1 vij(x, t)ej with

vij(x, t) = a
(j)
i (t) tanh(wi(t) · x+ bi(t)) ∈ R. Then, the

flow map can be approximated by an iteration with time
step ∆t = τ/n, n ∈ Z+ large enough,

ϕτ (x0) ≈ xn = Tn(xn−1) = Tn ◦ · · · ◦ T1(x0),
= T (N,d)

n ◦ · · · ◦ T (1,2)
n ◦ T (1,1)

n ◦ · · · ◦

T
(N,d)
1 ◦ · · · ◦ T (1,2)

1 ◦ T (1,1)
1 (x0).

where the k-th iteration is xk+1 = Tkxk = T
(N,d)
k ◦ · · · ◦
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T
(1,2)
k ◦ T (1,1)

k (xk), The map T (i,j)
k : x → y in each split

step is:

T
(i,j)
k :

{
y(l) = x(l), l = 1, 2, .., j − 1, j + 1, ..., d,

y(j) = x(j) +∆tvij(x, k∆t).

Combining all the approximation networks, we have
∥ϕτ (x0)− ψ(x0)∥ < ε for all x0 ∈ Ω.

Having reached the above conclusion, if the lift map Φ in
Step 1 (lift) is constructed, we can obtain the following
corollary.

Corollary 3.3. Let f∗ ∈ C(K,Rd)(K ⊂ Rd) and N ∈
Z+. If for any ε > 0, there is an orientation preserving
diffeomorphism Φ of RN and two linear maps α and β such
that ∥f∗(x)− β ◦ Φ ◦ α(x)∥ < ε for all x ∈ K, then there
is a leaky-ReLU network fL ∈ NN (σ) with width N and
depth L such that ∥fL(x)− f∗(x)∥ < ε for all x ∈ K.

This corollary shows the expressive power of the leaky-
ReLU neural network, and it is our main result for Part 3
and Part 4, in Section 4, we will show that it holds for Part
4 (dy ≥ dx + 2) while failing for Part 3 (dy = dx + 1).

3.2. Proof idea of Lemma 2.4

We can prove Lemma 2.4 by designing a proper lift map.
According to the lift-flow-discretization approach, we only
need to construct two linear maps and an orientation pre-
serving diffeomorphism with N = d + 1, which satis-
fies the condition of Corollary 3.3. For any continuous
function f∗ ∈ C(K,Rd) on compact domain K ⊂ Rd,
and ε > 0, there is a locally Lipschitz smooth function p
such that ∥f∗(x) − p(x)∥ < ε for all x ∈ K. The func-
tion p can be chosen as a polynomial according to the
well-known Stone-Weierstass theorem. Then, the maps
α : Rd → Rd+1, β : Rd+1 → Rd and Φ : Rd+1 → Rd+1

can be chosen as follows:

α(x) =

(
Id
1T

)
x, Φ

(
x

xd+1

)
=

(
p(x) + κ11T

xd+1

)
, (8)

β

(
x

xd+1

)
= (I,−κ1)

(
x

xd+1

)
= x− κ1xd+1, (9)

where 1 ∈ Rd is a column vector with all being elements
one, κ is a number larger than the Lipschitz constant of p
on K, and xd+1 is the coordinate of the auxiliary dimension.
It is obvious that the maps α and β are linear and p(x) =
β ◦Φ◦α(x). Our proof is constructive, and the formal proof
is in appendix.

Our ’lift-flow-discretization’ approach deeply connects the
minimal width to topology theory, providing that the activa-
tion is a one-dimensional diffeomorphism.

4. Effect of the output dimension
Now we turn to Part 3 and Part 4 of the main results which
consider the case of dy ≥ dx + 1. We examine the approxi-
mation power of leaky-ReLU networks with width N = dy .

We emphasize the homeomorphism properties. In fact,
leaky-ReLU, the nonsingular linear transformer and their
inverse are continuous and homeomorphic. Since compo-
sitions of homeomorphism are also homeomorphism, we
have the input-output map as a homeomorphism. Note that
a singular matrix can be approximated by nonsingular ma-
trixes, therefore we can restrict the weight matrix in neural
networks as nonsingular.

When dy > dx, we can reformulate the leaky-ReLU net-
work with width N = dy as fL(x) = ψ(W1x+ b1),W1 ∈
Rdx×dy , b ∈ Rdy , where ψ(·) is a homeomorphism in di-
mension dy .

4.1. The particular dimension dy = dx + 1

The following lemma shows that width N = dy is not
enough for C-UAP which implies that wmin ≥ dy+1 when
dy = dx + 1.

