
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti†

Department of Computer Science
ETH Zurich

Zürich, Switzerland
edoardo.debenedetti@inf.ethz.ch

Vikash Sehwag, Prateek Mittal
Department of Electrical and Computer Engineering

Princeton University
Princeton, United States

{vvikash,pmittal}@princeton.edu

Abstract—In this paper, we ask whether Vision Transformers
(ViTs) can serve as an underlying architecture for improving
the adversarial robustness of machine learning models against
evasion attacks. While earlier works have focused on improving
Convolutional Neural Networks, we show that also ViTs are
highly suitable for adversarial training to achieve competitive
performance. We achieve this objective using a custom adversarial
training recipe, discovered using rigorous ablation studies on a
subset of the ImageNet dataset. The canonical training recipe for
ViTs recommends strong data augmentation, in part to compensate
for the lack of vision inductive bias of attention modules, when
compared to convolutions. We show that this recipe achieves
suboptimal performance when used for adversarial training. In
contrast, we find that omitting all heavy data augmentation,
and adding some additional bag-of-tricks (ε-warmup and larger
weight decay), significantly boosts the performance of robust
ViTs. We show that our recipe generalizes to different classes
of ViT architectures and large-scale models on full ImageNet-
1k. Additionally, investigating the reasons for the robustness
of our models, we show that it is easier to generate strong
attacks during training when using our recipe and that this
leads to better robustness at test time. Finally, we further study
one consequence of adversarial training by proposing a way to
quantify the semantic nature of adversarial perturbations and
highlight its correlation with the robustness of the model. Overall,
we recommend that the community should avoid translating the
canonical training recipes in ViTs to robust training and rethink
common training choices in the context of adversarial training.
We share the code for our experiments at the following URL:
https://github.com/dedeswim/vits-robustness-torch.

Index Terms—Adversarial Robustness, Adversarial Training,
Computer Vision, Vision Transformer

I. INTRODUCTION

Adversarial training [4], which has emerged as one of the
most successful defenses against evasion attacks targeting
machine learning models [5, 6], consists of training against
worst-case inputs to make networks robust. However, it incurs
a large generalization gap [7–9], and closing this gap is a
key challenge. Existing work that tackles this problem can be
broadly classified into three categories: 1) improvements in the
adversarial training mechanism [4, 10–12], 2) modifications to
the training data [13–15], and 3) modifications of the neural
network architecture for robust training [1, 16]. Our work
focuses on the latter category, by improving robustness with
new architectures while improving the training recipe.

†Work done as a Master’s student at the IC Department at EPFL.

Im-1K C100 Flowers C10 Cal101

30

35

40

45

50

55

60

65

R
ob

us
t

A
cc

ur
ac

y
(%

)

Fine-tuning

R50/WRN-28-10

XCiT-S12 (canonical)

XCiT-S12 (ours)

Fig. 1: A light recipe is better! Comparison of our proposed
recipe with light data augmentation and the canonical one
for ViTs (XCiT-S12 in this experiment) in pre-training on
ImageNet-1k and finetuning on four different datasets. Our
recipe boosts robust accuracy by 13.1% on ImageNet-1k
and up to 5.5% on downstream finetuning tasks. For further
comparison, we also include ResNet-50 (with smooth activation
function [1, 2] – GELU [3]). Since a WideResNet-28-10
performs better for low-resolution datasets, we use it as a
baseline for C10 and C100. Abbreviations for datasets are 1)
Im-1k: ImageNet-1k, 2) C100: CIFAR-100, 3) Flowers: Oxford-
flowers, 4) C10: CIFAR-10, and 5) Ca101: Caltech-101.

Vision Transformers for adversarial training. Several earlier
works have innovated on activation functions [1, 2, 16] for
CNNs or their structure [17] to improve robustness. While
such advancements in CNNs are helpful and CNNs are the
de facto standard architecture for adversarial training, we
show that a drastic boost in adversarial robustness can be
achieved by switching the architecture class itself, i.e., by
using Vision Transformers (ViTs) [18]. In fact, even non-
adversarially trained ViTs show some signs of higher robustness
than conventional CNNs when considering non-adversarial
perturbations [2, 19–21], which further encourages their use in
robust training. Inspired by these features shown by ViTs, prior
work [2, 22, 23] has attempted to train ViTs with adversarial
training but failed to replace CNNs as the dominant architecture
on robustness benchmarks [24]. Since ViTs are competitive

https://github.com/dedeswim/vits-robustness-torch


with CNNs in standard training [25, 26], it is imperative to ask
whether their suboptimal performance in adversarial training is
fundamental or simply an artifact of sub-par training recipes.
With a systematic investigation, we identify that the latter is
true and propose a simple, yet highly effective recipe to boost
the performance of ViTs in adversarial training.

