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Abstract

We introduce and study Swap Agnostic Learning. The problem can be phrased
as a game between a predictor and an adversary: first, the predictor selects a
hypothesis h; then, the adversary plays in response, and for each level set of the
predictor {x ∈ X : h(x) = v} selects a loss-minimizing hypothesis cv ∈ C;
the predictor wins if p competes with the adaptive adversary’s loss. Despite
the strength of the adversary, our main result demonstrates the feasibility Swap
Agnostic Learning for any convex loss. Somewhat surprisingly, the result follows
by proving an equivalence between Swap Agnostic Learning and swap variants
of the recent notions Omniprediction [15] and Multicalibration [20]. Beyond
this equivalence, we establish further connections to the literature on Outcome
Indistinguishability [6, 14], revealing a unified notion of OI that captures all existing
notions of omniprediction and multicalibration.

1 Introduction

Since its inception as an extension to Valiant’s PAC framework [30, 19, 23], Agnostic Learning
has been the central problem of supervised learning theory. Agnostic learning frames the task of
supervised learning through loss minimization: given a loss function ℓ, a hypothesis class C, and
ε ≥ 0, a predictor h is an agnostic learner if it achieves loss that competes with the minimal achievable
within the hypothesis class.

E[ℓ(y, h(x))] ≤ min
c∈C

E[ℓ(y, c(x))] + ε (1)

While the agnostic learning paradigm has been remarkably successful, in recent years, researchers
have investigated alternative learning paradigms to address concerns of the modern prediction pipeline,
including fairness and robustness. The work of [20] introduced multicalibration as a new paradigm
for learning fair predictors. Multicalibration asserts fairness as a first-order goal, requiring that
predictions appear calibrated even conditioned on membership in one of a potentially-huge collection
of subgroups C of the domain.1 As a solution concept, multicalibration can be achieved efficiently
using a weak learner for C to identify subgroups where predictions are miscalibrated. In contrast to
agnostic learning, multicalibration does not make reference to minimizing any loss.

Yet, it turns out that there are surprising connections between multicalibration and agnostic learning.
This connection was first discovered in the work of [15], who introduced the notion of omniprediction
as a new solution concept in supervised learning. Intuitively, an omnipredictor is a single predictor
that provides the agnostic learning guarantee for many losses simultaneously. More formally, for a
collection of loss functions L and a hypothesis class C, a predictor is an omnipredictor if for any
loss in the collection ℓ ∈ L, the predictions achieve loss that competes with the minimal achievable

1This collection of subgroups is suggestively denoted by C, indicating that (in correspondence with a
hypothesis class) subgroup membership can be computed using models of bounded capacity, such as small
decision trees, halfspaces, or neural networks.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



within the hypothesis class.2 The main result of [15] demonstrates that multicalibrated predictors are
omnipredictors for Lcvx the class of all convex loss functions. In other words, the multicalibration
framework is capable of guaranteeing agnostic learning in a very strong sense: learning a single
multicalibrated predictor gives an agnostic learner, for every target convex loss ℓ ∈ Lcvx. The results
of [15] stand in contrast to the convential wisdom that optimizing predictions for different loss
functions requires a separate training procedure for each loss.

On the surface, multicalibration seems like a fundamentally different approach to supervised learning
than agnostic learning. The implication of omniprediction from multicalibration, however, suggests
a deeper connection between the notions. In fact, follow-up work of [14] gave new constructions
of omnipredictors (for different loss classes L), similarly deriving the guarantees from variants
of multicalibration. To summarize the state of the art, we have constructions of omnipredictors
of various flavors, and all such constructions rely on some variant of multicalibration. While
multicalibration suffices to guarantee omniprediction, a glaring question remains in the development
of this theory: Is multicalibration necessary for omniprediction? We investigate this question,
exploring the connections between agnostic learning, notions of omniprediction, and multicalibration.

Our Contributions. In this work, we provide a new perspective that unifies these seemingly-
incomparable paradigms for supervised learning. Key to this perspective, we introduce a new learning
task, which we call Swap Agnostic Learning. This swap variant of agnostic learning is inspired by
the notion of swap regret in the online learning literature [10, 2], where the learner must achieve
vanishing regret, not simply overall, but even conditioned on their decisions. While swap agnostic
learning is a natural extension, at first glance, it is a considerably stronger goal than standard agnostic
learning. Nevertheless, our work demonstrates an efficient algorithm for swap agnostic learning
for any convex loss function, leveraging only a weak agnostic learner for the hypothesis class. The
algorithm follows by discovering a surprising connection: swap agnostic learning and swap variants
of omniprediction and multicalibration are actually equivalent. In other words, once we move to swap
variants, multicalibration is necessary for omniprediction, and even for agnostic learning. We show
how the original multicalibration algorithm of [20] actually guarantees the stronger goal of “swap
multicalibration” (and thus, swap omniprediction and swap agnostic learning). Our results provide an
exact characterization of these swap learning notions, as well as relationships between other learning
desiderata explored in recent works [6, 14].

Our motivation for introducing Swap Agnostic Learning comes from trying to understand the relation-
ship between (standard) multicalibration and omniprediction. Prior work shows that multicalibration
implies (convex) omniprediction, but leaves open the question of whether omniprediction implies
multicalibration. The present work sheds new light on this question, suggesting that the asnwer is
no: standard omniprediction does not imply multicalibration. The answer to this question comes
by introducing the idea of Swap Learning, in the agnostic learning/omniprediction setting, as well
as in multicalibration. Importantly, for multicalibration, Swap multicalibration and Standard mul-
ticalibration are essentially the same notion. Claim 2.9, as well as our analysis of prior algorithms
for multicalibration, shows that standard multicalibration is already strong enough to capture the
swap variant. The distinction (definitionally and algorithmically) between swap and standard mul-
ticalibration is minimal: our results suggest that one should really think of them as a single notion
of multicalibration. For agnostic learning and omniprediction, however, Swap Learning is much
stronger than Standard Learning. We prove separations between swap and standard omniprediction
in Appendix B. The separations are summarized in figure 1. This tells us that (swap) multicalibration
is equivalent to the stronger notion of swap omniprediction, which is provably stronger than standard
omnipreidiction.

Organization. We continue the manuscript with formal setup and defintions of Swap Agnostic
Learning, Swap Omniprediction, and Swap Multicalibration. Then, in our main result, we prove the
equivalence of these notions. This equivalence suggests an efficient algorithm for Swap Agnostic
Learning. We conclude with an overview of our other results, as well as related work and discussion.
Throughout the manuscript, we include formal definitions of key notions and proofs of essential
claims. We introduce the notion os swap loss OI which generalizes omniprediction in Section . In

2On a technical level, the omniprediction guarantee is made possible by post-processing the predictions after
the loss is revealed. Importantly, the post-processing is a data-free univariate optimization that can be performed
efficiently, based only on the loss function and not the data distribution.
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Section B, we dicuss the relation and show separatiosn between various notions of omniprediction.
All omitted proofs of formal claims are included in the Appendix.

2 Formal Setup: Swap Notions of Supervised Learning

We work in the agnostic learning setting, where we assume a data distribution (x,y) ∼ D supported
on X × {0, 1}. The objects of study in agnostic learning are real-valued hypotheses h : X → R.
Omniprediction and multicalibration study the special case of predictors p̃ : X → [0, 1] that map
domain elements to probabilities. We denote the Bayes optimal predictor as p∗(x) = Pr[y =
1|x = x]. As is standard in agnostic learning, we make no assumptions about the complexity of
p∗ : X → [0, 1]. While, in principle, predictors and hypotheses may take on continuous values in R,
we restrict our attention to functions supported on finitely-many values. We let Im(p̃) ⊆ [0, 1] denote
the set of values taken on by p̃(x).

Given a hypothesis h : X → R, it will be useful to imagine drawing samples from D in two steps:
first, we sample a prediction v ∈ R according to the distribution of h(x) under D; then, we draw the
random variables (x,y) according to the conditional distribution D|h(x) = v. Accordingly, let Dh

denote the distribution of h(x) where x ∼ D.

2.1 Swap Agnostic Learning

Swap agnostic learning is defined with respect to a loss function ℓ : {0, 1}×R→ R and a hypothesis
class C ⊆ {c : X → R} and can be viewed as a game with two participants. The predictor plays
first and selects a hypothesis h : X → R. The adversary plays in response: for each level set
{x ∈ X : h(x) = v}, the adversary may choose a separate loss-minimizing hypothesis cv ∈ C.