Lemma 4.1. If dy = dx + 1, there exists a continuous
function f∗(x) ∈ C(K,Rdy ) which can NOT be uniformly
approximated by functions like ψ(W1x+ b1) with homeo-
morphism maps ψ : Rdy → Rdy .

In order to prove this lemma, the counterexample (Fig-
ure 4(a)) we constructed seems very intuitive. In the coun-
terexample, we need to prove that given target function
g(t) : R → R2, for a sufficiently small ε > 0, h satisfying
∥g(t)− h(t)∥ < ε for any t ∈ [0, τ ] has a self-intersection
point, we just need to prove that the curve starting from
(0, 1) to (0, 1) and the curve starting from (−1, 0) to (1, 0)
within [0, 1] × [0, 1] have at least one intersection within
[0, 1]× [0, 1]. This conclusion is so intuitive that even non-
mathematics can also see at a glance that the two curves
must have intersections. While the proof may seem compli-
cated because we need knowledge of topology. Interested
readers can refer to the proof in the appendix.

4.2. The case of dy ≥ dx + 2

Note that we only need to consider the case of dy = dx + 2.
The reason is that when dy > dx + 2, we can increase dx
by adding some auxiliary dimensions to the input. Then,
employing the lift-flow-discretization approach, we only
need to show that any f∗ ∈ C(K,Rdx+2) can be approxi-
mated by functions formulated as ψ(Wx), where ψ(·) is an
orientation preserving diffeomorphism in dimension dx + 2.

Lemma 4.2. For any f∗ ∈ C(K,Rdx+2) and ε > 0, there
is a matrix W ∈ R(dx+2)×dx and an OP diffeomorphism
map Φ such that ∥Φ(Wx)− f∗(x)∥ < ε for all x in K.
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Here, we provide the main ideas. Let f∗ : Id := [0, 1]d →
Rd+2 be a continuous map. Then, let f∗ be the locally
smooth homeomorphism and the transversal intersection
at all the self-intersection points. Denote the set of self-
intersection points of f as A. We can prove that A is a
compactly closed subset. For ∀x ∈ A, there is an open
neighborhood U of x; then, we can make perturbations in
U to make the maps disjoint and not create new intersec-
tions. Thus, we obtain a smooth approximation f of f∗

without intersections, which is the desired diffeomorphism
approximation.

Because f is the embedding of Id → Rd+2, it can be written
as the composition of linear mapping and differential home-
omorphism, which is f(x) = Φ(Wx),W ∈ R(dx+2)×dx .
According to the lift and flow steps, there exists a flow
map ϕτ ∈ C(Rdx+2,Rdx+2) satisfying ∥ϕτ (x)− f(x)∥ <
ε/2. According to the discretization step, there exists a
leaky-ReLU network ψ ∈ C(Rdx+2,Rdx+2) that satisfies
∥ψ(x)− ϕτ (x)∥ < ε/2.

By employing lift-flow-discretization approach, we can ar-
rive at the desired result. To understand the result, we show
an example of the case of dy ≥ dx + 2. We have shown
that a continuous function f∗ from [0, 1]dx → Rdx+2 can
be uniformly approximated by a diffeomorphism, we take
a ‘4’-shape curve corresponding to a continuous function
f∗(t) from [0, 1] → R3 as an example.

（0，0，0）

（0，0，0.05）

（0，1，0）

（1，0，0）

（0，-1，0）

（-1，0，0.1）

（0，1）

（1，0）

（0，-1）

（-1，0）

（0，0）

(a) Target function (b) Approximate function

（0，0，0）

x

y
z

x
x

yy z

Figure 3. Example of dx = 1. Approximate the ‘4’-shape curve
(a) in R2 by lifting it to the three-dimensional curve (b) in R3.

From Figure 3, we lift the four vertices of the ‘4’-shape
curve as (−1, 0, 0), (1, 0, 0), (0,−1, 0), (0, 1, 0), and con-
nect them in turn to form a polyline, which is our target
function f∗(t), t ∈ [0, 1]. Then, we construct a curve with-
out self-intersection points by changing one of the z-axis
coordinates of the points to ε (such as ε = 0.1), the approx-
imation function f is the curve connected by 4 vertices as
(−1, 0, ε), (1, 0, 0), (0,−1, 0), (0, 1, 0) in sequence, in Fig-
ure 3(b). Now the approximation function becomes a curve
f̃(t) without self-intersecting points, corresponding to a
homeomorphic mapping Φ in R3 with f̃(t) = Φ(wt) for
some w ∈ R3. Employing the flow and discretization steps,

we can approximate Φ by leaky-ReLU networks. Conse-
quently, we can conclude that the ‘4’-shape curve in Figure
3 can be approximated by leaky-ReLU networks.

