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Figure 1. Spatial reasoning in 3D is challenging as it requires multiple steps of grounding and inference. We introduce a benchmark for
3D understanding with complex queries; an example is shown here. To tackle these queries we propose a training-free agentic approach,
VADAR, that dynamically generates new skills in Python and thus can handle a wider range of queries compared to prior methods.

Abstract

Visual reasoning – the ability to interpret the visual world
– is crucial for embodied agents that operate within
three-dimensional scenes. Progress in AI has led to vision
and language models capable of answering questions from
images. However, their performance declines when tasked
with 3D spatial reasoning. To tackle the complexity of
such reasoning problems, we introduce an agentic program
synthesis approach where LLM agents collaboratively
generate a Pythonic API with new functions to solve
common subproblems. Our method overcomes limitations
of prior approaches that rely on a static, human-defined
API, allowing it to handle a wider range of queries. To
assess AI capabilities for 3D understanding, we introduce
a new benchmark of queries involving multiple steps
of grounding and inference. We show that our method
outperforms prior zero-shot models for visual reason-
ing in 3D and empirically validate the effectiveness of
our agentic framework for 3D spatial reasoning tasks.
Project website: https://glab-caltech.github.io/vadar/

∗Equal contribution.

1. Introduction

Consider Fig. 1. Here, a person or an agent wants to deter-
mine the radius of the mirror in the image, given that the
table is 20 meters tall. Answering this question requires
visual reasoning, a crucial step toward achieving general-
purpose AI. Visual reasoning enables machines to analyze
and make sense of the visual world. Humans rely heavily
on visual cues to navigate complex environments, interact
with objects and make informed decisions. Our goal is to
build intelligent agents that can do the same. Recent ad-
vances in AI have produced vision and language models
(VLMs) [1, 2, 8, 36] that can answer questions from im-
ages. Although impressive, these models excel primarily at
category-level semantic understanding. Their performance
significantly declines when tasked with spatial understand-
ing within the three-dimensional world [6, 19, 38].

Returning to Fig. 1, to answer the query, an AI agent
must first locate the relevant objects, determine their di-
mensions in pixel space, use their depth to calculate their
3D sizes, and finally compute the mirror’s radius using the
table’s height. This is a complex sequence of tasks, involv-
ing multiple steps of understanding, grounding, and infer-

1

https://glab-caltech.github.io/vadar/


ence. GPT4o [1], a state-of-the-art VLM trained on exten-
sive datasets, gives a wrong final answer.

To address the complexity of 3D spatial reasoning tasks,
we propose a system of agents working collaboratively to
create executable programs for a given image. Our ap-
proach leverages LLM agents that dynamically define and
expand a domain-specific language (DSL) as needed, gen-
erating new functions, skills and reasoning, in two phases:
the API Generation and the Program Synthesis stage. Vi-
sion specialists – an object detector, a depth estimator and
object attribute predictor – help the agents execute the pro-
gram. We name our approach VADAR, as it integrates Vi-
sual, Agentic, Dynamic AI for Reasoning. VADAR be-
longs in the family of visual program synthesis methods,
like ViperGPT [35] and VisProg [12], but addresses a key
limitation in these approaches: their reliance on a static,
human-defined DSL, which restricts them to a predefined
range of functionality. This limitation is evident in Fig. 1,
where ViperGPT generates an incomplete, inaccurate pro-
gram and VisProg defaults to a holistic visual question an-
swer (VQA) approach for answering the query. VADAR’s
output in Fig. 1 demonstrates its ability to tackle a wider
range of visual queries.

We evaluate 3D spatial reasoning using challenging
benchmarks designed for rigorous assessment of 3D under-
standing. Our evaluation includes CLEVR [18] and our
newly introduced benchmark, OMNI3D-BENCH, based on
Omni3D [5]; Fig. 1 shows an example. Both datasets em-
phasize visual queries involving relative depth, size, and ob-
ject location, often conditioned on measurement hypothe-
ses, requiring grounding and 3D inference. This contrasts
with previous spatial reasoning benchmarks like GQA [16],
which primarily emphasize appearance-based reasoning.

At a high level, VADAR roughly mirrors the workflow
of a software engineer when defining, implement-
ing, and testing new software solutions for a given
problem. Leveraging its agentic design, VADAR au-
tonomously defines and implements functions such
as find closest object 3D, is behind,
count objects by attributes and position,
is left of, and more. These functions are used by the

Program Agent, resulting in more concise programs, less
output tokens and thus a lower likelihood of errors from
LLM-generated predictions. We empirically show that
VADAR outperforms a no-API agent by 6%, highlighting
the value of general, reusable, functions within an API.
Moreover, we show that our generated API significantly
surpasses a static, human-defined API used in [12, 35], by
more than 20% on CLEVR. VADAR performs competi-
tively with state-of-the-art VLMs, on OMNI3D-BENCH,
while also providing executable programs.

Considering the rapid progress in AI, one might wonder
if methods like VADAR can dominate monolithic VLMs

in 3D spatial reasoning. One clear advantage of VADAR
is its ability to generate interpretable programs. However,
our experiments highlight another key potential. Improving
VLMs for 3D reasoning would require extensive datasets
of image-question-answer tuples with 3D information, an
onerous endeavor. In contrast, our experiments show that
if the component vision models – an object detector, an at-
tribute predictor and depth estimator – were replaced with
oracle versions, VADAR would achieve 83.0% accuracy,
24% higher from the best VLM. This indicates that VADAR
is bottlenecked by the performance of its vision special-
ists. Thus, an alternative path to scaling 3D spatial reason-
ing could be through improving specialized vision models,
which tackle a simpler problem than general-purpose VQA
and for which training data is more readily available.

2. Related Work

Our work draws from areas of language modeling, visual
program synthesis and library learning.

VLMs for Spatial Reasoning. LLMs [1, 2, 9, 36] are
trained on large corpora of text, including domain spe-
cific languages (DSLs) such as Python. Their multi-modal
variants incorporate images and are additionally trained on
image-text pairs showing impressive results for visual cap-
tioning and vision question-answering (VQA) [3]. De-
spite their strong performance, their ability to reason be-
yond category-level semantic queries is limited. Recent
work [19, 38] shows that VLMs suffer on visual tasks
such as grounding spatial relationships and inferring object-
centric attributes. SpatialRGPT [7] and SpatialVLM [6]
use data synthesis pipelines to generate templated queries
for spatial understanding. We compare to SpatialVLM and
show that it struggles to tackle 3D spatial reasoning queries.

Visual Program Synthesis. Recent advances in visual rea-
soning have led to methods which improve upon the capa-
bilities of vision-based models by composing them symbol-
ically via program synthesis. VisProg [12] prompts an LLM
to generate an executable program of a specified DSL that
calls and combines vision specialists – OwlViT [29] for ob-
ject detection, CLIP [32] for classification, and ViLT [21]
for VQA. ViperGPT [35] directly generates Python code
by providing a Python API specification to the LLM agent
and adds MiDaS [33] as the vision specialist for depth es-
timation, in addition to GLIP [25] and X-VLM [45] for
vision-language tasks. Both approaches rely on a pre-
defined DSL, which narrows the scope of applicability and
makes these methods difficult to extend to a wider range of
queries. Similar to ViperGPT, we use Python as the inter-
face for our LLM agents, but we don’t define the API a-
priori. We instead rely on our agentic workflow to generate
the API needed to tackle complex spatial reasoning queries.
We compare to ViperGPT and VisProg and show that both
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struggle to generate accurate programs for complex queries,
often completely ignoring part of the query.