Canonical ViTs training recipes are suboptimal for adver-
sarial training. Due to the lack of strong inductive bias in
ViTs, they need custom training recipes [27], which include
heavy data augmentation, to achieve optimal performance. We
observe that using these canonical recipes with adversarial
training leads to sub-optimal performance, even suggesting
that state-of-the-art ViTs [28] fail to significantly outperform
conventional CNN architectures, such as ResNets [29]. We
show that optimizing the training recipe boosts the performance
of ViTs from suboptimal to state-of-the-art (Fig. 1).

Improved training recipe (weaker data augmentation is
better!). Instead of just taking the canonical training recipe
used by DeiT [30] and successive works [28, 31–33], we first
analyze some ViT variations and architectural components
that could make ViTs more suitable for adversarial training.
We then identify a set of important parameters that have a
fundamental role in adversarial training, such as adversarial
training warm-up, data augmentations, and weight decay. We
go beyond the canonical training recipes commonly used for
ViT-like models by doing a thorough search for the optimal
values of these parameters: we observe that the optimal choices
for non-adversarial training drastically differ from those for
adversarial training. In fact, we find that while the use of strong
data augmentation is recommended for standard training [27,
30], this is detrimental to adversarial training: not only does
using light data augmentation improve the robustness of ViTs,
but it does so without sacrificing the clean accuracy. Our
recommendation to use weaker data augmentation is also
surprising since earlier works have argued for stronger data
augmentation in adversarial training [2], albeit with a warm-up
in the augmentation intensity, as well as the same weight decay
as the one used for standard training.

Generalization of our recipe across scales, architectures, and
datasets. Improving over the canonical training recipe requires
a rigorous ablation study, which has a high computational
cost on large-scale datasets and models.1 To circumvent
this challenge, we optimize our recipe with a subset of
the ImageNet-1k dataset and smaller models. However, for
widespread usage, it is imperative that the benefits of our
recipe generalize across diverse scenarios. We first show that
the proposed recipe outperforms the canonical one at scale, i.e.,
on the full ImageNet-1k dataset. Next, we show that not only it
performs better across the XCiT transformer class [28], but also
for other transformers (such as DeiT [30] and PoolFormer [32]),
as well as for modern CNNs (ConvNeXt [34]). Finally, we
show that the gains of our recipe in pre-training on ImageNet-

1Doing such ablation on full ImageNet-1k with XCiT-S would take 2632
TPUv3 hours (i.e., 179 TPUv3 days).

1k also directly transfer when finetuning on smaller datasets
of both high- and low- resolution.
Delving deeper into adversarial robustness of ViTs. We
conduct two analyses to better understand why our recipe
brings an improvement: attack effectiveness and semantic
nature quantification. Since large-scale adversarial training uses
only few-step attacks, its performance depends on the strength
of adversarial examples generated with few-step attacks. We
uncover that, throughout the whole training duration, few-step
attacks are more effective for a ViT trained with our recipe
than for a ViT trained with the canonical recipe, as well as
more effective than a conventional CNN architecture. This
results in a model which is overall more robust to strong
attacks at test time. Next, we propose a new way to quantify
the semantic nature of adversarial perturbations [35] for robust
ViTs. We show, with a quantitative method, that the adversarial
perturbations targeting XCiT-S12 have more semantic features
than those targeting a GELU ResNet-50.
Key contributions. We make the following key contributions:
• Through a rigorous ablation study, we uncover a light yet

effective adversarial training recipe for ViTs. In particular,
we find that the use of weak data augmentation, in contrast
to strong augmentation in the canonical recipe, achieves
state-of-the-art performance on the ImageNet-1k dataset
(compared with the other models on RobustBench [24]),
with models having up to 47.60% AutoAttack accuracy and
73.76% clean accuracy.

• We further show that our proposed recipe generalizes across
different scales of datasets and models, and different classes
of ViT architectures.

• We demonstrate that the advantage of our recipe in pre-
training also leads to benefits when finetuning on downstream
datasets. Across four low- and high-resolution datasets, our
recipe achieves up to 5.5% higher robust accuracy than the
canonical recipe.

• We identify that the high robustness of ViTs is also
related to the effectiveness of adversarial attacks on them.
Simultaneously, we quantify that adversarial perturbations
targeting robust ViTs have semantic characteristics.

