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Abstract

The capacity of deep learning models is often large enough to both learn the
underlying statistical signal and overfit to noise in the training set. This noise
memorization can be harmful especially for data with a low signal-to-noise ratio
(SNR), leading to poor generalization. Inspired by prior observations that label
noise provides implicit regularization that improves generalization, in this work, we
investigate whether introducing label noise to the gradient updates can enhance the
test performance of neural network (NN) in the low SNR regime. Specifically, we
consider training a two-layer NN with a simple label noise gradient descent (GD)
algorithm, in an idealized signal-noise data setting. We prove that adding label
noise during training suppresses noise memorization, preventing it from dominating
the learning process; consequently, label noise GD enjoys rapid signal growth while
the overfitting remains controlled, thereby achieving good generalization despite
the low SNR. In contrast, we also show that NN trained with standard GD tends to
overfit to noise in the same low SNR setting and establish a non-vanishing lower
bound on its test error, thus demonstrating the benefit of introducing label noise in
gradient-based training.

1 Introduction

The success of deep learning across various domains [34, 48, 7] is often attributed to their ability to
extract features [20, 15] via gradient-based training [14, 3]. One desirable property of gradient-based
feature learning is the algorithmic regularization that prioritizes learning of the underlying signal
instead of overfitting to noise: real-world data contains noise due to mislabeling, data corruption, or
inherent ambiguity, yet despite having the capacity to memorize noise, neural networks (NNs) trained
by gradient descent (GD) tend to identify informative features and “low-complexity” solutions that
generalize [57, 43].

To understand this behavior, recent theoretical works considered data models that partition the features
into signal and noise components [19, 5, 54], and studied the performance of gradient-based training
in different signal-noise conditions. Among existing theoretical settings, the signal-noise model
proposed in [2, 8] has been extensively studied in the feature learning theory literature. In this
model, input features are constructed by combining a label-dependent signal with label-independent
noise. The signal represents meaningful patterns relevant to the predictive task while the noise
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component captures background features unrelated to the learning task. This idealized setting has
shed light on how various algorithms, neural network architectures, and other factors influence
optimization and generalization of neural networks, depending on the signal-to-noise ratio (SNR)
[18, 58, 29, 25, 56, 9, 27, 22, 26, 23, 35].

In such model, it is known that the SNR dictates a transition from benign overfitting to harmful
overfitting. In the high SNR regime, gradient-based feature learning prioritizes signal learning over
noise memorization; hence upon convergence, the trained NN recovers the signal and generalizes to
unseen data despite some degree of noise memorization, a phenomenon known as benign overfitting
[4, 51, 40, 44, 46, 31]. In contrast, when the SNR is low, noise memorization dominates the training
dynamics, and the network fails to identify useful features before the training loss becomes small,
leading to harmful overfitting [8, 33].

Given these challenges, recent works have explored algorithmic modifications that either enhance
signal learning or suppress noise memorization, to improve generalization in the challenging low
SNR regime. [25] showed that the smoothing effect of graph convolution in graph neural networks
mitigates overfitting to noise; however, this approach requires the graph to be sufficiently dense and
exhibits high homophily. [10] found that the sharpness-aware minimization (SAM) method [17]
prevents noise memorization in early stages of training, thereby promoting effective feature learning;
this being said, SAM has higher computational cost than standard GD due to the two forward and
backward passes per step, and it involves more complex hyperparameter tuning. The goal of this
work is to address the following question:

Is there a simple modification of GD with no computational overhead that achieves small
generalization error in low SNR settings where standard GD fails to generalize?

1.1 Our contributions

We provide an affirmative answer to the question above by introducing random label noise to the
training dynamics as a form of regularization, inspired by label noise (stochastic) gradient descent
(GD) [6, 45, 49]. Specifically, we analyze the classification extension of label noise GD considered
in [24, 13], where random label flipping is introduced to prevent overfitting.

Figure 1: Test accuracy of VGG-16 on
CIFAR-10 with varying SNR. Label noise GD
consistently outperforms standard GD, and the
gap increases with the noise strength.

Empirically, we first present findings in a controlled
classification setting, where we train a VGG-16 model
on (a subset of) the CIFAR-10 dataset. To modulate the
SNR, we follow [19] and add varying levels of noise to
the high-frequency Fourier components of the images
– higher noise strength corresponds to lower SNR and
vice versa. The results, shown in Figure 1, demonstrate
that as the SNR decreases, the performance gap between
label noise GD and standard GD becomes more signif-
icant, hence suggesting that label noise GD improves
generalization in the low SNR regime. The goal of this
work is to rigorously establish this separation in an ide-
alized theoretical model.

Theoretically, we characterize the properties of Label Noise GD in low SNR regimes, by considering
the learning of a two-layer convolutional neural network in a binary classification problem studied
in [8], and show that by randomly flipping the labels of a small proportion of training samples at
each iteration, noise memorization can be suppressed despite the low SNR, whereas signal learning
experiences a period of fast growth. As a result, neural network trained by label noise GD attains
good generalization performance in regimes where standard GD fails, as summarized in the following
informal theorem:

Theorem 1.1 (Informal). Given n training samples drawn from the distribution in Definition 2.1
in the low SNR regime where n−1SNR−2 = Ω̃(1). Then for any ϵ > 0, after a polynomial
number of training steps t (depending on ϵ), with high probability we have: (i) Standard GD
minimizes the logistic training loss to L

(t)
S ≤ ϵ, but the generalization error (0-1 loss) remains large,

i.e., L(t)
D = Ω(1). (ii) Label noise GD cannot reduce the logistic training loss to a small value

L
(t)
S = Ω(1), but achieves small generalization error (0-1 loss), i.e., L(t)

D = o(1).
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We make the following remarks on our main results.

• Improved Generalization due to Label Noise. The theorem provides an upper bound on the
test error of label noise GD and lower bound on the error of standard GD. This demonstrates that
incorporating label noise into the gradient descent updates improves generalization in the low SNR
regime. We note that our conditions on label noise GD learnability are weaker than those required
for SAM as specified in [10], even though our studied algorithm is arguably simpler and more
computationally efficient – see Section 3 for more comparisons.

• Analysis of Feature Learning Dynamics. We establish the main theorem via a refined characteri-
zation of the training dynamics of label noise GD on a two-layer convolutional NN with squared
ReLU activation. A key observation in our analysis is that label noise introduces regularization
to the noise memorization process, preventing it from growing beyond a constant level; mean-
while, signal learning continues to exhibit a rapid growth rate, allowing the model to identify the
informative features and avoid harmful overfitting in low SNR regimes.

2 Problem Setup

In this section, we describe the signal-noise data model, the neural network architecture used for
training, and the label noise gradient descent algorithm considered in this work.

Data generating process. We consider the signal-noise data model from [8, 10, 25]. Let µ ∈ Rd

be a fixed signal vector, and for each data point (x, y), the feature x is composed of two patches,
denoted as x = {x(1),x(2)} ∈ R2d. The target variable y is a binary label, taking values in {±1}.
Then the data is generated according to the following process.
Definition 2.1. We consider the following generating process for (x, y):

1. The true label y is drawn from a Rademacher distribution, i.e., P[y = 1] = P[y = −1] = 1/2.

2. One of the patches, x(1) or x(2) is randomly selected to be yµ (the signal), while the other is set
to be ξi ∼ N (0, σ2

p(Id − µµ⊤∥µ∥−2
2 )) (the noise). Here, σ2

p denotes the strength of the noise
vector.

We make the following remarks on the data distribution.

• The data model simulates a setting where the input features are composed of both signal and noise
components. Specifically, each data point is divided into two patches, and one of these patches
contains meaningful information (signal) related to the classification label, while the other patch
only contains random noise independent of the label. The noise covariance σ2

p(Id − µµ⊤∥µ∥−2
2 )

is set to ensure that the noise vector is orthogonal to the signal vector for simplicity.
• This setup is designed to reflect real-world scenarios where data contains a mix of relevant and

irrelevant features (see Appendix A in [2] for discussions). Note that in high dimensions (n ≪ d),
the NN can achieve small training loss just by overfitting to the noise component. Therefore, the
challenge for the learning algorithm in the low SNR regime is to identify and learn the signal patch
while ignoring the noisy patch.

• We use the minimum number of patches in the multi-patch model for concise presentation. Our
results can be extended to more general cases where the number of patches is greater than 2;
see [2, 47] for such extension.

Neural network and loss function. Following [8], we consider a two-layer convolutional neural
network with squared ReLU activation and shared filters applied separately to each patch. The
network is defined as f(W,x) = F+1(W+1,x)− F−1(W−1,x), where

Fj(Wj ,x) =
1

m

m∑
r=1

2∑
p=1

σ
(
⟨wj,r,x

(p)⟩
)
=

1

m

m∑
r=1

(
σ
(
⟨wj,r, yµ⟩

)
+ σ

(
⟨wj,r, ξi⟩

))
,

in which m denotes the size of the hidden layer, and σ(z) = (max{0, z})2. Note that j ∈ {−1,+1}
corresponds to the fixed second-layer. The symbol Wj represents the collection of weight vectors in
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Algorithm 1 Label noise gradient descent
1: Initialize W0, step size η, flipping probability p ∈ [0, 1]
2: for t = 0, ..., T − 1 do
3: Sample ϵ

(t)
i ∼ Rademacher(1− p, p), ∀i ∈ [n].

4: W(t+1) = W(t) − η∇WLϵ
S(W

(t)), where Lϵ
S(W

(t)) = 1
n

∑
i∈[n] ℓ

(
ϵ
(t)
i yif(W

(t),xi)
)
.

5: end for

the first layer, i.e., Wj = [wj,1,wj,2, . . . ,wj,m] ∈ Rd×m, where wj,r ∈ Rd is the weight vector of
the r-th neuron. Here, j ∈ {−1,+1} indicates the fixed value in the second layer. The initial weights
W±1 has entries sampled from N (0, σ2

0).
Remark 2.2. Since we do not optimize the 2nd-layer parameters, we expect the 2-homogeneous
squared ReLU activation to mimic the behavior of training both layers simultaneously in a ReLU
network; such higher-order homogeneity amplifies feature learning (e.g., see [12, 21]) and creates a
significant gap between signal learning and noise memorization. Similar effect can be achieved by
smoothed ReLU with local polynomial growth as in [2, 47].

We use the logistic loss computed over n training samples, denoted as S = {(xi, yi)}i∈[n]:

LS(W) =
1

n

∑
i∈[n]

ℓ(yif(W,xi)),

where ℓ(z) = log(1 + exp(−z)). To evaluate the generalization performance of the trained network,
we measure its expected 0-1 loss on unseen data, defined as

L0−1
D (W) = E(x,y)∼D[1(y ̸= sign(f(W,x))], (1)

where D denotes the data distribution specified in Definition 2.1, and 1(·) is the indicator function.

Label noise GD for binary classification. We train the above neural network by gradient descent
on either (i) the original loss function (standard GD), or (ii) the loss function with label-flipping noise
defined as

Lϵ
S(W

(t)) ≜
1

n

∑
i∈[n]

ℓ
(
ϵ
(t)
i yif(W

(t),xi)
)
.

Here, ϵ(t)i is a random variable equal to 1 with probability 1 − p and −1 with p, i.e., ϵ(t)i ∼
Rademacher(1− p, p). In other words, labels flip with probability p independently at each step.
Remark 2.3. We remark that label smoothing [45, 49] and label flipping are equivalent in expectation.
This connection has also been discussed in [38]. However, note that this equivalence in expectation
does not imply closeness in training dynamics due to the stochasticity introduced by the label-flipping.

The label noise GD update is then given as follows:

w
(t+1)
j,r = w

(t)
j,r −

η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)ϵ
(t)
i jµ− η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)ϵ
(t)
i yijξi, (2)

where η is the learning rate, and we defined ℓ̃
′(t)
i = ℓ′(ϵ

(t)
i yif(W

(t),xi)) as the derivative of the
loss function. This label noise GD training procedure is outlined in Algorithm 1. Observe that
the proposed algorithm is computationally efficient, as the introduced label noise does not modify
the original gradient descent framework. Hence this method is simple to implement, does not add
significant computational overhead, and requires no complex hyperparameter tuning.

3 Main results

In this section, we quantify the benefits of label noise gradient descent by comparing its generalization
performance against standard gradient descent (GD) training without label noise. We begin by
outlining the assumptions that apply to both label noise GD and standard GD.
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Assumption 3.1. Define SNR = ∥µ∥2

σp

√
d

. We consider the following setting for both algorithms:

(i) data dimension d = Ω̃(max{n2, n∥µ∥22/σ2
p}); signal-to-noise ratio SNR = Õ(1/

√
n).

(ii) network width m = Ω̃(1); number of training samples n = Ω̃(1).

(iii) learning rate η ≤ Õ(σ−2
p d−1).

(iv) initialization variance Õ(nσ−1
p d−3/4) ≤ σ0 ≤ Õ(min{∥µ∥−1

2 d−5/8, σ−1
p d−1/2}).

(v) flipping rate of label noise p lies in the interval p ∈ (C log d√
mn

, 1
C ), where C is a sufficient large

constant.

We make the following remarks on the above assumption.

• The high-dimensional assumption (i) is standard in the benign overfitting analysis of NNs (e.g.,
see [8, 18]). The low SNR condition is derived from the comparison between the magnitude of
signal learning and noise memorization – see Section 4.1; similar conditions has been established
in [8, 33] for different activations.