Library Learning. An emerging field in LLM research
focuses on the dynamic creation and extension of a set of
reusable functions during problem-solving. Early work on
library learning predates the use of LLMs [10, 23, 39], and
focuses on a common architecture of iteratively proposing
new programs and synthesizing commonly used compo-
nents into a library. Modern approaches follow this same
paradigm, but use LLMs to accelerate the synthesis of use-
ful programs, applied to gaming [40], 3D graphics scripting
[15], theorem proving [37], and symbolic regression [11].

Neuro-symbolic AI generates interpretable symbolic com-
ponents for complex tasks and has been explored for a wide
range of fields, including spatial reasoning [28], grounding
of 3D point clouds [13], mechanistic modeling in scientific
domains [11, 34], logical reasoning [30], amongst other ar-
eas. Closer to us is the logic-enhanced LLM, LEFT [14],
that uses a dynamic DSL of first order logic structures and
differentiably executes them using domain-specific mod-
ules. These modules, instantiated as MLPs, ground spatial
concepts, e.g. “is left of”, and are trained with supervision.
On CLEVR, VADAR, which is training-free, achieves the
same performance as LEFT when trained with ≥ 10, 000
training samples. A benefit of our training-free approach is
that it scales to new domains where 3D supervision is hard
to acquire, as we show on our OMNI3D-BENCH.

Spatial Reasoning Benchmarks. Existing benchmarks test
aspects of visual reasoning with free-form language [4, 24].
We focus on natural-image based ones. VQA [3] introduced
the task of visual question answering. GQA [16] is a pop-
ular large-scale VQA benchmark with questions that per-
tain to object and attribute recognition, of mostly a single-
step inference – “What color is the cat next to the chair?”,
“What type of vehicle is on top of the road?”, “Do the wild-
flowers look ugly?”. RefCOCO [20] targets object localiza-
tion with referring expressions such as “the man in a red
shirt”. What’s up [19] quantifies comprehension of basic
2D spatial relations such as “left of” and “above”. These
benchmarks evaluate aspects of visual reasoning, but criti-
cally omit 3D understanding. Q-Spatial Bench [26] focuses
solely on absolute 3D measurements. Cambrian-1 [38] pro-
poses a VQA benchmark repurposing images and annota-
tions from Omni3D [5], but its queries focus on the relative
depth and depth ordering of objects with (2 or 3)-choice
questions. Our benchmark also repurposes Omni3D anno-
tations, but in contrast to Cambrian-1, we design more com-
plex queries that extend beyond depth ordering and multiple
choice. Concurrent to our work, VSI-Bench [44] introduces
a video understanding benchmark focused on spatial rela-
tionships, which we discuss extensively in Appendix D.

3. Method
At the core of our approach is a dynamic API generated
by LLMs that can be extended to address new queries that
require novel skills. The goal of the API is to break down
complex reasoning problems into simpler subproblems with
general modules that can be used during program synthesis.
Our approach consists of an API Generation stage and a
Program Synthesis stage, illustrated in Fig. 2.

Vision Specialists. During program execution on the im-
age, we employ vision models for solving visual subtasks:
Molmo’s [8] pointing model and GroundingDINO [27]
are used to localize objects prompted with text (loc),
SAM [22] returns the bounding box from the object’s mask
prompted with Molmo’s points (get 2D object size),
UniDepth [31] estimates the depth at an image location
(depth), GPT4o is utilized as a VQA module to query ob-
ject attributes (color, material) from an image with the target
object bounding box overlayed (vqa). We initialize the API
with these functions. The API also includes same object
that computes the overlap of two object bounding boxes to
determine if the objects are the same.

3.1. API Generation

Algorithm 1: VADAR: API Generation
Data: Questions Q
S ← {} // Signatures
A ← {Vision Models} // API Methods
for batch B ⊂ Q do
S ← S ∪ SignatureAgent(B)

end
for S ∈ S do

eS ← 0 // Error count
A← ImplementationAgent(S)
E ← TestAgent(A)
if Python Exception E then

if eS = 5 then continue
else if E is “undefined method U” then

eS ← eS + 1
Recursively implement U

else
eS ← eS + 1
Re-implement S using E

end
else
A ← A∪A

end
end
return A

Algorithm 1 describes the API Generation. Here, the
Signature Agent and the Implementation Agent collab-
orate to define and implement new functions as needed to
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Figure 2. Overview. VADAR consists of an API generation stage and a program synthesis stage. The Signature & Implementation Agents
generate an API that is used by the Program Agent to produce a program to answer the question, executed by the Execution Agent.

aid in solving the queries. First, the Signature Agent re-
ceives a batch of N queries (N = 15), without answers,
and is instructed to produce general method signatures for
subproblems that could arise when answering those kinds
of queries. The Implementation Agent then implements the
signatures in Python. Examples of signatures and their im-
plementations are shown in Fig. 2.

Prompting the Signature Agent. The agent receives the cur-
rent API state as docstrings so it avoids duplicating existing
methods. We observed that our Signature Agent performed
better without in-context examples as it produced a more
diverse API with wider potential functionality.

Prompting the Implementation Agent. The Implementation
Agent receives all other signatures in the API along with
the signature it needs to implement, so it can use other
API methods in its implementation, enabling a hierarchy
in the API. In contrast to the Signature Agent, providing
in-context examples significantly enhances the Implemen-
tation Agent’s output, as implementation prioritizes accu-
racy over diversity. We refer to these examples as weak
in-context learning (ICL), as they guide correct method im-
plementation in Python, unlike strong ICL, which breaks
down queries into full programs. Prompts for both agents
and weak-ICL examples are found in the Appendix.

Depth-First Implementation. Once a method is imple-
mented from its signature, the Test Agent, a Python inter-
preter, runs it using placeholder inputs. If a runtime error
occurs, the Test Agent signals the Implementation Agent to
revise it with the exception message. However, if the im-
plementation relies on another yet-to-be-implemented API
method, the test run cannot proceed. In this case, the Imple-
mentation Agent traverses an implicit dependency graph,

depth-first, ensuring that prerequisite methods are imple-
mented first (see Algo. 1).

Consider the following example where the sig-
natures get color, find objects by color,
count objects left of, and is left of, are
defined by the Signature Agent, in that order. First, the
Implementation Agent will implement get color, the
Test Agent will be called, and barring no runtime errors,
the method will be complete. Then, the implementation
for find objects by color uses get color, which
is implemented, so the Test Agent only checks for Python
errors. If count objects left of attempts to use
is left of, the Test Agent will detect that is left of
is not implemented and recursively call the Implemen-
tation Agent to implement is left of, followed by
count objects left of.

In the event a cycle in the dependency graph is persis-
tent after attempting the implementation of those methods 5
times, the methods in the cycle are deleted. Empirically, we
rarely detect such cycles, which can be attributed to the Sig-
nature Agent producing multiple signatures at once, tending
to avoid proposing signatures that overlap in function.