Definition 2.1 (Swap Agnostic Learning). For a loss function ℓ, hypothesis class C, and error ε ≥ 0,
a hypothesis h is a (ℓ, C, ε)-swap agnostic learner if

E[ℓ(y, h(x))] ≤ E
v∼Dh

[
min
cv∈C

E[ℓ(y, cv(x) | h(x) = v]

]
+ ε. (2)

We borrow nomenclature from online learning: a predictor using a swap agnostic learner h has
no incentive to “swap” any of their fixed predictions h(x) = v to predict according to cv ∈ C.
Contrasting the requirement in (2) to that of agnostic learning in (1), we have switched the order of
quantifiers, such that the minimization is taken after the expectation over the choice of h(x) = v.
Swap agnostic learning strengthens standard agnostic learning, where the predictor only competes
against the single best hypothesis c ∈ C.

Indeed, swap agnostic learning seems to be a much more stringent condition. Provided the class C
contains all constant functions, the adversary can simply imitate the predictor when h(x) = v by
choosing cv(x) = v. For such C, (2) implies that imitation is the best strategy for the adversary.

2.2 Swap Omniprediction

As in [15, 14], we observe that for any loss function ℓ and known distribution on outcomes y ∼ Ber(p)
for p ∈ [0, 1], there is an optimal action kℓ(p) that minimizes the expected loss ℓ. Formally, we define
the optimal post-processing of predictions by the function kℓ : [0, 1]→ R, which specifies the action
that minimizes the expected loss.3

kℓ(p) = argmin
t∈R

E
y∼Ber(p)

[ℓ(y, t)]. (3)

This observation is particularly powerful because the function kℓ is given by a simple, univariate
optimization that can be used as a data-free post-processing procedure on top of a predictor p̃.

We recall the original notion of omniprediction proposed by [15], which requires a predictor to
yield an agnostic learner simultaneously for every loss in a collection L. Concretely, omniprediction
requires that the function hℓ = kℓ ◦ p̃ is an (ℓ, C, ε)-agnostic learner for every ℓ ∈ L.

3If there are multiple optima, we break ties arbitrarily.
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Definition 2.2 (Omnipredictor, [15]). For a collection of loss functions L, a hypothesis class C, and
error ε > 0, a predictor p̃ : X → [0, 1] is an (L, C, ε)-omnipredictor if for every ℓ ∈ L,

E[ℓ(y, kℓ(p̃(x))] ≤ min
c∈C

E[ℓ(y, c(x))] + ε. (4)

We propose a strengthened notion of Swap Omniprediction, where the adversary may choose both
the loss ℓv ∈ L and hypothesis cv ∈ C based on the prediction p̃(x) = v.
Definition 2.3 (Swap Omnipredictor). For a collection of loss functions L, a hypothesis class C, and
error ε > 0, a predictor p̃ : X → [0, 1] is a (L, C, ε)-swap omnipredictor if for any assignment of
loss functions {ℓv ∈ L}v∈Im(p̃),

E
v∼Dp̃

[
E[ℓv(y, kℓv(v)) | p̃(x) = v]

]
≤ E

v∼Dp̃

[
min
cv∈C

E[ℓv(y, cv(x)) | p̃(x) = v]

]
+ ε. (5)

Swap omniprediction gives the adversary considerable power. For instance, the special case where we
restrict the adversary’s choice of losses to be constant, ℓv = ℓ, realizes swap agnostic learning for ℓ.
Claim 2.4. If p̃ is a (L, C, ε)-swap omnipredictor, it is a (ℓ, C, ε)-swap agnostic learner for every
ℓ ∈ L, and hence a (L, C, ε)-omnipredictor.

Analogous to the standard notions, swap omniprediction implies swap agnostic learning for every ℓ;
however, swap omniprediction gives an even stronger guarantee since the adversary’s loss ℓv may be
chosen in response to the prediction p̃(x) = v.

2.3 Swap Multicalibration

Multicalibration was introduced in the work of [20] as a notion of algorithmic fairness following
[26], but has since seen broad application across many learning applications (e.g., [6, 15, 25, 18]).
Informally, multicalibration requires predictions to appear calibrated, not simply overall, but also
when we restrict our attention to subgroups within some broad collection C. The formulation below
appears in [14].
Definition 2.5 (Multicalibration, [20]). For a hypothesis class C and α ≥ 0, a predictor p̃ : X →
[0, 1] is (C, α)-multicalibrated if

max
c∈C

E
v∼Dp̃

[ ∣∣∣E[c(x)(y − v) | p̃(x) = v]
∣∣∣ ] ≤ α. (6)

When c : X → {0, 1} is Boolean (and has sufficiently large measure), this definition says that
conditioned on c(x) = 1, the calibration violation is small, recovering the definition in [20].

Swap Multicalibration strengthens multicalibration, extending the pseudorandomness perspective on
multicalibration developed in [6, 15]. Swap multicalibration requires that for the typical prediction
v ∼ Dp̃, no hypothesis in cv ∈ C achieves good correlation with the residual labels y − v over D
conditioned on p̃(x) = v.
Definition 2.6 (Swap Multicalibration). For a hypothesis class C and α ≥ 0, a predictor p̃ : X →
[0, 1] is (C, α)-swap multicalibrated if

E
v∼Dp̃

[
max
cv∈C

∣∣∣E[cv(x)(y − v) | p̃(x) = v]
∣∣∣ ] ≤ α. (7)

Again, the difference between swap and standard multicalibration is in the order of quantifiers. The
standard definition requires that for every c ∈ C, the correlation |ED|v [c(x)(y−v)]| achieved in small
in expectation over v ∼ Dp̃. Swap multicalibration considers the maximum of |ED|v [c(x)(y − v)]|
over all c ∈ C for each fixing of v = v and requires this to be small in expectation over v ∼ Dp̃. It
follows that swap multicalibration implies standard multicalibration.
Claim 2.7. If p̃ is (C, α)-swap multicalibrated, it is (C, α)-multicalibrated.

While swap multicalibration is nominally a stronger notion that than standard multicalibration, the
complexity of achieving swap multicalibration is essentially the same as multicalibration. We show
that starting from a (C, α)-multicalibrated predictor p̃, by suitably discretizing its values, we obtain a
predictor that is close to p̃ and (C, α′)-swap multicalibrated, with some degradation in the value of α′.
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Definition 2.8. Let δ ∈ [0, 1] so that m = 1/δ ∈ Z. Define Bj = [(j − 1)δ, jδ) for j ∈ [m− 1] and
Bm = [1− δ, 1]. Define the predictor p̄δ where for every x such that p̃(x) ∈ Bj , p̄δ(x) = jδ.
Claim 2.9. Let p̃ : X → [0, 1] be a (C, α)-multicalibrated. For any δ ∈ [0, 1] where 1/δ ∈ Z, the
predictor p̄δ is (C, 2

√
α/δ + δ)-swap multicalibrated, and maxx∈X |p̃(x)− p̄δ(x)| ≤ δ.

While the bound of the theorem is valid for all δ, the swap multicalibration guarantee is only
meaningful when δ ≥ Ω(α). Thus, by discretizing a (C, α)-multicalibrated predictor, we obtain a
(C, O(α1/3))-swap multicalibrated predictor. While this generic transformation suffers a polynomial
loss in the accuracy parameter, such a loss may not be algorithmically necessary. As we argue
in Lemma 3.8, known algorithms for achieving multicalibration [20, 15] actually guarantee swap
multicalibration without any modification.

3 An equivalence: swap agnostic learning, omniprediction, multicalibration

Our main result is an equivalence between swap agnostic learning, swap omniprediction, and swap
multicalibration. Concretely, this equivalence shows that swap agnostic learning for the squared
error is sufficient to guarantee swap omniprediction for all (nice) convex loss functions. We begin
with some preliminaries, then formally state and prove the equivalence. We conclude the section by
showing how to use the existing framework for learning multicalibrated predictors to achieve swap
agnostic learning for any convex loss.

Nice loss functions. For a loss function ℓ : {0, 1} × R→ R, we extend ℓ linearly to allow the first
argument to take values in the range p ∈ [0, 1] as:

ℓ(p, t) = E
y∼Ber(p)

[ℓ(y, t)] = p · ℓ(1, t) + (1− p) · ℓ(0, t).