• The requirements on the hidden layer size m and the sample size n being at least polylogarithmic
in the dimension d ensure that certain statistical properties regarding weight initialization and the
training data hold with high probability at least 1− 1/d.

• The upper bound on the learning rate η ensures that the iterates in (4-6) remain bounded, which is
required for standard GD to reach low training loss; see Proposition 4.1.

• The upper bound on initialization scale σ0 is used to ensure convergence of GD, and the lower
bound is used for anti-concentration at initialization. Similar requirements can be found in [8,
Condition 4.2].

• The lower bound ensures that the number of flipped samples concentrates around its expectation so
that our theoretical analysis remains valid, while the upper bound on label flipping rate p prevents
the label noise from dominating the true signal.

We first state the negative result for standard gradient descent (GD) without label noise.
Theorem 3.2 (GD fails to generalize under low SNR). Under Assumption 3.1, for any ϵ > 0, there
exists t = Θ(

nm log(1/(σ0σp

√
d))

ησ2
pd

+ m3n
ηϵσ2

pd
), such that with probability at least 1− d−1/4, it holds that

• The training error converges, i.e., LS(W
(t)) ≤ ϵ.

• The test error is large, i.e., LD(W
(t)) ≥ 0.24.

Theorem 3.2 indicates that even though standard GD can minimize the training error to an arbitrarily
small value, the generalization performance remains poor. This is mainly because the neural network
overfits to the noise components in the input data instead of learning the useful features. Next, we
present the positive result for label noise GD.
Theorem 3.3 (Label Noise GD generalizes under low SNR). Under Assumption 3.1, there exists
t = Θ(

nm log(1/(σ0σp

√
d))

ησ2
pd

+ m log(6/(σ0∥µ∥2))
η∥µ∥2

2
) and constants C > 0, such that with probability at

least 1− d−1/4, it holds that

• The training error is at constant order, i.e., LS(W
(t)) = Θ(1).

• The test error is small, i.e., LD(W
(t)) ≤ 2 exp

(
−Cd

n2

)
.

Theorem 3.3 shows that label noise GD achieves vanishing generalization error when the input
dimensionality is large (i.e., d = Ω(n2)) despite the low SNR.
Remark 3.4. Theorems 3.3 and 3.2 present contrasting outcomes for standard GD and label noise
GD in the low SNR regime. In particular,

• Standard GD minimizes the training error effectively but does so by primarily overfitting to noise
in the training data. This significant noise memorization leads to harmful overfitting.
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• In contrast, label noise GD introduces a regularization effect through label noise, which prevents
the network from fully memorizing the noise components. This allows the network to focus on
learning the true signal, resulting in a phase of accelerated signal learning. Consequently, the model
generalizes even though the training loss does not vanish (due to noise injection).

Comparison with sharpness-aware minimization [10]. We briefly discuss the differences between
our findings and those in [10] for the sharpness-aware minimization (SAM) method, where the
authors established conditions on the SNR under which SAM can generalize better than stochastic
gradient descent (SGD). However, their analysis requires the additional condition that the signal norm
satisfies ∥µ∥2 ≥ Ω̃(1), indicating the necessity of a sufficiently strong signal. In contrast, we show
that label noise GD enjoys good generalization without this strong signal condition. This highlights
the robustness of label noise GD in low SNR regimes (even when the signal strength is considerably
weaker compared to the noise).

Comparison with stopping times across theorems. We compare the stopping times in Theorems
3.2 and 3.3. The stopping times for standard GD and label noise GD are not directly comparable,
as they correspond to different evaluation criteria. Specifically, the stopping time for standard GD
is the number of iterations required for the training loss to converge below a threshold ϵ, whereas
the stopping time for label noise GD is defined as the number of iterations needed to achieve
sufficiently low 0-1 test loss. To enable a meaningful comparison, we derive the ratio between the two
stopping times under Assumption 3.1. By setting m2 = log

(
6

σ0∥µ∥2

)
/ϵ, we obtain tStandard GD

tlabel noise GD
=

Θ
(

n∥µ∥2
2

σ2
pd

)
= Θ(nSNR2). According to Assumption 3.1, we assume nSNR2 ≪ 1, which implies

that label noise GD requires more iterations to achieve good test performance compared to the time
required for the training loss of standard GD to converge.

4 Proof Sketch

In this section, we give an overview of of our analysis of the optimization dynamics of standard
GD and label noise GD . Our key technical contributions are summarized as follows: (i) Boundary
characterization in low SNR regimes. Unlike previous studies [8, 33, 10] that focus on the higher
polynomial or standard ReLU activation, we analyze the 2-homogeneous squared ReLU activation,
leading to a different boundary characterization of the low SNR regime for standard GD – see
Section 4.2. (ii) Upper bound via supermartingale. We apply supermartingale arguments with
Azuma’s inequality to bound noise memorization in label noise GD. This yields high-probability
guarantees on training dynamics, previously unestablished in this context.

4.1 Signal-noise decomposition

To analyze the training dynamics, we adopt a parameter decomposition technique from [8, 33]: there
exist {γ(t)

j,r} and {ρ(t)j,r,i} such that

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi. (3)

This decomposition originates from the observation that the gradient descent update always evolves
in the direction of µ and xi for i ∈ [n]. In particular, γ(t)

j,r ≈ ⟨w(t)
j,r,µ⟩ serves as the signal learning

coefficient, whereas ρ(t)j,r,i ≈ ⟨w(t)
j,r, ξi⟩ characterizes the noise memorization during training. Next

we let ρ(t)j,r,i = ρ
(t)
j,r,i1(yi = j) and ρ(t)

j,r,i
= ρ

(t)
j,r,i1(yi = −j). Combined with the gradient descent

update given by Equation (2), we obtain the iteration rules for these coefficients:

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)∥µ∥
2
2ϵ

(t)
i , (4)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ̃
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2ϵ

(t)
i 1(yi = j), (5)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
ℓ̃
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2ϵ

(t)
i 1(yi = −j). (6)
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where the initial values of the coefficients are given by γ
(0)
j,r = 0 and ρ

(0)
j,r,i = 0 for all i ∈ [n],

j ∈ {−1, 1} and r ∈ [m].

To analyze the optimization trajectory, we track the dynamics of signal learning coefficients (γ(t)
j,r)

and noise memorization coefficients (ρ(t)j,r,i) using the iteration rules in Equations (4-6). To facilitate a
detailed analysis, we first provide upper bounds on the absolute value of both the signal learning and
noise memorization coefficients throughout the entire training process.

Proposition 4.1. Given Assumption 3.1 and ϵ > 0. Let β = 2maxj,r,i{|⟨w(0)
j,r ,µ⟩|, |⟨w

(0)
j,r , ξi⟩|}

and α = 4 log(T ∗). For 0 ≤ t ≤ T ∗, where T ∗ = η−1poly(n,m, d, ∥µ∥−1
2 , (σ2

pd)
−1, σ−1

0 , ϵ−1),
for all i ∈ [n], r ∈ [m] and j ∈ {−1, 1}, it holds that

0 ≤ γ
(t)
j,r ≤ α, 0 ≤ ρ

(t)
j,r,i ≤ α, (7)

0 ≥ ρ(t)
j,r,i

≥ −β − 16

√
log(4n2/δ)

d
nα ≥ −α. (8)

The proof is in Appendix C. Proposition 4.1 shows that throughout training, the absolute values of
signal learning and noise memorization coefficients have a logarithmic upper bound. This result
is key for a stage-wise characterization of training dynamics. Notably, this bound holds for both
standard GD and label noise GD.

4.2 Proof Sketch for Theorem 3.2

We first establish the negative result for standard GD based on a two-stage analysis. As previously
mentioned, we consider the 2-homogeneous σ(z) = ReLU2(z) which differs from [8, 33, 10]. This
leads to a key difference in the boundary characterization of the low SNR regime.

First stage. Notice that starting from small initialization, the loss derivative remains close to a
constant. Based on this observation, we establish the difference in magnitude between the coefficients
of signal learning and noise memorization.

According to the update rule for the signal learning coefficient given by Equation (4) and by setting
ϵ
(t)
i = 1 for all t and i ∈ [n] (i.e., no label flipping), the upper bound of signal learning can be achieved

as γ(t)
j,r+|⟨w(0)

j,r ,µ⟩| ≤ exp
( 2η∥µ∥2

2

m t
)
|⟨w(0)

j,r ,µ⟩|. Meanwhile, the bounds for the noise memorization
coefficients can be derived from the update rules (5) and (6). The results are given as maxj,r |ρ(t)j,r,i

| ≤
3ησ2

ptd

nm

√
log(8mn/δ)σ0σp

√
d, and maxj,r ρ

(t)
j,r,i ≥ exp

(ηC1σ
2
pd

2nm t
)
σ0σp

√
d/4−0.6β, for all i ∈ [n],

where we define β̄ = mini∈[n] maxr∈[m]⟨w
(0)
yi,r, ξi⟩, and use |ℓ̃

′(t)
i | ≥ C1. In the low SNR setting,

where σp

√
d is much larger than ∥µ∥2, we observe that noise memorization dominates the feature

learning process during the first stage, as shown in the following lemma.

Lemma 4.2. Under the same condition as Theorem 3.2, and let T1 = Θ(
nm log(1/(σ0σp

√
d))

ησ2
pd

), the

following results hold with high probability at least 1− d−1: (i) maxj,r ρ
(T1)
j,r,i ≥ 1, for all i ∈ [n];

(ii) maxj,r,i |ρ(t)j,r
| ≤ Õ(σ0σp

√
d), for all t ∈ [T1]; (iii) maxj,r γ

(t)
j,r ≤ Õ(σ0∥µ∥2), for all t ∈ [T1].

Lemma 4.2 indicates that when the SNR is sufficiently low, i.e., SNR = Õ(1/
√
n), noise mem-

orization dominates the training dynamics during the early phase of standard GD optimization.
We highlight that this “low-SNR” condition differs from that of [8, 33] due to the choice of ac-
tivation function. In particular, [8] assumed σ(z) = (max{0, z})q with q > 2 and established a
low-SNR boundary n−1SNR−q = Ω̃(1), whereas [33] considered the ReLU activation and derived
the condition n

∥µ∥4
2

σ4
pd

≤ O(1).

Second stage. After the first stage, the loss derivative is no longer bounded by a constant value. To
prove convergence of the training loss L(t) ≤ ϵ, we build upon the analysis from the first stage and
define w∗

j,r = w
(0)
j,r +2m log(2/ϵ)

∑n
i=1 ∥ξi∥

−2
2 ξi. We show that, as gradient descent progresses, the
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distance between W(t) and W∗ decreases until L(t) ≤ ϵ: ∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≤
ηLS(t)− ηϵ. Moreover, we show that the difference between signal learning and noise memorization
still holds in the second stage, as summarized below.
Lemma 4.3. Let T2 = η−1σ−2

p d−1nm log(1/(σ0σpd)) + η−1ϵ−1m3nσ−2
p d−1. Under the same

assumptions as Theorem 3.2, for training step t ∈ [T1, T2], it holds that γ(t)
j,r ≤ Õ(σ0∥µ∥2), |ρ(t)j,r,i

| ≤

Õ(σ0σp

√
d), and ρ

(t)
j,r,i ≥ 1. Besides, there exists a step t ∈ [T1, T2], such that LS(t) < ϵ.

Lemma 4.3 shows that standard GD achieves low training error after polynomially many steps, and
noise memorization dominates the entire training process, which results in harmful overfitting.

4.3 Proof Sketch for Theorem 3.3

We also divide the training dynamics of label noise GD into two phases. In the first phase, both signal
learning and noise memorization increase exponentially despite the presence of random label noise.
In the second phase, label noise suppresses the growth of noise memorization, causing it to oscillate
within a constant range; meanwhile, signal learning continues to grow exponentially until stabilizing
at constant value, which leads to beneficial feature learning and low generalization error.

First stage. Leveraging the fact that the derivative of the loss function remains within a con-
stant range due to small initialization, we demonstrate that both signal learning and noise mem-
orization exhibit exponential growth rates, even in the presence of label noise. According to the
iterative update of the signal learning coefficient in Equation (4), the upper and lower bounds
are given as γ(t)

j,r + |⟨w(0)
j,r ,µ⟩| ≤ exp

( 2η∥µ∥2
2

m t
)
|⟨w(0)

j,r ,µ⟩|, and maxr∈[m]{γ
(t)
j,r + j⟨w(0)

j,r ,µ⟩} ≥
exp(

C0η∥µ∥2
2

8m )
(
maxr∈[m]⟨w

(0)
j,r ,µ⟩

)
, respectively. Here C0 is the lower bound for the absolute loss

derivative. These bounds indicate that signal learning grows exponentially with the number of
training iterations. On the other hand, from the update equation (5), we characterize the behavior
of noise memorization. Despite the injected label noise, we can show a lower bound on the noise

memorization rate: maxj,r{ρ(t)j,r,i + 0.6|⟨w(0)
j,r , ξi⟩|} ≥ exp(

ηC0σ
2
pd

2nm )|⟨w(0)
j,r , ξi⟩|. The main results

for the first stage are summarized in the following lemma.