5. Discussion
General Activation. It should be noted that our ‘lift-flow-
discretization’ approach is generic for strictly monotone
continuous activations. For example, our results are valid
for strict monotone piecewise linear activations. We focus
on leaky-ReLU networks mainly because 1) it is the simplest
demo to prove our concept, and 2) the results of (Caponigro,
2011) and (Duan et al., 2022) allow us to finish the ‘flow’
and ‘discretization’ steps easily.

We also note that our result may not hold for ReLU networks
as the ReLU function is not invertible. ReLU networks can
be regarded as the limits of leaky-ReLU networks with
parameter α tending to 0. However, in our construction,
some weights of the network are O(1/α), which tend to ∞
as α → 0. This suggests that the narrow ReLU and leaky-
ReLU networks are different. How to rediscuss these issues
under the ReLU network, and show the differences between
the two more clearly, maybe a very interesting topic.

Lp-UAP and C-UAP. Leaky-ReLU activation has been
studied by (Duan et al., 2022) and (Cai, 2022) to connect
neural ODEs, flow maps, and the minimum width of neural
networks. However, the previous results are for the UAP un-
der the Lp norm, which simplified the analysis because the
diffeomorphisms are Lp approximations of maps (Brenier &
Gangbo, 2003). Our ‘lift-flow-discretization’ approach can
deeply connect the minimal width to the topology theory,
properly lift the target function to higher dimensions and
employ facts from topology theory to further obtain sharp
bounds of width for the uniform/C-UAP.

Approximation rate. Determining the number of weights
or layers to achieve ε approximation error is related to
the approximation rate or the error-bound problems. Es-
timating the error bound of all three steps in our lift-flow-
discretization approach is challenging since the error in the
‘flow’ step is hard to estimate. This may need to establish
new construction tools. We leave it as future work.
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A. Proofs
A.1. Notations

Flow map A flow on a set X is a group action of the additive group of real numbers on X. More explicitly, a flow is a
mapping ϕ : X×R → X such that for all x ∈ X and s, t ∈ R, ϕ(x, 0) = x, ϕ(ϕ(x, t), s) = ϕ(x, s+ t). If we fix t = τ , we
gain a flow map ϕτ : X → X.

Diffeomorphism Given two manifolds M and N , a differentiable map f : M → N is called a diffeomorphism if it is a
bijection and its inverse f−1 : N →M is differentiable as well.

A.2. Proof of Lemma 2.4

Proof. If we can find two linear maps and an orientation preserving diffeomorphism with N = d + 1 that satisfies the
condition of Corollary 3.3. Then according to Lemma 3.1, for any ε > 0, there exists an ODE (7) whose flow map ϕτ (x)
satisfies ∥ϕτ (x) − Φ(x)∥ < ε. Lemma 3.2 shows that for such ϕτ and any ε > 0, there exists a leaky-ReLU network
ψ(x) with width N and depth L such that ∥ϕτ (x) − ψ(x)∥ < ε for all x in Ω. According to the lift-flow-discretization
approach, we only need to construct two linear maps and an orientation preserving diffeomorphism with N = d+ 1, which
satisfies the condition of Corollary 3.3. In fact, for any continuous function f∗ ∈ C(K,Rd) on compact domain K ⊂ Rd

and ε > 0, there is a locally Lipschitz smooth function p such that ∥f∗(x)− p(x)∥ < ε for all x ∈ K. The function p can
be chosen as a polynomial according to the Stone-Weierstass theorem. Then, the maps α : Rd → Rd+1, β : Rd+1 → Rd

and Φ : Rd+1 → Rd+1 can be chosen as follows:

α(x) =

(
Id
1T

)
x, Φ

(
x

xd+1

)
=

(
p(x) + κ11T

xd+1

)
, β

(
x

xd+1

)
= (I,−κ1)

(
x

xd+1

)
= x− κ1xd+1, (10)

where 1 ∈ Rd is a column vector with all elements equal to one, κ is a number larger than the Lipschitz constant of p on K,
and xd+1 is the coordinate of the auxiliary dimension. It is obvious that maps α and β are linear and p(x) = β ◦ Φ ◦ α(x).
In addition, Φ is an OP diffeomorphism as det(∇Φ) > 0 for all x ∈ K and xd+1 ∈ R. Therefore, the Corollary 3.3 implies
that there is a leaky-ReLU network fL(x) with depth L and width d+ 1 such that ∥fL(x)− f∗(x)∥ ≤ ε for all x in K.

