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Abstract
When analyzing Differentially Private (DP) ma-
chine learning pipelines, the potential privacy cost
of data-dependent pre-processing is frequently
overlooked in privacy accounting. In this work,
we propose a general framework to evaluate the
additional privacy cost incurred by non-private
data-dependent pre-processing algorithms. Our
framework establishes upper bounds on the over-
all privacy guarantees by utilising two new tech-
nical notions: a variant of DP termed Smooth DP
and the bounded sensitivity of the pre-processing
algorithms. In addition to the generic framework,
we provide explicit overall privacy guarantees
for multiple data-dependent pre-processing al-
gorithms, such as data imputation, quantization,
deduplication, standard scaling and PCA, when
used in combination with several DP algorithms.
Notably, this framework is also simple to imple-
ment, allowing direct integration into existing DP
pipelines.

1. Introduction
With the growing emphasis on user data privacy, Differential
Privacy (DP), has become the preferred solution for safe-
guarding training data in Machine Learning (ML) and data
analysis (Dwork et al., 2006). DP algorithms are designed
to ensure that individual inputs minimally affect the algo-
rithm’s output, thus preserving privacy. This approach is
now widely adopted by various organizations for conducting
analyses while maintaining user privacy (AppleDP, 2017;
U.S. Census Bureau, 2020).

Pre-processing data is a standard practice in data analysis
and machine learning. Techniques such as data imputation
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An implementation for our framework is
available at https://github.com/yaxihu/
privacy-non-private-preprocessing.

for handling missing values (Anil Jadhav & Ramanathan,
2019), deduplication for reducing memorization and elimi-
nating bias (Kandpal et al., 2022; Lee et al., 2022), standard
scaling for reducing the impact of outliers, and dimension-
ality reduction for denoising or visualization (Abadi et al.,
2016; Zhou et al., 2021; Pinto et al., 2024) are commonly
used. These pre-processings are also prevalent prior to ap-
plying DP algorithms, a pipeline that we term pre-processed
DP pipeline. Among other uses, this has been shown to im-
prove privacy-accuracy trade-off (Tramer & Boneh, 2021;
Ganesh et al., 2023).

A fundamental assumption, required by DP, is that indi-
vidual data points are independent. However, if training
data is used in pre-processing, this assumption is compro-
mised. For example, when deduplicating a dataset, whether
a point remains after the pre-processing is dependent on
the presence of other points in its vicinity. Similarly, for
mean imputation, the imputed value depends on the values
of other data points. These dependencies, also evident in
PCA and pre-training, can undermine the privacy guarantee
of the pre-processed DP pipeline.

There are multiple strategies to address this. A straightfor-
ward method to derive privacy guarantees for this pipeline
is to use group privacy where the size of the group can be
as large as the size of the dataset, thereby resulting in weak
privacy guarantees. This idea, albeit not in the context of
pre-processing, was previous explored under the name De-
pendent Differential Privacy (DDP) (Zhao et al., 2017; Liu
et al., 2016). Another approach is to use public data for the
pre-processing. Broadly referred to as semi-private learning
algorithms, examples of these methods include pre-training
on public data and learning projection functions using the
public data e.g. (Pinto et al., 2024; Li et al., 2022b;a; Yu
et al., 2021). Despite their success, these methods crucially
rely on the availability of high-quality public data.

In the absence of public data, an alternative approach is
to privatise the pre-processing algorithm. However, de-
signing new private pre-processing algorithms complicate
the process, increasing the risk of privacy breaches due to
errors in implementation or analysis. Moreover, private
pre-processing can be statistically or computationally more
demanding than private learning itself. For example, the
sample complexity of DP-PCA(Chaudhuri et al., 2012) is
dependent on the dimension of the training data (Liu et al.,
2022), implying that the costs associated with DP-PCA
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could surpass the benefits of private learning in a lower-
dimensional space.

To circumvent these challenges, an alternative approach is
non-private pre-processing with a more rigorous analysis of
the entire pipeline. This method is straightforward, circum-
vents the need for modifying existing processes, and avoids
the costs associated with private pre-processing. Naturally,
this raises the important question,

What is the price of non-private pre-processing in
differentially private data analysis ?

Our work shows that the overall privacy cost of pre-
processed DP pipeline can be bounded with minimal degra-
dation in privacy guarantee. To do this, we rely on two
new technical notions: sensitivity of pre-processing func-
tions (Definition 4) and Smooth-DP (Definition 6). In short,

1. We introduce a generic framework to quantify the pri-
vacy loss in the pre-processed DP pipeline. Applying
this framework, we evaluate the impact of commonly
used pre-processing techniques such as deduplication,
quantization, data imputation, standard scaling, and
PCA on the overall privacy guarantees.

2. We base our analysis on a novel variant of differential
privacy, termed smooth DP, which may be of inde-
pendent interest. We demonstrate that smooth DP
retains essential DP characteristics, including post-
processing and composition capabilities, as well as a
slightly weaker form of amplification by sub-sampling.

3. We propose an algorithm to balance desired privacy
levels against utility in the pre-processed DP pipeline.
This approach is based on the Propose-Test-Release
Mechanism, allowing the user to choose desired
privacy-utility trade-off.

Related Work Closely related to our work, Debenedetti
et al. (2023) also studies the necessity of conducting pri-
vacy analysis across the entire ML pipeline, rather than
focusing solely on the training process. They identify that
pre-processing steps, such as deduplication, can unintention-
ally introduce correlations into the pre-processed datasets,
leading to privacy breaches. They show that the empiri-
cal privacy parameter of DP-SGD (Abadi et al., 2016) can
be deteriorated by over five times with membership infer-
ence attack designed to exploit the correlation introduced
by deduplication. While they show privacy attacks using
deduplication with DP-SGD that can maximise the privacy
loss, our work quantifies the privacy loss in deduplication as
well as other pre-processing algorithms with several privacy
preserving mecahnisms, thereby presenting a more holistic
picture of this problem.

Another line of research, focusing on privacy in correlated
datasets (Liu et al., 2016; Zhao et al., 2017; Humphries

et al., 2023), shows that correlations in the datasets can
increase privacy risk of ML models. In response, Pufferfish
Differential Privacy (Kifer & Machanavajjhala, 2014; Song
et al., 2017) and Dependent Differential Privacy (Liu et al.,
2016; Zhao et al., 2017) were proposed as privacy notions
tailored for datasets with inherent dependencies. However,
these definitions usually require complete knowledge of
the datasets’ dependency structure or the data generating
process and sometimes lead to vacuous privacy guarantees.
Moreover, the application of these privacy notions usually
complicates the privacy analysis, as many privacy axioms,
such as composition, do not hold under these more general
notions.

2. Preliminaries in Differential Privacy
Before providing the main results of our work, we first
introduce some common definitions and mechanisms in
Differential Privacy.

2.1. Rényi Differential Privacy

Differential privacy restricts the change in the output dis-
tribution of a randomized algorithm by altering a single
element in the dataset. Formally, for ε, δ > 0, a randomized
algorithm A satisfies (ε, δ)-DP if for any two dataset S, S′

that differ by exactly one element and any possible output
of the algorithm O,

P [A(S) ∈ O] ≤ eεP [A(S′) ∈ O] + δ. (1)

In this work, we mainly focus on a stronger notion of DP,
known as Rényi Differential Privacy (RDP)(Mironov, 2017),
based on the Rényi divergence between two distributions.

Definition 1 (Rényi Divergence). Let P,R be two probabil-
ity distributions with supp(P ) ⊆ supp(R). Let α > 1. The
Rényi divergence with order α between P and R is defined
as

Dα(P ||R) =
1

α− 1
logEx∼R

(
P (x)

R(x)

)α

.

Let dH(·, ·) denote the Hamming distance between two
datasets, we formally define RDP as follows.

Definition 2 ((α, ε(α))-RDP). Let ε(α) be a function that
maps each α to a positive real number. A randomized algo-
rithm A is (α, ε(α))-RDP if for all α > 1, for any datasets
S, S′ differing at a single point, it holds that

Dα(A(S)||A(S′)) ≤ ε(α).

This definition of RDP can be easily converted to standard
DP via Lemma M. While Definition 2 is unconditional on
the possible set of datasets, a relaxed version of conditional
RDP can be defined over a given dataset collection L such
that the neighboring datasets S, S′ ∈ L. When the dataset
collection is known in advance, the conditional definition
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of RDP allows for tighter privacy analysis. We use this
conditional version in some of our analysis1.

2.2. Private mechanisms

There are several ways to make non-private algorithms pri-
vate. All of them implicitly or explicitly add carefully cali-
brated noise to the non-private algorithm. Below, we briefly
define the three most common ways in which DP is injected
in data analysis tasks and machine learning algorithms.

Output perturbation The easiest way to inject DP guar-
antees in an estimation problem is to perturb the output of
the non-private estimator with appropriately calibrated noise.
Two most common ways to do so are Gaussian Mechanism
and Laplace Mechanism. For any deterministic estimator f ,
both mechanisms add noise proportional to the global sensi-
tivity ∆f , defined as the maximum difference in f over all
pairs of neighboring datasets. For a given privacy parameter
ε > 0, both the Gaussian mechanism, denoted MG, and
the Laplace mechanism, denoted ML, produce an output of
the form f(S) + ξ. Here, ξ follows a Gaussian distribution
N (0,∆

2
f/ε2) for the Gaussian mechanism, and a Laplace

distribution Lap(∆f/ε) for the Laplace mechanism.

Random sampling While Output perturbation is naturally
suited to privatising the output of non-private estimators,
it is less intuitive when selecting discrete objects from a
set. In this case, a private mechanism can sample from a
probability distribution defined on the set of objects. The
Exponential Mechanism, denoted as ME , falls under this
category and is one of the most fundamental private mech-
anisms. Given a score function Q with global sensitivity
∆Q, it randomly outputs an estimator w with probability

proportional to exp
(

Q(w,S)ε
2∆Q

)
.

Gradient perturbation Finally, most common ML appli-
cations use gradient-based algorithms to minimize a loss
function on a given dataset. A common way to inject pri-
vacy in these algorithms is to introduce Gaussian noise into
the gradient computations in each gradient descent step.
This is referred to as Differential Private Gradient Descent
(DP-GD) denoted as AGD (Bassily et al., 2014; Song et al.,
2021). Other variants that are commonly used are Differ-
ential Private Stochastic Gradient Descent (DP-SGD) with
subsampling (Bassily et al., 2014; Abadi et al., 2016), de-
noted as ASGD−samp, and DP-SGD with iteration (Feldman
et al., 2018), denoted as ASGD−iter. We include the detailed
description of each of these methods in Appendix A.2.2.

1To avoid confusion, we note that our privacy guarantees are
not conditional, in the sense that it does not suffer a catastrophic
failure under any dataset.

3. Main Results
We first introduce a norm-based privacy notion, called
Smooth RDP, that allows us to conduct a more fine-grained
analysis on the impact of pre-processing algorithms. Using
this definition, we establish our main results on the privacy
guarantees of a pre-processed DP pipeline.

3.1. Smooth RDP

Our analysis on the privacy guarantees of pre-processed
DP pipelines relies on a privacy notion that ensures indis-
tinguishability between two datasets with a bounded L12

distance. Here, the L12 distance between two datasets S and
S′ of size n is defined as d12(S, S′) =

∑n
i=1 ∥Si − S′

i∥2.
We introduce this privacy notion as Smooth Rényi Differen-
tial Privacy (SRDP), defined as follows:
Definition 3 ((α, ε(α, τ))-smooth RDP). Let ε(α, τ) be
a function that maps each α, τ pair to a real value. A
randomized algorithm A is (α, ε(α, τ))-SRDP if for each
α > 1 and τ > 0,

sup
S,S′:d12(S,S

′)≤τ

Dα(A(S)||A(S′)) ≤ ε(α, τ).

SRDP shares similarities with distance-based privacy no-
tions (Lecuyer et al., 2019; Epasto et al., 2023), but they
differ in a key aspect: the distance-based privacy considers
neighboring datasets with bounded distance, while SRDP
allows for comparison over two datasets differing in every
entry.

Similar to conditional RDP over a set L, we define condi-
tional SRDP over a set L by imposing the additional as-
sumption that S, S′ ∈ L in Definition 3.

While conditional SRDP over a set L can be considered
as a special case of Pufferfish Rényi Privacy (Kifer &
Machanavajjhala, 2014), we show that it satisfies desirable
properties, such as sequential composition and privacy am-
plification by subsampling, which are not satisfied by the
more general Pufferfish Renyi Privacy (Pierquin & Bellet,
2023).

Properties of SRDP Similar to RDP, SRDP satisfies (se-
quential) composition and closure under post-processing.
Lemma 1. Let L be any dataset collection. Then, the
following holds.

• Composition Let k be a positive integer. Let α > 0, εi :
R × R → R,∀i ∈ [k]. For any i ∈ [k], if the ran-
domized algorithms Ai is (α, εi(α, τ))-SRDP over L,
then the composition of the k algorithms (A1, . . . ,Ak) is
(α,
∑k

i=1 εi(α, τ))-SRDP over L.

• Post-processing Let α > 0, ε : R× R → R, and f be an
arbitrary algorithm. For any τ > 0, if A is (α, ε(α, τ))-
SRDP over L, then f ◦ A is (α, ε(α, τ))-SRDP over L.
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Table 1. RDP and SRDP parameters of DP mechanisms. We let γ and κτ denote the inverse pointwise divergence and maximum
divergence between two datasets.

Notation Meaning Mechanism Assumptions RDP SRDP

f
Output
function

MG f is L-Lipschitz αε2

2
αL2τ2ε2

2∆2
f

ML f is L-Lipschitz ε Lτ
∆f

ε

Q
Score

function ME Q is L-Lipschitz ε Lτ
∆Q

ε

ℓ Loss function AGD ℓ is L-Lipschitz and µ-smooth, σ = L
√
T

εn
2αε2 αµ2τ2ε2

2L2

T
Number of
iterations ASGD−samp

ℓ is L-Lipschitz and µ-smooth, σ = Ω(L
√
T/εn),

inverse point-wise divergence γ,
1 ≤ α ≤ min

{√
T
ε
, L2T
ε2n2 log n2ε

L
√
T

} α2ε2

2
αµ2τ2ε2γ2

2L2

σ
Variance of

gradient
noise ASGD−iter

ℓ is convex, L-Lipschitz and µ-smooth,
σ = 8

√
2 lognηL
ε
√

n
, ε = O(1/nα2), maximum

divergence κτ , L
√

2α(α− 1) ≤ σ

αε2

2

ατ2µ2n log(n−κτ+2)

2(n−κτ+1)L2 logn

η Learning rate

SRDP also satisfies a form of Privacy amplification by sub-
sampling. We state the weaker version without additional
assumptions in Appendix A.1 and use a stronger version for
ASGD−iter in Theorem 1 with some light assumptions.

SRDP parameters for common private mechanisms
In Theorem 1, we present the RDP and SRDP parameters
for the private mechanisms discussed above. The SRDP
parameter usually relies on the Lipschitzness and Smooth-
ness (see Appendix A.1 for definitions) of the output or
objective function.

Theorem 1 (Informal). The DP mechanisms discussed
in Section 2.2 satisfy RDP and SRDP under assumptions
on the output or the objective functions. We summarize the
parameters and their corresponding assumptions in Table 1.

Table 1 demonstrates that the RDP parameter ε of most pri-
vate mechanisms increases to O(τε) for SRDP. In contrast,
a naive analysis using group privacy inflates the privacy
parameter to O(nε), as any two datasets with d12 distance
τ can differ by at most n entries. Hence, SRDP always
leads to tighter privacy parameter than group privacy for
τ = o(n), which we are able to exploit later.

For DP-SGD by subsampling and iteration, the SRDP guar-
antee is dependent on two properties: the inverse pointwise
divergence and maximum divergence of the datasets, de-
tailed in Appendix A.2.2. Briefly, the inverse pointwise
divergence γ measures the ratio between the d12 distance
and the maximum pointwise distance between two datasets.
The maximum divergence κτ measures the number of points
that the two datasets differ. DP-SGD with subsampling ben-
efits from a small γ, while DP-SGD with iteration benefits
from a small κτ . As we will show in the later sections, at
least one of these conditions are usually met in practice.