Lemma 4.4. Under the same condition as Theorem 3.3, and let T1 = Θ(
nm log((1/σ0σpd))

ησ2
pd

). Then

the following holds with probability at least 1 − d−1: (i) maxj,r ρ
(T1)
j,r,i ≥ 0.1, for all i ∈ [n]; (ii)

maxj,r,i |ρ(t)j,r
| ≤ Õ(σ0σp

√
d), for all t ∈ [T1]. (iii) maxj,r γ

(t)
j,r ≥ Õ(σ0∥µ∥2), for all t ∈ [T1].

Lemma 4.4 states that both signal learning and noise memorization grow exponentially during the
first stage.

In order to guarantee that the number of flipped labels remains within its expected range with
high probability, we require p = Ω̃(1/

√
t), where t is the number of training steps. We set t =

Θ̃(n/(ησ2
pd)) according to Lemma 4.4. Together with the upper bound on η from Assumption 3.1,

we obtain p = Ω̃(1/
√
mn).

For the analysis of label noise GD, one additional technical challenge is the instability of training
dynamics caused by the injected noise, which we address as follows. For signal learning, we make
use of the small label flipping rate p and aggregate information across all samples via concentration.
Whereas for noise memorization (which is tied to individual samples), we leverage the broad range
of time steps in the first stage to establish the overall increment rate.

Second stage. As shown in Lemma 4.4, at the end of the first phase, noise memorization has reached
a significant level, dominating the model’s output. However, label noise introduces randomness in
the labels, which affects the updates of noise memorization coefficients. We track the evolution
of ρ(t)j,r,i via the following approximation. Define ι

(t)
i ≜ 1

m

∑m
r=1(ρ

(t)
yi,r,i

)2. The evolution of noise
memorization under label noise GD can be approximated as

ι
(t+1)
i ≈


(1 +

ησ2
pd

(1+exp((ι
(t)
i )2))nm

)2ι
(t)
i , with prob 1− p.

(1− ησ2
pd

(1+exp(−(ι
(t)
i )2))nm

)2ι
(t)
i , with prob p.

8



Unlike conventional approaches such as [8, 33], we analyze this process using a supermartingale
argument and apply Azuma’s inequality with a union bound over the second-stage training period.
Via a martingale argument, we show that noise memorization remains at a constant level with high
probability. While noise memorization stabilizes, signal learning continues to grow exponentially.
This discrepancy enables signal learning to eventually dominate the generalization. The analysis of
the second stage is summarized by the following lemma.

Lemma 4.5. Under the same condition as Theorem 3.3, during t ∈ [T1, T2] with T2 = T1 +
log(6/(σ0∥µ∥2))4m(1 + exp(c2))η

−1∥µ∥−2
2 , there exist a sufficient large positive constant Cι

and a constant ι∗i depending on sample index i such that the following results hold with proba-
bility at least 1 − 1/d: (i) |ι(t)i − ι∗i | ≤ Cι; (ii) γ

(t)
j,r ≤ 0.1 for all j ∈ {−1, 1} and r ∈ [m]

(iii) 1
2m (

∑m
r=1 ρ

(t)
yi,r,i

)2 ≤ f
(t)
i ≤ 2

m (
∑m

r=1 ρ
(t)
yi,r,i

)2 and (iv) maxr∈[m](γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩|) ≥
exp

(η∥µ∥2
2

16m (t− T1)
)
maxr∈[m] |γ

(T1)
j,r + ⟨w(0)

j,r ,µ⟩|.

Lemma 4.5 demonstrates that label noise introduces a regularizing effect preventing the noise
memorization coefficients from growing unchecked, while simultaneously allowing signal learning
to grow to a sufficiently large value. Building on this result, we show that both signal learning and
noise memorization reach a constant order of magnitude. Consequently, the population loss can be
bounded by LD(W

(t)) ≤ 2 exp
(
−Cd

n2

)
, corresponding to the second bullet point of Theorem 3.3.

5 Synthetic Experiments

We conduct experiments using synthetic data to validate our theoretical results. The samples are
generated according to Definition 2.1. The train and test sample size is n = 200 and ntest = 2000,
and the input dimension is set to d = 2000. The label noise flip rate is p = 0.1. We train the two-layer
network with squared ReLU activation using standard GD and label noise GD for t = 2000 steps.
The network width is m = 20 and the learning rate is η = 0.5. The signal vector is defined as
µ = [2, 0, 0, . . . , 0] ∈ Rd and the noise variance is set to σ2

p = 0.25.

Dynamics of signal and noise coefficients. In Figure 2, we present the feature learning coefficients
defined in Section 4.1, the training loss and test accuracy for both algorithms. We observe that
GD successfully minimizes the training loss to a near-zero value; however, noise memorization (ρ)
significantly exceeds signal learning (γ), leading to poor test performance. In contrast, label noise GD
does not fully minimize the training loss, as it oscillates around 0.5; consistent with our theoretical
analysis, this behavior causes noise memorization to remain constant in the second stage, while signal
learning continues to grow rapidly. Hence the test accuracy of label noise GD steadily improves.

Figure 2: Ratio of noise memorization over signal learning, training loss, and test accuracy, of standard GD and
label noise GD. See Section 4.1 for definitions of signal learning (γ) and noise memorization (ρ).

Heatmap of generalization error. Next we explore a range of SNR values from 0.03 to 0.10 and
sample sizes n ranging from 100 to 700. For each combination of SNR and sample size n, we train
the NN for 1000 steps with η = 1.0 using standard GD or label noise GD. The resulting test error is
visualized in Figure 3. Observe that standard GD (left) fails to generalize when SNR = O(n−1/2),
which is consistent with our theoretical prediction in Theorem 3.2. On the other hand, label noise GD
(right) achieves perfect test accuracy across a broader range of SNR, which agrees with Theorem 3.3.

Additional Experiments and Extended Analysis. In addition to our primary experiments, we extend
our analysis in Appendix G by evaluating Label Noise GD on deeper neural networks, modified
MNIST and CIFAR datasets, different types of label noise (e.g., Gaussian), and higher-order ReLU
activation functions, demonstrating its robustness across various settings.
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(a) Standard GD (b) Label Noise GD

Figure 3: Test accuracy heatmap of Standard GD (left) and Label Noise GD (right) after training.

6 Conclusion and limitation

We presented a theoretical analysis of gradient-based feature learning in the challenging low SNR
regime. Our main contribution is to demonstrate that label noise gradient descent (GD) can effectively
enhance signal learning while suppressing noise memorization; this implicit regularization mechanism
enables label noise GD to generalize in low SNR settings where standard GD suffers from harmful
overfitting. Our theoretical findings are supported by experiments on synthetic data.

Limitations and Broader Impacts. Our current theoretical analysis is limited to a specific choice
of activation function (squared ReLU) and network architecture (two-layer convolutional neural
network). Extending this theoretical framework to more complex architectures, such as deeper or
residual networks, would be a promising direction for future research. Additionally, investigating
label noise GD under other optimization algorithms, including stochastic gradient descent (SGD) and
adaptive methods like Adam, could provide further insight into its implicit regularization effects in
practical settings. This work aims to advance the theoretical understanding of generalization in neural
networks. We are not aware of any immediate negative societal impacts resulting from this research.
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A Additional related Works

Label Noise SGD. Recent works have empirically shown that label noise stochastic gradient descent
(SGD) exhibits favorable generalization properties due to the regularization effect of the injected
noise [24, 13]. From a theoretical standpoint, label noise SGD has been primarily explored in the
context of linear regression or shallow neural networks, particularly in regression settings [6, 13,
24, 28, 39, 53, 50]; these studies have highlighted the implicit regularization benefits of label noise
in SGD. For instance, [50] illustrated the implicit regularization of label noise in mean-field neural
networks, while [39, 13] proved that label noise introduces bias towards flat minima. In contrast
to these existing literature, our work focuses on the binary classification setting specified by the
signal-noise model, providing a quantitative analysis of the training dynamics and the generalization
benefits of label noise GD in the low SNR regime.

Signal-Noise Data Models. Recent theoretical works have studied the signal-noise model in various
contexts, including (i) optimization algorithms, such as Adam [59], momentum [29], sharpness-
aware minimization [10], large learning rates [41]; (ii) learning paradigms, such as ensembling and
knowledge distillation [2], semi-and self-supervised learning [32, 55], Mixup [58, 11], adversarial
training [1], and prompt tuning [42]; and (iii) neural network structures, such as convolutional neural
network [8, 33], vision transformer [30, 36], graph neural network [25, 37]. Our work is in line with
[9, 25], with the goal of showing that a simple algorithmic modification (label noise GD) facilitates
feature learning in the challenging low SNR regime.

B Preliminary Lemmas

Lemma B.1 ([8]). Suppose that δ > 0 and d = Ω(log(4n/δ))). Then with probability 1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p

√
d log(4n2/δ),

for all i, i′ ̸= i ∈ [n].

Lemma B.2 ([8]). Suppose that d ≥ Ω(log(mn/δ)), m = Ω(log(1/δ)). Then with probability at
least 1− δ, it satisfies that for all r ∈ [m], j ∈ {±1}, i ∈ [n] ,

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(8m/δ)σ0∥µ∥2

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ)σ0σp

√
d

and for all j ∈ {±1}, i ∈ [n]

σ0∥µ∥2/2 ≤ max
r∈[m]

j⟨w(0)
j,r ,µ⟩ ≤

√
2 log(8m/δ)σ0∥µ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j⟨w(0)

j,r , ξi⟩ ≤ 2
√
log(8mn/δ)σ0σp

√
d.

Lemma B.3. Let S(t)
± = {i : ϵ(t)i = ±1} and Sj = {i : yi = j}. Then ∀t ≥ 0, we have following

with probability at least 1− δ,

1. ||S(t)
+ | − n(1− p)| ≤

√
n
2 log

(
4T∗

δ

)
, and ||S(t)

− | − np| ≤
√

n
2 log

(
4T∗

δ

)
.

2. The size of set follows, ∀j ∈ {±1}∣∣∣∣|S(t)
+ ∩ Sj | −

(1− p)n

2

∣∣∣∣ ≤
√

n

2
log
(8T ∗

δ

)
,
∣∣∣|S(t)

− ∩ Sj | −
pn

2

∣∣∣ ≤√n

2
log
(8T ∗

δ

)
.

Suppose n ≥ 8 log(8T∗/δ)
p2 ≥ 8 log(8T∗/δ)

(1−p)2 , we have

|S(t)
+ ∩ Sj | ∈

[
(2− 3p)n

4
,
(2− p)n

4

]
, |S(t)

− ∩ Sj | ∈
[
pn

4
,
3pn

4

]
.
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Proof of Lemma B.3. By independence, we have E|S(t)
+ | = (1− p)n and E|S(t)

− | = pn. By Hoeffd-
ing’s inequality, we have for arbitrary τ > 0,

P
(
||S(t)

+ | − (1− p)n| ≥ τ
)
≤ 2 exp

(
− 2τ2

n

)
, P

(
||S(t)

− | − pn| ≥ τ
)
≤ 2 exp

(
− 2τ2

n

)
.

Setting τ =
√
(n/2) log(4/δ) and taking the union bound over [T ∗] gives

||S(t)
+ | − (1− p)n| ≤

√
n

2
log
(4T ∗

δ

)
, ||S(t)

− | − pn| ≤
√

n

2
log
(4T ∗

δ

)
,

which holds with probability at least 1− δ.

Similarly, by the same argument, we can show the result for |S(t)
+ ∩ Sj | and |S(t)

− ∩ Sj |.

Suppose n ≥ 8 log(8T∗/δ)
p2 ≥ 8 log(8T∗/δ)

(1−p)2 , then we have with probability at least 1 − δ, we have

|S(t)
+ ∩ Sj | ∈

[
(2−3p)n

4 , (2−p)n
4

]
, |S(t)

− ∩ Sj | ∈
[
pn
4 , 3pn

4

]
.

Lemma B.4. Let S(t)
i,± := {s ≤ t : ϵ

(s)
i = ±1}. Then for any i ∈ [n], t > 0, with probability at least

1− δ,

1. ||S(t)
i,+| − (1− p)t| ≤

√
t
2 log(

4n
δ ) and ||S(t)

i,−| − pt| ≤
√

t
2 log(

4n
δ ).

2. In addition, suppose t ≥ 2 log(4n/δ)
p2 , we have |S(t)

i,+| ∈ [ (2−3p)t
2 , (2−p)t

2 ], |S(t)
i,−| ∈ [pt2 ,

3pt
2 ].

Proof of Lemma B.4. By independence, we have E|S(t)
i,+| = (1− p)t and E|S(t)

i,−| = pt. By Hoeffd-
ing’s inequality, we have for arbitrary τ > 0,

P
(
||S(t)

i,+| − (1− p)t| ≥ τ
)
≤ 2 exp

(
− 2τ2

t

)
, P

(
||S(t)

i,−| − pt| ≥ τ
)
≤ 2 exp

(
− 2τ2

t

)
.

Setting τ =
√
(t/2) log(4/δ) and taking the union bound gives

||S(t)
i,+| − (1− p)t| ≤

√
t

2
log
(4n

δ

)
, ||S(t)

i,−| − pt| ≤
√

t

2
log
(4n

δ

)
,

which holds with probability at least 1− δ.