We say the loss function is convex if for y ∈ {0, 1}, ℓ(y, t) is a convex function of t. By linearity, this
convexity property holds for ℓ(p, t) for all p.

As in [14], for a loss ℓ, we define the partial difference function ∂ℓ : R→ R as

∂ℓ(t) = ℓ(1, t)− ℓ(0, t).

We define a class of “nice” loss functions, which obey a minimal set of boundedness and Lipschitzness
conditions.
Definition 3.1. For a constant B > 0, a loss function is B-nice if there exists an interval Iℓ ⊆ R
such that the following conditions hold:

1. (Optimality) If Πℓ : R → Iℓ denotes projection onto the interval Iℓ, then ℓ(p,Πℓ(t)) ≤
ℓ(p, t) for all t ∈ R and p ∈ [0, 1].

2. (Lipschitzness) For y ∈ {0, 1} and t ∈ Iℓ, ℓ(y, t) is 1-Lipschitz as a function of t.

3. (Bounded difference) For t ∈ Iℓ, |∂ℓ(t)| ≤ B.

The class of all B-nice loss functions by L(B). The subset of B-nice convex loss functions is denoted
by Lcvx(B).

Bounded loss functions generalize the idea of loss functions defined over a fixed interval of R (by
optimality) and of bounded output range (by bounded difference). By optimality of nice loss functions,
we may assume kℓ : [0, 1]→ Iℓ since we do not increase the loss by projection onto Iℓ. Indeed, for
convex losses ℓ, the natural choice for Iℓ is to take the interval [kℓ(0), kℓ(1)]. The bounded difference
condition implies that ℓ is Lipschitz in its first argument, a property that will be useful.
Lemma 3.2. For every ℓ ∈ L(B) and t0 ∈ Iℓ, the function ℓ(p, t0) is B-Lipschitz as a function of p.

Concept classes. For a concept class of functions C : {c : X → R}, we assume that C is closed
under negation, and it contains the constant functions 0 and 1. Denoting ∥C∥∞ = max |c(x)| over
c ∈ C, x ∈ X , we say that C is bounded if ∥c∥∞ ≤ 1. For W ∈ R+, let Lin(C,W ) be all functions
that can be expressed as a (W -sparse) linear combination of base concepts from C,

cw(x) =
∑
c∈C

wc · c(x),
∑
c∈C
|wc| ≤W.
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Note that for bounded C, the norm of linear combinations scales gracefully with the sparsity,
∥Lin(C,W )∥∞ ≤W . We define Lin(C) to be the set of all linear combinations with no restriction
on the weights of the coefficients.

Notation. To simplify notation, we use the following shorthand for the data distribution D condi-
tioned on p̃(x) = v. For each v ∈ Im(p̃), let D|v denote the conditional distribution D|p̃(x) = v.
Combined with earlier notation, the distribution D|v for v ∼ Dp̃ is simply the data distribution D.
We also use the notation (p̃(x),y) = (v, y) to indicate p̃(x) = v and y = y.

3.1 Statement of Main Result

Theorem 3.3. Let p̃ be a predictor, C be a bounded hypothesis class, and Lcvx(B) be the class of
B-nice convex loss functions. The following properties are equivalent:4

1. p̃ is (C, α1)-swap multicalibrated.

2. p̃ is an (Lcvx(B),Lin(C,W ), O((W +B)α2))-swap omnipredictor, for all W ≥ 1, B ≥ 0.

3. p̃ is an (ℓ2,Lin(C, 2), α3)-swap agnostic learner.

In preparation for proving the theorem, we establish some preliminary results. We define a function
α : Im(p̃)→ [−1, 1] which measures the maximum correlation between c ∈ C and y−v, conditioned
on a prediction value v ∈ Im(p̃). Let

α(v) =

∣∣∣∣max
cv∈C

E
D|v

[cv(x)(y − v)]

∣∣∣∣ .
Using this notation, (C, α0)-swap multicalibration can be written as

E
v∼Dp̃

[α(v)] ≤ α0.

We observe that swap multicalibration is closed under bounded linear combinations of C, like with
standard multicalibration.
Claim 3.4. For every h ∈ Lin(C,W ) and v ∈ Im(p̃), we have

max
h∈Lin(C,W )

∣∣∣E
D
[h(x)(y − v)|p̃(x) = v]

∣∣∣ ≤Wα(v).

Let p∗v = E[y|p̃(x) = v]. Then

|p∗v − v| ≤ α(v). (8)

Equation (8) follows since 1 ∈ C.
Claim 3.5. For h ∈ Lin(C, w), v ∈ Im(p̃) and y ∈ {0, 1}, define the following conditional
expectations:

µ(h : v) = E[h(x)|p̃(x) = v]

µ(h : v, y) = E[h(x)|(p̃(x),y) = (v, y)].

Then for each y ∈ {0, 1}

Pr[y = y|p̃(x) = v] |µ(h : v, y)− µ(h : v)| ≤ (W + 1)α(v). (9)

Next we show the following lemma, which shows that one can replace h(x) by the constant Πℓ(µ(h :
v)) without a large increase in the loss.
Lemma 3.6. For all h ∈ Lin(C,W ), v ∈ Im(p̃) and loss ℓ ∈ Lcvx(B), we have

E
D|v

[ℓ(y,Πℓ(µ(h : v))] ≤ E
D|v

[ℓ(y, h(x))] + 2(W + 1)α(v). (10)

4When we say these conditions are equivalent, we mean that they imply each other with parameters αi that
are polynomially related. The relations we derive result in at most a quadratic loss in parameters.
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In the interest of space, we defer the proof of the Lemma to the Appendix.

Next we compare Πℓ(µ(h : v)) with kℓ(v). It is clear that the latter is better for minimizing loss
when y ∼ Ber(v), by definition. We need to compare the losses when y ∼ Ber(p∗v). But p∗v and v
are at most α(v) apart by Equation (8). Hence, by using Lipschitzness, one can infer that kℓ(v) is
better than Πℓ(µ(h : v)) and hence h(x). This is formalized in the following lemma and its proof.
Lemma 3.7. For all v ∈ Im(p̃), ℓ ∈ Lcvx(B) and h ∈ Lin(C,W ), we have

E
D|v

[ℓ(y, kℓ(p̃(x)))] ≤ E
D|v

[ℓ(y, h(x))] + 2(W +B + 1)α(v). (11)

Proof. By the definition of kℓ, kℓ(v) minimizes expected loss when y ∼ Ber(v), so

ℓ(v, kℓ(v)) ≤ ℓ(v,Πℓ(µ(h : v)) (12)

On the other hand,
E
D|v

[ℓ(y, t)] = ℓ(p∗v, t), where p∗v = E
D|v

[y].

Thus our goal is compare the losses ℓ(p∗v, t) for t = kℓ(v) and t = Πℓ(µ(h : v)). Hence, applying
Lemma 3.2 gives

ℓ(p∗v, kℓ(v)) ≤ ℓ(v, kℓ(v)) + α(v)B

−ℓ(p∗v,Πℓ(µ(h : v)) ≤ −ℓ(v,Πℓ(µ(h : v)) + α(v)B

Subtracting these inequalities and then using Equation (12) gives

ℓ(p∗v, kℓ(v))− ℓ(p∗v,Πℓ(µ(h : v)) ≤ ℓ(v, kℓ(v))− ℓ(v,Πℓ(µ(h : v)) + 2Bα(v) (13)
≤ 2α(v)B. (14)

We can now write

E
D|v

[ℓ(y, kℓ(v))] = ℓ(p∗v, kℓ(v))

≤ ℓ(p∗v,Πℓ(µ(h : v)) + 2α(v)B (by Equation (14))
= E

D|v
[ℓ(y,Πℓ(µ(h : v))] + 2α(v)B

≤ E
D|v

[ℓ(y, h(x))] + 2(W + 1)α(v) + 2Bα(v). (by Equation (10))

■

We now complete the proof of Theorem 3.3.

Proof of Theorem 3.3. (1) =⇒ (2) Fix a (C, α1)-swap multicalibrated predictor p̃. Fix a choice of
loss functions {ℓv ∈ Lcvx}v∈Im(f) and hypotheses {hv ∈ H}v∈Im(f). For each v, we apply Equation
(11) with the loss ℓ = ℓv , hypothesis h = hv to get

E
D|v

[ℓv(y, kℓv (v))] ≤ E
D|v

[ℓv(y, hv(x))] + 2(W +B + 1)α(v).