3.2. Privacy of Pre-Processed DP Pipelines

Before stating the main result, we introduce the term data-
dependent pre-processing algorithm. Let X ∈ Rd be
the instance space with Euclidean norm bounded by 1,
i.e.∀x ∈ X , ∥x∥2 ≤ 1. A deterministic data-dependent
pre-processing algorithm π : Xn → F takes a dataset S as
input and returns a pre-processing function πS : X → X ∪∅
in a function space F . Intuitively, privacy of a private al-
gorithm is retained under non-private data-dependent pre-
processing, if a single element in the dataset has bounded
impact on the output of the pre-processing algorithm. We de-
fine the sensitivity of a pre-processing algorithm to quantify
the impact of a simgle element below.
Definition 4. Let S1 = S ∪ {z1} and S2 = S ∪ {z2} be
two arbitrary neighboring datasets, we define the L∞ and
L2 sensitivity of a pre-processing function π as2

∆∞(π) = sup
S1,S2:dH(S1,S2)=1

dH(πS1(S), πS2(S)),

∆2(π) = sup
S1,S2:dH(S1,S2)=1

max
x∈S

∥πS1
(x)− πS2

(x)∥2 .

(2)

When the neighboring datasets S, S′ are from a dataset
collection L, we define conditional sensitivity of the pre-
processing algorithm π as ∆∞(L, π) and ∆∞(L, π) in
a similar manner. The conditional sensitivity is non-
decreasing as the size of the set of L increases, i.e. if
L ⊂ L′, then ∆∞(L, π) ≤ ∆∞(L′, π) ≤ ∆∞(π) and
∆2(L, π) ≤ ∆2(L′, π) ≤ ∆2(π) for all π.

In Theorem 2, we present the privacy guarantees of pre-
processed DP pipeline in terms of the RDP and SRDP pa-
rameters of the private algorithm and the sensitivity of the

2When one of πS1(x) and πS2(x) is ∅, we define
∥πS1(x)− πS2(x)∥2 = 1.
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pre-processing algorithms. This is a meta theorem, which
we then refine to get specific guarantees for different combi-
nations of pre-processing and private mechanisms in Theo-
rem 7. With a slight abuse of notation, we denote the output
of a private algorithm A on πS(S) as A ◦ π(S).
Theorem 2. For a set of datasets L and for any α ≥ 1,
τ > 0, consider an algorithm A that is (α, ε(α))-RDP and
(α, ε̃(α, τ))-SRDP over the set L. For a pre-processing
algorithm π with L∞ sensitivity ∆∞ and L2 sensitivity ∆2,
A ◦ π is (α, ε̂)-RDP over L for all c1, c2 ≥ 1, where

ε̂ ≤ max

{
αc1 − 1

c1 (α− 1)
ε̃ (αc1,∆2∆∞) + ε

(
c1α− 1

c1 − 1

)
,

αc2 − 1

c2(α− 1)
ε (αc2) + ε̃

(
c2α− 1

c2 − 1
,∆2∆∞

)}
.

(3)

Proof sketch. Consider two neighboring datasets S1 and S2,
where S1 = S ∪ {z1}, S2 = S ∪ {z2}. Let π1 and π2 be
the output functions of the pre-processing algorithm π on
S1 and S2 respectively. Our objective is to upper bound the
Rényi divergence between the output distribution of A on
the pre-processed datasets π1(S1) and π2(S2).

We proceed by constructing a new dataset S̃ that consists
of π2(S) and the point π1(z1), as indicated in Figure 4.
The construction ensures that S̃ and π2(S2) are neighboring
datasets, and that the L12 distance between S̃ and π2(S2) is
upper bounded by ∆2∆∞. We then apply the RDP property
of A to upper bound the divergence between A(S̃) and
A(π2(S2)). Then, we employ the SRDP property of A to
upper bound the divergence between A(S̃) and A(π1(S1)).
Finally, we establish the desired upper bound in Equation (3)
by combining the previous two divergences using the weak
triangle inequality of Rényi divergence (Lemma J).

While the privacy guarantee provided by Theorem 2 is con-
ditional over a dataset collection L, it can be extend to an
unconditional privacy guarantee over all possible datasets
using the Propose-Test-Release (PTR) framework (Dwork
& Lei, 2009). We show an example of the application of
PTR and its guarantees in Section 5.2.

Comparison with the group privacy or DDP analysis A
naive analysis on the privacy guarantee of A◦π using group
privacy or DDP (Zhao et al., 2017; Liu et al., 2016) pro-
vides an upper bound that grows polynomially3 with ∆∞,
which can be as large as poly(n). In contrast, Theorem 2
implies a tighter bound on privacy for common DP mecha-
nisms, especially when ∆∞∆2 = o(n).4 Next, we present
various examples of pre-processing algorithms with small

3Linearly if we consider Approximate DP.
4Theorem 2 is also applicable for other distance metrics, as

long as Smooth RDP and the sensitivity of pre-processing are
defined under comparable distance metric.

Figure 1. Illustration of the privacy analysis: For two neighbor-
ing datasets S1, S2, a pre-processing algorithm π yields the pre-
processed datasets π1(S1) and π2(S2) respectively. A synthetic
dataset S̃ is constructed by combining the pre-processed datasets,
ensuring that S̃ and π2(S2) are neighboring datasets and that S̃
and π1(S1) have bounded L12 distance.

sensitivities ∆∞∆2 = O(1). In Figure 2, we illustrate the
improvement of the privacy analysis in Theorem 2 over
the conventional analysis via group privacy for numerous
pre-processing algorithms.

4. Privacy Guarantees of Common
Pre-Processing Algorithms

In this section, we use Theorem 2 to provide overall privacy
guarantees for several common pre-processing algorithms.
First, in Section 4.1, we define the pre-processing algo-
rithms π and bound their L2 and L∞ sensitivities. Then,
in Section 4.2 we provide the actual privacy guarantees for
all combinations of these pre-processing algorithms and pri-
vacy mechanisms defined in Section 2.2. We assume the
instance space X to be the Euclidean ball with radius 1.

4.1. Sensitivity of Common Pre-Processing Algorithms

Approximate deduplication Many machine learning
models, especially Large Language Models (LLMs), are
trained on internet-sourced data, often containing many
duplicates or near-duplicates. These duplicates can cause
issues like memorization, bias reinforcement, and longer
training times. To mitigate this, approximate deduplication
algorithms are used in preprocessing, as discussed in Rae
et al. (2021); Touvron et al. (2023). We examine a variant
of these algorithms termed η-approximate deduplication.

The concept of η-approximate deduplication involves defin-
ing a good cluster. For a dataset S and a point x ∈ S,
consider B(x, η;S) = {x̃ ∈ S : ∥x̃− x∥2 ≤ η}, a
ball of radius η around x. This forms a good cluster if
B(x, η;S) = B(x, 3η;S). Essentially, this means that any
point within a good cluster is at least 2η distant from all
other points outside the cluster in the dataset. We also de-
fine B(S) = {Bi = B(xi, η;S)}mi=1 as the set of all good
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clusters in a dataset S.

The η-approximate deduplication process, πd
η , identifies and

retains only the center of each good cluster, removing all
other points. Points are removed in reverse order of cluster
size, prioritizing those with more duplicates.

Quantization Quantization, another pre-processing algo-
rithm for data compression and error correction, is especially
useful when the dataset contains measurement errors. We
describe a quantization method similar to η-approximate
deduplication, denoted as πq

η: it identifies all good clusters
in the dataset, and replaces all points within each good clus-
ter with the cluster’s centroid in the reverse order of the size
of the good clusters. The difference between de duplication
and quantization is that while quantization replaces near du-
plicates with a representative value, deduplication removes
them entirely. We discuss the L2 and L∞ sensitivity of
deduplication and quantization in Proposition 3.

Proposition 3. For a dataset collection L, the L2 and L∞
sensitivities5 of η-approximate deduplication πd

η and quan-
tization πq

η are ∆2(L, πd
η) = 1 and ∆2(L, πq

η) = η, and

∆∞(L, πd
η) = ∆∞(L, πq

η) = max
S∈L

max
B∈B(S)

2 |B| .

While the L2 sensitivity of deduplication is a constant 1,
∆∞ is usually upper bounded by a small number. This is
because in realistic datasets, the number of near duplicates
is generally small for sufficiently small η. This leads to
upper bounding the product ∆2∆∞ by a small number. For
example, in text datasets, the fraction of near duplicates is
typically smaller than 0.1, as demonstrated in Table 2 and 3
in Lee et al. (2022).

Model-based imputation Survey data, such as US cen-
sus data, often contains missing values, resulting from the
participants unable to provide certain information, invalid
responses, and changing questionnaire over time. Hence, it
is crucial to process the missing values in these datasets with
data imputation methods, to make optimal use of the avail-
able data for analysis while minimizing the introduction of
bias into the results.

We consider several imputation techniques which use the
values of the dataset to impute the missing value. This can
involve training a regressor to predict the missing feature
based on the other feature, or simply imputing with dataset-
wide statistics like mean, median or trimmed mean. For
the sake of clarity, we only discuss mean imputation in the
main text but provide the guarantees for other imputations
in Proposition 16 and Table 3 in Appendix C.2.

5When the definition of neighboring dataset is refined to ad-
dition and deletion of a single data point, the L∞ sensitivity of
both deduplication and quantization on a set L can be reduced to
maxS∈L,B∈B(S) |B|.

Corollary 4. For a dataset collection L with maximum p
missing values in any dataset, the L∞ sensitivity of mean
imputation πmean over L is p and theL2-sensitivity of πmean

is upper bounded by 2
n−p .

Principal Component Analysis Principal Component
Analysis (PCA) is a prevalent pre-processing algorithm.
It computes a transformation matrix A⊤

k ∈ Rk×d using the
top k eigenvalues of the dataset S’s covariance matrix. PCA
serves two main purposes: dimension reduction and rank
reduction. For dimension reduction, denoted as πPCA−dim,
PCA projects data into a lower-dimensional space (typi-
cally for high-dimensional data visualization), using the pre-
processing function πS,dim(x) = A⊤

k x. For rank reduction,
represented as πPCA−rank, PCA leverages the low-rankness
of the dataset with the function πS,rank(x) = AkA

⊤
k x.

The primary difference between these two PCA applications
is in the output dimensionality. Dimension reduction yields
data of dimension k, while rank reduction maintains the
original dimension d, but with a low-rank covariance matrix
of rank k. We detail the L∞ and L2 sensitivity for both
PCA variants in Proposition 5.
Proposition 5. For a dataset collection L, the L∞ sensitiv-
ity of πPCA−dim and πPCA−rank is the size of the datasets
in L, i.e. n. The L2-sensitivity of πPCA−dim and πPCA−rank

is bounded by 2∆2 and ∆2 respectively, where

∆2 =
4(3n+ 2)

n(n− 1)min{δkmin(L), δ1min(L)}
,

where δkmin(L) = minS∈L λk(S) − λk+1(S) is the mini-
mum gap between the kth and (k+1)th eigenvalue over any
covariance matrix of S ∈ L.

Standard Scaling Scaling is one of the most common
pre-processing methods. In Proposition 6, we provide the
sensitivity results of standard scaling which scales each fea-
ture to have mean 0 and standard deviation 1, and min max
scaling, which scales each feature to the interval between 0
and 1.
Proposition 6. For a dataset collection L, the L∞ sensitiv-
ity of standard scaling and min max scaling is the size of the
datasets in L, i.e. n. The L2 sensitivity of standard scaling
is

∆2 =
2

σ3
minn

+
2

nσmin
,

where σmin is the minimum standard deviation over datasets
in L.

4.2. Privacy Analysis for Pre-Processing Algorithms

After establishing the necessary elements of our analysis,
including the sensitivities of pre-processing algorithms (Sec-
tion 3) and the SRDP parameters of private mechanisms (Ta-
ble 1), we are ready to present the exact overall privacy guar-
antees for specific pre-processed DP pipelines. In Table 2,
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Table 2. Overall privacy guarantees ε̂ of pre-processed DP pipelines with α ≥ 11. Let p represent the L∞ sensitivity of deduplication,
quantization and mean imputation. We also assume the size of the dataset n ≥ 101 for PCA, and the Lipschitz and smoothness parameters,
along with global sensitivity, are set to 1. We omit the privacy guarantees of deduplication due to space constraint. However, we note that
the privacy guarantees for deduplication are the same as those for quantization with η = 1. See Appendix D for details.

Quantization Mean imputation PCA Standard Scaling

MG 1.05αε2
(
1 + η2p2

)
1.05αε2

(
1 + 4p2

(n−p)2

)
1.05αε2

(
1 + 12.22

(δkmin)
2

)
1.05αε2

(
1 + 4

σ3
min

)
AGD 1.05αε2

(
4 + η2p2

)
4.2αε2

(
1 + p2

(n−p)2

)
1.05αε2

(
4 + 12.22

(δkmin)
2

)
4.2αε2

(
1 + 1

σ3
min

)
ML/ME ε (1 + ηp) ε

(
1 + 2p

n−p

)
ε
(
1 + 12.2

δkmin

)
ε
(
1 + 4

σ3
min

)
ASGD−samp – – 1.05αε2

(
2α+ 12.22

(δkmin)
2

)
2.1αε2

(
α+ 8

σ6
min

)
ASGD−iter 1.1αε2

(
1 +

η2p2n
log n
n−p

log n−p

)
1.1αε2

(
1 +

4p2 n
log n

(n−p)3

log n−p

)
– –

(a) Quantization (b) Mean Imputation (c) PCA for rank reduction

Figure 2. Visualization of the overall privacy of pre-processed Gaussian mechanism analysed with group privacy and our bound from
Theorem 2. Here, η is the distance threshold of the quantization algorithm, n is the size of the possible datasets, and δmin is the minimum
gap between the kth and the k + 1th eigenvalue of all possible datasets.

we present the privacy guarantees for various combinations
of pre-processing methods and private mechanisms.

Theorem 7 (Informal). Pre-processed DP pipelines com-
prised of all combinations of private mechanisms in Sec-
tion 2.2 and pre-processing algorithms in Section 4.1 are
(α, ε̂)-RDP where ε̂ is specified in Table 2.

Table 2 shows that the pre-processing methods discussed
in Section 4.1 typically lead to a minimal, constant-order
increase in the privacy cost for common DP mechanisms,
depending on the datasets in L. Specifically, deduplication
results in a constant increase in the privacy cost when the
datasets in L do not contain large clusters, i.e. ∆∞ = o(n),
whereas quantization can handle larger clusters of size
∆∞ = o(n/η). The privacy cost of mean imputation remains
constant for datasets with few missing values (p = o(n)).
Standard scaling leads to constant amplification in privacy
cost when all features in dataset collection L have non-
vanishing standard deviation. For PCA, we only present
the results for rank reduction and the results for dimension
reduction follows similarly. The additional privacy cost re-
mains small for low rank datasets with δmin bounded away
from 0.

Moreover, Figure 2 demonstrates a comparison between our
SRDP-based analysis (Theorem 2) and the naive group pri-
vacy/DDP analysis for pre-processed Gaussian mechanism.
This comparison illustrates the advantage of our SRDP-
based analysis over group privacy/DDP and how the privacy
guarantees vary with properties of the dataset collections
L. For quantization, the SRDP-based privacy analysis pro-
vides significantly stronger privacy guarantees for smaller η.
For mean imputation, the difference between SRDP-based
analysis and group pirvacy analysis is large for smaller num-
ber of missing values. However, in the extreme scenario
where over 90% of the data points are missing, group pri-
vacy achieves a similar guarantee as our analysis with SRDP.
In the case of PCA for rank reduction, the privacy parameter
obtained with SRDP-based privacy analysis remains con-
stant, while it increases for group privacy analysis with the
size of the dataset.

5. Unconditional Privacy Guarantees in
Practice

The previous section provides a comprehensive privacy anal-
ysis for pre-processed DP pipelines where the resulting
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privacy guarantee depends on properties of the dataset col-
lection. In this section, we first illustrate how conditional
privacy analysis can become ineffective for pathological
datasets (Section 5.1). Then, we introduce a PTR-inspired
framework to address this and establish unconditional pri-
vacy guarantees in Section 5.2. Using PCA for rank re-
duction as an example, we provide convergence guarantee
for excess empirical loss for generalized linear models and
validate our results with synthetic experiments.

5.1. Limitations of conditional privacy guarantee

The previous analysis in Section 3 and 4 rely on the chosen
dataset collection L. Typically, for dataset collections L that
are well-structured, non-private pre-processing leads to only
a slight decline in the privacy parameters as discussed in Sec-
tion 4.2. However, this degradation can become significant
for datasets that exhibit pathological characteristics. In the
following, we present several examples where our guaran-
tees in Theorem 2 become vacuous due to the pathological
nature of the dataset.