Suppose t ≥ 2 log(4n/δ)
p2 ≥ 2 log(4n/δ)

(1−p)2 , then we have with probability at least 1 − δ, we have

|S(t)
i,+| ∈ [ (2−3p)t

2 , (2−p)t
2 ], |S(t)

i,−| ∈ [pt2 ,
3pt
2 ].

C Proof of Proposition 4.1

In this section, we provide a proof for Proposition 4.1, which establishes upper bounds for the absolute
values of the signal learning and noise memorization coefficients throughout the entire training stage.
Additionally, we present some preliminary lemmas that will be used in the proof of Proposition 4.1
as well as in other results in the subsequent sections.
Lemma C.1. Suppose that inequalities (7) and (8) hold for all r ∈ [m], j ∈ {−1, 1}, i ∈ [n] and
t ∈ [0, T ∗]. For any δ > 0, with probability at least 1− δ, it holds that

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i| ≤ 8

√
log(4n2/δ)

d
nα,

|⟨w(t)
j,r −w

(0)
j,r , jµ⟩ − γ

(t)
j,r | = 0.

Proof of Lemma C.1. From the signal-noise decomposition of w(t)
j,r, we have

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i|

(a)
= |jγ(t)

j,r⟨µ, ξi⟩∥µ∥
−2
2 +

∑
i′ ̸=i

ρ
(t)
j,r,i⟨ξi′ , ξi⟩∥ξi′∥

−2
2 |

(b)

≤ 8

√
log(4n2/δ)

d
nα,

17



where (a) follows from the weight decomposition, and inequality (b) is due to Lemma B.1 and the
upper bound of ρ(t)j,r,i based on inequalities (7) and (8).

Next, for the projection of the weight difference onto the signal vector, we have:

|⟨w(t)
j,r −w

(0)
j,r , jµ⟩ − γ

(t)
j,r | = |

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ⟨ξi,µ⟩| = 0,

where the equality holds because ⟨ξi,µ⟩ = 0 for i ∈ [n] due to the covariance property of the noise
vector distribution.

With Lemma C.1 in place, we are now prepared to prove Proposition 4.1. The general proof strategy
follows the approach outlined in [8]. However, we present a complete proof here for the sake of
clarity and to provide a unified analysis for both gradient descent and label noise GD.

Proof of Proposition 4.1. The proof uses induction and covers both gradient descent and label noise
gradient descent.

At t = 0, it is straightforward that the results hold for all coefficients, as they are initialized to zero.
Now, assume that there exists a time step T̂ such that for t ∈ [1, T̂ ] the following inequalities hold:

0 ≤ γ
(t)
j,r ≤ α, 0 ≤ ρ

(t)
j,r,i ≤ α,

0 ≥ ρ(t)
j,r,i

≥ −β − 16

√
log(4n2/δ)

d
nα ≥ −α.

To complete the induction, we need to show that the above inequalities hold for t = T̂ + 1. First,
we examine ρ(T̂+1)

j,r,i
for j = −yi, since ρ(T̂+1)

j,r,i
= 0 when j = yi by definition. Using Lemma C.1, if

ρ(T̂ )
j,r,i

≤ −0.5β − 8
√

log(4n2/δ)
d nα, we have

⟨w(T̂ )
j,r , ξi⟩ ≤ ρ(T̂ )

j,r,i
+ 8

√
log(4n2/δ)

d
nα+ ⟨w(0)

j,r , ξi⟩ ≤ 0.

Thus,

ρ(T̂+1)
j,r,i

= ρ(T̂ )
j,r,i

+
η

nm
ℓ
′(T̂ )
i σ′(⟨w(T̂ )

j,r , ξi⟩)∥ξi∥
2
2ϵ

(T̂ )
i

= ρ(T̂ )
j,r,i

≥ −β − 16

√
log(4n2/δ)

d
nα,

where we have used σ′(⟨w(T̂ )
j,r , ξi⟩) = 0. On the other hand, if ρ(T̂ )

j,r,i
≥ −0.5β − 8

√
log(4n2/δ)

d nα,
the update function implies:

ρ(T̂+1)
j,r,i

(a)

≥ ρ(T̂ )
j,r,i

+
η

nm
ℓ
′(T̂ )
i ⟨w(T̂ )

j,r , ξi⟩∥ξi∥
2
2

(b)

≥ −0.5β − 8

√
log(4n2/δ)

d
nα−

3ησ2
pd

2nm
(0.5β + 8

√
log(4n2/δ)

d
nα)

(c)

≥ −β − 16

√
log(4n2/δ)

d
nα,

where (a) is due to choosing ϵ
(T̂ )
i = 1 and ⟨w(T̂ )

j,r , ξi⟩ > 0, follows from Lemma B.1, and (c) holds
when η ≤ 2nm

3σ2
pd

.
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Next, consider ρ(T̂+1)
j,r,i for j = yi. Let T̂1 to be the last time that ρ(t)j,r,i ≤ 0.5α. By propagation, we

have:

ρ
(T̂+1)
j,r,i = ρ

(T̂1)
j,r,i −

η

nm
ℓ
′(T̂1)
i σ′(⟨w(T̂1)

j,r , ξi⟩)∥ξi∥22ϵ
(T̂1)
i −

∑
T̂1<t≤T̂

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2ϵ

(t)
i

(a)

≤ 0.5α+
η

nm
⟨w(T̂1)

j,r , ξi⟩∥ξi∥22 +
∑

T̂1<t≤T̂

η

nm
ℓ
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2
2

(b)

≤ 0.5α+
3ησ2

pd

2nm
(0.5α+ β + 16

√
log(4n2/δ)

d
nα)

+
∑

T̂1<t≤T̂

exp(−4α2 + 1)
3ησ2

pd

2nm
(α+ β + 16

√
log(4n2/δ)

d
nα)

(c)

≤ 0.5α+ 0.25α+ 0.25α = α,

where (a) holds since ℓ
′(T̂1)
i ≥ −1 and ϵ

(t)
i ≤ 1 for all t ∈ [T̂1, T̂ ], (b) is by Lemma B.1, Lemma C.1,

and −ℓ̃
′(t)
i ≤ exp(−Fyi

+1) ≤ exp(−4α2+1). Here we have used that β+16
√

log(4n2/δ)
d nα ≤ 2α

with the condition that d = Ω̃(n2) and σ0 ≤ Õ(1)min{∥µ∥−1
2 , σ−1

p d−1/2}. The final inequality (c)
holds because η = O( nmσ2

pd
) and exp(−4α2 + 1)α < 1 with α = 4 log(T ∗).

Similarly, we can prove that γ(T̂+1)
j,r ≤ α using η = O( nm

∥µ∥2
2
), which completes the induction

proof.

D Standard GD Fails to Generalize with low SNR

D.1 Proof of Lemma 4.2

In this section, we provide a proof for the result obtained in the first stage of gradient descent training.
Several preliminary lemmas are established to facilitate the analysis.

Lemma D.1 (Upper bound on γ
(t)
j,r). Under Assumption 3.1, in the first stage, where 0 ≤ t ≤ T1 =

nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists an upper bound for γ(t)
j,r , for all j ∈ {−1, 1}, r ∈ [m]:

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m
t
)
|⟨w(0)

j,r ,µ⟩|.

Proof of Lemma D.1. By the iterative update rule of signal learning, we have:

γ
(t+1)
j,r

(a)

≤ γ
(t)
j,r +

η

nm

n∑
i=1

σ′(⟨w(t)
j,r, yiµ⟩)∥µ∥

2
2

(b)
= γ

(t)
j,r +

η

nm

n∑
i=1

σ′(yi⟨w(0)
j,r ,µ⟩+ jyiγ

(t)
j,r)∥µ∥

2
2

(c)

≤ γ
(t)
j,r +

2η

m
(γ

(t)
j,r + |⟨w(0)

j,r ,µ⟩|)∥µ∥
2
2.

where (a) follows from |ℓ
′(t)
i | ≤ 1, (b) is derived using Lemma C.1, and (c) is due to the properties of

the squared ReLU activation function.

Define A(t) := γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩|. Then, we have:

A(t+1) ≤
(
1 +

2η∥µ∥22
m

)
A(t) ≤

(
1 +

2η∥µ∥22
m

)(t)
A(0) ≤ exp

(2η∥µ∥22
m

t
)
A(0),
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where we use 1 + x ≤ exp(x). This suggests:

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m
t
)
|⟨w(0)

j,r ,µ⟩|.

Lemma D.2 (Upper bound on ρ(t)
j,r,i

). Under Assumption 3.1, in the first stage, where 0 ≤ t ≤ T1 =

nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists an upper bound for |ρ(t)
j,r,i

|, for all j, r, i:

|ρ(t)
j,r,i

| = Õ(σ0σp

√
d).

Proof of Lemma D.2. The proof uses the induction method. By the iterative update rule for noise
memorization, we have:

|ρ(t+1)
j,r,i

|
(a)

≤ |ρ(t)
j,r,i

|+ η

nm
σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2

(b)

≤ |ρ(t)
j,r,i

|+
3ησ2

pd

2nm
σ′(⟨w(0)

j,r , ξi⟩+ 16

√
log(4n2/δ)

d
nα+ ρ(t)

j,r,i
)

(c)

≤ |ρ(t)
j,r,i

|+
3ησ2

pd

nm

√
log(8mn/δ)σ0σp

√
d,

where the inequality (a) is by the upper bound on |ℓ
′(t)
i | ≤ 1; Inequality (b) is derived using

Proposition 4.1, Lemma B.1, and Lemma C.1. Finally, the inequality (c) uses the fact that ρ(t)
j,r,i

< 0

and Lemma B.2.

Taking a telescoping sum over t form 0 to T1, we obtain:

|ρ(T1)
j,r,i

| ≤
3ησ2

pdT1

nm

√
log(8mn/δ)σ0σp

√
d = Õ(σ0σp

√
d),

where we substituted T1 = Θ(
nm log(1/(σ0σp

√
d))

ησ2
pd

), thereby completing the proof.

Lemma D.3. Let β̄ = mini∈[n] maxr∈[m]⟨w
(0)
yi,r, ξi⟩. Suppose that σ0 ≥

160n
√

log(4n2/δ)
d (σp

√
d)−1α. Then it holds that β̄ ≥ 40n

√
log(4n2/δ)

d α.

Proof of Lemma D.3. The proof follows directly from Lemma B.2. With high probability, we have:
β ≥ σ0σp

√
d/4. Substituting the condition on σ0, we obtain:

β ≥ 40n

√
log(4n2/δ)

d
α.

Lemma D.4 (Lower bound on ρ
(t)
j,r,i). Under Assumption 3.1, in the first stage, where 0 ≤ t ≤ T1 =

nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists a lower bound for maxj,r ρ
(t)
j,r,i, for all i ∈ [n]:

max
j,r

ρ
(t)
j,r,i + β ≥ exp

(ηC1σ
2
pd

2nm
t
)
σ0σp

√
d/4.

Proof of Lemma D.4. By the iterative update rule for noise memorization, we have:

max
j,r

ρ
(t+1)
j,r,i

(a)

≥ max
j,r

ρ
(t)
j,r,i +max

j,r

ηC1
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j,r, ξi⟩)∥ξi∥
2
2

(b)
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ησ2
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j,r , ξi⟩ − 16

√
log(4n2/δ)

d
nα+ ρ

(t)
j,r,i)

(c)

≥ max
j,r

ρ
(t)
j,r,i +

ησ2
pdC1

nm
(max

j,r
ρ
(t)
j,r,i +

2

5
β),
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where the inequality (a) is by the lower bound on |ℓ
′(t)
i | ≥ C1 in the first stage; Inequality (b) is by

Lemma B.1 and Lemma C.1. Finally, the inequality (c) is by Lemma D.3.

Define B
(t)
i := maxj,r ρ

(t)
j,r,i + 0.6β. Then

B
(t+1)
i ≥

(
1 +

ηC1σ
2
pd

nm

)
B

(t)
i ≥

(
1 +

ηC1σ
2
pd

nm

)(t)
B

(0)
i ≥ exp

(ηC1σ
2
pd

2nm
t
)
B

(0)
i ,

where we used 1 + x ≥ exp(x/2) for x ≤ 2.

With the above lemmas in place, we are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. We choose the end of stage 1 as T1 = 4nm
ησ2

pd
log(1/(σ0σp

√
d)). Then by Lemma

D.4, we conclude that maxj,r ρ
(T1)
j,r,i ≥ 1, for all i ∈ [n]. Besides, by Lemma D.2, we directly obtain

the result that

|ρ(T1)
j,r,i

| ≤
3ησ2

pdT1

nm

√
log(8mn/δ)σ0σp

√
d = Õ(σ0σp

√
d).

Finally, Lemma D.1 yields

γ
(T1)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m

4nm

ησ2
pd

log(1/(σ0σpd))
)
|⟨w(0)

j,r ,µ⟩| ≤ 2|⟨w(0)
j,r ,µ⟩|,

where we have used the condition of low SNR, namely nSNR2 ≤ 1/ log(σ0σpd). By Lemma B.2,
we conclude the proof for maxj,r γ

(T1)
j,r = Õ(σ0∥µ∥2).