Paper Outline. We provide a brief overview of adversarial
training and the ViT architecture in Section II. In Section III,
we first identify the limitations of the canonical recipe and
then conduct an ablation study for the proposed training recipe.
In Section IV, we first show the advantage of our recipe on the
full-scale ImageNet-1k dataset across different architectures.
We later demonstrate its downstream benefits in finetuning.
In Section V, we examine why ViTs are highly successful
in adversarial training. In Section VI, we present the related
works and conclude the paper with a discussion in Section VII.
Open-sourced artifacts. Finally, we share the code on GitHub2

to enable the community both to reproduce our results and fine-
tune the models on further datasets. In the same repository, we
also share the checkpoints of our models for five datasets,

2https://github.com/dedeswim/vits-robustness-torch

https://github.com/dedeswim/vits-robustness-torch


numerous architectures, and perturbations to enable other
researchers to fine-tune the models, as well as run further
analyses.

II. BACKGROUND

Adversarial training [4] has shown to be an effective
and reliable method to defend against adversarial examples,
and most of the subsequent work about defenses against
adversarial examples is based on it. On the other hand, ViTs
are an emerging class of architectures that achieve competitive
performance on standard computer vision benchmarks [25]. In
this section, we give an overview of both.

A. Overview of adversarial training

Adversarial training [4] is one of the most successful
defenses against adversarial examples. It consists of generating
adversarial examples at each step and training the model using
the generated perturbed data instead of the original, clean data.
Given a model with parameters θ, input data x with label y
sampled from a distribution pdata, a set of allowed inputs S and
a loss L, adversarial training formally consists of optimizing
the following min-max problem:

θ̂ = argmin
θ

E(x,y)∼pdata

[
max
δ∈S

L(x+ δ, y;θ)
]
. (1)

Several further techniques have been proposed to improve
adversarial training and the trade-off [10] between robustness
and accuracy. Some of them include the optimization of a
different objective [10, 36], early stopping to avoid the so-
called robust overfitting [37], tuned data augmentation [13],
weight averaging [13] etc.
Metrics in adversarial training. It is common to use the
following two metrics to measure performance in adversarial
training: a) Clean accuracy: the accuracy of the model evaluated
on the original data. b) Robust accuracy.: the accuracy of the
model on a dataset of adversarial examples generated from
the original data using an attack. To avoid overestimating the
robustness of our networks, it is critical to evaluate the models
using a strong attack when generating adversarial examples.
We employ AutoAttack [38] for the robust accuracy evaluation.
AutoAttack is considered the de-facto standardized method to
assess the adversarial robustness of classification models. It
is an ensemble of four different parameter-free attacks, three
white- and one black-box. We provide more details about the
evaluation procedure of our experiments in Section III.

B. Overview of Vision Transformers

The Transformer architecture [39] is an architecture for
sequence transduction and Natural Language Processing (NLP)
tasks (e.g., machine translation) based on the attention mech-
anism [40]. This architecture includes a series of so-called
Multi-Head Attention layers, each followed by a Multi-Layer
Perceptron block. Every layer has a residual connection.
This architecture takes as input a series of words, which
are tokenized and embedded into vectors of size dmodel.
The Transformer architecture can also be easily adapted for

x

98765321

Transformer
N ✕ (Attention + MLP blocks)

Embedded 
tokens + 
positional 
embeddings

Learnable 
class token

Linear 
classifier *

Class

Processed 
class token

40

*

Linear projection

Fig. 2: Overview of the transformer architecture. The
different phases of a vision transformer model: 1) patchification
2) addition of the positional encodings and of the [cls] token
3) processing through N transformer blocks 4) classification.
Further details about ViTs and some variants are in Appendix A.
Image reproduced from Dosovitskiy et al. [18].

computer vision tasks [18]. The resulting architecture is called
Vision Transformer (ViT). In particular, it is possible to divide
the input images into non-overlapping patches, which are
embedded into tokens, and then fed to the transformer. We
give additional in-depth details about the various components
of this architecture, as well as more information about the ViT
variants used in this work in Appendix A.

III. FINDING AN EFFECTIVE ADVERSARIAL TRAINING
RECIPE FOR VISION TRANSFORMERS

We now aim at finding an effective training recipe to leverage
the potential that ViTs have shown for standard training. We
first highlight the limitations of the canonical standard training
recipes which use strong data augmentation. We then conduct
an ablation study of major design choices: 1) a warm-up for
the perturbation budget, 2) data augmentation policy, and 3)
weight decay. As a result, we show the factor which influences
performance the most: surprisingly, strong data augmentation
leads to sub-par performance.