Imputation If the number of missing points is comparable
to the size of the dataset i.e. p ≈ n, the privacy guarantee
in Theorem 2 deteriorates to the level of those obtained from
group privacy or DDP. This deterioration is also reflected
in Figure 2b.

PCA When performing PCA with a reduction to rank
k, the privacy guarantee can worse and scale with n for
very small δkmin, in particular when δkmin = O (1/n). This
situation can occur naturally when the data is high rank or
when k is chosen “incorrectly”.

Deduplication Consider a dataset S = {z1, ..., zn},
where each pair of distinct data points are at least η distance
apart, yet each point are no more than η distance from a spe-
cific reference point x, i.e.∥zi − zj∥2 ≥ η, ∥zi − x∥2 ≤ η,
for i ̸= j ∈ [n].Under these conditions, applying dedu-
plication on S leaves the dataset unchanged as all points
are uniformly η distance from each other. However, if x is
added to S, then deduplication would eliminate all points
except x. As a result, the L∞ sensitivity of deduplication
becomes n, resulting in the same privacy analysis as group
privacy. Interestingly, a similar example was leveraged
by Debenedetti et al. (2023) in their side-channel attack.

It is important to recognise that datasets exhibiting patho-
logucal characteristics, like those above, are usually not of
practical interest in data analysis. For instance, applying
mean imputation to a dataset where the number of missing
points is nearly equal to the size of the dataset or implement-
ing approximate deduplication that results in the removal
of nearly all data are not considered sensible practice. A
possible solution to this problem is to potentially refuse to
provide an output when the input dataset is deemed patho-

logical, provided that the decision to refuse is made in a
manner that preserves privacy. This approach is adopted in
the following section, where we employ the Propose-Test-
Release framework proposed by Dwork & Lei (2009) to
establish unconditional privacy guarantees over all possible
datasets, at the expense of accuracy on datasets that are
“pathological”.

5.2. Unconditional privacy guarantees via PTR

We present Algorithm 1 that applies the PTR procedure
to combine the non-private PCA for rank reduction with
DP-GD. It exhibits unconditional privacy guarantee over
all possible datasets (Theorem 8). While this technique is
specifically described for combining PCA with DP-GD, it’s
worth noting that the same approach can be applied to other
pairings of DP mechanisms and pre-processing algorithms,
though we do not explicitly detail each combination since
their implementations follow the same basic principles.

Algorithm 1 PTR for πPCA−rank on DP-GD
Input: Dataset S, estimated lower bound β of δk(S), pri-
vacy parameters ε, δ, LipschitznessL

1: Set Γ = minS′:δk(S′)<β dH(S, S′) + Lap
(
1
ε

)
δk(S

′) = λk (S
′)− λk+1 (S

′)
2: if Γ ≤ (log 2

δ )/ε then
3: Return ⊥
4: else
5: Compute the pre-processing function πS

PCA−rank us-

ing the dataset S and set σ = 2L
√
T

εn .
6: Return ADP−GD(π

S
PCA−rank(S)) with parameter σ.

7: end if

Theorem 8. For any L-Lipschitz and µ-smooth loss func-
tion ℓ, ε > 0 and δ ≤ exp

(
−1.05ε2

(
1 + 12.22µ2

L2β2

))
, Algo-

rithm 1 with privacy parameters ε, δ, and estimated lower
bound β is (ε̂+ ε, δ)-DP on a dataset of size n ≥ 101,

where ε̂ = 3ε

√
1.05

(
1 + 12.22µ2

L2β2

)
log 1

δ .

The RDP parameter on PCA with DP-GD in Table 2 with
the same parameter σ can be converted to (ε̂, δ)- DP if it
holds that for all S ∈ L, δk (S) ≥ β . In comparison, the
guarantee in Theorem 8 is marginally worse by an additive
ε, but it remains applicable even when δk (S) < β for some
S ∈ L. However, when δk (S) < β for some S ∈ L, the
bound in Table 2 degrades to the same as obtained via group
privacy/DDP.

For generalized linear models, we present an high proba-
bility upper bound on the excess empirical loss of Algo-
rithm 1 conditional on the properties of the private dataset.
Given a dataset S = {(xi, yi)}ni=1 and a loss function
ℓ, let ℓ̂S(θ) = 1

n

∑n
i=1 ℓ(⟨θ, xi⟩, yi) denote the empirical

loss of a generalized linear model on the dataset S and let
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θ⋆ = argminθ∈Rd ℓ̂S(θ). For simplicity, we assume S is
centered and ℓ is L-Lipschitz.

Proposition 9. For δ, ε defined in Algorithm 1, n ≥ 101,
and any β ≤ δk (S), with probability at least 1− ξ, Algo-
rithm 1 outputs θ̂ such that the excess empirical risk

E
[
ℓ̂S(θ̂)

]
−ℓ̂S(θ⋆) = O

(
L
√
1 + k log 1/δ

εn

)
+2LΛ, (4)

where ξ = 1
2δ

exp
(
− (δk(S)−β)nε

12.2

)
,Λ =

∑d
i=k+1 λi(S) where

the high probability is over the randomness in Step 1 and the
expectation is over the randomness of Step 6.

The results follow a similar analysis as (Song et al., 2021),
which shows that the convergence bound of DP-GD scales
with the rank of the dataset. However, when the dataset
remains full rank but the first k eigenvalues dominates the
rest, e.g. Λ = O(

√
k), the convergence bound following

(Song et al., 2021) is O(
√
d). In contrast, Proposition 9

leads to a dimension-independent convergence bound of
order O(

√
k), with a slight degradation in the privacy guar-

antee. Here, β introduces the trade-off between privacy and
utility. Large β leads to tighter privacy guarantee (small
effective ε in Theorem 8) at the risk of worse utility (large ξ
in Proposition 9).

Experimental results We conducted experiments on a
synthetic approximately low rank dataset to corroborate our
results in Proposition 9, and summarised the results in Fig-
ure 3. We generate a 2-class low rank dataset consisting of
1000 data points with dimension 6000 and approximately
rank 50. The synthetic dataset has positive yet small eigen-
values for the kth eigenvectors for k ≥ 50, ensuring 2LΛ
in Equation (4) is small but positive.

For each overall privacy parameter ε, we evaluated the ex-
cess empirical risk of DP-SGD with: a) non-private PCA
with an adjusted privacy parameter from Table 2, b) DP-
PCA, with half of the privacy budget to allocated to DP-
PCA, and c) no pre-processing.

Figure 3 shows that pre-processed DP pipeline outperforms
logistic regression without pre-processing. This is be-
cause the dataset’s approximate low rankness, indicated by
2LΛ > 0, prevents logistic regression from leveraging the
dimension-independent optimization guarantees using the
original high dimensional datasets (Song et al., 2021). How-
ever, non-private PCA, while incurring a minor constant-
order privacy cost, effectively utilizes the data’s low rank-
ness and offers significant benefits, especially at smaller ε
values where optimization error is dominated by the first
term in Equation (4). Figure 3 also demonstrates that DP-
PCA exhibits the worst performance among the three meth-
ods, beccause the inherent error of order Ω(d) of DP-PCA
dominates given a high dimensional dataset with d≪ n(Liu
et al., 2022).

Figure 3. Comparison of excess empirical loss of private logistic
regression: for each level of overall privacy ε, pre-processed DP
pipeline consistently outperforms other methods.

In Appendix F, we provide the details on experimental se-
tups and a discussion on the practical modification of Algo-
rithm 1 with clipping.

6. Conclusion
In this paper, we investigate the often-neglected impact of
pre-processing algorithms in private ML pipelines. We pro-
pose a framework to assess the additional privacy cost from
non-private pre-processing steps using two new technical
notions: Smooth RDP and sensitivities of pre-processing
algorithms. Finally, we propose a PTR-based procedure to
relax some of the necessary assumptions in our framework
and make it practically usable. Several interesting directions
of future work remain unexplored, including handling more
complex pre-processing algorithms, such as pre-trained deep
neural feature extractors and private algorithms like private
data synthesis.
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We present the detailed proof of our results and some additional findings in the appendix. To distinguish the lemmas from
existing literature and new lemmas used in our proofs, we adopt alphabetical ordering for established results and numerical
ordering for our contributions.

A. Proofs regarding Smooth RDP (Section 3.1)
In this section, we present the proofs regarding SRDP properties. In Appendix A.1, we introduce SRDP satisfies some
desired properties, and present their proofs. Appendix A.2 provides the exact SRDP parameters of common DP mechanisms.

A.1. Properties of SRDP and their proofs

While conditional SRDP over a set L can be considered as a special case of Pufferfish Rényi Privacy (Kifer & Machanava-
jjhala, 2014), we show that it satisfies desirable properties, such as sequential composition and privacy amplification by
subsampling, which are not satisfied by the more general Pufferfish Renyi Privacy (Pierquin & Bellet, 2023).

Properties of SRDP Similar to RDP, SRDP satisfies (sequential) composition and closure under post-processing.

Lemma 2. Let L be any dataset collection. Then, the following holds.

• Composition Let α > 0, εi : R×R → R,∀i ∈ [k]. For any i ∈ [k], if the randomized algorithms Ai is (α, εi(α, τ))-SRDP
over L, then the composition (A1, . . . ,Ak) is (α,

∑k
i=1 εi(α, τ))-SRDP over L.

• Post-processing Let α > 0, ε : R× R → R, and f be an arbitrary algorithm. For any τ > 0, if A is (α, ε(α, τ))-SRDP
over L, then f ◦ A is (α, ε(α, τ))-SRDP over L.

SRDP also satisfies a form of Privacy amplification by subsampling. We state the weaker version without additional
assumptions in Appendix A.1 and use a stronger version for ASGD−iter in Theorem 1 with some light assumptions.

Lemma 2. Let L be any dataset collection. Then, the following holds.

• Composition Let α > 0, εi : R×R → R,∀i ∈ [k]. For any i ∈ [k], if the randomized algorithms Ai is (α, εi(α, τ))-SRDP
over L, then the composition (A1, . . . ,Ak) is (α,

∑k
i=1 εi(α, τ))-SRDP over L.

• Post-processing Let α > 0, ε : R× R → R, and f be an arbitrary algorithm. For any τ > 0, if A is (α, ε(α, τ))-SRDP
over L, then f ◦ A is (α, ε(α, τ))-SRDP over L.

Proof. Composition: For i ∈ [k] and any two datasets S, S′ ∈ L with d12(S, S′) ≤ τ , let νi and ν′i be the distribution of
Ai(S) and Ai(S

′) respectively. Then, using to the independence between Ai(S) and Ai+1(S), denote the joint distribution
of Ai(S) and Ai+1(S) as νi × νi+1 and the joint distribution of Ai(S

′) and Ai+1(S
′) as ν′i × ν′i+1.

Then, we prove the composition property of by upper bounding Dα (A1(S), . . . ,Ak(S)||A1(S
′), . . . ,Ak(S

′)) for S, S′ ∈
L with d12(S, S′) ≤ τ . To achieve this, we employ the following lemma on additivity of Rényi divergence (Lemma A).

Lemma A (Additivity of Renyi divergence (van Erven & Harremoës, 2012)). For α > 1 and distributions ν1, ν2, ν′1, ν
′
2,

Dα (ν1 × ν2||ν′1 × ν′2) = Dα (ν1||ν′1) +Dα (ν2||ν′2) .

Applying Lemma A at step (a),

Dα (A1(S), . . . ,Ak(S)||A1(S
′), . . . ,Ak(S

′)) = Dα(ν1 × . . .× νk||ν′1 × . . .× ν′k)

(a)

≤ Dα (ν1||ν′1) +Dα (ν2 × . . .× νk||ν′2 × . . .× ν′k)

(b)
= ε1(α, τ) +Dα (ν2 × . . .× νk||ν′2 × . . .× ν′k)

(c)
= ε1(α, τ) + ε2(α, τ) + . . .

≤
k∑

i=1

εi(α, τ)

(5)
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where step (b) follows from the fact that A1 is SRDP with parameter ε1(α, τ), and step (c) is obtained by decomposing
Dα(ν2 × . . .× νk||ν′2 × . . .× ν′i+1) in the similar manner as step (a) and applying Lemma A iteratively. This completes the
proof for composition of SRDP.

Post-processing: For any S, S′ ∈ L with d12(S, S′) ≤ τ , let X = A(S), X ′ = A(S′) be random variables with probability
distribution νX , ν′X , and Y = f(A(S)), Y ′ = f(A(S′)) be random variables with distributions νY and ν′Y . For any
value x, we denote the conditional distribution of Y = f(x) and Y ′ = f(x) by νY |x and ν′Y |x respectively. We note that
νY |x = ν′Y |x by definition.

We will upper bound the Rényi divergence between f(A(S)) and f(A(S′)),

Dα (f(A(S))||f(A(S′))) =
1

α− 1
logEy∼ν′

Y

[
νY (y)

ν′Y (y)

]α
=

1

α− 1
logEy∼ν′

Y

[
Ex∼ν′

X

(
νY |x(y)νX(x)

ν′Y |x(y)ν
′
X(x)

)]α
(a)

≤ 1

α− 1
logEy∼ν′

Y

[
Ex∼ν′

X

(
νY |x(y)νX(x)

ν′Y |x(y)ν
′
X(x)

)α]
(b)
=

1

α− 1
logEx∼ν′

X

[
νX(x)

ν′X(x)

]α
= Dα (A(S)||A(S′))

(6)

where (a) follows from Jensen’s inequality and the convexity of h(x) = xα for α ≥ 2 and x ≥ 0, and (b) follows from the
fact that νY |x = ν′Y |x for fixed x. This completes the proof.

We present a general version of privacy amplification by subsampling for SRDP in Lemma 3. We consider a subsampling
mechanism that uniformly selects B elements from a dataset with replacement. Lemma 3 implies that the SRDP parameter
of a SRDP algorithm decreases by O(1/

√
n) when B = 1 for datasets of size n.

Lemma 3 (Privacy amplification by subsampling of SRDP). For B ≥ 1, let π : Xn → XB be the subsampling mechanism
that samples B elements from the dataset S of size n uniformly at random. Let A be a randomized algorithm that is
(α, ε(α, τ))-SRDP. For α, τ such that ε(α, τ) ≤ 1

α−1 and for any integer 1
B ≤ k ≤ n−1

B , A◦ π satisfies (α, ε′(α, τ))-SRDP,
where

ε′(α, τ) = 2

(
1− kB − 1

n

)B

ε
(
α,
τ

k

)
+ 2

(
1−

(
1− kB − 1

n

)B
)
ε (α, τ) .

Proof. Let S, S′ ⊂ L with d12(S, S′) ≤ τ . First, order the points in S, S′ as S = {zi}ni=1 and S′ = {z′i}ni=1 such that∑n
i=1 ∥zi − z′i∥2 ≤ τ .

Let m be a fixed integer. Let I = {i1, i2, . . .} be the set of indices such that for any j ∈ I,
∥∥zj − z′j

∥∥ ≥ τ
m holds. For

1 ≤ m ≤ n− 1, if d12(S, S′) ≤ τ , there can be at most m− 1 indices in I.

Thus, for an index i sampled from [n] uniformly at random, we have

Pi∼Unif([n])

[
∥zi − z′i∥ ≤ τ

m

]
= 1− Pi∼Unif([n])

[
∥zi − z′i∥ ≥ τ

m

]
≥ 1− k − 1

n
. (7)

Let J = {i1, ..., iB} be a set where each index ij is sampled independently and uniformly from [n]. For any integer
1 ≤ m ≤ n− 1, we compute the probability that d12(SJ , S

′
J) ≤ τ

k .

PJ∼Unif([n])B

[∑
i∈J

∥zi − z′i∥2 ≤ Bτ

m

]
(a)

≥ PJ∼Unif([n])B

[
∀i ∈ J, ∥zi − z′i∥2 ≤ τ

m

] (b)

≥
(
1− m− 1

n

)B

(8)

where step (a) follows as ∀i ∈ J, ∥zi − z′i∥2 ≤ τ
m implies

∑
i∈J ∥zi − z′i∥2 ≤ Bτ

m , step (b) follows by Equation (7) and the
independence of each index in J .

13
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Replacing m = kB, we have for 1 ≤ kB ≤ n− 1, i.e.for 1
B ≤ k ≤ n−1

B ,

PJ∼Unif([n])B

[∑
i∈J

∥zi − z′i∥2 ≤ τ

k

]
≥
(
1− kB − 1

n

)B

(9)

Next, we apply the weak convexity of Rényi divergence (Lemma B) to get the desired bound.