D.2 Proof of Lemma 4.3

In this section, we provide a complete proof for Lemma 4.3 based on Lemma 4.2 and an iterative anal-
ysis of the training dynamics. We introduce several necessary preliminary lemmas that will be used
in the proof for t ∈ [T1, T2] with T2 = η−1σ−2

p d−1nm log(1/(σ0σp

√
d)) + η−1ϵ−1m3nσ−2

p d−1.
Lemma D.5 ([8]). Under the same condition as Theorem 3.2, for all t ∈ [T1, T2] and i ∈ [n], the
following properties hold:

∥∇LS(W
(t))∥2F = O(σ2

pd)LS(W
(t)),

∥W(T1) −W∗∥F = Õ(m3/2n1/2σ−1
p d−1/2),

yi⟨∇f(W(t),xi),W
∗⟩ ≥ 2 log(2/ϵ).

With the above lemmas at hand, we are now ready to provide the complete proof for Lemma 4.3.

Proof of Lemma 4.3. We start by showing the convergence of gradient descent. The key idea is to
construct a reference weight matrix W∗ defined as w∗

j,r = w
(0)
j,r + 2m log(2/ϵ)

∑n
i=1 ∥ξi∥

−2
2 ξi.

Summing the above inequality from W(t) and W∗:

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
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(d)

≥ 2η(LS(W
(t))− ϵ),
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where in equation (a), we have applied the homogeneity property of the squared ReLU activation. The
inequality (b) is by ⟨∇f(W(t),xi),W

∗⟩ ≥ 2 log(2/ϵ) as stated in Lemma D.5, and the inequality
(c) is due to the convexity of the logistic function. Finally, the inequality (d) is by Lemma D.5 and
the condition on the learning rate.

Taking a summation over the above inequality from T1 to T2, we have

T2∑
t=T1

LS(W
(t)) ≤ ∥W(T1) −W∗∥2F + ηϵ(T2 − T1 + 1)

2η

≤ ∥W(T1) −W∗∥2F
η

≤ Õ(η−1m3nσ−2
p d−1), (9)

where in the second inequality, we have applied Lemma D.5. Finally, plugging in the T2 =
η−1ϵ−1m3nσ−2

p d−1 + η−1σ−2
p d−1nm log(1/(σ0σp

√
d)), we achieve LS(W

(t)) ≤ ϵ.

Next, we provide the lower bound for the noise memorization coefficient ρ(t)j,r,i and the upper bound

for the signal learning coefficient γ(t)
j,r in the second stage. For the noise memorization coefficient,

using its update equation:

ρ
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ℓ
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i σ′(⟨w(t)
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2
2 ≥ ρ

(t)
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Here, we have used ℓ
′(t)
i ≥ 0 and property of the squared ReLU activation. This implies that ρ(t)j,r,i

never decreases during training. Therefore, we have maxj,r ρ
(t)
j,r,i ≥ 1, for all i ∈ [n] and t ∈ [T1, T2].

For the signal learning coefficient, we use the induction method. From Lemma 4.2, we know that
maxj,r γ

(T1)
j,r = Õ(σ0∥µ∥2) ≜ β̂. Suppose that there exists T ∈ [T1, T2] such that maxj,r γ

(t)
j,r ≤ 2β̂

for all t ∈ [T1, T ]. Then we analyze:
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where the inequality (a) is due to Lemma C.1, the inequality (b) is by |ℓ′i| ≤ ℓi for i ∈ [n], and
the inequality (c) is due to the inequality (9). Finally, the inequity (d) is by the condition that
n−1SNR−2 = Ω̃(1). Similarly, with the induction method, we can show that |ρ(t)

j,r,i
| ≤ Õ(σ0σp

√
d).

D.3 Proof of Theorem 3.2

To complete the proof of Theorem 3.2, we provide a proof for the generalization result.

Lemma D.6. Define g(ξi) =
1
mj
∑

j,r σ(⟨w
(t)
j,r, ξi⟩). Under Assumption 3.1, there exists a fixed

vector v with ∥v∥2 ≤ 0.02σp such that∑
j∈{±1}

[g(jξi + v)− g(ξi)] ≥ 4Ω̃(σ2
0∥µ∥22).

22



Proof of Lemma D.6. To proceed with the proof, we construct the vector v ≜ λ
∑

i:yi=1 ξi, where
λ = 0.01/

√
nd. Then we show that

∥v∥22 = ∥λ
∑

i:yi=1

ξi∥22 = λ2⟨
∑

i:yi=1

ξi,
∑

i:yi=1

ξi⟩

= λ2
∑

i:yi=1

∥ξi∥22 + 2λ2
∑
i

∑
j ̸=i

⟨ξi, ξj⟩

≤ λ2nσ2
pd+ 4n2λ2σ2

p

√
2d log(4n2/δ)

≤ 4λ2nσ2
pd = 0.022σ2

p,

where the first inequity is by Lemma B.1, the second inequality is by d ≥ Ω̃(n2), and the final
equality is by λ = 0.01/

√
nd, which confirms that ∥v∥2 ≤ 0.02σp.

By the convexity property of the squared ReLU function, we have that

σ(⟨w(t)
1,r, ξi + v⟩)− σ(⟨w(t)

1,r, ξi⟩) ≥ σ′(⟨w(t)
1,r, ξi⟩)⟨w

(t)
1,r,v⟩,

σ(⟨w(t)
1,r,−ξi + v⟩)− σ(⟨w(t)

1,r,−ξi⟩) ≥ σ′(⟨w(t)
1,r,−ξi⟩)⟨w

(t)
1,r,v⟩.

With the above inequalities, we have that almost surely for all ξi:

σ(⟨w(t)
1,r, ξi + v⟩)− σ(⟨w(t)

1,r, ξi⟩) + σ(⟨w(t)
1,r,−ξi + v⟩)− σ(⟨w(t)

1,r,−ξi⟩)

≥ 4|⟨w(t)
1,r, ξi⟩|⟨w

(t)
1,r,v⟩.

On the other hand, using the properties of the squared ReLU function and the triangle inequality, we
have:

σ(⟨w(t)
−1,r, ξi + v⟩)− σ(⟨w(t)

−1,r, ξi⟩) + σ(⟨w(t)
−1,r,−ξi + v⟩)− σ(⟨w(t)

−1,r,−ξi⟩)

≤ (⟨w(t)
−1,r, ξi⟩+ |⟨w(t)

−1,r,v⟩|)2 + (−⟨w(t)
−1,r, ξi⟩+ |⟨w(t)

−1,r,v⟩|)2 − ⟨w(t)
−1,r, ξi⟩2

≤ |⟨w(t)
−1,r, ξi⟩|2 + 2|⟨w(t)

−1,r,v⟩|2.

Next, we compare |⟨w(t)
1,r,v⟩| and |⟨w(t)

−1,r,v⟩| with |⟨w(t)
1,r, ξi⟩| and |⟨w(t)

−1,r, ξi⟩|. We show that

|⟨w(t)
−1,r,v⟩| = λ|(

∑
i:yi=1

ρ(t)−1,r,i
+ ⟨w(0)

−1,r,
∑

i:yi=1

ξi⟩)|

≤ λ(n
√
log(12mn/δ))σ0σp

√
d) ≤ λn/4,

where the first inequality is by Lemma B.2 and Lemma 4.3, and the second inequality is by the
condition on σ0 from Assumption 3.1. Besides,

|⟨w(t)
1,r,v⟩| = λ|(

∑
i:yi=1

ρ
(t)
1,r,i + ⟨w(0)

1,r,
∑

i:yi=1

ξi⟩)|

≥ λ(n− n
√
log(12mn/δ))σ0σp

√
d) ≥ λn/2,

where the first inequality is by Lemma B.2 and Lemma 4.3; and the second inequality is by the
condition on σ0 from Assumption 3.1.

Finally, by Lemma B.2, Proposition 4.1, and Lemma B.1 it holds that

|⟨w(t)
1,r, ξi⟩| = |⟨w(0)

1,r, ξi⟩+
n∑

i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 ⟨ξi′ , ξi⟩|

≤
√
log(12mn/δ))σ0σp

√
d+ 8

√
log(4n2/δ)

d

√
nα.
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On the other hand, it is observed that ⟨w(t)
1,r −w

(0)
1,r, ξi⟩ ∼ N (0, σ2

w), where the variance σw follows

σ2
w = σ2

p

d∑
k=1

(

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi,k)

2

(a)

≥ 1

2
σ2
p

d∑
k=1

n∑
i=1

(ρ
(t)
j,r,i)

2∥ξi∥−4
2 ξ2i,k

=
1

2
σ2
p

n∑
i=1

(ρ
(t)
j,r,i)

2∥ξi∥−2
2

≥ 1

3d

n∑
i=1

(ρ
(t)
j,r,i)

2 ≥ n

6d
,

where (a) is by Lemma B.1 and condition on d from Assumption 3.1, (b) is due to Lemma B.1, and
(c) is by Lemma 4.3.

By the anti-concentration inequality of Gaussian variance, we have

P(|⟨w(t)
1,r −w

(0)
1,r, ξi⟩| ≤ τ) ≤ 2erf(

τ√
2σw

) ≤ 2erf(
τ
√
6d√
2n

)

≤ 2

√
1− exp(−12dτ2

πn
).

Then with probability at least 1− δ, it holds that

|⟨w(t)
1,r −w

(0)
1,r, ξi⟩| ≥

√
πn

12d
log(

1

1− (δ/2)2
) ≥

√
πnδ2

96d
,

where we have used log(1 + x) ≥ x
1+x for x > −1 and δ2 ≤ 1/8.

Together, we conclude that∑
j∈{±1}

[g(jξi + v)− g(ξi)] ≥ 4|⟨w(t)
1,r, ξi⟩||⟨w

(t)
1,r,v⟩|+ |⟨w(t)

−1,r, ξi⟩|2 + 2|⟨w(t)
−1,r,v⟩|2

≥ 4(λ/2)

√
πnδ2

96d
≥ 4Ω̃(σ2

0∥µ∥22),

where the final inequality holds by σ2
0 ≤ Õ( 1

d5/4∥µ∥2
2
) with δ chosen as d−1/4, thus completing the

proof.

Proof of Theorem 3.2. For the population loss, we expand the expression

L0−1
D (W(t)) = E(x,y)∼D[1(y ̸= sign(f(W,x))] = P(yf(W(t),x) < 0)

= P
( 1

m

m∑
r=1

σ(⟨w(t)
−y,r, ξi⟩)−

1

m

m∑
r=1

σ(⟨w(t)
y,r, ξi⟩) ≥

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

)
.

Recall the weight decomposition:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi +

n∑
i=1

ρ(t)
j,r,i

∥ξi∥−2
2 ξi.

Then we conclude that:

⟨w(t)
−y,r, yµ⟩ = ⟨w(0)

−y,r, yµ⟩ − γ
(t)
−y,r,

⟨w(t)
y,r, yµ⟩ = ⟨w(0)

y,r, yµ⟩+ γ(t)
y,r.

24



First, we provide the bound for the signal learning part:

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

≤ 1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩) =

1

m

m∑
r=1

σ(⟨w(0)
y,r, yµ⟩+ γ(t)

y,r)

≤ (⟨w(0)
y,r, yµ⟩+ γ(t)

y,r)
2

≤ Õ(σ2
0∥µ∥22),

where the first and second inequalities follow from the properties of the squared ReLU function, and
the last inequality is by Lemma B.2 and Lemma 4.3.

Denote that g(ξi) =
1
mj
∑

j,r σ(⟨w
(t)
j,r, ξi⟩). It follows that:

P(yf(W(t),x) < 0)

= P
( 1

m

m∑
r=1

σ(⟨w(t)
−y,r, ξi⟩)−

1

m

m∑
r=1

σ(⟨w(t)
y,r, ξi⟩) ≥

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

)
≥ 0.5P

(
|g(ξi)| ≥ Ω̃(σ2

0∥µ∥22)
)
.

Define the set A = {ξi : |g(ξi)| ≥ Ω̃(σ2
0∥µ∥22)}. By Lemma D.6, we have:∑

j∈{±1}

[g(jξi + v)− g(ξi)] ≥ 4Ω̃(σ2
0∥µ∥22).

Thus, there must exist at least one of ξi, ξi+v, −ξi and −ξi+v that belongs to A and the probability
is larger than 0.25. Furthermore, we have:

|P(A)− P(A− v)| = |Pξi∼N (0,σ2
pI)

(ξi ∈ A)− Pξi∼N (v,σ2
pI)

(ξi ∈ A)|

≤ ∥v∥2
2σp

≤ 0.02,

where the first inequality is by Proposition 2.1 in [16] and the second inequality is by ∥v∥2 ≤ 0.01σp

according to Lemma D.6. Combined with that P(A) = P(−A), we finally achieve that P(A) ≥ 0.24,
corresponding to the second bullet result. Combined with Lemma 4.3, which establishes the first
bullet point, this completes the proof of 3.2

E label noise GD Successfully Generalizes with Low SNR

E.1 Proof of Lemma 4.4

Lemma E.1 (Lower bound on γ
(t)
j,r). Under Assumption 3.1, during the first stage, where 0 ≤ t ≤

T1 =
nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists an lower bound for γ(t)
j,r , for all j:

max
r∈[m]

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≥ exp
(C0η∥µ∥22

8m
t
)
max
r∈[m]

|⟨w(0)
j,r ,µ⟩|.

where C0 is the lower bound on |ℓ̃′(t)| ≥ C0 is the first stage.
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Proof of Lemma E.1. If ⟨w(t)
j,r,µ⟩ ≥ 0, then

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)∥µ∥
2
2ϵ

(t)
i

= γ
(t)
j,r −

η

nm

[ ∑
i∈S(t)

+

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)−
∑

i∈S(t)
−

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)
]
∥µ∥22

= γ
(t)
j,r −

2η

nm

[ ∑
i∈S(t)

+ ∩S1

ℓ̃
′(t)
i −

∑
i∈S(t)

− ∩S1

ℓ̃
′(t)
i

]
⟨w(t)

j,r,µ⟩∥µ∥
2
2

≥ γ
(t)
j,r +

2η

nm

(
C0|S(t)

+ ∩ S1| − |S(t)
− ∩ S1|

)
⟨w(t)

j,r,µ⟩∥µ∥
2
2.