Setup. We validate the ablations in this section with a simplified
setup for the sake of efficiency: we train thirty-two models on a
subset of 100 random classes of ImageNet-1k and validate them
using APGD-CE [38], the first attack of the well-established
AutoAttack [38]. However, in Section IV we will validate the
findings of this section on the full ImageNet-1k dataset [41],
using the full ensemble of AutoAttack. Throughout the paper,
we mainly focus on untargeted ℓ∞ attacks, and for ImageNet-
100 and ImageNet-1k on perturbations of magnitude 4/255, as
this is the most studied scenario so far [24] (with the exception
of Section IV-A, where we also test our recipe on the ℓ2 threat
model with ε = 3.0). We evaluate the checkpoint which has
the highest FGSM accuracy throughout the training, to prevent
robust overfitting [37]. Additional details about the training
setup and procedure are in Appendix D.



A. The canonical training recipe leads to suboptimal perfor-
mance in adversarial training

While early attempts with ViTs succeeded only with large-
scale pre-training, a lot of effort has been put to achieve good
performance without the need of pre-training them on very
large datasets. In particular, both Touvron et al. [30] and Steiner
et al. [27] observe that strong data augmentation techniques
are needed, i.e., MixUp, CutMix, RandAugment, and Random
Erasing, as they help compensate for the lack of a strong vision
prior such as convolutions. Similarly, other work on ResNets
and CNNs, in general, observed that stronger data augmentation
improves the generalization of standard training [34, 42].

Canonical training recipe. We refer to canonical training
recipe as the one used in the original XCiT paper [28], which,
in turn, is borrowed from DeiT’s paper [30], and used for the
large majority of ViT variations (e.g., CaiT [31] and Pool-
Former [32]), and modern CNNs (e.g., ConvNeXt [34]). We
summarize this recipe below. When adversarially training XCiT-
S, a ViT variant, if we use the canonical recipe, we observe very
poor performance when compared to the equivalent state-of-the-
art ResNet-50 with GELU activation function by Bai et al. [2].
They use a setup that does not differ from the standard setup for
ResNets and achieve almost one fourth better robust accuracy
(35.51% vs. 28.70%). Given this difference, considering that on
standard training XCiT-S performs better than ResNet-50, it is
natural to investigate whether a better setup can lead to stronger
results. In this section, we rigorously analyze the design space
of adversarial training and propose a better training recipe.
In Table I, we show a summary of why the canonical recipe
is sub-optimal for XCiT-S, with further, rigorous results in
Table II, which we discuss in the next sections.

TABLE I: Limitation of canonical training recipe. While
borrowing the canonical recipe in adversarial training largely
succeeds for CNNs, i.e., ResNet-50, it leads to suboptimal
performance in ViTs, i.e., XCiT-S. Directly translating the
canonical recipe to adversarial training gives a false impression
that ViTs are not suitable for adversarial training.

Architecture Standard training Adversarial training

Clean accuracy AutoAttack accuracy

ResNet-50 76.0 [42, 43] 3 35.51 [2]
XCiT-S 82.0 [28] 28.70

3For ResNet we show the clean accuracy of the model available in the
torchvision library, as reported by Wightman et al. [42]. However, this model
is trained without heavy augmentation, similarly to the adversarially trained
ResNet-50 by Bai et al. [2], even though Wightman et al. [42] show that
heavy data augmentation benefits ResNets as well.

Canonical training recipe

• Strong data augmentations (MixUp + CutMix + Ran-
dAugment + Random Erasing)

• Small weight decay (0.05 using AdamW on ImageNet-
1k)

B. Architecture choice: Architectural innovations significantly
benefit adversarial training

Our objective is to understand how innovations in ViTs
architecture, post the conception in Dosovitskiy et al. [18],
directly benefit adversarial training. In particular, we focus on
DeiT [30], CaiT [31], and XCiT [28]. These architectures are a
natural choice, as each improves upon the latter. CaiT improves
over DeiT by introducing Class Attention while XCiT further
improves CaiT using Cross-Covariance Attention. We provide
detailed descriptions of each architecture in Appendix B. Our
results in Table IIa show that Class Attention in CaiT helps with
the fit to adversarial training, and Cross-Covariance Attention
boosts, even more, the performance. For this reason, we choose
XCiT as the base architecture for our experiments. To speed up
the ablation study, we use a smaller variant of XCiT, XCiT-N12.