Lemma B (Weak convexity of Renyi divergence, Lemma 25 in Feldman et al. (2018)). Let µ1, µ2 and υ1, υ2 be probability
distributions over the same domain such that Dα (µi||υi) ≤ c

α−1 for i ∈ {1, 2} and c ∈ (0, 1]. For β ∈ (0, 1),

Dα (βµ1 + (1− β)µ2||βυ1 + (1− β)υ2) ≤ (1 + c) [βDα (µ1||υ1) + (1− β)Dα (µ2||υ2)] .

Let E denote the event that the L12 distance between SJ and S′
J is smaller than τ

k , i.e.
∑

i∈J ∥zi − z′i∥2 ≤ τ
k , for J ∼

Unif([n])B . Then, Equation (9) implies that the probability of E is at least
(
1− kB−1

n

)B
.

Let µ1, υ1 be the distribution of A(SJ) and A(S′
J) conditional on E occurring, and let µ2, υ2 be the distribution of A(SJ)

and A(S′
J) conditional on E does not occur. By our assumption on τ, α, ε(α, τ) ≤ 1

α−1 and c = 1. Applying Lemma B
with c = 1 in step (a),

Dα (A(SJ)||A(S′
J)) = Dα (P [E ]A(SJ |E) + P [¬E ]A(SJ |¬E)||P [E ]A(S′

J |E) + P [¬E ]A(S′
J |¬E))

(a)

≤ 2P [E ] ε
(
α,
τ

k

)
+ 2P [¬E ] ε (α, τ)

(b)

≤ 2

(
1− kB − 1

n

)B

ε
(
α,
τ

k

)
+ 2

(
1−

(
1− kB − 1

n

)B
)
ε(α, τ),

In step (b), we note that 2P [E ] ε
(
α, τk

)
+ 2P [¬E ] ε (α, τ) increases with P [E ] by the fact that ε

(
α, τk

)
≤ ε (α, τ). Then,

we obtain the upper bound by substitute in the lower bound of P [E ] from Equation (9). This completes the proof.

However, under additional structural assumption on the pair of datasets that needs to remain indistinguishable, we can
establish a more effective amplification of smooth RDP through subsampling. In Appendix A.2.2, we present the additional
assumption with Definition 7. We also apply the stronger amplification in the proof of overall privacy guarantees for
DP-SGD with subsampling.

A.2. Proof of Theorem 1(Derivation of Table 1)

In this section, we explore results regarding the SRDP parameters for various DP mechanisms. We start with the formal
definitions of two fundamental assumptions, Lipschitzness and smoothness, in Definition 5 and 6. Then, we provide the
proof of Theorem 1 (SRDP parameters in Table 1). For clarity, we present the proof for each private mechanism separately
in Appendices A.2.1 and A.2.2.

Definition 5 (Lipschitzness). A function f : K → R is L-Lipschitz over the domain K ⊂ X with respect to the distance
function d : X × X → R+ if for any X,X ′ ∈ K, |f(X)− f(X ′)| ≤ Ld(X,X ′).

Definition 6 (Smoothness). A loss function ℓ : Θ × K → R+ is µ-smooth if for all θ ∈ Θ and x, x′ ∈ K,
∥∇θℓ(θ, x)−∇θℓ(θ, x)∥2 ≤ µ ∥x− x′∥2.

We note that Definition 6 is different from the usual definition of smoothness in the literature that requires
∥∇θℓ(θ, x)−∇θℓ(θ

′, x)∥2 ≤ µ ∥θ − θ′∥2 for all x ∈ K and θ, θ′ ∈ Θ (Chaudhuri et al., 2011; Feldman et al., 2018).
However, many loss functions, including square loss and logistic loss, are smooth on common model classes based
on Definition 6.

A.2.1. OUTPUT PERTURBATION AND RANDOM SAMPLING METHODS

This section provides the detailed theorems and proofs for Smooth RDP parameters of output perturbation methods (Gaussian
and Laplace mechanism) and random sampling methods (Exponential mechanism) in Theorem 10 to 12 respectively, as
stated in Table 1.
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Theorem 10 (Theorem 1 for Gaussian mechanism). For an L-Lipschitz function f with global sensitivity ∆f and the
privacy parameter ε > 0, let MG(S) = f(S) +N

(
0,∆

2
f/ε2
)

denote the Gaussian mechanism. For a dataset collection L
and for τ > 0, MG is

(
α, αε

2

2

)
-RDP and

(
α, αL

2τ2ε2

2

)
-SRDP for α ≥ 1.

Proof. We first show that MG is
(
α, αε

2

2

)
-RDP. For any neighboring datasets S, S′ with dH(S, S′) = 1,

Dα (MG(S)||MG(S
′)) = Dα

(
f(S) +N

(
0,∆

2
f/ε2
)
||f(S′) +N

(
0,∆

2
f/ε2
))

= Dα

(
N
(
f(S),∆

2
f/ε2
)
||N

(
f(S′),∆

2
f/ε2
))

We apply Lemma C to upper bound the Rényi divergence between two Gaussian random variable with same variance.

Lemma C (Corrolary 3 in Mironov (2017)). For any two Gaussian distributions with the same variance σ2 but different
means µ0, µ1, denoted by N

(
µ0, σ

2
)

and N (µ1, σ
2), the following holds,

Dα

(
N (µ0, σ

2)||N (µ1, σ
2)
)
≤ α (µ0 − µ1)

2

2σ2
.

Hence,

Dα (MG(S)||MG(S
′))

(a)

≤ sup
(S,S′)∈S

α (f(S)− f(S′))
2

2∆
2
f/ε2

(b)

≤ αε2

2
,

where (a) follows from Lemma C and (b) follows due to the fact that |f(S)− f(S′)| ≤ ∆f by the definition of global
sensitivity.

Then, we show that MG is
(
α, αL

2τ2ε2

2

)
-SRDP over the dataset collection L. Specifically, we will show that for any

τ > 0, for any two datasets S, S′ ∈ L with d12(S, S′) ≤ τ , Dα (A(S)||A(S′)) ≤ αL2τ2ε2

2∆2
f

. Let S, S′ ∈ L such that

d12(S, S
′) ≤ τ , we have

Dα (MG(S)||MG(S
′)) = Dα

(
N
(
f(S),∆

2
f/ε2
)
||N

(
f(S′),∆

2
f/ε2
))

(a)

≤ α (f(S)− f(S′))
2

2∆
2
f/ε2

(b)

≤
α (L ∥S − S′∥F )

2
ε2

2∆2
f

(c)

≤ αL2τ2ε2

2∆2
f

(10)

where step (a) follows by Lemma C, step (b) follows by the Lipschitzness of the function f with respect to the Frobenius norm,
and step (c) follows by the fact that Frobenius norm is always smaller than L12 norm, i.e.∥S − S′∥F ≤ d12(S, S

′).

Theorem 11 (Theorem 1 for Laplace mechanism). For an L-Lipschitz function f with global sensitivity ∆f and the privacy
parameter ε, let ML(S) = f(S) + Lap (∆f/ε) denote the Laplace mechanism. For a dataset collection L and for τ > 0,

ML is (α, ε)-RDP and
(
α, Lτ

∆f
ε
)

-SRDP for α ≥ 1.

Proof. Laplace mechanism ML is (ε, 0)-DP (Dwork et al., 2006). By the equivalence of (ε, 0)-DP and (∞, ε)-
RDP (Mironov, 2017), ML is (∞, ε)-RDP. This implies that ML is (α, ε)-RDP for any 1 ≤ α ≤ ∞ by the monotonicity
of Rényi divergence (Lemma D).

Lemma D (Monotonicity of Rényi divergence (Mironov, 2017)). For 1 ≤ α < β, for any two distributions P,Q, the
following holds

Dα(P ||Q) ≤ Dβ(P ||Q).

Next, we will show ML is (α, Lτε/∆f)-SRDP over the set L. Specifically, we first show that ML is (∞, Lτε/∆f))-SRDP.
Using the monotonicity of Rényi divergence (Lemma D), we can propagate this property to any α <∞.
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Let h be any output in the output space of f . For any two datasets S, S′ ∈ L with d12(S, S′) ≤ τ ,

P(ML(S) = h)

P(ML(S′) = h)
=

ε
∆f

exp
(
− |h−f(S)|ε

∆f

)
ε

∆f
exp

(
− |h−f(S′)|ε

∆f

)
≤ exp

(
ε

∆f
(|−f(S′) + f(S)|)

)
(a)

≤ exp

(
ε

∆f
L ∥S − S′∥F

)
(b)

≤ exp

(
Lτε

∆f

)
.

(11)

where (a) follows by the L-Lipschitzness of the f with respect to Frobenius norm and (b) follows from the fact that
∥S − S′∥F ≤ d12(S, S

′) ≤ τ .

This implies the output distributions have bounded infinite Rényi divergence, i.e.

D∞(ML(S)||ML(S
′)) = max

h∈H
log

P(ML(S) = h)

P(ML(S′) = h)
≤ Lτε

∆f
, (12)

where the last inequality follows from Equation (11).

By Monotocity of Rényi divergence (Lemma D), for any α ≥ 1, the α-Rényi divergence between the output distribution
of Laplace mechanism on any two datasets S, S′ ∈ L with d12(S, S′) ≤ τ is also bounded by Lτε/∆f . This concludes the
proof.

Theorem 12 (Theorem 1 for Exponential mechanism). For an L-Lipschitz score function Q with global sensitivity ∆Q,
privacy parameter ε, and a dataset collection L, the exponential mechanism, and for any τ > 0, ME is (α, ε)-RDP and
(α, Lτε/∆Q)-SRDP over L for any α ≥ 1.

Proof. The proof for RDP of Exponential mechanism is similar to that of Laplace mechanism. As the exponential
mechanism ME is (ε, 0)-DP (Dwork et al., 2006). By the equivalence of (ε, 0)-DP and (∞, ε)-RDP (Mironov, 2017), ME

is (∞, ε)-RDP. By the monotonicity of Rényi divergence (Lemma D), ME is also (α, ε)-RDP for any α ≥ 1.

To show that ME is
(
α, Lτε

∆Q

)
-SRDP over the set L, we first show that ME is (∞, Lτε/∆Q)-SRDP over L and then apply

the monotonicity of Rényi divergence (Lemma D).

For any S, S′ ∈ L such that d12(S, S′) ≤ τ and any output h in the output space,

P(ME(S) = h)

P (ME(S′) = h)
=

exp
(

Q(S,h)ε
2∆Q

)
exp

(
Q(S′,h)ε

2∆Q

) ∫h∈H exp Q(S′,h)ε
2∆Q

dh∫
h∈H exp Q(S,h)ε

2∆Q
dh

≤
exp

(
Q(S,h)ε
2∆Q

)
exp

(
Q(S′,h)ε

2∆Q

) ∫h∈H exp Q(S′,h)−Q(S,h)ε
2∆Q

exp Q(S,h)ε
2∆Q

dh∫
h∈H exp Q(S,h)ε

2∆Q
dh

≤ exp

(
2maxh∈H |Q(S, h)−Q(S′, h)| ε

2∆Q

)
(a)

≤ exp

(
Lτε

∆Q

)
(13)

where step (a) follows by the L-Lipschitzness of the score function Q(S, h) for all h ∈ H and the fact that ∥S − S′∥F ≤
d12(S, S

′) ≤ τ .

This implies bounded infinite order Rényi divergence between the two output distributions, i.e.

D∞(ME(S)||ME(S
′)) = max

h∈H
log

P(ME(S) = h)

P(ME(S′) = h)
≤ Lτε

∆Q
, (14)
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where the last inequality follows from Equation (13).

As shown in Equation (14), ME is (∞, Lτε/∆Q)-SRDP. This implies that ME is (α, Lτε/∆Q)-SRDP for any α ≥ 1 by
monotonicity of Rényi divergence (Lemma D). This completes the proof.

A.2.2. GRADIENT-BASED METHODS

In this section, we start with providing the formal definitions of gradient-based methods mentioned in Section 2.2 and
evaluated in Table 1, including DP-GD, DP-SGD with subsampling, and DP-SGD with iteration. Then, we provide the
detailed theorems and proofs for their Smooth RDP parameters, as stated in Table 1, in Theorem 13 to 15.

DP-GD Given a L-Lipschitz loss function ℓ, DP-GD (Bassily et al., 2014; Song et al., 2021), denoted by ADP−GD starts
from some random initialization w0 in the parameter space H and conducts projected gradient descent for T iterations as
wt+1 = ΠH(wt − ηg̃t) with the noisy gradient on the whole dataset g̃t defined as g̃t = 1

n

∑n
i=1 ∇wℓ(wt−1, x) +N (0, σ2),

and outputs the average parameter over the T iterations 1
T

∑T
t=1 wt.

DP-SGD with subsampling Another commonly used method is DP-SGD with subsampling (Abadi et al., 2016; Bassily
et al., 2014), denoted as ASGD−samp. In each gradient descent step, DP-SGD with subsampling first draws a uniform
subsample of size B from the dataset without replacement. The gradient update is then performed by adding noise to the
average gradient derived from this subsample. In contrast, DP-GD computes the average gradient of the entire dataset for its
updates.

DP-SGD with iteration Differentially Private Fixed Gradient Descent (DP-FGD), denoted by A(T )
FGD, is a variant of

DP-SGD. It processes the data points in a fixed order — the gradient at the tth step is calculates using the tth point in the
dataset— and outputs the parameter obtained after the T th iteration. DP-SGD with iteration (Feldman et al., 2018), denoted
as ASGD−iter, uses DP-FGD as a base procedure. It takes an extra parameter κτ and first uniformly samples an integer
T from [n− κτ + 1] = {1, . . . , n− κτ + 1} and releases the output from A(T )

FGD, i.e., it releases the result from the T th

iteration. While DP-SGD with iteration cannot take advantage of privacy amplification by subsampling for its privacy
analysis, it relies on privacy amplification with iteration (Feldman et al., 2018) to achieve a comparable privacy guarantee to
that of ASGD−samp.

Theorem 13 (Theorem 1 for DP-GD). For an L-Lipschitz and µ-smooth loss function ℓ, privacy parameter ε, dataset
collection L, and σ = L

√
T

εn , AGD is
(
α, αε

2

2

)
-RDP and

(
α, αµ

2τ2ε2

2L2

)
-SRDP over L for any α ≥ 1, τ > 0.

Proof. We denote each noisy gradient descent step as θt+1 = θt − ηg(θt, S) where g(θt, S) = 1
n

∑n
i=1 ∇θℓ(θ, Si) +

N (0, L
√
T/εn) is the noisy gradient. To show that each gradient descent step is RDP, it suffices to show the gradient operator

g is (α, αε2/2)-RDP by the fact that RDP is preserved by post-processing (Lemma E).

Lemma E (Post-processing of RDP (Mironov, 2017)). Let α > 0, ε : R× R → R, and f be an arbitrary algorithm. For
any ℓ > 0, if A is (α, ε(α))-RDP, then f ◦ A is (α, ε(α))-RDP.

Now, we show the gradient operator g is
(
α, αε

2

2

)
- RDP. By the Lipschitzness of the loss function, for all θ, Si, we have

∇θ(ℓ(θ, Si)) ≤ L. Thus, the global sensitivity of the average gradient 1
n

∑n
i=1 ∇θℓ(θ, Si) is upper bounded by L

n . For any
neighboring datasets S, S′ such that dH(S, S′) = 1, for any θ,

Dα (g(θ, S)||g(θ, S′))
(a)

≤
α
(
1
n

∑n
i=1 ∇θℓ(θ, Si)− 1

n

∑n
i=1 ∇θℓ(θ, S

′
i)
)2

2 L2T
ε2n2

(b)

≤ 2αε2

T
(15)

where step (a) follows by the Rényi divergence of Gaussian mechanism (Lemma C), and step (b) follows by the fact that the
sensitivity of each gradient estimation is L

n . This implies that each gradient estimation g and thus, each gradient descent step,
are (α, 2αε

2
/2T)-RDP. Applying the composition theorem of RDP (Lemma F), we can show that DP-GD with T gradient

descent step is
(
α, 2αε2

)
-RDP.