Note that we have defined S(t)
± = {i : ϵ(t)i = ±1} and Sj = {i : yi = j} in Lemma B.3.

On the other hand, when ⟨w(t)
j,r,µ⟩ < 0,

γ
(t+1)
j,r = γ

(t)
j,r −

2η

nm

[ ∑
i∈S(t)

+ ∩S−1

ℓ̃
′(t)
i −

∑
i∈S(t)

− ∩S−1

ℓ̃
′(t)
i

]
⟨−w

(t)
j,r,µ⟩∥µ∥

2
2

≥ γ
(t)
j,r +

2η

nm

(
C0|S(t)

+ ∩ S−1| − |S(t)
− ∩ S−1|

)
⟨−w

(t)
j,r,µ⟩∥µ∥

2
2.

By Lemma B.3, we have

|S(t)
+ ∩ S1|

|S(t)
− ∩ S1|

,
|S(t)

+ ∩ S−1|
|S(t)

− ∩ S−1|
≥

(1− p)n−
√
2n log(8T ∗/δ)

pn+
√
2n log(8T ∗/δ)

,

|S(t)
+ ∩ S1|, |S(t)

+ ∩ S−1| ≥ (1− p)n−
√
2n log(8T ∗/δ).

These hold with probability at least 1−δ. This suggests that when p < C0/6, n ≥ 72C−2
0 log(8T ∗/δ),

we have:

|S(t)
+ ∩ S1| ≥

2

C0
|S(t)

− ∩ S1|, |S(t)
+ ∩ S−1| ≥

2

C0
|S(t)

− ∩ S−1|,

|S(t)
+ ∩ S1|, |S(t)

+ ∩ S−1| ≥
n

4
.

Hence, we have:

γ
(t+1)
j,r ≥ γ

(t)
j,r +

C0η∥µ∥22
4m

⟨w(t)
j,r,µ⟩ = γ

(t)
j,r +

C0η∥µ∥22
4m

(
⟨w(0)

j,r ,µ⟩+ jγ
(t)
j,r

)
, if ⟨w(t)

j,r,µ⟩ ≥ 0

γ
(t+1)
j,r ≥ γ

(t)
j,r −

C0η∥µ∥22
4m

⟨w(t)
j,r,µ⟩ = γ

(t)
j,r −

C0η∥µ∥22
4m

(
⟨w(0)

j,r ,µ⟩+ jγ
(t)
j,r

)
, if ⟨w(t)

j,r,µ⟩ < 0.

When j = 1, due to the increase of γ(t)
j,r , we have

γ
(t+1)
1,r ≥ γ

(t)
1,r +

C0η∥µ∥22
4m

(
⟨w(0)

1,r,µ⟩+ γ
(t)
1,r

)
.

Let B(t)
j = maxr∈[m]{γ

(t)
j,r + j⟨w(0)

j,r ,µ⟩}, then we have

B
(t+1)
1 ≥

(
1 +

C0η∥µ∥22
4m

)
B

(t)
1 ≥

(
1 +

C0η∥µ∥22
4m

)t
B

(0)
1

≥ exp
(C0η∥µ∥22

8m
t
)
max

r
⟨w(0)

1,r,µ⟩

≥ exp
(C0η∥µ∥22

8m
t
)σ0∥µ∥2

2
,

where we use the fact that 1 + x ≥ exp(x/2) for x ≤ 2.
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Similarly when j = −1, we have γ
(t+1)
−1,r ≥ γ

(t)
−1,r −

C0η∥µ∥2
2

4m (⟨w(0)
−1,r,µ⟩ − γ

(t)
−1,r) and

B
(t+1)
−1 ≥

(
1 +

C0η∥µ∥22
4m

)
B

(t)
−1 ≥

(
1 +

C0η∥µ∥22
4m

)t
B

(0)
−1

≥ exp
(C0η∥µ∥22

8m
t
)
max

r
⟨−w

(0)
−1,r,µ⟩

≥ exp
(C0η∥µ∥22

8m
t
)σ0∥µ∥2

2
.

Thus, we obtain B
(t)
j ≥ exp

(C0η∥µ∥2
2

8m t
)σ0∥µ∥2

2 , ∀j ∈ {±1}.

Lemma E.2. Let β̄ = mini∈[n] maxr∈[m]⟨w
(0)
yi,r, ξi⟩. Suppose that σ0 ≥

160n
√

log(4n2/δ)
d (σp

√
d)−1αd1/4 . Then we have that β̄/d1/4 ≥ 40n

√
log(4n2/δ)

d α.

Proof of Lemma E.2. The proof follows from Lemma B.2. It is known that, with high probability,
we have β ≥ σ0σp

√
d/4. By substituting the condition for σ0, we obtain

β/d1/4 ≥ 40n

√
log(4n2/δ)

d
α.

Lemma E.3 (Lower bound on ρ
(t)
j,r,i). Let β̄ = mini∈[n] maxr∈[m]⟨w

(0)
yi,r, ξi⟩ and A

(t)
yi,r,i

:=

ρtj,r,i + ⟨w(0)
j,r , ξi⟩ − 0.4β̄/d1/4. Under Assumption 3.1, if ⟨w(0)

j,r , ξi⟩ ≥ β̄, then at time step

T1 =
nm log(1/(σ0σp

√
d))

ησ2
pd

, with high probability, it holds that

A
(T1)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)T1A

(0)
yi,r,i

.

Proof of Lemma E.3. First, consider yi = j as the case of ρ(t)j,r,i. By Lemma C.1 and Lemma D.3,
when yi = j,

|⟨w(t)
j,r,, ξi⟩ − ⟨w(0)

j,r , ξi⟩ − ρ
(t)
j,r,i| ≤ 16n

√
log(4n2/δ)

d
≤ 0.4β̄/d1/4. (10)

From the update of ρ(t)j,r,i, when ϵ
(t)
i = 1 and ⟨w(t)

j,r, ξi⟩ > 0,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

2η

nm
ℓ̃
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2
2ϵ

(t)
i ≥ ρ

(t)
j,r,i +

ηC0σ
2
pd

nm

(
ρ
(t)
j,r,i + ⟨w(0)

j,r , ξi⟩ − 0.4β̄/d1/4
)
,

On the other hand, when ϵ
(t)
i = −1 and ⟨w(t)

j,r, ξi⟩ > 0,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

2η

nm
ℓ̃
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2
2ϵ

(t)
i ≥ ρ

(t)
j,r,i −

3ησ2
pd

nm

(
ρ
(t)
j,r,i + ⟨w(0)

j,r , ξi⟩+ 0.4β̄/d1/4
)
.

For simplification of notations, denote ζ = 0.8β̄/d1/4. Let A(t)
yi,r,i

:= ρtj,r,i+ ⟨w(0)
j,r , ξi⟩−0.4β̄/d1/4.

Then when ϵ
(t)
i = 1, we have

A
(t+1)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)A

(t)
yi,r,i

,

and when ϵ
(t)
i = −1, we have

A
(t+1)
yi,r,i

≥ (1−
3ησ2

pd

nm
)A

(t)
yi,r,i

−
3ησ2

pdζ

nm
.

Here we prove when ⟨w(0)
j,r , ξi⟩ ≥ β̄, A(t)

yi,r,i
> ζ. The proof is by the induction method.
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First it is clear that A(0)
yi,r,i

= ⟨w(0)
j,r , ξi⟩ − 0.5ζ > ζ because d ≫ Θ(1). Then we consider

when t ≤ 2 log(4n/δ)
p2 (where the condition for Lemma B.4 does not hold). In this case, |S(t)

+ | ≥

(1 − p)t −
√

t
2 log(

4n
δ ), |S(t)

− | ≤ pt +
√

t
2 log(

4n
δ ). In addition, the worst case lower bound is

achieved by the case where all the S(t)
− events happen at the first few iterations. This gives

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)(1−p)t−

√
t
2 log( 4n

δ )(1−
3ησ2
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√
t
2 log( 4n

δ )A
(0)
yi,r,i

− (1 +
ηC0σ

2
pd
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)(1−p)t−

√
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2 log( 4n

δ )

[ pt+
√

t
2 log( 4n

δ )∑
s=0

(
1−

3ησ2
pd

nm

)s]ζησ2
pd

3nm

≥ (1 +
ηC0σ

2
pd
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)(1−p)t−

√
t
2 log( 4n

δ )
(
(1−

3ησ2
pd
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)pt+

√
t
2 log( 4n

δ )A
(0)
yi,r,i

− ζ
)

≥ (1 +
ηC0σ

2
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nm
)(1−p)t−

√
t
2 log( 4

δ )ζ ≥ ζ,

where the last inequality follows from the fact that d ≫ Θ(1). To see this, suppose there exists a
t ≤ 2 log(4n/δ)

p2 such that

(1−
3ησ2

pd

nm
)pt+

√
t
2 log( 4n

δ )A
(0)
yi,r,i

≤ 2ζ,

then we have

pt+

√
t

2
log(

4n

δ
) ≥ log(d1/4/2)

log

(
1

1−
3ησ2

pd

nm

) ,

while t ≤ 2 log(4/δ)
p2 raises a contradiction by the choice of d. This proves for all t ≤ 2 log(4/δ)

p2 , we

have (1− 3ησ2
pd

nm )pt+
√

t
2 log( 4n

δ )A
(0)
yi,r,i

≥ 2ζ and thus A(t)
yi,r,i

≥ ζ.

Then we consider the case when t ≥ 2 log(4/δ)
p2 where the condition for Lemma B.4 holds. Now

suppose for all s ≤ t − 1, we have A
(s)
yi,r,i

≥ ζ, which clearly holds for t = 2 log(4n/δ)
p2 . For all

s ≤ t− 1, we have A(s)
yi,r,i

≥ (1− 3ησ2
pdζ

nm )A
(s)
yi,r,i

when ϵ
(s)
i = −1. This leads to the following lower

bound for A(t)
yi,r,i

as

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)(1−1.5p)t(1−

3ησ2
pd

nm
)1.5ptA

(0)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)tA

(0)
yi,r,i

≥ ζ,

where the second last inequality follows from the choice of

p ≤ 2

3

log(1 +
ηC0σ

2
pd

nm )− log(1 +
ηC0σ

2
pd

2nm )

log(1 +
ηC0σ2

pd

nm )− log(1− 3ησ2
pd

nm )
.

We can verify that p = C0

24 satisfies the above inequality. This concludes the proof that, for all t, we
have A

(t)
yi,r,i

≥ ζ and thus for all t. Finally, we conclude that

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)(1−1.5p)t(1−

2ησ2
pd

3nm
)1.5ptA

(0)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)tA

(0)
yi,r,i

.
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With the above lemmas at hand, we are ready to prove Lemma 4.4:

Proof of Lemma 4.4. By Lemma E.3, at t = T1, taking the maximum over r yields

max
r

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)t0.6β̄

≥ (1 +
ηC0σ

2
pd

2nm
)t0.15σ0σp

√
d

≥ exp
(ηC0σ

2
pd

4nm
t
)
0.15σ0σp

√
d,

where the first inequality is by maxr⟨w(0)
j,r , ξi⟩ ≥ β̄ and 0.4β̄d−1/4 ≤ 0.4β̄. In the last inequality,

we use (1 + z) ≥ exp(z/2) for z ≤ 2.

Then we see maxr A
(t)
yi,r,i

≥ 1 in at least T1 =
log(20/(σ0σp

√
d))4nm

ηC0σ2
pd

and because maxj,r ρ
T1
j,r,i ≥

AT1
yi,r,i

−maxj,r |⟨w(0)
j,r , ξi⟩|+ 0.4β̄ ≥ 1.

Besides, by Lemma D.2, we directly obtain the result that

|ρ(T1)
j,r,i

| ≤
3ησ2

pdT1

nm

√
log(8mn/δ)σ0σp

√
d = Õ(σ0σp

√
d).

Furthermore, Lemma D.1 yields

γ
(T1)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m

4nm

ησ2
pd

log(1/(σ0σp

√
d))
)
|⟨w(0)

j,r ,µ⟩| ≤ 2|⟨w(0)
j,r ,µ⟩|,

where we have used the condition of low SNR, namely nSNR2 ≤ 1/ log(20/(σ0σp

√
d)). By Lemma

B.2, we conclude the proof for maxj,r γ
(T1)
j,r = Õ(σ0∥µ∥2).