We now take expectations over v ∼ Dp̃, and use the E[α(v)] ≤ α1 to derive the desired implication.

(2) =⇒ (3) with α3 = 7α2 because ℓ2 is a 1/2-nice loss function, so we plug in B = 1/2 and
W = 2 into claim (2).

It remains to prove that (3) =⇒ (1). We show the contrapositive, that if p̃ is not α1 multicalibrated,
then f = p̃ is not a (ℓ2,Lin(C, 2), α3)-swap agnostic learner. By the definition of multicalibration,
for every v ∈ Im(p̃), there exist cv such that

E
D|v

[cv(x)(y − p̃(x))] = α(v)

E
Dp̃

[α(v)] ≥ α1.

By negating cv if needed, we may assume α(v) ≥ 0 for all v. We now define the updated hypothesis
h′ where

h′(x) = v + α(v)cv(x) for x ∈ p̃−1(v)
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Algorithm 1 Swap Agnostic Learning via MCBoost
Parameters: loss ℓ, hypothesis class C, and ε > 0, let α = poly(ε)
Given: Dataset S sampled from D
Run:
p̃← MCBoostC,α(S)
hℓ ← kℓ ◦ p̃
Return: hℓ

A standard calculation (included in the Appendix) shows that
E
D|v

[(y − v)2]− E
D|v

[(y − h′(x))2] ≥ α(v)2.

Taking expectation over v ∼ Dp̃, we have

E
Dp̃

(
E
D|v

[(y − v)2]− E
D|v

[(y − h′(x))2]

)
≥ E

Dp̃

[α(v)2] ≥ E
Dp̃

[α(v)]2 ≥ α2
1.

It remains to show that v + αvcv(x) ∈ Lin(C, 2). Note that
αv = E

D|v
[c(x)(y − v)v] ≤ max |c(x)|max(|y − p̃(x)| ≤ 1

since c(x), y− v ∈ [−1, 1]. Hence h′(x) = w1 · 1+w2c(v) where |w1|+ |w2| ≤ 2. This contradicts
the definition of an (ℓ2,Lin(C, 2), α3)-swap agnostic learner if α3 < α2

1. ■

3.2 An algorithm for Swap Agnostic Learning

The equivalence from Theorem 3.3 suggests an immediate strategy for obtaining a swap agnostic
learner. First, learn a swap multicalibrated predictor; then, return the predictor, post-processed to an
optimal hypothesis according to ℓ. While the MCBoost algorithm of [20] was designed to guarantee
multicalibration, we observe that, in fact, it actually guarantees swap multicalibration.
Lemma 3.8. Suppose the collection C has a weak agnostic learner, WAL. For any α > 0, MCBoost
makes at most poly(1/α) calls to WALα, and returns a (C, α)-swap multicalibrated predictor.

Weak agnostic learning is a basic supervised learning primitive used in boosting algorithms. Through
the connection to boosting, weak agnostic learning is polynomial-time equivalent to agnostic learning,
and inherits its data-efficiency (scaling with the VC-dimension of C), but also its worst-case computa-
tional hardness [27]. Importantly, however, MCBoost reduces the problem of swap multicalibration
(and thus, swap agnostic learning) to a standard agnostic learning task. We review MCBoost weak
agnostic learning formally in the Appendix.

In all, we can combine the MCBoost algorithm for a class C with a specific loss ℓ to obtain a
(ℓ, C)-swap agnostic learner.
Corollary 3.9 (Informal). For any (nice) convex loss ℓ, hypothesis class C, and ε > 0, Algorithm 1
returns a (ℓ, C, ε)-swap agnostic learner from a sample of m ≤ VC(C) ·poly(1/ε) data points drawn
from D, after making ≤ poly(1/ε) calls to weak agnostic learner for C.

4 Beyond Swap Agnostic Learning: Swap Loss Outcome Indistinguishability

In this we introduce a unified notion of Swap Loss Outcome Indistinguishability, which captures
all of the other notions of mutlicalibration and omniprediction defined so far. The notion builds on
a line of work due to [6, 7], which propose the notion of Outcome Indistinguishability (OI) as a
solution concept for supervised learning based on computational indistinguishability. In fact, the
main result of [6] is an equivalence between OI and multicalibration. Despite the fact that OI is really
multicalibration in disguise, the perspective has proved to be a useful technical perspective.

Key to this section is the prior work of [14]. This work proposes a new variant of OI, called Loss OI.
The main result of [14] derives novel omniprediction guarantees from loss OI. Further, they show
how to achieve loss OI using only calibration and multiaccuracy over a class of functions derived
from the loss class L and hypothesis class C. As we’ll see, this class plays a role in the study of swap
loss OI: swap loss OI is equivalent to multicalibration over the augmented class.
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Additional Preliminaries. Intuitively, OI requires that outcomes sampled from the predictive
model p̃ are indistinguishable from Nature’s outcomes. Formally, we use (x,y∗) to denote a sample
from the true joint distribution over X × {0, 1}. Then, given a predictor p̃, we associate it with the
random variable with E[ỹ|x] = p̃(x), i.e., where ỹ|x ∼ Ber(p̃(x)). The variable ỹ can be viewed
as p̃’s simulation of Nature’s label y∗. In this section, we use D to denote the joint distribution
(x,y∗, ỹ), where E[y∗|x] = p∗(x) and E[ỹ|x] = p̃(x). While the joint distribution of (y∗, ỹ) is not
important to us, for simplicity we assume they are independent given x = x.

4.1 Swap Loss OI

The notion of loss outcome indistinguishability was introduced in the recent work of [14] with the
motivation of understanding omniprediction from the perspective of outcome indistinguishability
[6]. Loss OI gives a strengthening of omniprediction. It requires predictors p̃ to fool a family U
of statistical tests u : X × [0, 1] × {0, 1} that take a point x ∈ X , a prediction p̃(x) ∈ [0, 1] and a
label y ∈ {0, 1} as their arguments. The goal is distinguish between the scenarios where y = y∗

is generated by nature versus where y = ỹ is a simulation of nature according to the predictor p̃.
Formally, we require than for every u ∈ U ,

E
D
[u(x, p̃(x),y∗)] ≈ε E

D
[u(x, p̃(x), ỹ)].

Loss OI specializes this to a specific family of tests arising in the analysis of omnipredictors.
Definition 4.1 (Loss OI, [14]). For a collection of loss functions L, hypothesis class C, and ε ≥ 0,
define the family of tests U(L, C) = {uℓ,c}ℓ∈L,c∈C where

uℓ,c(x, v, y) = ℓ(y, kℓ(v))− ℓ(y, c(x)). (15)

A predictor p̃ : X → [0, 1] is (L, C, ε)-loss OI if for every u ∈ U(L, C), it holds that∣∣∣∣ E
(x,y∗)∼D

[u(x, p̃(x),y∗)]− E
(x,ỹ)∼D(p̃)

[u(x, p̃(x), ỹ)]

∣∣∣∣ ≤ ε. (16)

[14] show that loss-OI implies omniprediction.
Lemma 4.2 (Proposition 4.5, [14]). If the predictor p̃ is (L, C, ε)-loss OI, then it is an (L, C, ε)-
omnipredictor.

Indeed, if the expected value of u is nonpositive for all u ∈ U(L, C), then p̃ must achieve loss
competitive with all c ∈ C. The argument leverages the fact that u must be nonpositive when
ỹ ∼ Ber(p̃(x))—after all, in this world p̃ is the Bayes optimal. By indistinguishability, p̃ must also
be optimal in the world where outcomes are drawn as y∗. The converse, however, is not always true.

Next, we introduce swap loss OI, which allows the choice of distinguisher to depend on the predicted
value.
Definition 4.3 (Swap Loss OI). For a collection of loss functions L, hypothesis class C and ε ≥ 0,
for an assignment of loss functions {ℓv ∈ L}v∈Im(p̃) and hypotheses {hv ∈ H}v∈Im(p̃), denote
uv = uℓv,cv ∈ U(L, C). A predictor p̃ is (L, C, α)-swap loss OI if for all such assignments,

E
v∼Dp̃

∣∣∣∣ ED|v
[uv(x,v,y

∗)− uv(x,v, ỹ)]

∣∣∣∣ ≤ α.