3.2. Program Synthesis

The Program Agent receives the generated API and a sin-
gle question as input. Its task is to generate Python code
that leverages the API to solve the question. The Execu-
tion Agent, another Python interpreter, executes the pro-
gram line-by-line. In the event of a Python error, it provides
the Program Agent with the exception, and a new program
is generated. This is repeated at most 5 times, after which
the program returns an execution error.
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Algorithm 2: VADAR: Program Synthesis

Data: Image-Query pairs D = {(I,Q)},
API methods A

R ← {} // Results
for (I,Q) ∈ D do

eP ← 0 // Error count
P ← ProgramAgent(Q,A)
E,R←
ExecutionAgent(P, I,Vision Models)

if Python Exception E and eP < 5 then
eP ← eP + 1
Re-generate P using E

else
R ← R∪R

end
end
returnR

Prompting the Program Agent. Following the success of
Chain-of-Thought (CoT) prompting [41], we instruct the
Program Agent to create a plan before generating the corre-
sponding program. In-context examples boost the Program
Agent’s performance. However, unlike VisProg [12] and
ViperGPT [35] that use strong-ICL, we use API-agnostic
natural language instructions since the API is not prede-
fined, making it impossible to provide full program exam-
ples. These instructions help for the same reason as with the
Implementation Agent, to focus on correctness. The prompt
for the Program Agent is provided in the Appendix.
Test & Execution Agent vs Critics. In modern library learn-
ing, LLM agents, or critics, evaluate the quality and util-
ity of learned functions. Our Test and Execution Agents
also assess method quality, but we opt for deterministic crit-
ics that leverage the full Python runtime, signaling LLM
Agents with Python exceptions in case of errors.

4. Experiments
We conduct experiments on challenging spatial reason-

ing benchmarks and demonstrate the effectiveness of a
dynamically generated API by LLM agents compared to
a static, human-defined API in ViperGPT [35] and Vis-
Prog [12], which we outperform by a large margin.

We also compare to monolithic state-of-the-art VLMs,
trained on billions of (image, question, answer) samples,
and show that our approach competes favorably and even
surpasses them on certain question types while also provid-
ing interpretable reasoning steps to complex queries.

4.1. A Benchmark for Spatial Reasoning in 3D
We evaluate 3D spatial reasoning using CLEVR, and our
newly introduced benchmark, OMNI3D-BENCH.

CLEVR [18] consists of (image, question, answer) tuples.
Each image contains 2-10 objects of 3 different shapes, 8
colors, 2 materials, and 2 sizes. Despite the simplicity of the
scenes, the questions in CLEVR are complex, e.g., “There
is a large ball right of the large metal sphere that is left
of the large object that is behind the small brown sphere;
what color is it?”. Our CLEVR benchmark contains 1,155
samples, 400 of which require a numerical answer, 399 are
yes/no questions, and 356 are multiple-choice questions.

OMNI3D-BENCH is sourced from Omni3D [5], a dataset
of images from diverse real-world scenes with 3D object
annotations. We repurpose images from Omni3D to a VQA
benchmark, with questions about 3D information portrayed
in the image, such as “If the height of the front most chair is
6 meters in 3D, what is the height in 3D of the table in the
image?” and “How many bottles would you have to stack
on top of each other to make a structure as tall in 3D as
the armchair?”. OMNI3D-BENCH complements CLEVR
with non-templated queries pertaining to 3D locations and
sizes of objects. Our queries test 3D reasoning, as they re-
quire grounding objects in 3D and combining predicted at-
tributes to reason about distances and dimensions in three
dimensions. OMNI3D-BENCH consists of 500 extremely
challenging (image, question, answer) tuples.

We compare our proposed benchmark to GQA [16], a
popular visual reasoning dataset. GQA derives queries from
scene graphs which primarily pertain to the visual appear-
ance and attributes of objects. Example queries in GQA
are “Is there a red truck or bus?”, “Is the field short and
brown?” and “Is the chair in the top part of the image?”.
These are significantly simpler to queries in CLEVR and
OMNI3D-BENCH which involve multiple steps of ground-
ing and inference in two- and three- dimensions.

4.2. Results on Spatial Reasoning in 3D
Tab. 1 compares our approach, VADAR, to state-of-the-art
VLMs and Program Synthesis methods. Fig. 3 additionally
compares to the neuro-symbolic LEFT [14]. VADAR uses
GPT4o with a temperature of 0.7 for all agents.

VLMs vs VADAR. VLMs, such as GPT4o [1], Claude-
Sonnet [2], Gemini [36], Llama3.2-11B [9], and Molmo-
7B [8], are monolithic models trained on vast of image-
question-answer datasets, likely including samples with
spatial and 3D information. We expect them to perform
well on related tasks. We also compare to SpaceMan-
tis [6, 17], the most recent and largest SpatialVLM [6]
variant, finetuned on data with 3D information. We an-
alyze performance based on three answer types: yes/no,
multiple-choice and numerical answers. For queries with
floating point answers, we report MRA [44] with thresholds
C = {0.5, 0.55, ..., 0.95} for outputs ŷ and ground truth y:

MRA = 1
|C|

∑
θ∈C 1

(
|ŷ−y|

y < 1− θ

)
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CLEVR OMNI3D-BENCH
numeric y/n multi-choice Total numeric (ct) numeric (other) y/n multi-choice Total

V
L

M
s

GPT4o [1] 52.3 63.0 60.0 58.4 28.1 35.5 66.7 57.2 42.9
Claude3.5-Sonnet [2] 44.7 61.4 72.2 58.9 22.4 20.6 62.2 50.6 32.2
Llama3.2 [9] 34.6 45.6 49.0 42.8 24.3 19.3 47.5 27.4 25.6
Gemini1.5-Pro [36] 44.9 59.7 67.0 56.9 25.2 28.1 46.2 37.6 32.0
Gemini1.5-Flash [36] 43.1 58.8 56.8 52.8 24.3 27.6 51.1 52.9 35.0
Molmo [8] 11.0 42.6 51.4 34.4 21.4 21.7 29.3 41.2 26.1
SpaceMantis [6, 17] 14.5 52.9 32.3 33.2 20.0 21.7 50.6 48.2 30.3

Pr
og

ra
m

Sy
nt

he
si

s ViperGPT [35] 20.5 43.4 13.4 26.2 20.0 15.4 56.0 42.4 26.7
VisProg [12] 16.7 48.4 28.3 31.2 2.9 0.9 54.7 25.9 13.5
VADAR (ours) 53.3 65.3 40.8 53.6 21.7 35.5 56.0 57.6 40.4

Table 1. Accuracy (%) on CLEVR and OMNI3D-BENCH. We compare to state-of-the-art monolithic VLMs and Program Synthesis
approaches. For each benchmark, we breakdown performance for numeric (ct), numeric (other), yes/no and multiple-choice answers and
report total accuracy. For numeric (other) queries, which require floating point answers, we report MRA. VADAR outpeforms ViperGPT
and VisProg with a big margin. VADAR outperforms all large VLMs on OMNI3D-BENCH except GPT4o, which it is narrowly behind.

CLEVR OMNI3D-BENCH
numeric y/n multi-choice Total numeric (ct) numeric (other) y/n multi-choice Total

ViperGPT [35] 38.5 57.8 30.2 42.6 50.0 17.8 66.7 49.3 54.9
VisProg [12] 25.3 52.5 41.8 39.9 100.0 23.5 68.5 66.7 66.0
VADAR (ours) 82.4 85.4 81.0 83.0 100.0 82.3 100.0 94.1 94.4

Table 2. Oracle accuracy (%) on CLEVR and OMNI3D-BENCH. We evaluate program correctness by replacing vision specialists with
oracle variants. VADAR’s high oracle accuracy indicates its main limitation is the vision specialists’ performance.