Lastly, according to Lemma E.1, at the end of stage1, we have the lower bound on signal learning
coefficient

max
r∈[m]

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≥ exp
(C0η∥µ∥22

8m
t
)
max
r∈[m]

|⟨w(0)
j,r ,µ⟩|

= exp
(C0η∥µ∥22

8m

log(20/(σ0σp

√
d))4nm

ηC0σ2
pd

)
max
r∈[m]

|⟨w(0)
j,r ,µ⟩|

≥ exp(nSNR2 log(20/(σ0σp

√
d))σ0∥µ∥2 ≥ σ0∥µ∥2.

E.2 Proof of Lemma 4.5

The key idea is to show ρ
(t)
j,r,i oscillates during the second stage, where the growth tends to offset the

drop over a given time frame. This would suggest the f(W(t),x) is both upper and lower bounded
by a constant, which is crucial to ensuring that γ(t)

j,r increases exponentially during the second stage.

Without loss of generality, for each i with ⟨w(t)
j,r,i, ξi⟩ > 0 and j = yi = 1, the evolution of ρt+1

j,r,i is
written as

ρt+1
j,r,i = ρ

(t)
j,r,i −

2η

nm
ℓ̃
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2ϵ

(t)
i

≈

(1 + 2η∥ξi∥
2

nm(1+exp(f
(t)
i ))

)ρ
(t)
j,r,i, if ϵ(t)i = 1

(1− 2η∥ξi∥
2

nm(1+exp(−f
(t)
i ))

)ρ
(t)
j,r,i if ϵ(t)i = −1

where we denote f
(t)
i = f(W(t),xi). Note that f (t)

i ≈ 1
m

∑m
r=1(ρ

(t)
+1,r,i)

2 when γ
(t)
j,r ≪ 1.
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To simplify the notation, we define that ι(t)i ≜ 1
m

∑m
r=1(ρ

(t)
+1,r,i)

2. Then the dynamics can be
approximated to

ι
(t+1)
i ≈

(1 +
2η∥ξi∥

2
2

nm(1+exp((ι
(t)
i )2))

)2ι
(t)
i with prob 1− p

(1− 2η∥xi∥2
2

nm(1+exp(−(ι
(t)
i )2))

)2ι
(t)
i with prob p

Lemma E.4 (Restatement of Lemma 4.5). Under the same condition as Theorem 3.3, during
t ∈ [T1, T2] with T2 = T1 + log(6/(σ0∥µ∥2))4m(1 + exp(c2))η

−1∥µ∥−2
2 , there exist a sufficient

large positive constant Cι and a constant ι∗i depending on sample index i such that the following
results hold with high probability at least 1− 1/d:

• |ι(t)i − ι∗i | ≤ Cι

• γ
(t)
j,r ≤ 0.1 for all j ∈ {−1, 1} and r ∈ [m]

• 1
2m

∑m
r=1(ρ

(t)
yi,r,i

)2 ≤ f
(t)
i ≤ 2

m

∑m
r=1(ρ

(t)
yi,r,i

)2

• maxr∈[m](γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩|) ≥ exp
(η∥µ∥2

2

16m (t− T1)
)
maxr∈[m] |γ

(T1)
j,r + ⟨w(0)

j,r ,µ⟩|.

Proof of Lemma E.4. The proof is based on the method of induction. Without loss of generality, we
consider all i with yi = 1. We first check that at time step t = T1, by Lemma 4.4, there exists a
constant C such that

| 1
m

m∑
r=1

ρ
(T1)
+1,r,i − ι∗i | ≤ C.

Besides, by Lemma 3.3, it is straightforward to check that γ(T1)
j,r ≤ 1 for all j ∈ {−1, 1} and r ∈ [m],

and maxj γ
(T1)
j,r ≥ 0. Next, we can show the following result at time t = T1:

f
(T1)
i = F+1(W

(T1)
+1 ,xi)− F−1(W

(T1)
−1 ,xi)

=
1

m

m∑
r=1

σ
(
⟨w(0)

+1,r,µ⟩+ γ
(T1)
+1,r

)
+

1

m

m∑
r=1

σ
(
⟨w(0)

+1,r, ξi⟩+ ρ
(T1)
+1,r,i +

∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T1)
+1,r,i′

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r,µ⟩ − γ
(T1)
−1,r

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r, ξi⟩+ ρ(T1)
−1,r,i

+
∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T1)
−1,r,i′

)
≥ −Ω̃(σ2

0∥µ∥22)− Ω̃(σ0σp

√
d) +

1

m

m∑
r=1

(ρ
T1)
+1,r,i − β − 16

√
log(4n2/δ)

d
nα)2

≥ 1

2m

m∑
r=1

(ρ
(T1)
+1,r,i)

2,

where the first inequality is by Lemma 4.5, Proposition 4.1, and Lemma B.1, The second inequality
follows from the condition on σ0 and d in Assumption 3.1. Similarly, we have

f
(T1)
i = F+1(W

(T1)
+1 ,xi)− F−1(W

(T1)
−1 ,xi)

≤ Õ(σ2
0∥µ∥22) + Õ(σ0σp

√
d) +

1

m

m∑
r=1

(ρ
(T1)
+1,r,i + β + 16

√
log(4n2/δ)

d
nα)2

≤ 2

m

m∑
r=1

(ρ
(T1)
+1,r,i)

2.

Next, we assume that all the results hold for T1 < t ≤ T . By the induction hypothesis, we can bound
c1 ≤ f

(T )
i ≤ c2 for all i ∈ [n]. Then we can show that γ(T+1)

j,r continues to exhibit exponential

30



growth:

γ
(T+1)
j,r = γ

(T )
j,r − 2η

nm

( ∑
i∈S(T )

+ ∩S1

ℓ̃
′(t)
i −

∑
i∈S(T )

− ∩S1

ℓ̃
′(t)
i

)
⟨w(T )

j,r ,µ⟩∥µ∥
2
2

≥ γ
(T )
j,r +

2η

nm

(
|S(T )

+ | 1

1 + exp(c2)
− |S(T )

− | 1

1 + exp(−c2)

)
⟨w(T )

j,r ,µ⟩∥µ∥
2
2

≥ γ
(T )
j,r +

2η

m

(2− 3p

4

1

1 + exp(c2)
− 3p

4

1

1 + exp(−c2)

)
⟨w(T )

j,r ,µ⟩∥µ∥
2
2

= γ
(T )
j,r +

η

m

( 1

1 + exp(c2)
− 3p

2

)
(⟨w(T )

j,r ,µ⟩+ jγ
(T )
j,r )∥µ∥22

≥ γ
(T )
j,r +

η∥µ∥22
2m(1 + exp(c2))

(⟨w(T )
j,r ,µ⟩+ jγ

(T )
j,r ),

where the last inequality is by 3
2p ≤ 1

2
1

1+exp(c2)
. Next, define B(t) = maxr∈[m](γ

(t)
j,r + |⟨w(0)

j,r ,µ⟩|),
we have:

B(T+1) ≥ B(T )(1 +
η∥µ∥22

2m(1 + exp(c2))
)

≥ exp(
η∥µ∥22

4m(1 + exp(c2))
(t− T1))B

(T1)

≥ exp
(η∥µ∥22
16m

(t− T1)
)
B(T1).

At the same time, there exists an upper bound on the signal learning:

γ
(T )
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m
(T − T1)

)
|γ(T1)

j,r + ⟨w(0)
j,r ,µ⟩| ≤ 0.01,

where we used the condition that T < T2.

To show that ι(T+1)
i remains within a constant range, we define M

(t)
i ≜ (ι

(t)
i − ι∗i )

2 where ι∗i
is a sufficiently large constant depending on i. Using the relation 1

2m

∑m
r=1(ρ

(T )
yi,r,i

)2 ≤ f
(T )
i ≤

2
m

∑m
r=1(ρ

(T )
yi,r,i

)2 we have:

E[ι(T+1)
i |ι(T )

i ] ≥ (1− p)
(
1 +

2η∥ξi∥22
(1 + 2 exp((ι

(T )
i )2))nm

)2
ι
(T )
i

+ p
(
1− 2η∥ξi∥22

(1 + 1/2 exp(−(ι
(T )
i )2))nm

)2
ι
(T )
i .

At the same time,

E[(ι(T+1)
i )2|ι(T )

i ] ≤ (1− p)
(
1 +

2η∥ξi∥22
(1 + 1/2 exp((ι

(T )
i )2))nm

)4
(ι

(T )
i )2

+ p
(
1− 2η∥ξi∥22

(1 + 2 exp(−(ι
(T )
i )2))nm

)4
(ι

(T )
i )2.

Then we show that
E[M (T+1)

i |ι(T )
i ] = E[(ι(T+1)

i )2|ι(T )
i ]− 2ι∗E[ι(T+1)

i |ι(T )
i ] + (ι∗)2

≤ (1− p)
(
1 +

2η∥ξi∥22
(1 + 1/2 exp((ι

(T )
i )2))nm

)4
(ι

(T )
i )2

+ p
(
1− 2η∥ξi∥22

(1 + 2 exp(−(ι
(T )
i )2))nm

)4
(ι

(T )
i )2

− 2ι∗
(
(1− p)

(
1 +

2η∥ξi∥22
(1 + 2 exp((ι

(T )
i )2))nm

)2
ι
(T )
i

+ p
(
1− 2η∥ξi∥22

(1 + 1/2 exp(−(ι
(T )
i )2))nm

)2
ι
(T )
i

)
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Subtracting M
(T )
i yields

E[M (T+1)
i |ι(T )

i ]−M
(T )
i

≤ (1− p)

[
8η∥ξi∥22

(1 + 1/2 exp((ι
(T )
i )2))nm

+O

(
(
η∥ξi∥2
nm

)2
)]

(ι
(T )
i )2

+ p

[
− 8η∥ξi∥22
(1 + 2 exp(−(ι

(T )
i )2))nm

+O

(
(
η∥ξi∥2
nm

)2
)]

(ι
(T )
i )2

− 8η∥ξi∥2

nm

( 1

1 + 2 exp((ι
(T )
i )2)

− p
)
ι
(T )
i ι∗ +O

(
(
η∥ξi∥2
nm

)2
)

=
8η∥ξi∥22ι

(T )
i

nm

[
1− p(1 + 1/2 exp((ι

(T )
i )2))

1 + 1/2 exp((ι
(T )
i )2)

ι
(T )
i − 1− p(1 + 2 exp((ι

(T )
i )2))

1 + 2 exp((ι
(T )
i )2)

ι∗

]
+O

(
(
η∥ξi∥2
nm

)2
)

≤ 0,

where the final inequality is by ι
(T )
i ≤ 4ι∗ and p < 1/(1+2 exp((ι

(T )
i )2)) and condition the learning

rate from Assumption 3.1, which confirms that {M (t)
i }t∈[T1,T ] is a super martingale. By one-sided

Azuma inequality, with probability at least 1− δ, for any τ > 0, it holds that

P (M
(T )
i −M

(T1)
i ≥ τ) ≤ exp

(
− τ2∑T

k=T1
c2k

)
,

where,

ck = |M (k)
i −M

(k−1)
i | = |(ι(k)i − ι∗)2 − (ι

(k−1)
i − ι∗)2|

= |(ι(k)i − ι
(k−1)
i )(ι

(k)
i + ι

(k−1)
i − 2ι∗i )| ≤ ηC2.

Taking the upper bound of ck ≤ ηC2 yields

P ((ι
(T+1)
i − ι∗i )

2 − C2
0 ≥ τ) ≤ exp

(
− τ2

(T + 1− T1)η2C2
2

)
,

where we define C2
0 ≜ (ι

(T )
i − ι∗i )

2 > 0. Therefore, we conclude with probability at least 1− δ,

|ι(T+1)
i − ι∗i | ≤

√
C2

0 +
√
η2tC2

2 log(1/δ) ≤ Cι,

where the last inequality is by η ≤ Õ(σ−2
p d−1) and T < T2.

Finally, we check that

f
(T+1)
i = F+1(W

(T+1)
+1 ,xi)− F−1(W

(T+1)
−1 ,xi)

=
1

m

m∑
r=1

σ
(
⟨w(0)

+1,r,µ⟩+ γ
(T+1)
+1,r

)
+

1

m

m∑
r=1

σ
(
⟨w(0)

+1,r, ξi⟩+ ρ
(T+1)
+1,r,i +

∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T+1)
+1,r,i′

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r,µ⟩ − γ
(T+1)
−1,r

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r, ξi⟩+ ρ(T+1)
−1,r,i

+
∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T+1)
−1,r,i′

)
≥ −Ω̃(σ2

0∥µ∥22)− 0.01 +
1

m

m∑
r=1

(ρ
(T+1)
+1,r,i − β − 16

√
log(4n2/δ)

d
nα)2

≥ 1

2m

m∑
r=1

(ρ
(T+1)
+1,r,i )

2,
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where the first inequality is by Lemma 4.4 and the induction claim, and the second inequality is by
condition on d from Assumption 3.1. Similarly, by the same argument, we conclude that:

f
(T+1)
i = F+1(W

(t)
+1,xi)− F−1(W

(t)
−1,xi)

≤ Õ(σ2
0∥µ∥22) + 0.01 + Õ(σ0σp

√
d) +

1

m

m∑
r=1

(ρ
(t)
+1,r,i + β + 16

√
log(4n2/δ)

d
nα)2

≤ 2
1

m

m∑
r=1

(ρ
(t)
+1,r,i)

2.