C. Data-augmentation: Adversarial training of ViTs requires
weak augmentation

The success of ViTs strongly depends on the use of heavy
data augmentation and appropriate regularization (Steiner et
al. [27] and Touvron et al. [30]), often attributed to their lack
of inductive bias for vision tasks. Simultaneously, adversarial
training for CNNs also benefits from heavy data augmenta-
tion [13], albeit on low-resolution datasets, thus it is natural
to start using heavy data augmentation in adversarial training
of ViTs. However, we find this choice highly sub-optimal, as
weaker data augmentation achieves much better performance
with adversarial training (Table IIc). We run a thorough
ablation, considering all sixteen combinations of the four key
data augmentation policies: CutMix [44], RandAugment [45],
MixUp [46], and Random Erasing [47]. We give an in-depth
description and examples of the various data augmentation
techniques in Appendix C. In all the training runs, we always
apply basic augmentations such as horizontal flipping, random
resize-rescale, and color jitter. We show the top seven setups
in Table IIc, ranked by APGD-CE accuracy (full results in
Table IX in Appendix E). Surprisingly, the augmentation setup
that leads to the best results in terms of APGD-CE accuracy
is the one with no additional augmentations, apart from the
basic ones listed above, together with the one that uses only
Random Erasing. These setups improve the robust accuracy
by 3.84% over the canonical strategy of using heavy data
augmentation. This phenomenon is likely arising due to the
inherent regularization imposed by adversarial training, where
strong adversarial perturbations already make the optimization
much harder thus leading to better performance without heavy
augmentation. Moreover, we note that the models with the best
robust accuracy are also the ones with the best clean accuracy,



TABLE II: Beyond canonical choices: identifying best adversarial training setup for ViTs. We analyze choices in architecture,
data-augmentation, and optimization setup to identify the best training setup for adversarial training. We use the ImageNet-
100 dataset and measure the robust accuracy using the APGD-CE attack. Our analysis uncovers intriguing trends: one is a
counter-intuitive phenomenon where weaker data augmentations lead to better performance in ViTs with adversarial training.

(a) Comparison of different ViT-like architectures. Innovation in ViTs architectures has a
relevant impact on adversarial training performance. We observe that the cross-covariance
attention-based XCiT architecture achieves significantly better performance than the others.

Architecture Parameters GFLOPs
Accuracy

Clean APGD-CE

DeiT-S [30] 22M 4.61 62.52 33.32
CaiT-S-12 [31] 25M 4.76 70.20 35.84
XCiT-N12 [28] 3M 0.56 48.46 30.48
XCiT-S12 [28] 26M 4.81 85.06 54.80

(b) Attack curriculum. We warm up ε by
linearly increasing it for a fixed number of
early epochs. It benefits both clean and robust
accuracy. (Arch: XCiT-N12).

Epochs Accuracy

Clean APGD-CE

0 48.46 30.48
5 52.04 32.86
10 54.62 33.84
20 56.10 34.88
30 56.12 34.54

(c) Weak data augmentation is better. The strategies that perform best are those with
just Random Erasing or no heavy augmentation at all. We report the seven best results,
and the baseline recipe with all data augmentations, in this table (full results in Table IX
in Appendix E). In all the runs in this table we keep weak data augmentations that are
commonly used (random flip and crop, and color jitter). (Arch: XCiT-N12)

Data Augmentation Policy Accuracy

MixUp CutMix RandAugment Random Erasing Clean APGD-CE

✗ ✗ ✗ ✓ 67.28 39.22
✗ ✗ ✗ ✗ 66.78 39.22
✓ ✗ ✗ ✗ 61.04 38.56
✓ ✗ ✗ ✓ 60.46 38.26
✓ ✓ ✗ ✗ 62.04 38.18
✗ ✗ ✓ ✗ 65.34 37.64
✗ ✗ ✓ ✓ 64.76 37.62
✓ ✓ ✓ ✓ 56.64 35.38

(d) Large weight decay helps. The best
results are obtained with 0.5 weight decay,
which is 10× larger than the 0.05 weight
decay used in the canonical recipe. (Arch:
XCiT-N12)

Weight Decay
Accuracy

Clean APGD-CE

0 66.44 39.02
0.001 66.40 39.04
0.01 66.28 38.66
0.05 67.16 39.30
0.1 67.28 39.92
0.5 68.78 42.02
1.0 67.68 40.88

suggesting that using only light data augmentation does not
affect clean accuracy. We note that the setup with only Random
Erasing has the same robust accuracy as the one with no heavy
augmentation but has a slightly larger clean accuracy. Despite
this, we choose as a setup for the next experiments the one
without Random Erasing, to keep the overall setup as simple
as possible. We will validate this choice in Section IV-A.