A.3. Proof of Lemma 3.1

Proof. It is a corollary of Theorem 6 in (Caponigro, 2011). Here, we only provide the main ideas. Let M ⊂ RN be a compact
connected manifold and {f1, · · · , fn} be a bracket-generating family of vector fields. (Caponigro, 2011) shows that for any
OP diffeomorphism P ∈ Diff0(M) and ε > 0, there exist n time-varying feedback controls, uj(x, t), which are piecewise

constant with respect to t, such thatP can be represented by the flow map ϕ̃τ of the ODE ẋ(t) =
n∑

j=1

uj(x, t)fj(x), t ∈ (0, τ),

which means ∥ϕ̃τ (x)− Φ(x)∥ < ε.

Then, we find a neural ODE to approximate ϕ̃τ . For the approximation of ϕ̃τ , we need to approximate each uj(x, t),
which can be done by polynomial, trigonometric polynomials or neural networks. The neural ODE (7) is such an example
that takes M ⊃ Ω, n = N , fj = ej as the axis vectors, and according to the UAP of neural networks, we have
uj(x, t) ≈

∑M
i=1 a

(j)
i (t) tanh(wi(t) · x+ bi(t)) where a(j)i is the j-th coordinate of ai. In this case, ϕτ , the flow map of (7)

satisfies ∥ϕ̃τ (x)− ϕτ (x)∥ < ε, x ∈ RN .

A.4. Proof of Lemma 3.2

Proof. The main idea is to solve the ODE (7) by a splitting method and then approximate each split step by leaky-
ReLU networks. Consider the following splitting for v in (7): v(x, t) ≡

∑N
i=1

∑d
j=1 vij(x, t)ej with vij(x, t) =

a
(j)
i (t) tanh(wi(t) · x + bi(t)) ∈ R. Then, the flow map can be approximated by an iteration with time step ∆t = τ/n,

9
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n ∈ Z+ ,

ϕτ (x0) ≈ xn = Tn(xn−1) = Tn ◦ · · · ◦ T1(x0),
= T (N,d)

n ◦ · · · ◦ T (1,2)
n ◦ T (1,1)

n ◦ · · · ◦

T
(N,d)
1 ◦ · · · ◦ T (1,2)

1 ◦ T (1,1)
1 (x0).

where the k-th iteration is xk+1 = Tkxk = T
(N,d)
k ◦ · · · ◦ T (1,2)

k ◦ T (1,1)
k (xk). The map T (i,j)

k : x→ y in each split step is:

T
(i,j)
k :

{
y(l) = x(l), l = 1, 2, .., j − 1, j + 1, ..., d,

y(j) = x(j) +∆tvij(x, k∆t).

Here, the superscript in x(l) indicates the l-th coordinate of x. (Duan et al., 2022) constructed leaky-ReLU networks with
width N to approximate each map T (i,j)

k and we finished the proof.

A.5. Proof of Lemma 4.1

Proof. Without loss of generality, we assume K = [0, 1]dx . Here, we give a simple example in Figure 4. ‘4’-shape curve (a)
corresponding to a continuous function g(t) from [0, 1] ⊂ R to R2 cannot be uniformly approximated.

When g(0) = (0,−1), g(1) = (1, 0), for some t1, t2 ∈ [0, 1], g(t1) = g(t2) = (0, 0), then (0, 0) is a self-intersecting point.

Impossible 
for uniform UAP

Possible 
for uniform UAP

(a) (b)

Figure 4. Illustration of the possibility of C-UAP when dx ≤ dy . The curve in (b) is homeomorphic to the interval [0, 1], while curve in
(a) is not, and cannot be uniformly approximated by homeomorphisms. For comparison, the C-UAP is possible for (b).

In Figure 4, (a) is not homeomorphic because it has a self-intersecting point, if it can be approximated by some homeomor-
phism function, that function must avoid the self-intersecting points.

However, for some incredibly small ε > 0, if a function h(t) satisfies ∥g(t) − h(t)∥ < ε,∀t ∈ [0, 1], h(t) cannot avoid
self-intersecting points, so it can not be corresponded to homeomorphism through simple dimension raising. Then Figure 4(a)
is not possible to be approximated by a homeomorphism map for some incredibly small error, hence, any function h(t) with
∥h(t)− g(t)∥ < ε,∀t ∈ [0, 1] has a self-intersecting point that prevents it from being a monomorphism.