The notion generalizes both swap omniprediction and loss-OI simultaneously.
Lemma 4.4. If the predictor p̃ satisfies (L, C, α)-swap loss OI, then

• it is an (L, C, α)-swap omnipredictor.

• it is (L, C, α)-loss OI.

This Section continues as Section A in the Appendix, where we show the following characterization
of loss OI.
Theorem 4.5. Let L be a family of nice loss functions containing the squared loss. For any hypothesis
class C, a predictor satisfies (L, C)-swap loss OI if and only if it is (∂L ◦ C)-swap multicalibrated,
where ∂L ◦ C = {∂ℓ ◦ c}ℓ∈L,c∈C .
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5 Related Work and Discussion

Independent concurrent work. The notion of strict multicalibration was defined in independent
work of [8]. They connect this and other multigroup fairness definitions to various versions of the
Szemeredi regularity lemma [28] and its weaker version due to Frieze and Kannan [11], following
[29]. Their notions bears important similarities to swap multicalibration, but it is different. Like swap
multicalibration, strict multicalibration involves switching the order of expectations and max. But
they require a statistical closeness guarantee, whereas we only require a first order guarantee, that
c(x) be uncorrelated with y − v conditioned on v.

The independent work of [13] relates multicalibration to real-valued boosting ot minimize ℓ2 loss.
The implication that (ℓ2, C) swap-agnostic learning implies multicalibration follows from Part(1) of
Theorem 3.2 in their paper. They prove that a violation of multicalibration leads to a better strategy
for the adversary in the (ℓ2, C)-swap minimization game. They do not consider the notion of swap
multicalibration, so their result is not a tight characterization unlike ours.

Multi-group fairness and regret minimization. Notions of multi-group fairness were introduced
in the work of [20, 24] and [22], following [26]. The flagship notion of multicalibration has been
extended to several other settings including multiclass predictions [7], real-valued labels [18, 21],
online learning [18] and importance weights [17]. Alternate definitions and extensions of the standard
notions of multicalibration have been proposed in [15, 16, 5, 8]. Multicalibration has also proved to
have unexpected connections to many other domains, including computational indistinguishability
[6], domain adaptation [25], and boosting [15, 13].

Our notions of swap loss minimization and swap omniprediction are inspired by notions of swap
regret minimization in online learning [10, 9, 2]. The classic results of [10, 9] relate calibration and
swap regret, whereas [2] show a generic way to convert a low external regret algorithm to ones with
low internal and swap regret. The study of online learning and regret minimization is extensive,
with deep connections to calibration and equilibria in game theory, we refer the readers to [4, 3] for
comprehensive surveys. Recent work has established rich connections between online learning and
regret minimization on one hand, and multigroup fairness notions on the other. Multicalibration has
been considered in the online setting by [18], while [1, 12] relate multigroup fairness to questions in
online learning.

Conclusion. Our work adds a new and significant connection in the theory of agnostic learning
and multi-group fairness. This theoretical work relies on a few basic assumptions, including access
to a representative unbiased data source and a weak agnostic learner for the collection C. These
assumptions, while standard in the supervised learning literature, should be interrogated before
applying mutlicalibration as a notion of fairness in a practical setting.

Perhaps the most interesting aspect of our work is the connections it draws across different areas
of learning theory. In particular, by borrowing the notion of swapping from online learning, we
uncover surprisingly-powerful, but feasible solution concepts for supervised learning. The equiv-
alence we draw between swap agnostic learning for the squared error and multicalibration with
swap omniprediction for all convex losses highlights the power of simple goals like squared error
minimization and calibration.

Our work gives a complete characterization of the notions we study at the “upper end” of strength
(i.e., swap variants). A fascinating outstanding question to address in future research is whether there
is a similar characterization of standard omniprediction in terms of multi-group fairness notions.

Acknowledgements. Omer Reingold is supported by the Simons Foundation Collaboration on
the Theory of Algorithmic Fairness, the Simons Foundation investigator award 689988 and Sloan
Foundation grant 2020-13941.
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A Equivalence of swap loss OI and swap multicalibration over augmented
class

We show that (L, C)-swap loss OI and (∂L ◦ C)-swap multicalibration are equivalent for nice loss
functions.
Theorem A.1 (Formal statement of thm:swap-eq-inf). Let L ⊆ L(B) be a family of B-nice loss
functions such that ℓ2 ∈ L. Then (∂L ◦ C, α1)-swap multicalibration and (L, C, α2)-swap loss OI
are equivalent.5

In preparation for this, we first finish the proof of Lemma 4.4.

Proof of Lemma 4.4. The proof of Part (1) follows the proof of [14, Proposition 4.5], showing that
loss OI implies omniprediction. By the definition of kℓv , for every x ∈ X such that p̃(x) = v

E
ỹ∼Ber(v)

uv(x, v, ỹ) = E
ỹ∼Ber(v)

[ℓv(ỹ, kℓv (v))− ℓv(ỹ, cv(x))]

= ℓv(v, kℓv (v))− ℓv(v, cv(x))

≤ 0

Hence this also holds in expectation under D|v , which only considers points where p̃(x) = v:

E
D|v

[uv(x, v, ỹ)] ≤ 0.

Since p̃ satisfies swap loss OI, we deduce that

E
D|v

[uv(x, v,y
∗)] ≤ α(v)

Taking expectations over v ∼ Dp̃ and using the definition of uv , we get

E
v∼Dp̃

E
D|v

[ℓv(y
∗, kℓv(v))− ℓv(y

∗, cv(x))] = E
v∼Dp̃

E
D
[uv(x,v,y

∗)]

≤ E
v∼Dp̃

[α(v)] ≤ α

Rearranging the outer inequality gives

E
v∼Dp̃

E
D|v

[ℓv(ỹ, kℓv(v))] ≤ E
v∼Dp̃

E
D|v

[ℓv(y
∗, cv(x))] + α.

Part (2) is implied by taking ℓv = ℓ for every v. ■

We use the following simple claim from [14].
Claim A.2 (Lemma 4.8, [14]). For random variables y1,y2 ∈ {0, 1} and t ∈ R,

E[ℓ(y1, t)− ℓ(y2, t)] = E[(y1 − y2)∂ℓ(t)]. (17)

We record two corollaries of this claim. These can respectively be seen as strengthenings of the two
parts of Theorem [14, Theorem 4.9], which respectively characterized hypothesis OI in terms of
multiaccuracy and decision OI in terms of calibration. We generalize these to the swap setting.
Corollary A.3. For every choice of {ℓv, cv}v∈Im(p̃), we have

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, cv(x))− ℓv(ỹ, cv(x))]

∣∣∣∣] = E
v∼Dp̃

[∣∣∣∣ ED|v
[(y∗ − ỹ)∂ℓv ◦ cv(x)]

∣∣∣∣] . (18)

Hence if p̃ is (∂L ◦ C, α)-swap multicalibrated, then

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, cv(x))− ℓv(ỹ, cv(x))]

∣∣∣∣] ≤ α.

5Here equivalence means that there are reductions in either direction that lose a multiplicative factor of
(B + 1) in the error.
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Proof. Equation (18) is derived by applying Equation (17) to the LHS. Assuming that p̃ is (∂L◦C, α)-
swap multicalibrated, we have

E
v∼Dp̃

[∣∣∣∣ ED|v
[(y∗ − ỹ)∂ℓv ◦ cv(x)]

∣∣∣∣] ≤ E
v∼Dp̃

[∣∣∣∣ max
c′∈∂L◦C

E
D|v

[(y∗ − ỹ)c′(x)]

∣∣∣∣] ≤ α.

■

Corollary A.4. Let {ℓv}v∈Im(f) be a collection of loss B-nice loss functions. Let k(v) = kℓv (v). If
p̃ is α-calibrated then

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, k(v))− ℓv(ỹ, k(v))]

∣∣∣∣] ≤ Bα. (19)

Proof. We have

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, k(v))− ℓv(ỹ, k(v))]

∣∣∣∣] = E
v∼Dp̃

[∣∣∣∣ ED|v
[(y∗ − v)∂ℓv(k(v))]

∣∣∣∣]
= E

v∼Dp̃

[
|∂ℓv(k(v))|

∣∣∣∣ ED|v
[y∗ − v]

∣∣∣∣]
≤ B E

v∼Dp̃

[∣∣∣∣ ED|v
[y∗ − v]

∣∣∣∣]
≤ Bα.

where we use the fact that k(v) ∈ Iℓ, and so |∂ℓv(k(v))| ≤ B. ■

Finally, we show the following key technical lemma which explains why the ℓ2 loss has a special
role.
Lemma A.5. If p̃ is ({ℓ2}, C, α)-swap OI, then it is α-calibrated.