Lemma F (Composition of RDP, Proposition 1 in Mironov (2017)). For α ≥ 1, let f be (α, ε1)-RDP and g be (α, ε2)-RDP.
Then, the mechanism (f, g) is (α, ε1 + ε2)-RDP.
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Then, for any S, S′ ∈ L such that d12(S, S′) ≤ τ , we show that the Rényi divergence between the gradient estimate with S
and S′, Dα (g(θ, S)||g(θ, S′)), is upper bounded. By the definition of gradient operator g and σ = L

√
T

εn , we have

Dα (g(θ, S)||g(θ, S′)) = Dα

(
N

(
1

n

n∑
i=1

∇θℓ(θ, Si),
L2T

ε2n2

)
||N

(
1

n

n∑
i=1

∇θℓ(θ, S
′
i),

L2T

ε2n2

))
(a)

≤
α
∥∥ 1
n

∑n
i=1 ∇θℓ(θ, Si)− 1

n

∑n
i=1 ∇θℓ(θ, S

′
i)
∥∥2
2

2 L2T
n2ε2

(b)

≤
αε2µ2

(∑n
i=1 ∥Si − S′

i∥2
)2

2L2T

(c)
=
αε2µ2τ2

2L2T

(16)

where step (a) follows from Lemma C, step (b) follows from the smoothness assumption of the loss function,
i.e.∥∇θℓ(θ, Si)−∇θℓ(θ, S

′
i)∥2 ≤ µ ∥Si − S′

i∥2, and step (c) follows from the definition of L12 distance and the fact
that d12(S, S′) ≤ τ .

Applying composition of SRDP (Lemma 2) over the T gradient descent steps concludes the proof.

For establishing the overall privacy guarantees for DP-SGD with subsampling and iteration, we introduce two properties of
the dataset collection: the inverse point-wise distance (Definition 7) and the maximum distance (Definition 8). Then, we
present the overall privacy guarantee for DP-SGD with subsampling and iteration in Theorem 13 and Theorem 15, with
additional assumptions on the inverse point-wise distance and τ -constrained maximum distance of the dataset collection.

Definition 7 (Inverse point-wise distance of a dataset collection L). Let k be the maximum integer such that for every pair of
datasets S1 =

{
Si
1

}n
i=1

∈ L and S2 =
{
Si
2

}n
i=1

∈ L and for all i ∈ [n],
∥∥Si

1 − Si
2

∥∥
2
≤ d12(S1,S2)

k . The inverse point-wise
distance γ of a dataset collection L is defined as γ = n

k .

Definition 8 (τ -constrained maximum distance of a dataset collection L). For τ > 0, the τ -constrained maximum distance
κτ of a dataset collection L is defined as the maximum Hamming distance between any two datasets S1, S2 ∈ L such that
d12(S1, S2) ≤ τ .

Theorem 14 (Theorem 1 for DP-SGD with subsampling). For any L-Lipschitz and µ-smooth loss function ℓ, privacy
parameter ε, dataset collection L with inverse point-wise distance γ, and σ = Ω

(
L
√
T

εn

)
, ASGD−samp is

(
α, α

2ε2

2

)
-RDP

and
(
α, αµ

2τ2ε2γ2

2L2

)
-SRDP over L for any τ > 0 and 1 ≤ α ≤ min

{√
T
ε , L2T

ε2n2 log
n2ε
L
√
T

}
.

Proof. We let πu be a subsampling mechanism that uniformly samples one point from the dataset. We denote each gradient
descent step as θt+1 = θt − ηg(θt, S) where g(θt, S) = ∇θℓ(θ, πu(S)) +N (0, σ2) represents the gradient estimate.

We will show that each gradient estimate g is (α, α2ε2/2T)-RDP and thus, each gradient descent step satisfies RDP with the
same parameters by post-processing theorem of RDP (Lemma E). Then, by the composition theorem for RDP (Lemma F)
over the T gradient descent steps, we can conclude that ASGD−samp is (α, α2ε2/2)-RDP.

First, for each gradient estimate g(θ, πu(S)), we apply Lemma G to upper bound the Rényi divergence for each gradient
step in Equation (18).

Lemma G (Lemma 3 in Abadi et al. (2016)). Suppose that f : X → Rp is a function with ∥f(·)∥2 ≤ L. Assume σ ≥ 1,
and let i ∼ Unif([n]) represent a uniform random variable over the integers in the set [n] = 1, 2, . . . , n. Then, for any
positive integer 1 ≤ α ≤ σ2 ln n

σ and any pair of neighboring datasets S, S′, the mechanism M(S) = f(Si) +N (0, σ2I)
satisfies

Dα (M(S)||M(S′)) ≤ L2α(α+ 1)

n2(1− 1/n)σ2︸ ︷︷ ︸
(I)

+O

(
α3L3

n3σ3

)
︸ ︷︷ ︸

(II)

. (17)

For neighboring datasets S, S′ and for any θ, each gradient estimate satisfies,

Dα (g(θ, πu(S))||g(θ, πu(S′)))
(a)

≤ cα2L2

n2σ2

(b)

≤ α2ε2

2T
, (18)
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Note that part (II) is smaller than part (I) in Equation (17) for α ≤
√
T
ε . Hence, step (a) follows by application of Lemma G

for some positive constant c ≥ 1. Step (b) follows by choosing σ = L
√
cT

εn .

Next, we will show that ASGD−samp is
(
α, ατ

2ε2µ2γ2

2L2

)
-SRDP. It suffices to show that each gradient estimate is(

α, ατ
2ε2µ2γ2

2TL2

)
-SRDP by the post-processing and composition theorem of SRDP (Lemma 2).

Let k be the maximum integer such that for every pair S, S′ ∈ L with d12(S, S′) ≤ τ , the point-wise distance is less than
τ/k. We note that for any S, S′ ∈ L with d12(S, S′) ≤ τ , then for any i ∈ [n],

d12(πu(S), πu(S
′)) = ∥Si − S′

i∥2 ≤ τ

k
. (19)

Next, we will upper bound the Rényi divergence between two gradient estimates. Let i ∼ Unif ([n]) be the sampled index.
Then, for any S, S′ ∈ L such that d12(S, S′) ≤ τ , for any θ,

Dα (g(θ, πu(S))||g(θ, πu(S′)))
(a)

≤ Dα (g(θ, Si)||g(θ, S′
i))

(b)

≤
∥∇θℓ(θ, Si)−∇θℓ(θ, S

′
i)∥

2
2

2σ2

(c)

≤ τ2αµ2

2k2σ2

(d)

≤ ατ2ε2µ2

2TL2

(n
k

)2 (e)
=
ατ2ε2µ2γ2

2TL2

(20)

In step (a), i ∼ Unif([n]) is as defined above. Step (b) follows by the Rényi divergence of Gaussian distributions (Lemma C),
and step (c) follows by the smoothness assumption of ℓ, i.e.∥∇θℓ(θ, S)−∇θℓ(θ, S

′)∥2 ≤ µ ∥S − S′∥2 and Equation (19).
Step (d) follows by the substitution of σ = L

√
cT

εn and c ≥ 1, and step (e) follows by the definition of inverse point-wise
distance γ = n

k as specified in Definition 7.

This completes the proof.

Remark 1. Without Definition 7, we can employ the weaker subsampling results for SRDP (Lemma 3). However, that would
results in an extra n3/2 factor in the SRDP parameter, as Equation (20) will be replaced with Equation (21).

Dα (g(θ, πu(S))||g(θ, πu(S′))) ≤ min
k≥1

[
1

k2

(
1− k − 1

n

)
+
k − 1

n

]
αµ2τ2ε2n2

L2T

(a)

≤

(
1

2n− 3
+

(2n− 4)
(√

2n− 3− 1
)

n(2n− 3)

)
αµ2τ2ε2n2

L2T

(b)

≤ 2µ2τ2ε2n3/2α

L2T

(21)

where (a) is obtained by choosing k =
√
2n− 3 and (b) follows by

(
1

2n−3 +
(2n−4)(

√
2n−3−1)

n(2n−3)

)
≤ 2√

n
.

Theorem 15 (Theorem 1 for DP-SGD with iteration). For an L-Lipschitz and µ-smooth convex loss function ℓ, let
β = supz∈X×Y

∥∥∇2
θℓ(θ; z)

∥∥. For any privacy parameter ε, learning rate η ≤ 2/β, τ ≥ 0, dataset collection L with

τ -constrained maximum distance κτ , and α > 1 such that max
{
L
√

2(α− 1)α, τL
√
2(α− 1)α

}
<
√

2 logn
n

8L
ε , assume

L satisfies that for any S, S′ ∈ L with d12(S, S′) ≤ τ , the differing points in S, S′ are consecutive, then ASGD−iter with

parameter κτ and σ =
√

2 logn
n

8L
ε is

(
α, αε

2

2

)
-RDP and

(
α, ατ

2µ2n log(n−κτ+2)
2(n−κτ+1)L2 logn

)
-SRDP.

Proof. We first note that ASGD−iter is (α, αε
2

2 )-RDP following Theorem 26 in Feldman et al. (2018) (see Lemma H below
for completeness).

Lemma H (Privacy guarantee of SGD by iteration, Theorem 26 in Feldman et al. (2018)). Let ℓ be an convex L-Lipschitz
and β-smooth loss function over Rd. Then, for any learning rate η ≤ 2

β , α > 1, σ ≥ L
√

2(α− 1)α, ASGD−iter satisfies(
α, 4αL

2 logn
nσ2

)
-RDP.
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For SRDP, we consider datasets S, S′ ∈ L such that d12(S, S′) ≤ τ and with all differing points appearing consecutively.
Without loss of generality, we assume the first differing point has index t. By the assumption on the τ -constrained maximum
distance of L, there are in total κτ consecutive differing points in S, S′, t ≤ n− κτ + 1. In the following, we consider two
cases: i) t > T , and ii) t ≤ T .

As the gradient descent step with S and S′ are exactly the same before t, in the first case, with t > T , we have

Dα (ASGD−iter(S)||ASGD−iter(S
′)) = Dα

(
AT

FGD(S)||AT
FGD

)
≤ Dα

(
At

FGD(S)||At
FGD

)
= 0.

In the second case, we first employ Lemma 4 to upper bound the Rényi divergence of the output of DPFGD at some fixed
step T .

Lemma 4. For τ ≥ 0, let L be a dataset collection with dataset size n and τ -constrained maximum distance κτ . Let
L, τ and σ be parameters that satisfy the same assumptions as in Theorem 15. For any two datasets S, S′ ∈ L with
d12(S, S

′) ≤ τ , the algorithm AT
FGD satisfies

Dα

(
AT

FGD(S)||AT
FGD(S

′)
)
≤ 2ατ2L

σ2(n− t̃+ 1)
,

where t̃ ≤ n− κτ + 1 being the index of the first pair of differing points.

For some fixed T , by Lemma 4 the Rényi divergence between the outputs of ASGD−iter on datasets S and S′ is upper
bounded by

Dα

(
AT

FGD(S)||AT
FGD(S′)

)
≤ 2ατ2L

σ2(T − t+ 1)
. (22)

Then, as T is a uniform random variable in ASGD−iter(S), we can upper bound the Rényi divergence at some random time
T by the weak convexity of Rényi divergence (Lemma B). We note that t ≤ T in case (ii), then for all T , as α satisfies
σ ≥ τL

√
2(α− 1)α,

Dα

(
AT

FGD(S)||AT
FGD(S′)

)
≤ 2ατ2L2

σ2 (T − t+ 1)
≤ 2ατ2L2

σ2
≤ 1

α− 1
.

Therefore, we can apply Lemma B with c = 1. For any t ≤ T ,

Dα (ASGD−iter(S)||ASGD−iter(S
′))

(a)

≤ 2

n− κτ + 1

∑
T∈[n−κτ+1]

Dα

(
AT

FGD(S)||AT
FGD(S

′)
)

(b)

≤ 2

n− κτ + 1

n−κτ+1∑
T=t

2ατ2µ2

σ2 (T − t+ 1)

≤ 4ατ2µ2

(n− κτ + 1)σ2
log (n− κτ − t+ 2)

≤ 4ατ2µ2

σ2

log(n− κτ + 2)

n− k + 1

(23)

where (a) follows applying Lemma B and (b) follows from Equation (22) for T ≥ t. Substituting σ concludes the proof.

Proof of Lemma 4. Consider two datasets S, S′ ∈ L that satisfy the assumptions in Lemma 4. Define the point-wise distance
between these datasets as di = ∥Si − S′

i∥2. Let t̃ be the first index where di > 0. By the assumption that differing points
in S, S′ are consecutively ordered, it follows that t̃ ≤ n− κτ + 1. By the definition of τ -constrained maximum distance
(Definition 8) and the assumptions on the dataset collection L, we have,

di =
τ

κτ
, ∀i ∈ {t̃, t̃+ 1, . . . , t̃+ κτ} (24)
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and di = 0 otherwise.

We will define Contractive Noisy Iteration (CNI) (Definition 9) and construct a CNI that outputs AT
FGD after T steps.

Definition 9 (Contractive Noisy Iteration (CNI)). Given an initial state θ0 ∈ Θ, a sequence of contractive functions
ψt : Θ → Θ, and a noise parameter σ > 0, the Contractive Noisy Iteration (θ0, {θt} ,N (0, σ2)) is defined by the following
update rule:

θt+1 = ψt+1(θt) + Zt,

where Zt ∼ N (0, σ2).

For S, S′ ∈ L, we construct two series of contractive function {ψi} and {ψ′
i} as the gradient descent on the ith data point of

S and S′ respectively. Formally,
ψi(θ) = θ − η∇θ(θ, Si)

ψ′
i(θ) = θ − η∇θ(θ, S

′
i)

(25)

The functions ψi and ψ′
i are contractive functions for η ≤ 2/β (Nesterov, 2004). It follows by the definition of DPFGD that

θT = AT
FGD(S) and θ′T = AT

FGD(S
′) are the T th outputs of the CNIs (θ0, {ψt} ,N (0, (ησ)

2
)) and (θ0, {ψ′

t} ,N (0, (ησ)
2
))

respectively.

For these two CNIs, we can apply Lemma I to upper bound the Rényi divergence between their T th outputs.

Lemma I (Theorem 22 in Feldman et al. (2018) with fixed noise distribution). LetXT ,X ′
T denote the output of two Contrac-

tive Noisy Iteration (X0, {ψt},N (0, (ησ)2)) and (X0, {ψ′
t},N (0, (ησ)2)) after T steps. Let st = supx ∥ψt(x)− ψ′

t(x)∥2.
Let a1, . . . , aT be a sequence of reals such that zt =

∑
i≤t si −

∑
i≤t ai ≥ 0 for all t < T and zT = 0. Then,

Dα (XT ||X ′
T ) ≤

T∑
i=1

Dα

(
N (0, η2σ2)||N (ai, η

2σ2)
)

Following the definition in Lemma I, for the two contractive noisy maps (θ0, {ψt} ,N (0, (ησ)
2
)) and

(θ0, {ψ′
t} ,N (0, (ησ)

2
)), we define si as

si = sup
θ

∥ψi(θ)− ψ′
i(θ)∥2

(a)

≤ sup
θ

∥θ − ηg(θ, Si)− θ + ηg(θ, S′
i)∥2

(b)

≤ ηµdi
(c)
=

{
ηµτ
κτ

i ∈ {t̃, t̃+ 1, . . . , t̃+ κτ}
0 Otherwise

(26)

where step (a) follows by Equation (25), step (b) follows by the smoothness assumption on the loss function ℓ,
i.e.∥∇θℓ(θ, Si)−∇θℓ(θ, S

′
i)∥2 ≤ µ ∥Si − S′

i∥2 for any θ, Si, S
′
i. Step (c) follows by Equation (24).

By choosing ai = 0 for all i < t̃ and ai = ητL
T−t̃+1

for i ≥ t̃, we have that for all t ≤ T−κτ+1, zt =
∑

i≤t si−
∑

i≤t ai ≥ 0
and zT = 0. This allows for the application of Lemma I,

Dα

(
AT

FGD(S)||AT
FGD(S)

) (a)

≤ 2α

η2σ2

T∑
i=1

a2i

(b)

≤ 2α

η2σ2

T∑
i=t̃

τ2η2µ2

(T − t̃+ 1)2

=
2ατ2µ2

σ2
(
T − t̃+ 1

)
(27)

where step (a) follows from the application Lemma I and Rényi divergence of two Gaussian distributions (Lemma C). Step
(b) follows by the definition of ai.
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Figure 4. Illustration of the privacy analysis

B. Proof of Meta-Theorem (Theorem 2)
Theorem 2. For a set of datasets L and for any α ≥ 1, τ > 0, consider an algorithm A that is (α, ε(α))-RDP and
(α, ε̃(α, τ))-SRDP over the set L. For a pre-processing algorithm π with L∞ sensitivity ∆∞ and L2 sensitivity ∆2, A ◦ π
is (α, ε̂)-RDP over L for all c1, c2 ≥ 1, where

ε̂ ≤ max

{
αc1 − 1

c1 (α− 1)
ε̃ (αc1,∆2∆∞) + ε

(
c1α− 1

c1 − 1

)
,

αc2 − 1

c2(α− 1)
ε (αc2) + ε̃

(
c2α− 1

c2 − 1
,∆2∆∞

)}
.