Figure 3. LEFT [14] vs VADAR on CLEVR. LEFT requires su-
pervision. We vary the amount of training data (x-axis) and report
accuracy (y-axis). VADAR requires no supervision but takes in 15
queries without answers to guide the creation of the API. VADAR
outperforms LEFT trained with ≤ 10, 000 supervised examples.

From Tab. 1, we observe that on CLEVR, GPT4o,
Claude-Sonnet, and Gemini perform best on average
while VADAR slightly outperforms VLMs on numeric
(by 1.0%) and yes/no answers (by 2.3%). On the chal-
lenging OMNI3D-BENCH, VADAR is behind GPT4o by
just 2% and outperforms all other VLMs by more than
5%. Llama3.2-11B and Molmo-7B perform worse among
VLMs likely due to their smaller size.

ViperGPT vs VisProg vs VADAR. VADAR outperforms
both models on both CLEVR and OMNI3D-BENCH by
more than 20%. VisProg and VADAR use GPT4o as their
LLM; ViperGPT uses GPT-3.5 as it performed better.

Separating program correctness from execution accu-
racy, Tab. 2 provides comparisons to ViperGPT and Vis-

Prog when vision specialists are replaced with oracle ones.
On CLEVR, we use an Oracle Execution Agent that lever-
ages the true scene annotations to provide the correct out-
put automatically. For OMNI3D-BENCH, we manually ver-
ified program correctness as ground truth 3D information
is not available for all objects in the scene. The results re-
veal that with oracle vision specialists, VADAR achieves an
accuracy of 83.0% on CLEVR and 94.4% on OMNI3D-
BENCH, compared to ViperGPT’s 42.6% and 54.9%, and
VisProg’s 39.9% and 66.0% respectively. This suggests
that our approach can handle a significantly wider variety
of queries, thanks to the dynamically generated API created
by our LLM agents, as opposed to the static, human-defined
API used in ViperGPT and VisProg. Our API is simpler and
allows for flexible integration of vision specialists, avoiding
the biases introduced by humans – e.g., as in VisProg, where
the pre-defined API guides the LLM to define ”behind” by
cropping the image above.

The high accuracy of VADAR with oracle vision special-
ists suggests a promising path to scaling 3D spatial reason-
ing: improving specialized vision models. These models
are easier to train than general-purpose VLMs, as they ad-
dress simpler tasks and have more accessible training data.

Fig. 4 shows programs generated by the methods. We
observe that ViperGPT and VisProg tend to resort to direct
VQA calls when questions are complex, as opposed to gen-
erating programs. In addition, ViperGPT often tends to pro-
duce incomplete programs, ignoring a significant portion of
the query. Finally, both ViperGPT and VisProg often con-
fuse above-behind and below-in front. This seems to be a
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Figure 4. Program outputs for VisProg, ViperGPT and VADAR. For each example, we show the query, the input image, and the
method’s program generations. Queries are from our benchmark and pertain to 3D understanding of scenes. Zoom-in to read the programs.

semantic error for ViperGPT that uses a depth estimation
module, like us, and a conceptual design error by VisProg
that implements CROP BEHIND to crop above in the image.

LEFT [14] vs VADAR. We also compare to the logic-
enhanced neuro-symbolic approach LEFT [14], which uses
trained modules to ground visual concepts in images, such
as “is left of”. Unlike LEFT, our approach is en-
tirely training-free, while LEFT requires extensive super-
vision for module training. Fig. 3 reports the performance
of LEFT on the CLEVR dataset when trained (to conver-
gence) with varying training set sizes (x-axis). Although
our approach does not require any explicit supervision, our
API agent uses a small sample (= 15) of questions only,
without answers, to construct the API. According to Fig. 3,
we outperform LEFT trained with ≤ 10, 000 examples on
CLEVR. Notably, it is not possible to evaluate LEFT on
OMNI3D-BENCH due to its reliance on a large, domain-
specific training set with appropriate 3D supervision, which

is difficult to obtain for this benchmark or in general. This
highlights an added advantage of our method: its ability to
scale to new domains without the need for training.

Results on GQA. We report results on GQA [16], a widely
used benchmark for spatial reasoning. As noted earlier,
GQA queries emphasize object appearance and attributes,
and primarily require one-step inference. Questions in
GQA include “What size is the doughnut the person is eat-
ing?” and “Who is sitting in front of the water?”. Tab. 3
compares GPT4o, ViperGPT, VisProg, and VADAR. We
observe different relative model performance compared to
Tab. 1. Given the nature of GQA, it is not surprising that
a monolithic and performant VLM like GPT4o would per-
form well, which our results confirm. Among the program
synthesis methods, we observe that VADAR and VisProg
achieve comparable performance, while ViperGPT shows a
drop in accuracy. A deeper dive into the output programs
shows that VisProg relies on image-wide VQA calls in 34%
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Method GQA
GPT4o [1] 54.9
ViperGPT [35] 42.0
VisProg [12] 46.9
VADAR (ours) 46.1

Table 3. Results on GQA on a subset of testdev split. GQA fo-
cuses primarily on object appearance, not 3D spatial reasoning.

CLEVR 100

No-API Agent 60.7
API Agent 64.0
+ Weak ICL 65.7
+ Pseudo ICL 66.7

Table 4. Ablations of agentic design and prompts on CLEVR
100, a subset of 100 questions. We compare to single agent variant
No-API which creates programs directly. We then ablate prompt-
ing by incrementally adding instructions to the agents used to
define the API. The No-API Agent performs the worst and our
prompting techniques add to VADAR’s performance.

of cases, whereas VADAR does so only 24% of the time.
The limitations of GQA queries in evaluating 3D spatial
reasoning highlight the need for our proposed benchmark,
which better assesses 3D understanding and exposes the
weaknesses of current methods.

4.3. Ablations
We turn to ablations to quantify the effectiveness of the
agentic design and prompting in our approach. To reduce
costs from GPT4o, we experiment on a randomly selected
CLEVR subset. Tab. 4 compares the following variants:

No-API Agent is a single agent instructed to directly create
programs for queries without defining an API of reusable
methods. Comparison to this variant shows the value of an
API. Fig. 5 shows a common reasoning error by the No-API
Agent, which confuses depth with left/right; our approach,
by implementing reusable methods, invokes the appropri-
ately named method that is accurately implemented. The
example reiterates that spatial reasoning relies on correct-
ness, supporting VADAR’s design to build an accurate API
before program synthesis, over library learning, that discov-
ers a potentially incorrect library after program synthesis.

API Agent is our approach without any prompting instruc-
tions or ICL examples. We incrementally add our two
prompting techniques: (1) Weak ICL examples guide the
Implementation Agent to use the pre-defined modules. (2)
Pseudo ICL provides pseudo-code examples and instruc-
tions in natural language to the Implementation and Pro-
gram Agent, respectively, that demonstrate how to handle
intricate queries. We provide the prompts in the Appendix.

From Tab. 4 we observe that the No-API Agent performs
the worst, while our prompting techniques via weak ICL
examples and instructions achieve the best performance.