Proof. Observe that ℓ2(y, v) = (y − v)2/2 so kℓ2(v) = v. Hence,
uℓ2,0(x, v, y) = ℓ2(y, kℓ(v))− ℓ2(y, 0)

= ((y − v)2 − y2)/2

= −vy + v2/2. (20)

Recall that {0, 1} ⊂ C. The implication of swap loss OI when we take cv = 0 for all v is that

E
v∼Dp̃

[∣∣∣∣ ED|v
[uℓ2,0(x,v,y

∗)− uℓ2,0(x,v, ỹ)]

∣∣∣∣] ≤ α.

We can simplify the LHS using Equation (20) to derive

E
v∼Dp̃

[∣∣∣∣ ED|v
[(−vy∗ + v2/2)− (−vỹ + v2/2)]

∣∣∣∣] = E
v∼Dp̃

[∣∣∣∣ ED|v
[v(y∗ − ỹ)]

∣∣∣∣]
= E

v∼Dp̃

[
v

∣∣∣∣ ED|v
[ỹ − y∗]

∣∣∣∣] ≤ α. (21)

Considering the case where cv = 1 for all v gives
uℓ2,1(x, v, y) = ℓ2(y, kℓ(v))− ℓ2(y, 1)

= ((y − v)2 − (1− y)2)/2

= (1− v)y + (v2 − 1)/2.

We derive the following implication of swap loss OI by taking cv = 0 for all v:

E
v∼Dp̃

[∣∣∣∣ ED|v
[uℓ2,1(x,v,y

∗)− uℓ2,1(x,v, ỹ)]

∣∣∣∣] = E
v∼Dp̃

[
(1− v)

∣∣∣∣ ED|v
[ỹ − y∗]

∣∣∣∣] ≤ α (22)

Adding the bounds from Equations (21) and (22) we get

E
v∼Dp̃

[∣∣∣∣ ED|v
[v − y∗]

∣∣∣∣] = E
v∼Dp̃

[∣∣∣∣ ED|v
[ỹ − y∗]

∣∣∣∣] ≤ α

■
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We can now complete the proof of Theorem A.1.

Proof of Theorem A.1. We first show the forward implication, that swap multicalibration implies
swap loss OI.

Since ℓ2 ∈ L and 1 ∈ C, we have ∂ℓ2 ◦ 1 = 1 ∈ ∂L ◦ C. This implies that p̃ is α-mulitcalibrated,
since

E
v∼Dp̃

[∣∣∣∣ ED|v
[1(y − v)]

∣∣∣∣] ≤ E
v∼Dp̃

[
max
c∈C

∣∣∣∣ ED|v
[c(x)(y − v)]

∣∣∣∣] ≤ α.

Consider any collection of losses {ℓv}v∈Im(p̃). Applying Corollary A.4, we have

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, k(v))− ℓv(ỹ, k(v))]

∣∣∣∣] ≤ Bα.

On the other hand, by Corollary A.3, we have for every choice of {ℓv, cv}v∈Im(p̃),

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, cv(x))− ℓv(ỹ, cv(x))]

∣∣∣∣] ≤ α.

Hence for any choice of {uv}v∈Im(p̃) we can bound

E
v∼Dp̃

∣∣∣∣ ED|v
[uv(x,v,y

∗)− uv(x,v, ỹ)]

∣∣∣∣
≤ E

v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, k(v))− ℓv(ỹ, k(v)]

∣∣∣∣+ ∣∣∣∣ ED|v
[ℓv(y

∗, cv(x))− ℓv(ỹ, cv(x))]

∣∣∣∣]
≤ (B + 1)α

which shows that p̃ satisfies swap loss OI with α2 = (D + 1)α1.

Next we show the reverse implication: if p̃ satisfies (L, C, α2)-swap loss OI, then it satisfies (∂L ◦
C, α1)-swap multicalibration. The first step is to observe that by lemma A.5, since ℓ2 ∈ L, the
predictor p̃ is α2 calibrated. Since any ℓ ∈ L is B-nice, we have

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, k(v))− ℓv(ỹ, k(v))]

∣∣∣∣] = E
v∼Dp̃

[∣∣∣∣ ED|v
[(y∗ − ỹ)k(v)]

∣∣∣∣] ≤ Bα2.

For any {ℓv, cv}v∈Im(f), since

uv(x, v, y) = ℓv(y, kℓ(v)) + ℓv(y, cv(x))

we can write

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, c(x))− ℓv(ỹ, c(x))]

∣∣∣∣]
≤ E

v∼Dp̃

[∣∣∣∣ ED|v
[uv(x,v,y

∗)− uv(x,v, ỹ)]

∣∣∣∣+ ∣∣∣∣ ED|v
[ℓv(y

∗, k(v))− ℓv(ỹ, k(v))]

∣∣∣∣]
≤ (B + 1)α2.

But by Equation (18), the LHS can be written as

E
v∼Dp̃

[∣∣∣∣ ED|v
[ℓv(y

∗, c(x))− ℓv(ỹ, c(x))]

∣∣∣∣] = E
v∼Dp̃

[∣∣∣∣ ED|v
[∂ℓv ◦ cv(x)(y∗ − v)]

∣∣∣∣]
This shows that p̃ is (∂L ◦ C, (B + 1)α2)-swap multicalibrated. ■

B Relating notions of omniprediction

In this work, we have discussed the four different notions of omniprediction defined to date.

00) Omniprediction, as originally defined by [15].
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Figure 1: Relation between notions of omniprediction

01) Loss OI, from [14].

10) Swap omniprediction.

11) Swap Loss OI.

In order to compare them, we can ask which of these notions implies the other for any fixed choice of
loss class L and hypothesis class C.

• Loss OI implies omniprediction by [14, Proposition 4.5].

• Swap omniprediction implies omniprediction by Claim 2.4.

• Swap loss OI implies both loss OI and swap multicalibration by Lemma 4.4.

These relationships are summarized in Figure 1.

Further, this picture captures all the implications that hold for all (L, C). Next, we show that for
any implication not drawn in the diagram, there exists some (natural) choice of (L, C), where the
implication does not hold. In particular, we prove that neither loss OI nor swap omniprediction
implies the other for all (L, C). This separates these notions from swap loss OI, since swap loss OI
implies both these notions.6 By similar reasoning, it separates omniprediction from both these loss
OI and swap omniprediciton, since omniprediction is implied by either of them.

Swap omniprediction does not imply loss OI. We prove this non-implication using a coun-
terexample used in [14]. In particular, they show that omniprediction does not imply loss OI [14,
Theorem 4.6], and the same example in fact shows that swap omniprediction does not imply loss
OI. In their example, we have D on {±1}3 × [0, 1] where the marginal on {±1}3 is uniform, and
p∗(x) = (1+x1x2x3)/2, whereas p̃(x) = 1/2 for all x. We take C = {1, x1, x2, x3}. Since p̃ = 1/2
is constant, it is easy to check that p̃− p∗ = −x1x2x3/2 is uncorrelated with C. Hence p̃ satisfies
swap multicalibration (which is the same as multicalibration or even multiaccuracy in this setting
where p̃ is constant). Hence by Theorem 3.3, p̃ is an (Lcvx(1),LinC , 0)-swap omnipredictor. [14,
Theorem 4.6] prove that p̃ is not loss OI for the ℓ4 loss. Hence we have the following result.

Lemma B.1. The predictor p̃ is (C, 0)-swap multicalibrated and hence it is a ({ℓ4},Lin(C), 0)-swap
omnipredictor. But it is not ({ℓ4},Lin(C, 1), ε)-loss OI for ε < 4/9.

We remark that the construction extends to all ℓp losses for even p > 2. Hence even for convex losses,
the notions of swap omniprediction are loss-OI seem incomparable.