(3)

Proof. Consider two neighboring datasets S1 and S2, where S1 = S ∪ {z1} and S2 = S ∪ {z2}. Let π1 and π2 be the
pre-processing functions output by the pre-processing algorithm π on S1 and S2 respectively. Our objective is to establish
an upper bound on the Rényi divergence between the output distribution of A on the pre-processed dataset π1(S1) and
π2(S2), i.e. Dα (A(π1(S1))||A(π2(S2))) and Dα (A(π2(S2))||A(π1(S1))).

In the following, we first derive an upper bound on the Rényi divergence between A(π1(S1)) and A(π2(S2)). To do so, we
construct a new dataset S̃ using the components of π1(S1) and π2(S2) as indicated in Figure 4, i.e.S̃ = π1(S1) ∪ π2(S2).
Then, using the same approach, we will upper bound the Rényi divergence between A(π2(S2)) and A(π1(S1)).

By contruction, S̃ and π2(S2) are neighboring datasets, and that the L12 distance between S̃ and π2(S2) is upper bounded
by ∆2∆∞. Using the RDP property of algorithm A we upper bound the divergence between A(S̃) and A(π2(S2)),

Dα

(
A(π1(S1))||A(S̃)

)
≤ ε̃(α,∆∞∆2). (28)

Similarly, using the SRDP property of the algorithm A over L, we upper bound the divergence between A(S̃) and
A(π1(S1)),

Dα

(
A(S̃)||A(π2(S2))

)
≤ ε(α). (29)

Now, we combine Equations (28) and (29) using the weak triangle inequality of Rényi divergence (Lemma J), to upper
bound the Rényi divergence between A(π1(S1)) and A(π2(S2).

Lemma J (Triangle inequality of Rényi divergence (Mironov, 2017)). Let µ1, µ2, µ3 be distributions with the same support.
Then, for α > 1, p, q > 1 such that 1

p + 1
q = 1, it holds that

Dα(µ1||µ2) ≤
α− 1/p

α− 1
Dpα(µ1||µ3) +Dq(α−1/p)(µ3||µ2).
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Using Lemma J, for any c1 > 1, we have

Dα(A(π1(S1))||A(π2(S2))) ≤
α− 1

c1

α− 1
Dc1α(A(π1(S1))|A(S̃)) +D c1α−1

c1−1
(A(S̃)||A(π2(S2)))

(a)

≤ αc1 − 1

c1(α− 1)
ε̃(αc1,∆∞∆2) + ε

(
c1α− 1

c1 − 1

) (30)

where step (a) follows from Equations (28) and (29).

Similarly, by constructing a dataset S̃ consisting of π1(S) and π2(z2), we upper bound Dα

(
A(π2(S2))||A(S̃)

)
and

Dα

(
A(S̃)||A(π1(S1))

)
with the SRDP and RDP property in a similar manner as Equations (28) and (29). Apply-

ing Lemma J, we can show that for any c2 > 1,

Dα(A(π2(S2))||A(π1(S1))) ≤
αc2 − 1

c2(α− 1)
ε(αc2) + ε̃

(
c2α− 1

c2 − 1
,∆∞∆2

)
(31)

Combining Equation (30) and Equation (31) concludes the proof.
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C. Proofs for the sensitivity of different pre-processing algorithms (Section 4.1)
In this section, we bound the sensitivity of pre-processing algorithms discussed in Section 4.1.

C.1. Sensitivity analysis of deduplication and quantization

Proposition 3. For a dataset collection L, the L2 and L∞ sensitivities6 of η-approximate deduplication πd
η and quantization

πq
η are ∆2(L, πd

η) = 1 and ∆2(L, πq
η) = η, and

∆∞(L, πd
η) = ∆∞(L, πq

η) = max
S∈L

max
B∈B(S)

2 |B| .

Proof. Consider two neighboring datasets S1, S2 ∈ L. Without loss of generality, let S = S1 ∩ S2, z1 = S1 \ S and
z2 = S2 \ S, similar to the notations of original datasets in Figure 4.

Sensitivity analysis of deduplication As the data space X is bounded by 1, it is obvious that the upper bound on L2

sensitivity of πd
η is 1.

To bound the L∞ sensitivity, we first recall the definition of a “good” cluster. For a dataset S and a point x ∈ S,
define B(x, η;S) = {x̃ ∈ S : ∥x̃− x∥2 ≤ η}, a ball of radius η around x. A point x is the centroid of a good
cluster if B(x, η;S) = B(x, 3η;S). The set of all good clusters in a dataset S is denoted by B(S) = {Bi}mi=1 where
Bi := B(xi, η;S) for all xi ∈ S satisfying B(xi, η;S) = B(xi, 3η;S).

We will first prove that the difference between the datasets πd
η,S1

(S) and πd
η,S(S) is the ball B(z1, η;S1). Similarly, we

show that the maximum difference between πd
η,S2

(S) and πd
η,S(S) is B(z2, η;S2). Taking supremum over all neighboring

datasets in L, these two results imply that the L∞ sensitivity of deduplication is upper bounded by twice the size of the
largest good cluster in any dataset S ∈ L.

To calculate that the maximum difference between the datasets πd
η,S1

(S) and πd
η,S(S), we assume without loss of generality

that there exists x1, . . . , xk ∈ S satisfying ∥z1 − xi∥ ≤ η for all i ∈ [k]. We consider the following cases:

Case I: x1, . . . xk are not in any good cluster centered at some c ∈ S. We will discuss the two sub-cases: one where the
point z1 forms the centroid of a good cluster, and another where it does not.

If the point z1 is the centroid of a good cluster, then x1, . . . xk are the only points in the good cluster B(z1, η;S) and will be
removed by πd

η,S1
. In contrast, in Case I, x1, . . . , xk will not be removed by πd

η,S . Hence, the difference between πd
η,S1

(S)

and πd
η,S(S) is {x1, . . . , xk} ⊂ B(z1, η;S).

If the point z1 is not the centroid of a good cluster, then z1 is not in any good cluster. We will prove this claim by
contradiction. Assume z1 is in a good cluster centered at some c ∈ S. Then, for any xi, i ∈ [k],

∥xi − c∥2 ≤ ∥xi − z1∥2 + ∥z1 − c∥2 ≤ 2η. (32)

If ∥xi − c∥2 ≤ η, then xi is also in the good cluster around c ∈ S, contradicting the assumption that none of {x1, . . . xk} is
in any good cluster. On the other hand, if η ≤ ∥xi − c∥2 ≤ 2η, then B(c, 3η;S) cannot be a good cluster.

Therefore, we have shown that when x1, . . . xk are not in any good cluster and the point z1 is not the centroid of a good
cluster, then none of {x, . . . , xk, z1} is in a good cluster. In this case, πd

η,S(S) = πd
η,S1

(S).

Case II: There exists some point x ∈ {x1, . . . , xk} in a good cluster centered at c ∈ S, i.e.x ∈ B(c, η;S) and B(c, η;S)
is a good cluster. We first consider the effect of πd

η,S and πd
η,S1

on the single point x. Note that

∥z1 − c∥2 ≤ ∥z1 − x∥2 + ∥x− c∥2 ≤ 2η. (33)

If ∥z1 − c∥2 ≤ η, B(c, η;S1) = B(c, η;S ∪ {z1}) is also a good cluster. Then, πd
η,S1

and πd
η,S1

has the same effect on x.

6When the definition of neighboring dataset is refined to addition and deletion of a single data point, the L∞ sensitivity of both
deduplication and quantization on a set L can be reduced to maxS∈L,B∈B(S) |B|.
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If η ≤ ∥z1 − c∥2 ≤ 2η, then z1 ∈ B(c, 3η;S1) but z1 /∈ B(c, η;S1). This implies B(c, 3η;S1) ̸= B(c, η;S1), and
B(c, η;S1) is not a good cluster. Therefore, πd

η,S removes the point x, while πd
η,S1

does not. In this case, x is a different
point between πd

η,S(S) and πd
η,S1

(S).

We note that there are at most k different points between πd
η,S(S) and πd

η,S1
(S), when all points {x1, . . . , xk} are in some

good cluster B(ci, η;S) for ci ∈ S and z1 is selected such that none of B(ci, η;S1) remains to be a good cluster. In this
case, the difference between πd

η,S(S) and πd
η,S1

(S) is {x1, . . . , xk} ⊆ B(z1, η;S).

Following a similar argument, we can show that the maximum number of different points between πd
η,S2

(S) and πd
η,S(S)

is k and this maximum set of different points is a subset of B(z2, η;S2). This concludes the proof for the sensitivity of
deduplication.

Senstivity analysis of quantization The analysis of L∞ sensitivity of quantization is the same as that of deduplication.
To get the L2 sensitivity of quantization, we consider two cases. If a point is in a good cluster, then quantization process
change this point to the centroid of the cluster. The L2 distance incurred by the pre-processing is upper bounded by η by the
definition of η-quantization. If a point is not in a good cluster, it remains unchanged after quantization. Combining the two
cases, the L2 sensitivity of quantization is upper bounded by η.

C.2. Sensitivity analysis of model-based imputation

In this section, we first provide a general result on the sensitivity for any model-based imputation method. We then introduce
specific imputation methods, including mean imputation (Corollary 4 in the main text), median imputation, trimmed mean
imputation, and linear regression. We summarize their sensitivity results in Table 3.

For a given model f , the imputation algorithm πf first generates an imputation function fS by fitting the model f to a
dataset S. Then, it replaces each missing value in the dataset with the prediction based on the imputation function fS . The
L2 and L∞ sensitivity of model-based imputation is presented in Proposition 16.

Several widely used models for imputation include mean, median, trimmed mean, and linear regression, described as
follows. Mean imputation replaces the missing values in the jth feature with the empirical mean of the available data for
that feature. On the other hand, median imputation replaces each missing value with the median of the non-missing points
in the corresponding feature. The trimmed mean estimator with parameter m is an interpolation between the mean and
median. It estimates each missing value by computing the mean after removing the m smallest and largest points from the
remaining points of the feature that is not missing. The above methods address the missing values at a feature j using data
from that feature alone. In contrast, linear regression also employs the information of the other features of the missing point.
Specifically, it estimates the missing value by the prediction of a linear regression on the jth feature using some or all other
features in the dataset.

Many imputation methods, such as median and linear regression, do not have bounded global sensitivity even when the
instance space is bounded (Alabi et al., 2022). However, the local sensitivity of these methods are usually bounded on
well-behaved datasets. Given a collection of well-behaved datasets L, the L2 sensitivity over the collection is the upper
bound on the local sensitivity of all datasets S ∈ L. We exploit this property to find the L2 sensitivity of the aforementioned
imputation methods. We introduce additional notation and provide a summary of the L2 sensitivity for different methods
in Table 3.

Proposition 16 (Sensitivity of model-based imputation). For a dataset collection L, the L∞ sensitivity of model-based
imputation πf over L is the maximum number of missing values present in any dataset in L. Furthermore, the L2-sensitivity
of πf over L is given by

∆2(L, πf ) = max
S′,S∈L

dH(S,S′)=1

max
x∈S∪S′

√√√√ d∑
j=1

(fS(xj)− fS′(xj))
2
,

where xj denotes the jth feature of x. Specifically, for mean imputation, median imputation, trimmed mean imputation, and
regression, we present their sensitivities and corresponding assumptions in Table 3.
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Notation Meaning Imputation Model f L2-Sensitivity
∆2(L, πf )

p Maximum number of missing points in any S ∈ L Mean 2
n−p

xmin
(m) Minimum mth ordered statistics of any feature in any S ∈ L Median xmax

((n+1)/2) − xmin
(n/2)

xmax
(m) Maximum mth ordered statistics of any feature in any S ∈ L m-Trimmed Mean xmax

(m)−xmin
(n−m)/n−2m−p

λmax Maximum eigenvalue of XTX , for any S = (X,Y ) ∈ L Linear regression λ2
max

(λmax+1)λ2
min

+ 1
λminλmin Minimum eigenvalue of XTX , for any S = (X,Y ) ∈ L

Table 3. Notations and L2 sensitivity of different imputation models

Proof. It is obvious that the L∞ sensitivity of model-based imputation is upper bounded by the number of entries with
missing values in any of the dataset S ∈ L. The L2 sensitivity is upper bounded by the sensitivity of the model f over the
set L. This concludes the proof.

L2 Sensitivity of mean over L For neighboring datasets S1, S2 ∈ L, write S1 = S ∪ {z1} and S2 = S ∪ {z2}. Without
loss of generality, denote S = {si}n−1

i=1 . For each data point si, we denote its jth feature as sij . Also, we denote the number
of available data points for the jth feature as nj . In the following, we derive an upper bound on the L2 sensitivity of mean
imputation ∆2(L, πmean),

∆2(L, πmean)
2 ≤

d∑
j=1

(
1

nj

(
n−1∑
i=1

sij + z1j

)
− 1

nj

(
n−1∑
i=1

sij + z2j

))2

≤
d∑

j=1

(
1

nj
(z1j − z2j)

)2

≤ 1

n− p

d∑
j=1

(z1j − z2j)
2
=

4

(n− p)2

(34)

where the last inequality follows by the fact that the instance space is bounded with diameter 1. Taking square root from
both side of Equation (34) completes the proof.

L2 Sensitivity of median and m-trimmed mean over L The L2-sensitivity of median and m-trimmed mean over L follows
directly by the definition.

L2 Sensitivity of linear regression πLR over L For linear regression, we present the L2 sensitivity by considering two
datasets X,X ′ ∈ L where X ′ = X ∪ {z}. For any j ∈ [d], imputation with linear regression of the feature Xj looks at the
a submatrix of X that does not include the jth feature. Denote the submatrix that is used for linear regression as Xr (Xr

includes a subset of features, specified by the index r, of the original dataset X). Let Σ = 1
nX

⊤X , and let Σr = 1
nX

⊤
r Xr

be a principal matrix of Σ with submatrix Xr. We calculate the L2 sensitivity of linear regression on imputing the point xj
below,

∆2(L, πLR) =
∥∥x⊤r (X⊤

r Xr)
−1X⊤

r Xj − x⊤r (X
⊤
r Xr + zz⊤)−1(X⊤

r Xj + zzj)
∥∥

≤ ∥xr∥
∥∥(X⊤

r Xr)
−1X⊤

r Xj − (X⊤
r Xr + zz⊤)−1(X⊤

r Xj + zzj)
∥∥

≤
∥∥∥((X⊤

r Xr)
−1 − (X⊤

r Xr + zz⊤)
)−1

X⊤
r Xj − (X⊤

r Xr + zz⊤)−1zzj

∥∥∥
≤
∥∥∥((X⊤

r Xr)
−1 − (X⊤

r Xr + zz⊤)
)−1

X⊤
r Xj

∥∥∥+ ∥∥(X⊤
r Xr + zz⊤)−1zzj

∥∥
(a)

≤
∥∥∥∥ (X⊤

r Xr)
−1zz⊤(X⊤

r Xr)
−1

(1 + z⊤(X⊤
r Xr)−1z)

X⊤
r Xj

∥∥∥∥+ 1

λmin

(b)

≤ λ2max

(λmax + 1)λ2min

+
1

λmin

(35)
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where step (a) follows from Sherman-Morrison-Formula and that the eigenvalue of a principal submatrix is always larger
than the smallest eigenvalue of the original matrix following Theorem 4.3.15 in (Horn & Johnson, 1985) and then taking
supremum over all X ∈ L. Similarly, step (b) follows from the fact that the eigenvalue of a principal submatrix is always
smaller than the largest eigenvalue of the original matrix following Theorem 4.3.15 in (Horn & Johnson, 1985) and then
taking supremum over all X ∈ L.

C.3. Sensitivity analysis of PCA

Proposition 5. For a dataset collection L, the L∞ sensitivity of πPCA−dim and πPCA−rank is the size of the datasets in L,
i.e. n. The L2-sensitivity of πPCA−dim and πPCA−rank is bounded by 2∆2 and ∆2 respectively, where

∆2 =
4(3n+ 2)

n(n− 1)min{δkmin(L), δ1min(L)}
,

where δkmin(L) = minS∈L λk(S) − λk+1(S) is the minimum gap between the kth and (k + 1)th eigenvalue over any
covariance matrix of S ∈ L.