(a) No-API Agent (b) VADAR
Figure 5. (a) The No-API agent produces longer programs and is
prone to errors, often mistakenly using depth for left/right com-
parisons. (b) In contrast, our agentic VADAR creates shorter pro-
grams by leveraging methods from the API.

5. Limitations & Future Work

We introduce VADAR, an agentic approach that leverages
LLM agents to dynamically create and expand a Pythonic
API for complex 3D visual reasoning tasks. Our agents au-
tonomously generate and implement functions, which are
then utilized by the Program Agent to produce programs.
This reuse of functions results in more accurate programs
for complex queries. There is an extensive list of future di-
rections to address current limitations of VADAR.

• VADAR often struggles with queries that require 5 or
more inference steps, e.g. “There is a yellow cylinder to
the right of the cube that is behind the purple block; is
there a brown object in front of it?”. We provide the pro-
grams for these complex cases in the Appendix. Address-
ing such queries can be improved by leveraging advanced
prompting strategies, an active research area that includes
methods like CoT [41] and prompt chaining [42, 43].

• We show that VADAR attains high program accuracy
(e.g., 83.0% on CLEVR) but lower execution accuracy
(53.6%) due to errors from the vision specialists. A po-
tential enhancement would be to enable VADAR to dy-
namically choose its vision modules from a pool of avail-
able options based on empirical performance. Integrating
the selection process with reinforcement learning or self-
improvement mechanisms is a promising future direction.

• VADAR creates a program based solely on the input
query, utilizing the image only during execution. Incorpo-
rating the image into the program synthesis process could
improve accuracy, potentially improving performance on
queries requiring five or more inference steps.

We release the benchmark and code for VADAR to fos-
ter future research in this direction.
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Visual Agentic AI for Spatial Reasoning with a Dynamic API

Supplementary Material

Method CLEVR OMNI3D-BENCH

V
L

M
s

GPT4o [1] 1.4 0.6
Claude3.5-Sonnet [2] 0.2 0.6
Llama3.2 [9] 0.5 1.6
Gemini1.5-Pro [36] 0.3 1.8
Gemini1.5-Flash [36] 0.3 1.1
Molmo [8] 0.0 0.0
SpaceMantis [6, 17] 0.0 0.0

Pr
og

ra
m

Sy
nt

he
si

s ViperGPT [35] 1.1 0.3
VisProg [12] 0.9 0.3
VADAR (ours) 2.9 1.8

Table 5. Standard deviation across experimental runs.
VADAR’s variation is comparable to VLMs on Omni3D, but
slightly higher than program synthesis methods on CLEVR, de-
spite achieving significantly higher accuracy.

Signature (for 10 Qs) Implementation Program (per Q) Execution (per Q)
20.5±3.6 37.2±14.4 6.5±1.8 35.7±11.8

Table 6. Runtime for each Agent in seconds.

The Appendix includes the prompts used for all agents,
additional qualitative examples of VADAR on CLEVR,
OMNI3D-BENCH, and GQA, and a supplemental qualita-
tive analysis with standard deviations to compare the ro-
bustness of approaches.

A. Prompts

Predefined Module Signatures. Fig. 9 and Fig. 10
show the docstrings of the predefined modules for
CLEVR and OMNI3D-BENCH respectively, which are
used to initialize the dynamic API. We note that the two
prompts are virtually identical, with the exception of the
get 2D object size method, which we omit from our
experiments on CLEVR as the dataset defines size as ei-
ther small or large. In Fig. 11, we provide the Python
implementation for all of the predefined modules.

Signature Agent Prompt. Fig. 12 contains the prompt used
for the Signature Agent for both CLEVR and OMNI3D-
BENCH. We prompt the LLM to only generate signatures
for methods when necessary, as we found this avoids re-
dundant methods with minor changes to previously defined
methods. We impose that the name of new methods start
with an underscore, to prevent the common failure case of
methods sharing names with variables previously defined.

Implementation Agent Prompt. Fig. 13 and Fig. 14 con-
tain the prompts used for the Implementation agent on
CLEVR and OMNI3D-BENCH respectively. The prompts
contain Weak ICL examples, illustrating how to implement a

model signature and use the pre-defined modules correctly
for simpler queries. This is in contrast to Strong ICL ex-
amples in VisProg and ViperGPT, which provide complete
program examples for full queries using a predefined API.
In our framework, where agents dynamically generate the
API, Strong ICL is not feasible.

Additionally, the prompts feature Pseudo ICL in the form
of natural language instructions and tips. Similarly to the
predefined modules, the prompts differ between CLEVR
and OMNI3D-BENCH as the latter considers metric sizes
and not a binary small or large as in CLEVR. Conse-
quently, we found it necessary to include natural language
definitions and instructions for reasoning about 2D and 3D
dimensions in the Implementation prompt on OMNI3D-
BENCH.

Program Agent Prompt. In Fig. 15 and Fig. 16 we
show the prompts for the Program Agent on CLEVR and
OMNI3D-BENCH respectively. In the prompt for CLEVR,
we include a list of all available attributes. In both prompts,
we include Pseudo ICL in the form of natural language ex-
amples and instructions. For the OMNI3D-BENCH prompt,
we additionally include tips and definitions for handling 2D
and 3D dimensions.

B. Additional Quantitative Analysis

Experimental Variability. Tab. 1 in the main paper re-
ports the mean performance of all methods across 3 runs.
Tab. 5 reports the standard deviation on CLEVR and
OMNI3D-BENCH across the same 3 runs. VADAR’s varia-
tion is comparable to the VLMs on OMNI3D-BENCH, but
slightly higher than program synthesis methods on both
benchmarks. However, VADAR significantly outperforms
ViperGPT and VisProg, even when accounting for this vari-
ation.

Runtime. Tab. 6 reports runtime in seconds for our Agents
on an A100 GPU. Notably, when running our method on
1000+ questions, the Signature and Implementation Agents
only run once, therefore their runtime becomes negligible
to total inference runtime.

C. More information on OMNI3D-BENCH

On images sourced from Omni3D [5] we collect a set of
challenging questions with the help of human annotators.
We omit using templates for questions, as done by oth-
ers [6, 38, 44], to avoid template overfitting, and instead
instruct annotators to directly ask questions in free-form
natural language, focusing on the scene, object layout and
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VSI-Bench-img
Gemini1.5-Pro 49.5

VADAR 50.1

Table 7. Results on VSI-Bench [44]. VADAR outperforms
Gemini1.5-Pro on a image-based subset of 75 queries from VSI-
Bench that sources the frame that contains all the information nec-
essary to respond correctly. Notably, VADAR achieves a 50.1%
accuracy on this subset, compared to 40.4% on OMNI3D-BENCH,
highlighting the challenging nature of our proposed benchmark.

object sizes. We discard questions that are simplistic, e.g.
“Is there a sofa in the image?” or “Is the sofa behind the ta-
ble?”, and only keep queries which involve complex infer-
ence steps in 2D and 3D. OMNI3D-BENCH queries roughly
target the following areas of reasoning: relative size and di-
mensions with hypotheticals, spatial relationships and depth
reasoning, relative proportions and alignments, and interac-
tion with other objects. Queries from OMNI3D-BENCH can
be browsed in https://glab-caltech.github.io/vadar/omni3d-
bench.html.