6For instance if loss OI implied swap loss OI, it would also imply swap omniprediction, which our claim
shows it does not.
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x = (x1, x2) p∗(x) p̃(x)

(−1,−1) 0 1
8

(+1,−1) 1
4

1
8

(−1,+1) 1 7
8

(+1,+1) 3
4

7
8

Table 1: Separating loss-OI and swap-resilient omniprediction

Loss OI does not imply swap omniprediction. Next we construct an example showing that loss
OI need not imply swap omniprediction. We consider the set of all GLM losses defined below, which
contain common losses including the squared loss and the logistic loss.
Definition B.2. Let g : R→ R be a convex, differentiable function such that [0, 1] ⊆ Im(g′). Define
its matching loss to be ℓg = g(t)− yt. Define LGLM = {ℓg} be the set of all such loss functions.

[14] shows a general decomposition result that reduces achieving loss OI to a calibration condition
and a multiaccuracy condition. Whereas arbitrary losses might require multiaccuracy for the more
powerful class ∂L ◦ C, for LGLM, ∂LGLM ◦ C = C. This is formalized in the following result.
Lemma B.3 (Theorem 5.3, [14]). If p̃ is ε1-calibrated and (C, ε2)-multiaccurate, then it is
(LGLM,Lin(C,W ), δ)-loss OI for δ = ε1 +Wε2.

In light of the above result, it suffices to find a predictor that is calibrated and multiaccurate (and
hence satisfies loss OI), but not multicalibrated, hence not swap multicalibrated. By Theorem 3.3 it is
not an ({ℓ2},LinC , δ)-swap omnipredictor for δ less than some constant.

Let us define the predictors p∗, p̃ : {±1}2 → [0, 1] as below. We use these to show a separation
between loss OI and swap omniprediction.
Lemma B.4. Consider the distribution D on {±1}2 × {0, 1} where the marginal on {±1}2 is
uniform and E[y|x] = p∗(x). Let C = {1, x1, x2}.

1. p̃ ∈ Lin(C, 1). Moreover, it minimizes the squared error over all hypotheses from Lin(C).

2. p̃ is perfectly calibrated and (C, 0)-multiaccurate. So it is (LGLM,Lin(C), 0)-loss OI.

3. p̃ is not (C, α)-multicalibrated for α < 1/8. It is not (ℓ2,Lin(C), δ)-swap agnostic learner
for δ < 1/64.

Proof. We compute Fourier expansions for the two predictors:

p∗(x) =
1

8
(4 + 3x2 − x1x2) (23)

p̃(x) =
1

8
(4 + 3x2) (24)

This shows that p̃ ∈ Lin(C), and moreover that it is the optimal approximation to p∗ in Lin(C), as it
is the projection of p∗ onto Lin(C). This shows that p̃ is an (ℓ2,Lin(C), 0)-agnostic learner.

It is easy to check that p̃ is perfectly calibrated. It is (C, 0)-multiaccurate, since it is the projection of
p∗ onto Lin(C), so p̃− p∗ is orthogonal to Lin(C). Hence we can apply Lemma B.3 to conclude that
it is (LGLM,Lin(C), 0)-loss OI, where LGLM which contains the squared loss.

To show that p̃ is not swap-agnostic, we observe that conditioning on the value of p̃(x) = (4+3x2)/8
is equivalent to conditioning on x2 ∈ {±1}. For each value of x2, the restriction of p∗ which is now
linear in x1 belongs to Lin(C). Indeed if we condition on p̃(x) = 1/8 so that x2 = −1, we have

p∗(x) =
1

2
− 3

8
+

1

8
x1 =

1 + x1

8
.

Conditioned on p̃(x) = 7/8 so that x2 = 1, we have

p∗(x) =
1

2
+

3

8
− 1

8
x1 =

7− x1

8
.
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Hence we have

E
v∼Dp̃

[∣∣∣∣ min
h∈Lin(C)

E[(y − h(x))2|f(x) = v]

∣∣∣∣] = E[(y − p∗(x))2] = Var[y],

whereas the variance decomposition of squared loss gives

E[(y − p̃(x))2] = E[(y − p∗(x))2] +E[(p∗(x)− p̃(x))2]

= Var[y] +
1

64
E[(x1x2)

2]

= Var[y] +
1

64
.

Hence p̃ is not a (ℓ2,Lin(C), δ)-swap agnostic learner for δ < 1/64.

To see that f is not multicalibrated for small α, observe that conditioned on x2 ∈ {±1}, the
correlation between x1 and p̃− p∗ is 1/8. ■

Note that item (1) above separates swap omniprediction from omniprediction and agnostic learning.
This separation can also be derived from [15, Theorem 7.5] which separated (standard) omniprediction
from agnostic learning, since swap omniprediction implies standard omniprediction.

Comparing notions for GLM losses. When we restrict our attention to LGLM, in fact, the notions of
swap loss OI and swap omniprediction are equivalent. The key observation here is that ∂LGLM◦C = C,
as shown in [14]. Paired with Theorem 3.3 and Theorem A.1 (proved next), we obtain the following
collapse.
Claim B.5. The notions of (LGLM, C, α1)-swap loss OI and (LGLM, C, α2)-swap omniprediction are
equivalent.

Proof. To see this, note that by Theorem A.1, (LGLM, C, α1)-swap loss OI is equivalent to (∂LGLM ◦
C, α′

1)-swap multicalibration. We know from Theorem 3.3 that this is also equivalent to (∂LGLM ◦
C, α2)-swap omniprediction. So, by the fact that ∂LGLM ◦ C = C, we have the claimed equivalence.

■

Finally, we know that loss OI implies omniprediction for LGLM, since this holds true for all L. We do
not know if these notions are equivalent for LGLM, since the construction in Lemma B.1 used the ℓ4
loss which does not belong to LGLM.

C Omitted Proofs

We define the multicalibration error of p̃ wrt C under D as

MCED(f, C) = max
c∈C

E
v∼Dp̃

[∣∣∣∣ ED|v
[c(x)(y − v)]

∣∣∣∣] .
We define the swap multicalibration error of p̃ wrt C under D as

sMCED(p̃, C) = E
v∼Dp̃

[
max
c∈C

∣∣∣∣ ED|v
[c(x)(y − v)]

∣∣∣∣]
C.1 Properties of Swap Notions of Supervised Learning

Proof of Claim 2.4. We let ℓv = ℓ for all v ∈ Im(p̃), so that k(v) = kℓ(v). We pick the hypothesis

hv = argmin
h∈H

E
D|v

[ℓ(y, h(x))]

The swap omniprediction guarantee reduces to

E
v∈Dp̃

[ E
D|v

[ℓ(y, kℓ(v))] = E
D
[ℓ(y, kℓ(p̃(x)))] ≤ E

v∼Dp̃

min
h∈H

E
D|v

[ℓ(y, h(x))] + δ.

This implies that f = kℓ ◦ p̃ is a swap agnostic learner for every ℓ ∈ L since we allow the choice of h
to depend on p̃(x) which is more informative than f(x) = kℓ(p̃(x)). ■
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Proof of Claim 2.7. We have

sMCED(p̃, C) = E
v∼Dp̃

[
max
c∈C

∣∣∣∣ ED|v
[c(x)(y∗ − v)]

∣∣∣∣]
≥ max

c∈C
E

v∼Dp̃

[∣∣∣∣ ED|v
[c(x)(y − v)]

∣∣∣∣] = MCED(p̃, C)

since the expectation of the max is higher than the max of expectations. Bounding the RHS by α is
equivalent to (C, α)-multicalibration. ■

Proof of Claim 2.9. The ℓ∞ bound is immediate from the definition of p̄. We bound the swap
multicalibration error of tf . We have p̄(x) = jδ iff p̃(x) ∈ Bj , so that |p̃(x) − jδ| ≤ δ holds
conditioned on this event. So

sMCED(p̄, C) =
∑
j∈[m]

Pr[p̄(x) = jδ] max
c∈C

∣∣∣E
D
[c(x)(y − jδ)|p̄(x) = jδ]

∣∣∣
=
∑
j∈[m]

Pr[p̃(x) ∈ Bj ] max
c∈C

∣∣∣E
D
[c(x)(y − jδ)|p̃(x) ∈ Bj ]

∣∣∣
≤
∑
j∈[m]

Pr[p̃(x) ∈ Bj ]

(
δ +max

c∈C

∣∣∣E
D
[c(x)(y − p̃(x))|p̃(x) ∈ Bj ]

∣∣∣)
≤ δ +

∑
j∈[m]

Pr[p̃(x) ∈ Bj ] max
c∈C

∣∣∣E
D
[c(x)(y − p̃(x))|p̃(x) ∈ Bj ]

∣∣∣ (25)

Let us fix a bucket Bj and a particular c ∈ C. For β ≥ α to be specified later we have

|E[c(x)(y − p̃(x))|p̃(x) ∈ Bj ]| ≤ Pr[c(x)(y − p̃(x)) ≥ β|p̃(x) ∈ Bj ] + β Pr[c(x)(y − f(x)) ≤ β|p̃(x) ∈ Bj ]

≤ Pr[p̃(x) ∈ Badβ(c, f) ∩Bj ]

Pr[p̃(x) ∈ Bj ]
+ β

≤ Pr[p̃(x) ∈ Badβ(c, f)]

Pr[p̃(x) ∈ Bj ]
+ β

≤ α/β

Pr[p̃(x) ∈ Bj ]
+ β.