Proof. PCA for dimension reduction: For any two neighboring datasets S, S̃, without loss of generality, we denote
S = {xi}ni=1, and S̃ = {xi}n−1

i=1 ∪{x′n}. Let Σ, Σ̃ denote their empirical covariance matrices and µ̂, µ̂′ denote the empirical
mean. Let Ak and Ãk be the matrix consisting of first k eigenvectors of Σ and Σ̃ respectively.

First, for any x ∈ X , we upper bound the
∥∥∥A⊤

k x− Ã⊤
k x
∥∥∥
F

by a linear function of
∥∥∥Σ̃− Σ

∥∥∥
F

using properties of the dataset
collection L, ∥∥∥A⊤

k x− Ã⊤
k x
∥∥∥
F

(a)

≤
∥∥∥Ak − Ã⊤

k

∥∥∥
F

(b)
= Tr

(
2(I −A⊤

k Ãk)
)

(36)

where step (a) follows from Cauchy-Schwarz inequality and bounded instance space and step (b) follows from the definition
of Frobenius norm ∥A∥F = Tr(A⊤A) and the orthonormality of Ak, Ãk.

Let σi denote the ith singular value of A⊤
k Ãk, and let θi be the ith canonical angle of A⊤

k Ãk, i.e. cos θi = σi. We can write

Tr
(
2(I −A⊤

k Ãk)
)

as follows,

Tr
(
2(I −A⊤

k Ãk)
)

(a)
= 2

(
k −

k∑
i=1

σ2
i

)
(b)
= 2

(
k −

k∑
i=1

(cos θi)
2

)

(c)
= 2

(
k − k +

k∑
i=1

(sin θi)
2

)
(d)

≤
4
∥∥∥Σ̃− Σ

∥∥∥
F

min{δkmin(L), δ1min(L)}
.

(37)

where step (a) and (b) are due to the definition of singular value and canonical angle, step (c) follows from the fact that
(sin θ)2 + (cos θ)2 = 1 for any θ, and step (d) follows by Davis-Kahan Theorem (Lemma K) stated below.

Lemma K (Davis-Kahan Theorem (Yu et al., 2014)). Let Σ, Σ̂ ∈ Rd×d be symmetric and positive definite, with eigenvalues
λ1,≥ . . . ≥ λd and λ̂1 ≥ . . . ≥ λ̂d respectively. For k ≤ d, let V and V̂ be the dataset whose matrices consisting of the
first k eigenvectors of Σ and Σ̂ respectively. Then,

∥∥∥sinΘ(V, V̂ )
∥∥∥
F
≤

2min
∥∥∥Σ− Σ̂

∥∥∥
F

min{λk − λk+1, λ1 − λ2}
,

where Θ(V, V̂ ) denotes the k × k diagonal matrix of the principal angles between two subspaces V and V̂ .

It remains to upper bound the Frobenius norm of
∥∥∥Σ− Σ̃

∥∥∥
F

. By the definition of the empirical covariance matrix, we
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decompose Σ̃ as

Σ̃ =
1

n− 1

n−1∑
i=1

(xi − µ̂′)(xi − µ̂′)⊤ +
1

n− 1
(x′n − µ̂′)(x′n − µ̂′)⊤

(a)
=

1

n− 1

n−1∑
i=1

(xi − µ− 1

n
(x′n − xn))(xi − µ− 1

n
(x′n − xn))

⊤

︸ ︷︷ ︸
part I

+
1

n− 1
(x′n − µ− 1

n
(x′n − xn))(x

′
n − µ− 1

n
(x′n − xn))

⊤︸ ︷︷ ︸
part II

(38)

where (a) follows from µ′ = µ+ 1
n (x′n − xn).

Part (I) can be written as

Part I =
1

n− 1

n−1∑
i=1

(xi − µ− 1

n
(x′n − xn))(xi − µ− 1

n
(x′n − xn))

⊤

=
1

n− 1

n−1∑
i=1

(xi − µ)(xi − µ)⊤ − 1

n(n− 1)

n−1∑
i=1

(
(xi − µ)(x′n − xn)

⊤ + (x′n − xn)(xi − µ)⊤
)

+
1

n2
(x′n − xn)(x

′
n − xn)

⊤

=Σ− 1

n− 1
(xn − µ)(xn − µ)⊤ +

1

n(n− 1)

(
(xn − µ)(x′n − xn)

⊤ + (x′n − xn)(xn − µ)⊤
)

+
1

n2
(x′n − xn)(x

′
n − xn)

⊤

(39)

Similarly, we can write part (II) as

Part II =
1

n− 1
(x′n − µ− 1

n
(x′n − xn))(x

′
n − µ− 1

n
(x′n − xn))

⊤

=
(x′n − µ)(x′n − µ)⊤

n− 1
− (x′n − µ)(x′n − xn)

⊤

n(n− 1)
− (x′n − xn)(x

′
n − µ)⊤

n(n− 1)

+
(x′n − xn)(x

′
n − xn)

⊤

(n− 1)n2

(40)

Substituting Equation (39) and Equation (40) into Equation (38), and by the fact that
∥∥xxT∥∥

F
≤ 1 for ∥x∥2 ≤ 1, we get

∥∥∥Σ̃− Σ
∥∥∥
F
≤ 2(3n+ 2)

n(n− 1)
. (41)

Finally, substituting Equation (41) into Equation (37), and then Equation (37) into Equation (36) completes the proof.

PCA for rank reduction: For any two neighboring datasets S, S′ ∈ L, we define the notations of Σ̃,Σ, Ak, Ãk similarly
as in the proof for πPCA−dim. We state Lemma L, which is used to upper bound

∥∥∥AkA
⊤
k x− ÃkÃ

⊤
k x
∥∥∥
F

.

Lemma L (Simplified version of Theorem 3 in (Zwald & Blanchard, 2005)). Let A be a symmetric positive definite matrix
with eigenvalues λ1 > λ2 > . . . > λd. Let B be a symmetric positive matrix. For an integer k > 0, let Ak be the matrix
consisting the first k eigenvectors of A and Ãk be the matrix consisting of the first k eigenvectors of A+B. Then, Ak and
Ãk satisfy that ∥∥∥AkA

⊤
k − ÃkÃ

⊤
k

∥∥∥ ≤ 2 ∥B∥
λk − λk+1

.
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Applying Lemma L with A+B = Σ̃ and A = Σ, we can show an upper bound on the term
∥∥∥AkA

⊤
k x− ÃkÃ

⊤
k x
∥∥∥
F

for any
x ∈ X . ∥∥∥AkA

⊤
k x− ÃkÃ

⊤
k x
∥∥∥
F
≤

∥∥∥Σ̃− Σ
∥∥∥
F

λk(S)− λk+1(S)
≤ 4(3n+ 2)

n(n− 1)δmin(S)
(42)

where the last inequality follows by Equation (41) and the definition of δmin(S) = min{δkmin(S), δ
1
min(S)}. Taking the

supremum over all dataset S ∈ L concludes the proof.

C.4. Sensitivity Analysis of Scaling

Proposition 6. For a dataset collection L, the L∞ sensitivity of standard scaling and min max scaling is the size of the
datasets in L, i.e. n. The L2 sensitivity of standard scaling is

∆2 =
2

σ3
minn

+
2

nσmin
,

where σmin is the minimum standard deviation over datasets in L.

Proof. The L∞ sensitivity for both scaling methods is trivially upper bounded by the size of the datasets in L. In the
following, we prove the L2 sensitivity for standard scaling and min max scaling respectively.

Proof of L2 sensitivity for standard scaling For any two neighboring datasets S, S′, let µ, µ′ denote the mean of S, S′

respectively and σ, σ′ denote the standard deviation of S, S′ respectively. Then, the L2 sensitivity of standard scaling is

∆2 = max
S,S′,x

∥∥∥∥x− µ

σ
− x− µ′

σ′

∥∥∥∥
2

= max
S,S′,x

∥∥∥∥σ′x− σ′µ− σx+ σµ′

σσ′

∥∥∥∥
= max

S,S′,x

∥∥∥∥ (σ′ − σ) (x− µ)

σσ′

∥∥∥∥
2

+max
S,S′

∥∥∥∥µ− µ′

σ′

∥∥∥∥
(a)

≤ 2maxS,S′ ∥σ′ − σ∥
σ2
min

+
maxS,S′ ∥µ− µ′∥

σmin

(43)

where step (a) follows from ∥x− µ∥2 ≤ 2 for any x and S and the definition of σmin.

From Liu (2016), the global sensitivity of sample mean and variance are 2
n . We then show that for a dataset collection L, the

global sensitivity conditional on L is upper bounded by 1/σminn.

For any S, S′ with sample variances σ2, (σ′)
2, we have

|σ − σ′| ≤

∣∣∣σ2 − (σ′)
2
∣∣∣

2σmin
≤ 1

σminn
, (44)

where the first inequality follows by rearranging
∣∣∣σ2 − (σ′)

2
∣∣∣ = |(σ − σ′) (σ + σ′)| ≥ 2σmin |σ − σ′|, and the second

inequality by substituting the global sensitivity of sample covariance from Liu (2016).

Substituting the sensitivity of sample mean 2/n and sample standard deviation 1
σminn

into Equation (43), we conclude the
proof.
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D. Proofs for the overall privacy guarantees (Section 4.2)
In this section, we provide the proofs of the overall privacy guarantees for specific pre-processed DP pipelines, as stated
in Table 2 in Section 4.2. For clarity, we restate the full version of Theorem 7 and specify the privacy guarantee for each
category of privacy mechanisms (each row in Table 2) in Theorem 17. Then, we present the proof for each category
separately. As the proof of DP-GD is the same as that of Gaussian mechanism, we omit the proof for DP-GD for simplicity.

Theorem 17 (Full version of Theorem 7). Let p denote the L∞ sensitivity of deduplication, quantization and mean
imputation. Let n ≥ min {101, p} be the size of any dataset in the dataset collection L. Let ℓ be a 1-Lipschitz and 1-smooth
loss function. For an output function f and a score function Q, assume their Lipschitz parameter and global sensitivity are
both 1. Then,

(i) Gaussian mechanism with output function f satisfy
(
α, 1.05αε2(1 + p2)

)
-RDP,

(
α, 1.05αε2(1 + η2p2)

)
-RDP,(

α, 1.05αε2
(
1 + 4p2

(n−p)2

))
-RDP,

(
α, 1.05αε2

(
1 + 12.22

δ2min

))
-RDP and 1.05αε2

(
1 + 4

σ3
min

)
-RDP when coupled

with deduplication, quantization, mean imputation, PCA for rank reduction and standard scaling respectively.

(ii) Exponential mechanism with score functionQ and Laplace mechanism with output function f satisfy (α, ε(1+p))-RDP,

(α, ε(1 + ηp))-RDP,
(
α, ε

(
1 + 2p

n−p

))
-RDP,

(
α, ε

(
1 + 12.2

δmin

))
-RDP and 4.2αε2

(
1 + 1

σ3
min

)
-RDP when coupled

with deduplication, quantization, mean imputation, PCA and standard scaling for rank reduction respectively.

(iii) DP-SGD with subsampling with loss function ℓ satisfies
(
α, 1.05αε2

(
2α+ 12.22

δ2min

))
-RDP and 2.1αε2

(
α+ 8

σ6
min

)
-

RDP when coupled with PCA for rank reduction and standard scaling respectively.

(iv) DP-SGD with iteration with loss function ℓ coupled with deduplication, quantization and mean imputation satisfy(
α, 1.1αε2

(
1 + p2n log(n−p)

(n−p) logn

))
-RDP,

(
α, 1.1αε2

(
1 + η2p2n log(n−p)

(n−p) logn

))
-RDP, and(

α, 1.1αε2
(
1 + 4p2n log(n−p)

(n−p)3 logn

))
-RDP respectively.

Proof of Theorem 17 (i). We apply Theorem 2 with c1 = c2 = 2,

ε̂(α) ≤ max

{
2α− 1

2(α− 1)
ε̃(2α,∆2∆2) + ε(2α− 1),

2α− 1

2(α− 1)
ε(2α) + ε̃(2α− 1,∆2∆∞)

}
(a)

≤ max

{
2α− 1

2(α− 1)
ε̃(2α,∆2∆∞) +

2α− 1

2(α− 1)
ε(2α),

2α− 1

2(α− 1)
ε(2α) +

2α− 1

2(α− 1)
ε̃(2α,∆2∆∞)

}
=

2α− 1

2(α− 1)
(ε̃(2α,∆2∆2) + ε(2α))

(b)

≤ 1.05 (ε̃(2α,∆2∆∞) + ε(2α)) .

(45)

where step (a) follows from the monotonicity of Renyi Divergence (Lemma D) and step (b) follows from 2α−1
2(α−1) ≤ 1.05 for

α > 11.

By substituting the expression of RDP and SRDP parameter from Table 1 for Gaussian mechanism, the L2 and L∞
sensitivity (∆2 and ∆∞) for deduplication, quantization, PCA, standard scaling and mean imputation from Proposition 3, 5
and 6 and Corollary 4, and the Lipschitz parameter and global sensitivity of the output function f into Equation (45), we
complete the proof of the overall privacy guarantees for Gaussian mechanism.

Proof of Theorem 17 (ii). We apply Theorem 2 with c1 = c2 = 1,

ε̂(α) ≤ max

{
α− 1

α− 1
ε̃(α,∆2∆2) + ε(∞),

α− 1

α− 1
ε(α) + ε̃(∞,∆2∆∞)

}
= max{ε̃(α,∆2∆∞) + ε(∞), ε(α) + ε̃(∞,∆2∆∞)}

(46)
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We then derive an upper bound on ε̂(α) by monotonicity of RDP,

ε̂(α)
(a)

≤ ε̂(∞)
(b)

≤ ε̃(∞,∆2∆∞) + ε(∞) (47)

where step (a) follows from Lemma D and step (b) follows by setting α = ∞ in Equation (46).

By substituting the expression of RDP and SRDP parameter from Table 1 for Laplace mechanism, the L2 and L∞ sensitivity
(∆2 and ∆∞) for deduplication, quantization, imputation and PCA from Proposition 3, Corollary 4 and Proposition 5, and
the Lipschitz parameter and global sensitivity of the output function f into Equation (45), we complete the proof of the
overall privacy guarantees for Laplace mechanism.

Similarly, for exponential mechanism, we substitute the expression of RDP and SRDP parameter from Table 1 for exponential
mechanism, the L2 and L∞ sensitivity (∆2 and ∆∞) for deduplication, quantization, PCA, standard scaling and mean
imputation from Proposition 3, 5 and 6 and Corollary 4, and the Lipschitzness and the global sensitivity of the score function
Q, into Equation (45). This completes the proof of the overall privacy guarantees for exponential mechanism.

In the following, we provide the proof of combining DP-SGD with subsampling with PCA for rank reduction because
datasets preprocessed by PCA for rank reduction satisfies Definition 7 automatically.

Proof of Theorem 17 (iii). We first note that for PCA, for any two neighboring datasets, S1, S2, by the definition of sensitivity
of PCA, πPCA−rank(S1), πPCA−rank(S2) and πPCA−dim(S1), πPCA−dim(S2) has inverse point-wise divergence 1 because
∆∞ = n.

Following a similar argument as in the proof Gaussian mechanism (Theorem 17 (i)), we set the parameters in Theorem 2
c1 = c2 = 2 and obtain Equation (45). Then, we substitute in Equation (45) the following parameters: a)RDP and SRDP
parameters for DP-SGD with subsampling from Table 1, b)γ = 1, c) Lipschitzness and smoothness parameter of the loss
function ℓ, and d) L2 and L∞ sensitivity (∆2 and ∆∞) for PCA and standard scaling from Proposition 5 and 6. This
completes the proof.

For DP-SGD with iteration, the pre-processing mechanisms achieve a tighter bound while satisfying ∆∞ ≪ n by Definition 8.
Therefore, this method will not provide tighter bound for PCA and standard scaling. However, it improves the privacy
analysis for imputation, deduplication and quantization, as proved below.

Proof of Theorem 17 (iv). We first note that the maximum divergence κτ of datasets pre-processed by imputation, dedupli-
cation or quantization is upper bounded by ∆∞ = p.