We compute answers for questions using the 3D annota-
tions provided in Omni3D [5]. Since the questions are not
templated and thus don’t follow rule-based instructions, we
collect answers manually by sourcing the 3D annotations
provided by the dataset for each image. This results in 500
unique and challenging image-question-answer tuples that
test diverse aspects of 3D spatial reasoning. The diversity
and complexity of OMNI3D-BENCH is showcased by the
examples in Fig. 1, Fig. 4 and Fig. 7.

OMNI3D-BENCH complements CLEVR when assess-
ing 3D spatial understanding. While CLEVR uses tem-
plated questions, enabling the creation of a large volume
of image-question-answer pairs, OMNI3D-BENCH focuses
on diverse and complex reasoning tasks in free-form lan-
guage. Together, CLEVR and OMNI3D-BENCH provide a
comprehensive test for models’ 3D spatial reasoning capa-
bilities. This is evidenced by the relatively low performance
of modern state-of-the-art AI models on these benchmarks,
achieving only 20-40% accuracy.

D. Comparison to VSI-Bench
Concurrent to our work is VSI-Bench [44], a video under-
standing benchmark that focuses on spatial reasoning. VSI-
Bench targets 3D reasoning, but it differs from OMNI3D-
BENCH in three critical ways: First, it focuses on video un-
derstanding and retrieving the appropriate frame to answer a
given query. Second, while queries in VSI-Bench target 3D
object attributes, they query absolute measurements, such as
“What is the height of the chair?”. Monolithic VLMs when
prompted with such questions resort to object priors. For
example, GPT4o says: “A chair tends to be 30-40 inches
tall”. In contrast, OMNI3D-BENCH introduces hypotheti-
cals that require reasoning over scene attributes, evaluating

true 3D spatial reasoning, e.g., “If the table is 2 meters wide,
how tall is the chair?”. Third, VSI-Bench queries are tem-
plated, which can lead to biased conclusions due to template
overfitting.

We compare VADAR on VSI-Bench. To decouple frame
retrieval from image-based reasoning, we create a variant
of the benchmark by sourcing a subset of 75 queries with
the associated frame that contains the information neces-
sary to address the query. We call this subset VSI-Bench-
img. Tab. 7 reports VADAR’s performance and compares to
Gemini1.5-Pro, which authors report to be the best VLM on
the set. From Tab. 7 we observe that VADAR performs on
par with the industry-leading Gemini1.5-pro. Importantly,
VADAR’s performance on VSI-Bench-img is 10% higher
than on OMNI3D-BENCH (40.4 vs 50.1) which highlights
the more challenging nature of our benchmark.

E. Qualitative Examples on CLEVR
Fig. 6 shows additional qualitative examples on CLEVR.
The correct example showcases the use of API methods for
repeated tasks and accurately determining spatial relations.
The incorrect example highlights a failure to use same ob-
ject to exclude the original reference object when the ques-
tions asks for “another” object.

F. Qualitative Examples on OMNI3D-BENCH

Fig. 7 shows additional qualitative examples on OMNI3D-
BENCH. Our method is able to correctly estimate 3D dis-
tances by scaling depth based on the reference scale given
in the question. An instance where such scaling is done in-
correctly is shown in the last example.

G. Qualitative Examples on GQA
Fig. 8 shows qualitative examples on GQA [16]. Our
method is able to identify and locate key objects necessary
to answer questions. It is extremely explicit, locating the
nearest person in the top right example using pixel distance
from the tree. Some GQA questions have ambiguous an-
swers, where the shape of the pot is generically “round”
and the frame of reference for spatial relations is not en-
tirely clear (i.e., which man in the last example?).
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Figure 6. VADAR program outputs on CLEVR.

Figure 7. VADAR program outputs on OMNI3D-BENCH.

Figure 8. VADAR program outputs on GQA [16].
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\"\"\"
Locates objects in an image. Object prompts should be 1 WORD MAX.

Args:
image (image): Image to search.
object_prompt (string): Description of object to locate. Examples: "spheres", "objects".

Returns:
list: A list of x,y coordinates for all of the objects located in pixel space.

\"\"\"
def loc(image, object_prompt):

\"\"\"
Answers a question about the attributes of an object specified by an x,y coordinate.
Should not be used for other kinds of questions.

Args:
image (image): Image of the scene.
question (string): Question about the objects attribute to answer. Examples: "What color is this?", "What material is this?"
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
string: Answer to the question about the object in the image.

\"\"\"
def vqa(image, question, x, y):

\"\"\"
Returns the depth of an object specified by an x,y coordinate.

Args:
image (image): Image of the scene.
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
float: The depth of the object specified by the coordinates.

\"\"\"
def depth(image, x, y):

\"\"\"
Checks if two pairs of coordinates correspond to the same object.

Args:
image (image): Image of the scene.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is the same object as object 2, False otherwise.

\"\"\"
def same_object(image, x_1, y_1, x_2, y_2):

Figure 9. Pre-defined Modules for CLEVR. These modules are used to initialize the dynamic API. As CLEVR defines size to be either
large or small, we omit the get 2D object size method.
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\"\"\"
Locates objects in an image. Object prompts should be 1 WORD MAX.

Args:
image (image): Image to search.
object_prompt (string): Description of object to locate.

Returns:
list: A list of x,y coordinates for all of the objects located in pixel space.

\"\"\"
def loc(image, object_prompt):

\"\"\"
Answers a question about the attributes of an object specified by an x,y coordinate.
Should not be used for other kinds of questions.

Args:
image (image): Image of the scene.
question (string): Question about the objects attribute to answer. Examples: "What color is this?", "What material is this?"
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
string: Answer to the question about the object in the image.

\"\"\"
def vqa(image, question, x, y):

\"\"\"
Returns the depth of an object specified by an x,y coordinate.

Args:
image (image): Image of the scene.
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
float: The depth of the object specified by the coordinates.

\"\"\"
def depth(image, x, y):

\"\"\"
Checks if two pairs of coordinates correspond to the same object.

Args:
image (image): Image of the scene.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is the same object as object 2, False otherwise.

\"\"\"
def same_object(image, x_1, y_1, x_2, y_2):

\"\"\"
Returns the width and height of the object in 2D pixel space.

Args:
image (image): Image of the scene.
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
tuple: (width, height) of the object in 2D pixel space.

\"\"\"
def get_2D_object_size(image, x, y):

Figure 10. Pre-defined Modules for OMNI3D-BENCH. These modules are used to initialize the dynamic API.
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def loc(self, image, object_prompt):
pts = molmo(image, "point to the " + object_prompt)
if len(pts) == 0:

# No points found
return []

return pts

def vqa(image, question, x, y):
mask = sam_2([x, y], "foreground") # get sam2 mask at x,y
bbox = bbox_from_mask(mask) # bbox around sam2 mask
boxed_image = overlay_box_on_image(image, bbox) # original image with bbox overlaid
result = gpt4o(boxed_image, question)
return result

def depth(image, x, y):
depth_pred = unidepth(image)["depth"] # Predict depth map over image
depth_x_y = depth_pred[y, x]
return depth_x_y

def same_object(image, x_1, y_1, x_2, y_2):
mask_1 = sam_2([x_1, y_1], "foreground") # get sam2 mask for point 1
mask_2 = sam_2([x_2, y_2], "foreground") # get sam2 mask for point 2
obj_1_bbox = bbox_from_mask(mask_1) # bbox around sam2 mask
obj_2_bbox = bbox_from_mask(mask_2) # bbox around sam2 mask
return iou(obj_1_bbox, obj_2_bbox) > 0.92

def get_2D_object_size(image, x, y):
mask = sam_2([x, y], "foreground") # get sam2 mask at x,y
bbox = bbox_from_mask(mask) # bbox around sam2 mask
width = abs(box[0] - box[2])
height = abs(box[1] - box[3])
return width, height

Figure 11. Python Implementation of Predefined Modules. VADAR uses Molmo [8] for object detection, SAM2 [22] for segmentation,
GPT4o [1] for VQA, and UniDepth [31] for depth estimation.
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Propose only new method signatures to add to the existing API.