We will show that for any ε0 < 1, the function h0(t) (orange line in Figure 5(a)) satisfying ∥h0(t)− g(t)∥ < ε0 must have
an intersecting point. See Figure 5(b), we construct a closed curve S1 passing through (0, 1) and (0,−1) with (−1, 0) inside
it and (1, 0) outside it, then according to the Jordan curve theorem, the curve passing through points (1, 0) and (−1, 0) must
intersect with S1 within [0, 1]× [0, 1]. This means that any closed curve passing through (0, 1) and(0,−1), and the closed
curve passing through (−1, 0) and (1, 0), must have intersection points in [0, 1]× [0, 1]. Therefore, the approximation curve
in Figure 5(a) cannot be homeomorphic. Thus, we finish the proof.

For function g̃(t) (figure 4(b)), for any ε > 0, there exists h̃(t) satisfying ∥g̃(t)− h̃(t)∥ < ε which do not have intersection
points, the proof is left to interested readers. In conclusion, Figure 4(a) is a counterexample we provide to finish the
proof.
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(a) (b)

Approximation 
Curve

Figure 5. There is an intersection point in [0, 1]× [0, 1] between two closed curves that pass through (0, 1), (0,−1) and (1, 0), (−1, 0).

A.6. Proof of Lemma 4.2

Proof. Let f∗ : Id := [0, 1]d → Rd+2 be a continuous map. Then, let f∗ be a locally smooth homeomorphism and
transversal intersection at all the self-intersection points. If f∗ satisfy neither of the two conditions, it needs to be replaced
by a smooth approximation or be slightly perturbed. Denote the set of self-intersection points of f as A. According to the
transversal intersection, ∂A = A, A is a closed set. Since f∗ is continuous and Id is a compact set, we know that f∗(Id) is
also a compact set, so A as a closed subset of f(Id) is also compact. For any x ∈ A, it is locally obtained by transversely
intersecting at least two, at most d+ 1 d-dimensional hyperplanes and set as k intersection points. That is, there is an open

neighborhood U of x, U
φ−→∼= I̊d+2 and φ(f∗(Id) ∩ U) =

k⋃
i=1

Sd
i , where Sd

i denotes the restriction of the i-th d-dimensional

hyperplane on Rd+2 on I̊d+2.

Let the corresponding equation be x̃i = 0, x̃d+2 = 0, where (x̃1, . . . , x̃d+2) is the coordinate of Rd+2. Denote the
tubular neighborhood of T := Sd

i ∩ (
⋃
k ̸=i

Sd
i ) on Sd

i with a sufficiently small radius as Ni. Consider the mapping

fi : I̊
d → Sd

i , (x1, . . . , xd) 7→ (x1, . . . , xi−1, 0, xi, . . . , xd, 0), and perturb it slightly:

f̄i =


f̄i|Id\f̄−1

i (Ni)
: fi|Id\fi−1(Ni),

f̄i|f̄−1
i (Ni)

: (x1, . . . , xd) 7→

(x1, . . . , xi−1, 0, xi, . . . , xd, εiτ(x1, . . . , xd)),

(11)

where τ(x1, . . . , xd) is a smooth function that is 1 when xj = 0, j ∈ {1, . . . , d}. τ(x1, . . . , xd) and all its derivatives tends
to 0 at the boundary of I̊d.

For f̄i, make a smooth approximation f̃i that maintains zero on each component, and denote F d
i = f̄i(I̊

d). Therefore,
φ−1(F d

i ) and f∗(Idi ) are smoothly connected on ∂U and for ∀i ̸= j ∈ {1, . . . , k}, F d
i ∩ F d

j = ∅. Therefore, all φ−1(Sd
i )

in U can be replaced by φ−1(F d
i ), which will make f∗ have no self-intersection point in U , and no new self-intersection

point will be generated.

For all of the above x, U constitutes an open cover of A, which has finite subcovers {U1, . . . , Um}. Let V1 = U1, V2 =
U2\U1, . . . , Vm = Um\(U1 ∪ · · · ∪ Um−1); then, all the Vi are disjoint and cover A.

Execute the above substitution for Vi. Suppose that a similar operation can be performed for V1, . . . , Vl, so that the image
of f∗ in V1 ∪ · · · ∪ Vl after substitution has no self-intersection point. We can prove that a similar operation can also be
performed in Vl+1, so that f∗ in V1 ∪ · · · ∪ Vl+1 obtains the same conclusion after substitution. In fact, this only needs to
change Ni at the definition of Fi in the above process to Ni\φ(V1 ∪ · · · ∪ Vl) and then make a smooth approximation.

Thus far, we have obtained a smooth approximation f of f∗, which is the embedding of Id → Rd+2.
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