Let T2 = T1 + log(6/(σ0∥µ∥2))4m(1 + exp(c2))η
−1∥µ∥−2

2 , then by lemma 4.4 we can show that

γ
(T2)
j,r ≥ exp(

η∥µ∥22
4m(1 + exp(c2))

t)γ
(T1)
j,r

= exp(
η∥µ∥22

4m(1 + exp(c2))
log(6/(σ0∥µ∥2))4m(1 + exp(c2))η

−1∥µ∥−2
2 )γ

(T1)
j,r

= C0/(σ0∥µ∥2)γ(T1)
j,r

≥ 0.01.

E.3 Proof of Theorem 3.3

Proof of Theorem 3.3. For the population loss, we expand the expression as follows:

L0−1
D (W(t)) = E(x,y)∼D[y ̸= f(W(t),x))] = P(yf(W(t),x) < 0)

= P
( 1

m

m∑
r=1

σ(⟨w(t)
−y,r, ξ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
y,r, ξ⟩) ≥

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

)
.

Recall the weight decomposing

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi +

n∑
i=1

ρ(t)
j,r,i

∥ξi∥−2
2 ξi.

From this, we obtain:

⟨w(t)
−y,r, yµ⟩ = ⟨w(0)

−y,r, yµ⟩ − γ
(t)
−y,r,

⟨w(t)
y,r, yµ⟩ = ⟨w(0)

y,r, yµ⟩+ γ(t)
y,r.

By Lemma 4.5, we conclude that

⟨w(t)
y,r, yµ⟩ = Θ(1), ⟨w(t)

−y,r, yµ⟩ = −Θ(γ(t)
y,r) < 0.

Therefore, it holds that

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

=
1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)

=
1

m

m∑
r=1

σ(⟨w(0)
y,r, yµ⟩+ γ(t)

y,r)

= Θ(1),
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where the last inequity is by Lemma 4.5.

Next, we provide the bound for the noise memorization part. Define that g(ξ) =
∑m

r=1 σ(⟨w
(t)
−y,r, ξ⟩).

By Theorem 5.2.2 in [52], for any τ > 0, it holds

P(g(ξ)− E[g(ξ] ≥ τ) ≤ exp(− cτ2

σ2
p∥g∥2Lip

),

where c is a constant and ∥g∥Lip is the Lipschitz norm of function g(ξ), which can be calculated as
follows:
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√
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where the first inequality is by the triangle inequality, the second inequality follows from the the
convexity of the activation function, the third inequality is by the Cauchy-Schwarz inequality, and the
last inequality follows from B.1. Therefore we conclude that

∥g∥Lip ≤ 3
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∥w(t)
−y,r∥22σp

√
d.

Furthermore, given that ⟨w(t)
−y,r, ξ⟩ ∼ N (0, σ2

p∥w
(t)
−y,r∥22) we have:
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To obtain the the upper bound of g(ξ), we show that:
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where the first inequality is by Lemma B.1, and the second inequality is by the condition on d in
Assumption 3.1. With the results above, we conclude that

L0−1
D (W(t)) = E(x,y)∼D[y ̸= f(W(t),x))] = P(yf(W(t),x) < 0)

≤ P(
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which corresponds to the second bullet point of Theorem 3.3. Combined with Lemma 4.5, which
establishes the first bullet point, this completes the proof of Theorem 3.3.

F Experimental Details for Figure 1

In this section, we provide a detailed description of the experimental setup used to generate the results
shown in Figure 1, which compares the performance of Label Noise GD and Standard GD on the
CIFAR-10 dataset under varying SNR conditions.

F.1 Dataset and Noise Injection

We used the CIFAR-10 dataset, selecting 1,000 images in total, with 100 images per class, to perform
both Standard GD and Label Noise GD training. The random seed used for selecting training samples
was fixed to ensure a fair comparison across different hyperparameters.

To simulate varying SNR conditions, inspired by [19], we introduced noise to the high-frequency
Fourier components of the images using the following procedure:

• Each image was transformed into the frequency domain using a 2D Fourier transform.

• Gaussian noise was added to the high-frequency components, excluding the low-frequency
region near the center of the Fourier spectrum. The intensity of the noise was controlled by
a noise level parameter, where higher values correspond to noisier data and lower SNR.

• Finally, the image was transformed back into the spatial domain using an inverse Fourier
transform.

The noise level was adjusted to control the SNR factor, which is represented on the x-axis in Figure 1.

F.2 Model and Training Setup

The experiments were conducted using a VGG-16 model trained from scratch on the CIFAR-10
dataset. The final fully connected layer of the model was modified to output predictions for the 10
classes in CIFAR-10. Both Standard GD and Label Noise GD were trained using cross-entropy loss
and gradient descent (GD) with a learning rate of 0.05. Training was performed with a full-batch
setup over 5,000 epochs. For Label Noise GD, labels were flipped randomly with a probability of
20% at each iteration to simulate label noise.
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F.3 Results Analysis

The results shown in Figure 1 demonstrate that Label Noise GD consistently achieves higher test
accuracy than Standard GD across all SNR levels. The performance gap is most evident under
low SNR conditions, where Standard GD suffers significant accuracy degradation due to noise
memorization, while Label Noise GD effectively suppresses noise and promotes robust feature
learning.

F.4 Reproducibility

To ensure reproducibility, all experiments were implemented in PyTorch. The codebase, including
dataset preprocessing, model training, and evaluation, is provided in the supplementary material.

G Additional Experiments

In this section, we provide additional experiments to further support our theoretical findings.

G.1 Deeper Neural Network

Figure 4: Performance of a 3-layer ReLU neural network: The ratio of noise memorization to signal learning,
along with training loss and test accuracy, for standard GD and label noise GD.

We have conducted additional experiments using a 3-layer neural network with ReLU activation. The
network is defined as f(W,x) = F+1(W+1,W,x)− F−1(W−1,W,x), where

Fj(Wj ,W,x) =
1

m

m∑
r=1

2∑
p=1

σ
(
⟨wj,r, z

(p)⟩
)
, z(p) = σ(W⊤x(p)),

in which σ(·) is the ReLU activation, W ∈ Rd×m denotes the weight in the first layer, and W±1 ∈
Rm×m are weights in the second layer. The last layer is fixed.

Specifically, we train the first two layers. The number of training samples is n = 200, and the
number of test samples is ntest = 2000. The input dimension was set to d = 2000. We set the
width to m = 20, the learning rate to η = 0.5, and the noise flip rate to p = 0.1. The data model
follows our theoretical setting, where µ = [1, 0, 0, · · · , 0] and the noise strength is σp = 1. The
experimental results, shown in Figure 4, are consistent with our original findings: compared to
standard gradient descent, label noise GD boosts signal learning (as shown in the first plot) and
achieves better generalization (as shown in the last plot).

G.2 Real World Dataset

We conducted an experiment using the MNIST dataset, in which Gaussian noise was added to the
borders of the images while retaining the digits in the middle. The noise level was set to σp = 5.
Moreover, the original pixel values of the digits ranged from 0 to 255, and we chose a normalization
factor of 80. In this setup, the added noise formed a “noise patch" and the digits formed a “signal
patch". We focused on the digits ‘0’ and ‘1’, using n = 100 samples for training and 200 samples for
testing. The learning rate was set to η = 0.001, and the width was set to m = 20, with a label noise
level of p = 0.15. The results, shown in Figure 5, were consistent with our theoretical conclusions,
reinforcing the insights derived from our analysis.
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Figure 5: Performance on the modified MNIST dataset: The ratio of noise memorization to signal learning,
along with training loss and test accuracy, for standard GD and label noise GD.

(a) Performance of standard GD (b) Performance of Label Noise GD

Figure 6: Test accuracy heatmap of standard GD (left) and Label Noise GD (right) after training on modified
MNIST dataset.

To assess the sensitivity of the methods to the choice of noise parameters and signal normalization,
we conducted additional experiments on a modified MNIST dataset. The signal normalization values
were varied from 60 to 140, while the noise levels ranged from 4 to 8. For each combination of noise
level and signal normalization, we trained the neural network for 200,000 steps with a learning rate
η = 0.001, using either standard gradient descent (GD) or label noise GD.

The resulting test errors are visualized in Figure 6. Notably, label noise GD (right) consistently
achieves higher test accuracy than standard GD (left) across all configurations. This demonstrates the
robustness of label noise GD to variations in noise and signal normalization parameters.

The motivation behind using MNIST was its clearer signal, which allows us to more directly observe
the effects of label noise without other confounding factors. However, we also conducted experiments
on a subset of CIFAR-10, using two classes: airplane and automobile. Gaussian noise was added to
a portion of the images, following a similar setup to MNIST. For these experiments, we set q = 2,
the number of neurons m = 20, the learning rate η = 0.001, the signal norm signal_norm = 64, the
noise level noise_level = 5, the number of samples n = 100, the label noise probability p = 0.15,
and the input dimension d = 6144.

Figure 7: Performance on the modified CIFAR-10 dataset: The ratio of noise memorization to signal learning,
along with training loss and test accuracy, for standard GD and label noise GD.
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The results shown in Figure 7 indicate that label noise GD continues to provide benefits in terms of
generalization compared to standard GD. We believe these extended experiments help establish a
broader applicability of our findings to more complex benchmarks.

G.3 Different Type of Label Noise

To validate the robustness of label noise GD under different noise forms, we varied p across different
values. For example, we show the results for p = 0.3 in Figure 8 and p = 0.4 in Figure 9. The results
consistently indicate that label noise helps reduce overfitting and boost generalization, especially in
low SNR settings.

In addition, we extended our empirical analysis to include Gaussian noise and uniform distribution
noise added to the labels. For Gaussian noise, we used two examples, namely ϵ

(t)
i ∼ N (1, 1) and

ϵ
(t)
i ∼ N (1, 1), with the results shown in Figures 10 and 11, respectively. Furthermore, for the

uniform distribution, we simulated the noise with ϵ
(t)
i ∼ unif[−1, 2] and ϵ

(t)
i ∼ unif[−2, 3]. The

results are shown in Figures 12 and 13, respectively.

Our results indicate that label noise GD still performs effectively, achieving better generalization
compared to standard GD, providing further evidence of the robustness of label noise GD under
different noise forms.

Figure 8: Performance with flip noise p = 0.3: The ratio of noise memorization to signal learning, training
loss, and test accuracy of standard GD and label noise GD.

Figure 9: Performance with flip noise p = 0.4: The ratio of noise memorization to signal learning, training
loss, and test accuracy of standard GD and label noise GD.

Figure 10: Performance with Gaussian noise N (1, 1): The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.
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Figure 11: Performance with Gaussian noise N (0.6, 1): The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.

Figure 12: Performance with uniform distribution noise unif[−1, 2]: The ratio of noise memorization to signal
learning, training loss, and test accuracy of standard GD and label noise GD.

Figure 13: Performance with uniform distribution noise unif[−2, 3]: The ratio of noise memorization to signal
learning, training loss, and test accuracy of standard GD and label noise GD.

G.4 Higher Order Polynomial ReLU

In this work, we set the activation function as squared ReLU. This choice makes q = 2 a particularly
interesting and challenging case to analyze, as it allows us to study the interaction between signal and
noise in a setting that closely resembles practical two-layer ReLU networks.

For higher values of q, we also conducted experiments with q = 3 and q = 4. For q = 3, we set the
learning rate η = 0.5, the number of neurons m = 20, the number of samples n = 200, the signal
mean µ = [2, 0, 0, · · · , 0], and the noise strength σp = 0.5. The results are shown in Figure 14. For
q = 4, the parameters were set as η = 0.1, m = 20, n = 50, µ = [5, 0, 0, · · · , 0], and σp = 0.5. The
results are shown in Figure 15.

Figure 14: Performance with q = 3 for polynomial ReLU: The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.
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Figure 15: Performance with q = 4 for polynomial ReLU: The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.

In all these cases, the experimental results consistently show that using a higher polynomial ReLU
activation helps label noise GD suppress noise memorization while enhancing signal learning. This
ultimately leads to improved test accuracy compared to standard GD.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction precisely match the contribu-
tions made in the paper, which include both the theoretical analysis and empirical validation
of label noise GD for improving generalization under low SNR.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the "Conclusion and limitation" section,
where we clearly state the current theoretical analysis is limited to specific architectures and
activation functions, and outline directions for future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions for the theoretical results are clearly stated (e.g., Assumption
3.1), and complete proofs are provided in the appendix, with proof sketches included in the
main text (Sections 3 and 4, Appendix B–E).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary experimental details, including dataset construction, noise
injection, model architecture, training protocol, and evaluation metrics, are provided in
Section 5 and Appendix F and G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code necessary to reproduce the main experimental results is included in
the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5 and Appendix F and G provide all relevant training and test details,
including data splits, hyperparameters, optimizer choices, and noise settings.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The primary findings were robust and stable across all tested settings, so
statistical significance analysis was not included. If requested, we can provide additional
runs and error bar analysis during the rebuttal period.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5 and Appendix F specify the compute environment (e.g., GPU type)
and approximate runtime for main experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully conforms to the NeurIPS Code of Ethics. No human or
sensitive data is used.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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societal impacts of the work performed?
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Justification: The broader impact is discussed in the "Conclusion and limitation" section,
where we state there are no immediate negative societal impacts, and the work aims to
advance theoretical understanding.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any high-risk data or models.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
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faith effort.
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• The authors should cite the original paper that produced the code package or dataset.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used as an important, original, or non-standard component of
the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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