Available Primitives: image, int, string, list, tuple

Current API:
{current_api_signatures}

Next, I will ask you a series of questions that reference an image and are solvable with a python program that uses
the API I have provided so far. Please propose new method signatures with associated docstrings to add to the API that
would help modularize the programs that answer the questions.

For each proposed method, output the docstring inside <docstring></docstring> immediately followed by the method
signature for the docstring inside <signature></signature>. Do not propose methods that are already in the API.

Please ensure that you ONLY add new methods when necessary. Do not add new methods if you can solve the problem with
combinations of the previous methods!

Added methods should be simple, building minorly on the methods that already exist.

Importantly, new methods MUST start with an underscore. As an example, you may define a "_get_material" method. Please
ensure you ALWAYS start the name with an underscore.

Again, output the docstring inside <docstring></docstring> immediately followed by the method signature for the
docstring inside <signature></signature>.

{questions}

Figure 12. Signature Agent Prompt used for both CLEVR and OMNI3D-BENCH.
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Implement a method given a docstring and method signature, using the API specification as necessary.
Current API:
{pre_defined_signatures}
{generated_signatures}

Here are some examples of how to implement a method given its docstring and signature:
<docstring>
\"\"\"
Locates objects that are on the left of the reference object.
Args:

image (IMAGE): Image to search.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
points (list): list of [x, y] coordinates for objects in pixel space matching description to the left.

\"\"\"
</docstring>
<signature>def objects_left(image, ref_x, ref_y):</signature>
<implementation>
objects_left = []
all_objects = loc(image, object_prompt=’objects’)
for object_point in all_objects:

x, y = object_point
if same_object(image, ref_x, ref_y, x, y):

continue
if x < ref_x:

objects_left.append(object_point)
return objects_left
</implementation>
<docstring>
\"\"\"
Gets the material of the given object.
Args:

image (IMAGE): Image that the object is contained in.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
str: Material of the object.

\"\"\"
</docstring>
<signature>def object_material(image, ref_x, ref_y):</signature>
<implementation>
material = vqa(image=image, question=’What material is this object?’, x=ref_x, y=ref_y)
return material
</implementation>
<docstring>
\"\"\"
Checks if an object 1 is in front of object 2.
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is in front of object 2, False otherwise

\"\"\"
</docstring>
<signature>def in_front_of(image, x_1, y_1, x_2, y_2):</signature>
<implementation>
depth_1 = depth(image, x_1, y_1)
depth_2 = depth(image, x_2, y_2)
return depth_1 < depth_2
</implementation>
<docstring>
\"\"\"
Checks if object1 has the same size as object2
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 has the same size as object 2, False otherwise

\"\"\"
</docstring>
<signature>def same_size(image, x_1, y_1, x_2, y_2):</signature>
<implementation>
object_1_size = vqa(image=image, question=’What size is this object?’, x=x_1, y=y_1)
object_2_size = vqa(image=image, question=’What size is this object?’, x=x_2, y=y_2)
return object_1_size == object_2_size
</implementation>

Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the condition and don’t just return the first one.
2) You already have an initialized variable named "image" - no need to initialize it yourself!
3) When searching for objects to compare to a reference object, make sure to remove the reference object from the retrieved objects. You can check if two objects are
the same with the same_object method.

Do not define new methods here, simply solve the problem using the existing methods.
Now, given the following docstring and signature, implement the method, using the API specification as necessary. Output the implementation inside <implementation></
implementation>.
Again, Output the implementation inside <implementation></implementation>.
<docstring>{docstring}</docstring>
<signature>{signature}</signature>

Figure 13. Implementation Agent Prompt for CLEVR. This prompt differs from the prompt used for OMNI3D-BENCH as we omit
examples illustrating usage of the get 2D object size method. The prompt features Weak ICL examples illustrating correct usage of
the pre-defined modules, as well as Pseudo ICL in the form of natural language instructions.
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Implement a method given a docstring and method signature, using the API specification as necessary.
Current API:
{predef_signatures}
{generated_signatures}
Here are some examples of how to implement a method given its docstring and signature:
<docstring>
\"\"\" Locates objects that are on the left of the reference object.
Args:

image (IMAGE): Image to search.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
points (list): list of [x, y] coordinates for objects in pixel space matching description to the left.

\"\"\"
</docstring>
<signature>def objects_left(image, ref_x, ref_y):</signature><implementation>
objects_left = []
all_objects = loc(image, object_prompt=’objects’)
for object_point in all_objects:

x, y = object_point
if same_object(image, ref_x, ref_y, x, y):

continue
if x < ref_x:

objects_left.append(object_point)
return objects_left </implementation>
<docstring>
\"\"\" Gets the material of the given object.
Args:

image (IMAGE): Image that the object is contained in.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
str: Material of the object.

\"\"\"
</docstring>
<signature>def object_material(image, ref_x, ref_y):</signature><implementation>
return vqa(image=image, question=’What material is this object?’, x=ref_x, y=ref_y) </implementation>
<docstring>
\"\"\" Checks if an object 1 is in front of object 2.
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is in front of object 2, False otherwise

\"\"\"
</docstring>
<signature>def in_front_of(image, x_1, y_1, x_2, y_2):</signature> <implementation>
depth_1, depth_2 = depth(image, x_1, y_1), depth(image, x_2, y_2)
return depth_1 < depth_2 </implementation>
<docstring>
\"\"\" Checks if object1 has the same size as object2
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.
epsilon (float): Acceptable margin of error in sizes.

Returns:
bool: True if object 1 has the same size as object 2, False otherwise

\"\"\"
</docstring>
<signature>def same_size(image, x_1, y_1, x_2, y_2, epsilon):</signature> <implementation>
object_1_height, object_1_width = get_2D_object_size(image, x_1, y_1)
object_2_height, object_2_width = get_2D_object_size(image, x_2, y_2)
return abs(object_1_height - object_2_height) < epislon and abs(object_1_width - object_2_width) < epsilon </implementation>
<docstring>
\"\"\" Returns a list of objects in the images
Args:

image (IMAGE): Image to search for objects in
Returns:

list: List of strings corresponding to all of the objects in the image.
\"\"\"
</docstring>
<signature>def get_object_list(image):</signature> <implementation>
objects = []
object_points = loc(image, object_prompt=’objects’)
for object_point in object_coords:

obj_x, obj_y = object_point
objects.append(vqa(image, "What is this object?", obj_x, obj_y))

return objects </implementation>
Here are some helpful definitions:
1) 2D distance/size refers to distance/size in pixel space. 2) 3D distance/size refers to distance/size in the real world. 3D size is equal to 2D size times the
depth of the object. 3) "On" is defined as the closest object ABOVE another object. Only use this definition for "on". 4) "Next to" is defined as the closest object.
5) Width is the same as length. 6) "Depth" measures distance from the camera in 3D.

Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the condition and don’t just return the first one. 2)
You already have an initialized variable named "image" - no need to initialize it yourself! 3) When searching for objects to compare to a reference object, make sure
to remove the reference object from the retrieved objects. You can check if two objects are the same with the same_object method. 4) Do not assume that the objects

you see in these questions are all of the objects you will see, keep the methods general. 5) If two objects have the same 2D width, then the object with the largest
depth has the largest 3D width. 6) If two objects have the same 2D height, then the object with the largest depth has the largest 3D height. 7) 2D sizes convey the
height and width in IMAGE SPACE. To convert to height and width in 3D space, it needs to be multiplied by the depth! 8) If you are given a reference size, scale your
output predicted size accordingly! Do not define new methods here, simply solve the problem using the existing methods. Now, given the following docstring and

signature, implement the method, using the API specification as necessary. Output the implementation inside <implementation></implementation>. Again, Output the
implementation inside <implementation></implementation>.
<docstring>
{docstring}
</docstring>
<signature>{signature}</signature>

Figure 14. Implementation Agent Prompt for OMNI3D-BENCH. The prompt features Weak ICL examples illustrating correct usage of
the pre-defined modules, as well as Pseudo ICL in the form of natural language instructions and definitions.
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You are an expert logician capable of answering spatial reasoning problems with code. You excel at using a predefined
API to break down a difficult question into simpler parts to write a program that answers spatial and complex
reasoning problem.
Answer the following question using a program that utilizes the API to decompose more complicated tasks and solve the
problem.
Available sizes are {{small, large}}, available shapes are {{square, sphere, cylinder}}, available material types are
{{rubber, metal}}, available colors are {{gray, blue, brown, yellow, red, green, purple, cyan}}.
The question may feature attributes that are outside of the available ones I specified above. If that’s the case,
please replace them to the most appropriate one from the attributes above.
I am going to give you an example of how you might approach a problem in psuedocode, then I will give you an API and
some instructions for you to answer in real code.

Example:
Question: "What is the shape of the matte object in front of the red cylinder?"
Solution:
1) Find all the cylinders (loc(image, ’cylinders’))
2) If cylinders are found, loop through each of the cylinders found
3) For each cylinder found, check if the color of this cylinder is red. Store the red cylinder if you find it and
break from the loop.
4) Find all the objects.
5) For each object, check if the object is rubber (matte is not in the available attributes, so we replace it with
rubber)
6) For each rubber object O you found, check if the depth of O is less than the depth of the red cylinder
7) If that is true, return the shape of that object

Now here is an API of methods, you will want to solve the problem in a logical and sequential manner as I showed you
------------------ API ------------------
{pre_defined_signatures}
{api}
------------------ API ------------------
Please do not use synonyms, even if they are present in the question.
Using the provided API, output a program inside the tags <program></program> to answer the question.
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the
condition and don’t just return the first one.
2) You already have an initialized variable named "image" - no need to initialize it yourself! 3) Do not define new
methods here, simply solve the problem using the existing methods.
3) When searching for objects to compare to a reference object, make sure to remove the reference object from the
retrieved objects. You can check if two objects are the same with the same_object method.
Again, available sizes are {{small, large}}, available shapes are {{square, sphere, cylinder}}, available material
types are {{rubber, metal}}, available colors are {{gray, blue, brown, yellow, red, green, purple, cyan}}.
Again, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
AGAIN, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
You do not need to define a function to answer the question - just write your program in the tags. Assume "image" has
already been initialized - do not modify it!
<question>{question}</question>

Figure 15. Program Agent Prompt for CLEVR. In the prompt, we provide a list of all available attributes in CLEVR, a Pseudo ICL
example in natural language, and some helpful tips.
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You are an expert logician capable of answering spatial reasoning problems with code. You excel at using a predefined
API to break down a difficult question into simpler parts to write a program that answers spatial and complex
reasoning problem.
Answer the following question using a program that utilizes the API to decompose more complicated tasks and solve the
problem.
I am going to give you two examples of how you might approach a problem in psuedocode, then I will give you an API and
some instructions for you to answer in real code.

Example 1:
Question: "What is the shape of the red object in front of the blue pillow?"
Solution:
1) Find all the pillows (loc(image, ’pillow’)).
2) If pillows are found, loop through each of the pillows found.
3) For each pillow found, check if the color of this pillow is blue. Store the blue pillow if you find it and break
from the loop.
4) Find all the objects.
5) For each object, check if the object is red.
6) For each red object O you found, check if the depth of O is less than the depth of the blue pillow.
7) If that is true, return the shape of that object.

Example 2:
Question: "How many objects have the same color as the metal bowl?"
Solution:
1) Set a counter to 0
2) Find all the bowls (loc(image, ’bowls’)).
3) If bowls are found, loop through each of the bowls found.
4) For each bowl found, check if the material of this bowl is metal. Store the metal bowl if you find it and break
from the loop.
5) Find and store the color of the metal bowl.
6) Find all the objects.
7) For each object O, check if O is the same object as the small bowl (same_object(image, metal_bowl_x, metal_bowl_y,
object_x, object_y)). If it is, skip it.
8) For each O you don’t skip, check if the color of O is the same as the color of the metal bowl.
9) If it is, increment the counter.
10) When you are done looping, return the counter.

Now here is an API of methods, you will want to solve the problem in a logical and sequential manner as I showed you
------------------ API ------------------
{predef_signatures}
{api}
------------------ API ------------------
Please do not use synonyms, even if they are present in the question.
Using the provided API, output a program inside the tags <program></program> to answer the question.
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
Here are some helpful definitions:
1) 2D distance/size refers to distance/size in pixel space.
2) 3D distance/size refers to distance/size in the real world. 3D size is equal to 2D size times the depth of the
object.
3) "On" is defined as the closest object ABOVE another object. Only use this definition for "on".
4) "Next to" is defined as the closest object.
5) Width is the same as length.
6) "Depth" measures distance from the camera in 3D.
Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the
condition and don’t just return the first one.
2) You already have an initialized variable named "image" - no need to initialize it yourself!
3) When searching for objects to compare to a reference object, make sure to remove the reference object from the
retrieved objects. You can check if two objects are the same with the same_object method.
4) Do not assume that the objects you see in these questions rae all of the objects you will see, keep the methods
general.
5) If two objects have the same 2D width, then the object with the largest depth has the largest 3D width.
6) If two objects have the same 2D height, then the object with the largest depth has the largest 3D height.
7) 2D sizes convey the height and width in IMAGE SPACE. To convert to height and width in 3D space, it needs to be
multiplied by the depth!
8) If you are given a reference size, scale your output predicted size accordingly!
Again, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
AGAIN, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
You do not need to define a function to answer the question - just write your program in the tags. Assume "image" has
already been initialized - do not modify it!
<question>{question}</question>

Figure 16. Program Agent Prompt for OMNI3D-BENCH. The prompt features Pseudo ICL in the form of two natural language examples
and helpful tips for handling 2D and 3D dimensions.
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