D. Optimization setup: Tuning attack curriculum and addi-
tional regularization brings further improvements

Epsilon warm-up. Bai et al. [2] observe that adversarially
training a DeiT on the full ImageNet-1k dataset would fail
using the same setup as the one in the DeiT paper. For this
reason, we attempt training an XCiT-N12 to see if the training
succeeds. Even though the training run succeeds, the model
struggles in the first few epochs. A possible solution could
be to use the following attack curriculum: we make the task
easier for the first few epochs and then gradually make it
harder. We warm up the adversarial perturbation budget (ε) by
linearly increasing ε for a fixed number of warm-up epochs.
Our results (Table IIb) show that using 20 epochs as warm-up
duration gives a significant increase in both clean accuracy
and APGD-CE accuracy. This suggests that, while gradually

increasing the difficulty of the task does not prove useful for
models with larger inductive bias, such as ResNets [48], it can
help for models that have a low inductive bias (e.g., ViTs).
Weight decay. As pointed out by Pang et al. [48], weight
decay has an important role to make models more robust: a
larger weight decay helps reduce the generalization gap for
robust accuracy. For this reason, we ablate several values of
weight decay, in different orders of magnitude. The weight
decay used to train XCiT originally was 0.05 [28], but we get
the best results with the weight decay equal to 0.5 (Table IId),
both in terms of clean and robust accuracy. We hypothesize
that the regularization introduced by the larger weight decay
helps as we have removed heavy data augmentation.

IV. VALIDATING OUR TRAINING RECIPE AT SCALE

We now test the best setup found in the previous section on
the full ImageNet-1k dataset, with a range of architectures and
model sizes. We show that not only our recipe achieves strong
results for XCiT-S when compared to the canonical recipe, but
it also enables better results on other modern architectures,
and other model sizes in the case of XCiT. Finally, we show
that we can also pre-train and fine-tune transformers using this
recipe for a larger attack budget: XCiTs pre-trained in this



way can be robustly fine-tuned to a diverse set of downstream
datasets achieving competitive performance.
Our training recipe. Based on our previous findings, we
use a) a 10-epochs, linear warm-up for ε, b) better-tuned
data augmentation, by using just weak data augmentation (i.e.,
random resize, crop and horizontal flipping, and color jitter),
and c) 0.5 weight decay. We do a 10 epochs warm-up, instead of
20 (as what Table IIb would suggest), because ImageNet-1k is
10 times larger than ImageNet-100: after 10 epochs the model
will have seen enough easy images with small perturbations,
to then continue the training with the full perturbation budget.

Proposed training recipe

• 10-epoch Linear ε-warmup
• Only basic data augmentation (random-resize-and-crop

+ horizontal-flipping + color-jitter).
• High weight decay (0.5 using AdamW on ImageNet-

1k)

TABLE III: Weak data augmentation with large weight
decay is better than heavy data augmentation curriculum.
In adversarial training of ViTs, Bai et al. [2] previously
recommended the use of strong data augmentation, but with
a progressive curriculum. We observe that using only weak
data augmentations strategies, together with larger weight
decay, brings better results than using progressive strong
data augmentation increased in the first epochs. For a fair
comparison, we use identical network architecture and training
setup as Bai et al. [2]. The model marked with †, trained by
Bai et al. [2] with the canonical recipe, failed the training,
while our implementation of the same model is marked with ∗.

Model
Accuracy

Clean AutoAttack

GELU ResNet-50 [2] (c) 67.38 35.53

DeiT-S† [2] (c) — —
DeiT-S [2] (c + heavy augmentation curriculum) 66.50 35.50

DeiT-S∗ (c, ours) 66.30 32.70

DeiT-S (ours) 66.80 37.90

XCiT-S12 (ours) 72.34 41.78

A. Validating success on the full ImageNet-1k dataset

Intuition of why the recipe should scale up. We observe
that the data augmentation setup, as well as weight decay,
could interact with the dataset size: a smaller dataset may
need stronger data augmentation, as the model could overfit.
In particular, this was experimentally validated for ViTs by
Steiner et al. [27] and Touvron et al. [30]. On the other
side, we note that we use minimal data augmentation on the
smaller ImageNet-100. Hence, we argue that, as ImageNet-1k
is larger than ImageNet-100, it should require at most the same
(if not weaker) data augmentation to improve generalization.
Regarding weight decay, similarly, for a smaller dataset, we
may require a larger weight decay to avoid overfitting, while

a smaller weight decay may be desirable for a larger dataset
to avoid underfitting. However, as we will show in the next
paragraph, using a larger weight decay brings improvements.