Since this bound holds for every c, it holds for the max over c ∈ C conditioned on p̃(x) ∈ Bj . Hence∑
j∈[m]

Pr[p̃(x) ∈ Bj ] max
c∈C

∣∣∣E
D
[c(x)(y − p̃(x))|p̃(x) ∈ Bj ]

∣∣∣ ≤ ∑
j∈[m]

Pr[p̃(x) ∈ Bj ]

(
α/β

Pr[p̃(x) ∈ Bj ]
+ β

)
≤ α

βδ
+ β,

where we use m = 1/δ. Plugging this back into Equation (25) gives

sMCED(p̄, C) = E
v∼p̄D

[
max
c∈C

∣∣∣∣ ED|v
[c(x)(y − v)]

∣∣∣∣] ≤ α

βδ
+ β + δ.

Taking β =
√
α/δ gives the desired claim. ■

C.2 Omitted Proofs from Main Result

Proof of Lemma 3.2. We will show that for p, p′ ∈ [0, 1] and t0 ∈ Iℓ, we have

ℓ(p, t0)− ℓ(p′, t0) ≤ |p− p′|B.

By the definition of ℓ(p, t), we have

ℓ(p, t0)− ℓ(p′, t0) = (p− p′)ℓ(0, t0) + (1− p− 1 + p′)ℓ(1, t0)

= (p− p′)(ℓ(0, t0)− ℓ(1, t0))

Taking absolute values and using the Boundedness property gives the desired claim. ■
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Proof of Claim 3.4. Suppose that h ∈ Lin(C,W ) of the form h(x) =
∑

c∈C wc · c(x). From
Claim 2.7, we know that the multicalibration violation for c ∈ C is bounded by α(v) for every
v ∈ Im(p̃).

|E[h(x)(y − v) | p̃(x) = v]| =

∣∣∣∣∣E
[∑
c∈C

wc · c(x)(y − v) | p̃(x) = v

]∣∣∣∣∣
≤

(∑
c∈C
|wc|

)
·max

c∈C
|E[c(x)(y − v) | p̃(x) = v]|

≤W · α(v)
The inequalities follow by Holder’s inequality and the assumed bound on the weight of W for
h ∈ Lin(C,W ). ■

Proof of Claim 3.5. Recall that Cov[y, z] = E[yz]−E[y]E[z]. For any h ∈ Lin(C,W ) we have

|Cov[y, h(x)|p̃(x) = v]| = |E[h(x)(y −E[y])|p̃(x) = v]|
= |E[h(x)(y − v)|p̃(x) = v]|+ |E[(v − y)|p̃(x) = v]|
≤ (W + 1)α(v)

where we use the fact that h ∈ Lin(C,W ) and 1 ∈ C. Since y ∈ {0, 1}, this implies the claimed
bounds by standard properties of covariance (see [15, Corollary 5.1]). ■

Proof of Lemma 3.6. For any y ∈ {0, 1},
E
D|v

[ℓ(y, h(x))|(p̃(x),y) = (v, y)] = E
D|v

[ℓ(y, h(x))|(p̃(x),y) = (v, y)]

≥ ℓ(y,E[h(x)|(p̃(x),y) = (v, y)]) (26)
= ℓ(y, µ(h : v, y))

≥ ℓ(y,Πℓ(µ(h : v, y))). (27)

where Equation (26) uses Jensen’s inequality, and Equation (27) uses the optimality of projection for
nice loss functions. Further, by the 1-Lipschitzness of ℓ on Iℓ, and of Πℓ on R

ℓ(y,Πℓ(µ(h : v, y)))− ℓ(y,Πℓ(µ(h : v))) ≤ |Πℓ(µ(h : v, y))−Πℓ(µ(h : v))|
≤ |µ(h : v, y)− µ(h : v)| (28)

Hence we have

E
D|v

[ℓ(y,Πℓ(µ(h : v))]− E
D|v

[ℓ(y, h(x))]

=
∑

y∈{0,1}

Pr[y = y|p̃(x) = v] (ℓ(y,Πℓ(µ(h : v)))−E[ℓ(y, h(x))|(p̃(x),y) = (v, y)])

≤
∑

y∈{0,1}

Pr[y = y|p̃(x) = v] (ℓ(y,Πℓ(µ(h : v)))− ℓ(y,Πℓ(µ(h : v, y)))) (By Equation (27))

≤
∑

y∈{0,1}

Pr[y = y|p̃(x) = v] |µ(h : v, y)− µ(h : v)| (by Equation (28))

≤ 2(W + 1)α(v). (By Equation (9))

■

D Details on Algorithm

Here, we give a high-level overview of the MCBoost algorithm of [20] and weak agnostic learning.
Definition D.1 (Weak agnostic learning). Suppose D is a data distribution supported on X × [−1, 1].
For a hypothesis class C, a weak agnostic learner WAL solves the following promise problem: for
some accuracy parameter α > 0, if there exists some c ∈ C such that

E
(x,z)∼D

[c(x) · z] ≥ α
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then WALα returns some h : X → R such that

E
(x,z)∼D

[h(x) · z] ≥ poly(α).

For the sake of this presentation, we are informal about the polynomial factor in the guarantee of
the weak agnostic learner. The smaller the exponent, the stronger the learning guarantee (i.e., we
want WALα to return a hypothesis with correlation with z as close to Ω(α) as possible). Standard
arguments based on VC-dimension demonstrate that weak agnostic learning is statistically efficient.

D.1 MCBoost

The work introducing multicalibration [20] gives a boosting-style algorithm for learning multicali-
brated predictors that has come to be known as MCBoost. The algorithm is an iterative procedure:
starting with a trivial predictor, the MCBoost searches for a supported value v ∈ Im(p̃) and “sub-
group” cv ∈ C that violate the multicalibration condition. Note that some care has to be taken to
ensure that the predictor p̃ stays supported on finitely many values, and that each of these values
maintains significant measure in the data distribution Dp̃. In this pseudocode, we ignore these issues;
[20] handles them in full detail.

Importantly, the search over C for condition (29) can be reduced to weak agnostic learning. Intuitively,
we pass WAL samples drawn from the data distribution, but labeled according to z = y − v when
p̃(x) = v.

Lemma 3.8. The iteration complexity of MCBoost is directly (inverse quadratically) related to the
size of the multicalibration violations we discover in (29). A standard potential argument can be
found in [20].

By the termination condition, we can see that p̃ must actually be (C, α)-swap multicalibrated. In
particular, when the algorithm terminates, then for all v ∈ Im(p̃), we have that

max
cv∈C

E[cv(x) · (y − v) | p̃(x) = v] ≤ poly(α) ≤ α.

Therefore, averaging over v ∼ Dp̃, we obtain the guarantee. ■

Corollary 3.9. By Lemma 3.8, we know that p̃ returned by MCBoost is (C, α)-swap multicalibrated.
By Theorem 3.3, p̃ is equivalently a (Lcvx, C, α′)-swap omnipredictor for some polynomially-related
α′. In other words, by Claim 2.4, if we post-process p̃ according to kℓ for any nice convex loss
function ℓ, we obtain an (ℓ, C, ε)-swap agnostic learner. Taking α = poly(ε) sufficiently small, we
obtain the swap agnostic learning guarantee. ■

Algorithm 2 MCBoost
Parameters: hypothesis class C and α > 0
Given: Dataset S sampled from D
Initialize: p̃(x)← 1/2.
Repeat:
if ∃v ∈ Im(p̃) and cv ∈ C such that

E[cv(x) · (y − v) | p̃(x) = v] > poly(α) (29)

update p̃(x)← p̃(x) + ηcv(x) · 1[p̃(x) = v]
Return: p̃
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