Following a similar argument as in the proof of Gaussian mechanism (Theorem 17 (i)), we set the parameters in Theorem 2
c1 = c2 = 2. We substitute in Equation (45) the following parameters: a)RDP and SRDP parameters for DP-SGD with
iteration from Table 1, b)κτ = ∆∞ = p, c) Lipschitzness and smoothness parameter of the loss function ℓ, and d) L2 and
L∞ sensitivity (∆2 and ∆∞) for quantization, deduplication and imputation from from Proposition 3 and Corollary 4. This
completes the proof.
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E. Privacy and accuracy guarantees of Algorithm 1 (Section 5.2)
In this section, we present the proofs for the theoretical guarantees of Algorithm 1, as stated in Section 5.2. Specifically, we
provide the proofs for the privacy guarantee (Theorem 8) and the accuracy guarantee (Proposition 9) of Algorithm 1.

Theorem 8. For any L-Lipschitz and µ-smooth loss function ℓ, ε > 0 and δ ≤ exp
(
−1.05ε2

(
1 + 12.22µ2

L2β2

))
, Algorithm 1

with privacy parameters ε, δ, and estimated lower bound β is (ε̂+ ε, δ)-DP on a dataset of size n ≥ 101, where ε̂ =

3ε

√
1.05

(
1 + 12.22µ2

L2β2

)
log 1

δ .

Proof. For brevity, we denote Algorithm 1 as APTR. For any two neighboring datasets S1, S2 ∈ L, we consider two cases:
i) the minimum eigen-gap of either S1 or S2 is smaller than or equal to β, and ii) the minimum eigen-gap of both S1 and S2

is greater than β.

Case (i) Without loss of generality, we assume the eigen-gap of S1 is smaller than or equal to β. We will show that for any
neighboring dataset S2 of S1, i.e. dH(S1, S2) = 1, APTR satisfies the following inequality, for any output set O ⊂ H∪{⊥}

P [APTR(S1) ∈ O] ≤ eϵP [APTR(S2) ∈ O] +
δ

2
. (48)

First consider the case O ⊂ H. Then, assuming that the output is ⊥ with high probability i.e. P [APTR(S1) ̸=⊥] ≤ δ/2, we
have that

P[APTR(S1) ∈ O] ≤ P[APTR(S1) ̸=⊥] ≤ δ

2
≤ eϵP[APTR(S2) ∈ O] +

δ

2
. (49)

Now we show P [APTR(S1) ̸=⊥] ≤ δ/2. Given a input dataset S, we denote the Γ in step 1 of Algorithm 1 by Γ(S).

P(APTR(S1) ̸=⊥)
(a)

≤ P
(
Γ(S1) ≤

log 2
δ

ε

)
(b)
= P

(
Lap

(
1

ε

)
≤

log 2
δ

ε

)
(c)

≤ δ

2
. (50)

where step (a) follows because the algorithm does not return ⊥ only if Γ(S1) ≥
log 2

δ

ε (Line 5 in Algorithm 1), and step (b)
follows from minS′:δmin(S′)≤β dH(S′, S1) = 0 as S1 itself satisfies δmin(S1) ≤ β. Step (c) follows by the tail bound of
Laplace distributions: for a positive real number t > 0, Pz∼Lap(0,b)(z ≥ t) ≤ e−t/b.

Now consider the only other possible output O = {⊥}. We note that for any neighboring dataset S2 of S1,

min
S′:δmin(S′)≤β

dH(S′, S1) = 0, min
S′:δmin(S′)≤β

dH(S′, S2) ≤ 1 (51)

This implies

P
(
Γ(S2) ≤

log 2
δ

ε

)
≥ P

(
Lap

(
1

ε

)
≤

log 2
δ

ε
− 1

)
. (52)

Define J(S) = minS′:δmin(S′)<β dH(S, S′). It is simple to note that J has global sensitivity 1 due to Equation (51). Thus,
Γ is essentially Laplace mechanism on J and thereby (ε, 0)-DP. This implies that for any neighboring datasets S2 of S1,

P(APTR(S1) =⊥)

P(APTR(S2) =⊥)
=

P
(
Γ(S1) ≤

log 2
δ

ε

)
P
(
Γ(S2) ≤

log 2
δ

ε

) (a)

≤
P
(

Lap
(
1
ε

)
≤ log 2

δ

ε

)
P
(

Lap
(
1
ε

)
≤ log 2

δ

ε − 1
) (b)

≤ eε (53)

where the numerator of step (a) follows by Equation (50) and the denominator of step (a) follows by Equation (52). Step (b)
follows by the tail bound of Laplace distributions. Combining Equation (50) and Equation (53), we show that Equation (48)
holds in case (i).

Case (ii) Consider S1, S2 whose kth-eigengaps are greater than β. We will show that the following holds, for any
O ⊂ H ∪ {⊥}

P [APTR(S1) ∈ O] ≤ eε̂P [APTR(S2) ∈ O] +
δ

2
(54)
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where ε̂ = 3ε

√
1.05

(
1 + 12.22µ2

L2β2

)
log 1

δ . First consider the case O = {⊥}. Following a similar argument as Equation (53),

we have
P [APTR(S1) =⊥]

P [APTR(S2) =⊥]
≤ eε ≤ eε̂. (55)

Now consider the case when the output is not ⊥. Then, choosing any α ≥ 11 yields that the privacy parameter of DP-GD
combined with non-private PCA is

(
α, 1.05αε

(
1 + 12.22µ2

L2β2

))
-RDP from Table 2. Then, invoking Lemma M converts the

RDP parameter to Approximate DP.

Lemma M (RDP to Approximate DP (Mironov, 2017)). If A is an (α, ε)-RDP algorithm, then for 0 < δ < 1, it satisfies(
ε+

log 1
δ

α−1 , δ
)

-differential privacy.

In particular, we choose α =
√

log 1
δ

1.05ε2
(
1+ 12.22µ2

L2β2

) + 1 ≥ 11 and obtain that the output in step 6 of Algorithm 1 is (ε̂, δ)-DP,

where

ε̂
(a)

≤ 2ε

√
1.05

(
1 +

12.22µ2

L2β2

)
log

1

δ
+ 1.05ε

(
1 +

12.22µ2

L2β2

)
(b)

≤ 3ε

√
1.05

(
1 +

12.22µ2

L2β2

)
log

1

δ

Here, step (a) follows by Lemma M with chosen α and step (b) utilizes the fact that δ satisfies log 1
δ ≥ 1.05ε2

(
1 + 12.22µ2

L2β2

)
.

This algorithm also discloses information about the dataset regarding its minimum eigen-gap. Specifically, when the
minimum eigen-gap of the private dataset is smaller than β, then with high probability the output is ⊥. However, the
additional privacy cost incurred is smaller than that of releasing Γ directly. As Γ is a Laplace mechanism with global
sensitivity 1, releasing Γ satisfies (ε, 0)-DP. By basic composition of approximate differential privacy (Lemma N), we can
combine the privacy cost for releasing the results from DP-GD and releasing Γ. Thus, Algorithm 1 is (ε̂+ ε, δ)-DP under
case (ii).

Lemma N (Basic composition of differential privacy (Dwork & Roth, 2014)). If algorithm A1 is (ε1, δ1)-DP and A2 is
(ε2, δ2)-DP, then (A1,A2) is (ε1 + ε2, δ1 + δ2)-DP.

Combining the two cases concludes the proof.

Proposition 9. For δ, ε defined in Algorithm 1, n ≥ 101, and any β ≤ δk (S), with probability at least 1− ξ, Algorithm 1
outputs θ̂ such that the excess empirical risk

E
[
ℓ̂S(θ̂)

]
− ℓ̂S(θ

⋆) = O

(
L
√

1 + k log 1/δ

εn

)
+ 2LΛ, (4)

where ξ = 1
2δ

exp
(
− (δk(S)−β)nε

12.2

)
,Λ =

∑d
i=k+1 λi(S) where the high probability is over the randomness in Step 1 and the expectation

is over the randomness of Step 6.

Proof. We first prove that the probability that Algorithm 1 outputs ⊥ is small. Then, we show that in the even that it does
not output ⊥ but a real vector, then the excess empirical risk is small.

Let SdH
= {S, S′ | dH(S, S′) = 1 ∧ δmin(S), δmin(S

′) > 0}. Let ΣS ,ΣS′ denote the covariance matrices of S and S′

respectively and δk (S) denote the kth eigen-gap of ΣS . Then, for any S, S′ ∈ SdH
, we first upper bound |δk (S)− δk (S

′)|

|δk(S′)− δk(S)| =
∣∣∣λk(Σ̃)− λk+1(Σ̃)− λk(Σ) + λk+1(Σ)

∣∣∣
≤
∣∣∣λk(Σ̃)− λk(Σ)

∣∣∣+ ∣∣∣λk+1(Σ)− λk+1(Σ̃)
∣∣∣ . (56)

To bound this term, we upper bound
∣∣∣λk(Σ̃)− λk(Σ)

∣∣∣ for any k. Using Weyl’s inequality (Schindler, 2015)

max
j∈[d]

∣∣∣λj(Σ)− λj(Σ̃)
∣∣∣ ≤ ∥∥∥Σ̃− Σ

∥∥∥
op

≤
∥∥∥Σ̃− Σ

∥∥∥
F
≤ 6.1

n
, (57)
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where the last inequality follows from a similar argument as Equation (41) in the proof of Proposition 5 for n ≥ 101. This
yields

|δk(S′)− δk(S)| ≤
12.2

n
. (58)

Thus, for any S0, Sm with dH(S0, Sm) = m, we can construct a series of datasets S1, . . . , Sm−1 such that dH(Sj , Sj+1) = 1
for j ∈ {0, ...,m− 1}. By applying Equation (58) iteratively over each i, we have

δk(S0) ≤ δk(Sm) +
12.2m

n
. (59)

More generally, for any pairs of dataset S, S′, we have

dH(S, S′) ≥ |δk (S)− δk (S
′)|n

12.2
(60)

Hence,

min
S′:δk(S′)≤β

dH(S, S′) ≥ (δk(S)− β)n

12.2
. (61)

Now, we upper bound the probability that Algorithm 1 does not output ⊥.

P
[
Γ (S) ≥

log 1
δ

ε

]
= P

[
min

S′:δk(S′)≤β
dH(S, S′) + Lap

(
1

ε

)
≥

log 1
δ

ε

]
≥ P

[
(δk(S)− β)n

12.2
+ Lap

(
1

ε

)
≥

log 1
δ

ε

]
(a)
= 1− 1

2
exp

(
ε

(
log 1

δ

ε
− (δk(S)− β)n

12.2

))
= 1− 1

2δ
exp

(
β − δk(S)

12.2
nε

)
,

(62)

where step (a) follows from the tail bound of Laplace distribution when δk(S) ≥ β +
12.2 log 1

δ

nε .

We have shown that Algorithm 1 does not output ⊥ with probability 1 − 1
2δ exp

(
β−δk(S)

12.2 nε
)

. It remains to derive the
convergence guarantee of Algorithm 1 when the output is not ⊥. To show this, we utilize the property that PCA transforms
the dataset to have a low-rank covariance matrix, which allows us to apply the dimension-independent convergence guarantee
of DP-GD following the analysis of Song et al. (2021) and establish the desired convergence guarantee.

Let A⊤
k ∈ Rk×d be the matrix consisting of the first k eigenvectors of the covariance matrix of S, Σ = 1

n

∑n
i=1 xix

⊤
i . Let

Sk = {(AkA
⊤
k xi, yi)}ni=1. We can decompose the error into three terms,

E
[
ℓ̂S(θ̂)

]
− ℓS(θ

⋆) ≤
∣∣∣E [ℓ̂S(θ̂)]− E

[
ℓ̂Sk

(θ̂)
]∣∣∣︸ ︷︷ ︸

(a)

+
∣∣∣E [ℓ̂Sk

(θ̂)
]
− ℓSk

(θ⋆)
∣∣∣︸ ︷︷ ︸

(b)

+ |ℓS(θ⋆)− ℓSk
(θ⋆)|︸ ︷︷ ︸

(c)

(63)

By Theorem 3.1 in Song et al. (2021), part (b) is upper bounded by O
(

L
√

1+k log 1
δ

εn

)
.

Lemma O (Theorem 3.1 in Song et al. (2021)). Let θ0 = 0p be the initial point of AGD. Let the dataset be centered at 0.
Let k be the rank of the projector to the eigenspace of the covariance matrix

∑n
i=1 xix

⊤
i . For a L-Lipschitz loss function ℓ,

AGD with T = n2ε2 with appropriate learning rate η output θ̂ satisfying

E
[
ℓ̂S(θ̂)

]
− ℓ̂S(θ

⋆) ≤ O

L
√
1 + 2k log 1

δ

εn

 .
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Next, we show that part (a) and (c) are upper bounded by L
∑n

i=k+1 λi(S) = LΛ. To show this, we prove that for any

θ ∈ Bd
2 ,
∣∣∣ℓ̂Sk

(θ)− ℓ̂S(θ)
∣∣∣ ≤ L

∑n
i=k+1 λi(S).

∣∣∣ℓ̂Sk
(θ)− ℓ̂S(θ)

∣∣∣ = ∣∣∣∣∣ 1n
n∑

i=1

ℓ(θ⊤AkA
⊤
k xi, yi)−

1

n

n∑
i=1

ℓ(θ⊤xi, yi)

∣∣∣∣∣
(a)

≤ 1

n

n∑
i=1

L
∥∥θ⊤AkA

⊤
k xi − θ⊤xi

∥∥
2

(b)

≤ 1

n

n∑
i=1

L
∥∥AkA

⊤
k xi − xi

∥∥
2

(c)

≤ L

d∑
i=k+1

λi(S) = LΛ

(64)

where step (a) follows from Lipschitzness of the loss function ℓ, step (b) follows due to the projection step in DP-GD
projects θ to the Euclidean ball with radius 1, and step (c) is obtained by substituting the reconstruction error of PCA, which
is
∑d

i=k+1 λi(S). This concludes the proof.
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F. Experiment setups and discussion
F.1. Experiment setups

Data generation The synthetic data is generated with the make_classification function in the sklearn library.
We generate a 2-class low rank dataset consisting of 1000 data points with dimension 6000 and rank 50. We set the parameter
n_cluster_per_class in make_classification to 1.

Models and allocation of privacy budget We compared the excess empirical loss of three models in Figure 3. We provide
the details of the models below.

• Pre-processed DP pipeline: We employ non-private PCA to reduce the dimensionality of the original dataset to
k and then apply private logistic regression. In particular, we use the make_private_with_epsilon method
from the Opacus library with PyTorch SGD optimizer with learning rate 1e-2, max_grad_norm = 10 and
epochs = 10. The privacy parameters epsilon and delta are obtained by adjusting the desired overall privacy
level with our framework (Theorem 17).

• No pre-processing: We directly apply private logistic regression with the same parameters on the original high-
dimensional dataset.

• DP-PCA: We first implement the DP-PCA in Chaudhuri et al. (2012) and then apply private logistic regression. We
allocate half of the privacy budget to DP-PCA and the remaining half to private logistic regression.

F.2. Discussion on clipping

In practice, when the sensitivity of the original function is unbounded, one can apply the technique of clipping to restrict
the sensitivity (Abadi et al., 2016; Liu et al., 2022). We can also incorporate clipping into our pre-processed DP pipeline.
Specifically, we first non-privately compute the PCA projection matrix Ak with the original dataset S. We clip the
original data to Sclipped with the clipping threshold C ∈ [0.1R, 0.7R, 0.99R], where R represents the maximum norm
of the original dataset. Then, we apply the projection matrix to the clipped dataset to obtain the pre-processed dataset
Spreprocessed = AkA

⊤
k Sclipped. Finally, we apply private logistic regression on Spreprocessed, with the privacy parameter set by

our framework.

As shown in Table 4, the effect of clipping on accuracy depends on the clipping threshold. This is because clipping reduces
the L2 sensitivity of PCA from 12R/nδkmin to 12C/nδkmin, allowing for selection of a larger privacy parameter during private
learning and better accuracy. However, clipping also introduces inaccuracies in the dataset.

Table 4. Excess empirical loss of clipped pre-processed DP-pipeline

Clipping 0.1 Clipping 0.7 Clipping 0.99 Pre-processed DP pipeline

1.0 0.84 0.89 0.88 0.89
2.0 0.84 0.89 0.89 0.89
5.0 0.85 0.90 0.90 0.90

However, we note that R is dataset dependent and might lead to additional privacy leakage.
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