Validating our proposed recipe step-by-step (Table IVa). We
find that all three strategies, i.e., using ε warm-up, weak data
augmentation, and large weight decay, helps the performance
of adversarial training for the XCiT transformer model. Among
them, reducing data augmentation yields the highest benefit,
while all aspects combined improve the robust accuracy by
12.42%, i.e., by more than 40% relative to the canonical recipe
robust accuracy. In comparison, at the time of submission, the
leading entry from RobustBench leaderboard for ImageNet-
1k [49], by Salman et al. [50] achieves 38.14% robust accuracy
(3.64% lower than ours) and 68.46% clean accuracy (3.88%
lower than ours). Note that Salman et al. [50] use WideResNet-
50-2, which has 2.6× more parameters and 2.4× more FLOPs
than XCiT-S12. Finally, we validate our choice not to use
RandomErasing to keep the recipe light: the model trained
with it only has 40.60% robust accuracy (1.18% less than
without), and comparable clean accuracy (72.42%).

AutoAttack reliability. To make sure that AutoAttack is a
reliable attack for XCiT as much as it is for adversarially trained
ResNets (i.e., the model does not suffer from gradient masking
or other factors which may impact AutoAttack’s performance),
we study how the robustness of XCiT-S12 changes when ε
increases. As we can see from Fig. 3, the robust accuracy
decreases monotonically – but slowly – until it reaches ∼ 0%
when ε = 16. This suggests that AutoAttack has no clear
issues to find adversarial examples for XCiT. Finally, we note
that, among the 5000 validation images used by RobustBench,
2345 are not perturbed successfully by either of APGD-CE
and APGD-T [38], and among those 2345, only 1 is perturbed
successfully by the FAB-T [51] attack, and among the 2344
remaining images, none is successfully perturbed by the black-
box Square attack [52]. The fact that the black-box attack does
not manage to decrease the robust accuracy of the white-box
ones further suggests that no issues are encountered when
computing gradients with white-box attacks. For completeness,
we also report PGD-{5, 10, 50, 100} results in Table X in the
appendix.

Comparison with Bai et al. [2]. In their work, Bai et al.
[2] observe that training DeiT-S with strong augmentations
leads to a collapse of the training procedure, and training
with no strong augmentation at all (but with no changes in
terms of weight decay) leads to suboptimal performance. On
the other hand, they find that increasing the intensity of data
augmentation in the first ten epochs stabilizes the training
procedure and leads to 35.50% AutoAttack accuracy. However,
we observe that, using our implementation, we can train a DeiT-
S with heavy augmentation to nontrivial AutoAttack accuracy
(32.70%). Our hypothesis for this difference is that we used
a 10-epochs learning rate warm-up, instead of a 5-epochs
one. Moreover, using our recipe, DeiT-S achieves better robust
accuracy than when using the canonical recipe with an increase
in data augmentation intensity. Finally, we improve over the



TABLE IV: Success on full scale ImageNet-1k dataset. We validate our method on the full ImageNet-1k dataset in two
steps. In table (a) we step-by-step add each finding from our ablation study (Table II) and shows our bag-of-tricks for ViT’s
adversarial training generalize to the full ImageNet-1k dataset. The most noticeable improvement comes from using weaker
data augmentations, the key finding uncovered in our ablation study. In table (b) we test whether weak data augmentation
consistently benefits adversarial training across ViTs or ViTs-inspired architectures. For each network, we consider the training
recipe used in the original paper for standard training and compare it with the proposed training recipe. Across all networks,
we find that proposed training improves both clean and robust accuracy. We use AutoAttack to measure robust accuracy.

(a) Step-by-step improvements. The effect of our training recipe components incrementally when tested on the full ImageNet-1k dataset.
Overall, our training recipe improves the robust accuracy by 13.08%, not at the expense of the clean one, which increases by 0.66%.

Feature
Accuracy

Clean AutoAttack

XCiT-S12 71.68 28.70

+ ε warmup (10 epochs) 71.98 (+0.30) 29.36 (+0.66)

+ Tuned data augmentation 71.70 (−0.28) 38.78 (+9.42)

+ Tuned weight decay 72.34 (+0.64) 41.78 (+3.00)

(b) Cross-architecture generalization. We compare three different architectures adversarially trained on ImageNet-1k with and without
heavy data augmentation and small weight decay. For all three architectures, using weak data augmentation brings an advantage, as opposed
to standard training, where heavy data augmentation and smaller weight decay bring an advantage. Since for standard training there is no ε
involved, the ε schedule column applies only to the adversarially trained models. The PoolFormer without data augmentation (marked with ∗)
is trained with 0.05 weight decay, as with 0.5 the training collapses. The symbol † means that the training run collapsed.

Architecture ε schedule Heavy data
Augmentation

Weight
Decay

Adversarial training Standard training

Clean accuracy AutoAttack accuracy Clean accuracy

XCiT-S12 ✗ ✓ 0.05 71.68 28.70 80.53
✓ ✗ 0.5 72.34 41.78 78.96

DeiT-S ✗ ✓ 0.05 66.30 32.70 74.61
✓ ✗ 0.5 66.80 37.90 73.38

ConvNeXt-T ✗ ✓ 0.05 0.08† 0.08† 79.87
✓ ✗ 0.5 71.64 44.44 77.70

PoolFormer-M12 ✗ ✓ 0.05 65.88 34.08 76.84
✓ ✗ 0.05∗ 66.16 34.72 75.74

0 2 4 6 8 10 12 14 16

ε

0

20

40

60

R
ob

us
t

A
cc

ur
ac

y
(%

)

Fig. 3: AutoAttack is reliable. We show how the robustness
of XCiT-S trained for ε = 4/255 goes down as ε increases.
As expected from a reliable attack, the robust accuracy
monotonically, but gently decreases with ε.

best result reported in their work, obtained with a GELU
ResNet-50 with both better clean and robust accuracy. The
comparison is summarized in Table III.
Our recipe’s benefits generalize across architectures (Ta-

ble IVb). In adversarial training, reducing data augmentation
strength yields benefits not only for transformer architectures,
such as XCiT and PoolFormer [32] but also for the Con-
vNeXt [34] CNN architecture, as we summarize in Table IVb.
With ConvNeXt-T, when using heavy data augmentation as
in the original paper, both with, and without, ε warm-up, the
training fails. However, when trained using our recipe, i.e.,
with larger weight decay and weak data augmentation, the
model achieves state-of-the-art results. This phenomenon is
likely due to the fact that adversarial training requires much
higher capacity networks than standard training [4], as it solves
the learning objective on all samples within the perturbation
budget. While solving it on heavily augmented instances,
the network sacrifices network capacity but doesn’t yield an
equivalent benefit in generalization. On the other hand, from
the PoolFormer family, we train PoolFormer-M12, which is
both smaller and has fewer FLOPs than ResNet-50, and we
observe that, if we use the weight decay from our recipe (0.5)
it is extremely unstable. Hence, we use our training recipe
with the canonical weight decay (0.05). If we train the same
model with full data augmentation from the canonical recipe



(the same as the DeiT and XCiT one), we obtain a model with
both worse AutoAttack and clean accuracy. Our recipe then
brings an improvement also for this architecture, albeit by a
smaller margin than ConvNeXt-T.

TABLE V: Performance in the ℓ2 threat model. We train
XCiT-S12 to be robust against ℓ2-bounded perturbation with
ε = 3.0 employing the canonical recipe and compare it with
our recipe. We show that despite the XCiT-S12 trained with our
recipe having slightly lower clean accuracy, it has significantly
larger robust accuracy. We also show the accuracies of both
a GELU ResNet-50 trained according to the set-up of Bai et
al. [2] and the ReLU ResNet-50 shared by Salman et al. [50].
Both have lower performance than the XCiT-S12. The symbol
† means that the training run collapsed.

Model Recipe
Accuracy

Clean AutoAttack

ReLU ResNet-50 [50] Canonical 62.86 34.84

GELU ResNet-50 Canonical 66.14 35.60

XCiT-S12
Canonical 71.24 29.38

Ours 70.78 39.94

ConvNeXt-T
Canonical† — —

Ours 70.58 41.44

PoolFormer-M12
Canonical 65.26 32.10

Ours 66.40 36.04

DeiT-S
Canonical 64.20 31.10

Ours 66.64 36.20

Our recipe’s benefits generalize to the ℓ2 threat model
(Table V). Even though the ℓ∞ threat model is the scenario
that has been studied the most so far for ImageNet [2, 24, 53,
54], it is also important to see whether our recipe generalizes to
other threat models, as they may bring additional benefits, such
as better standard fine-tuning performance [50]. For this reason,
we train XCiT-S12 with both the canonical and our recipe to be
robust against ℓ2-bounded perturbation with ε = 3.0. While the
model trained with our recipe has slightly lower clean accuracy,
the robust accuracy is better by one-third (i.e., 29.38% vs.
39.94%)., bringing a significant improvement. This suggests
that our recipe also generalizes to the ℓ2 threat model for
XCiT-S12. For completeness, we also train a GELU ResNet-50
using the recipe of Bai et al. [2] and report the results of the
ReLU ResNet-50 shared by Salman et al. [50]. Our XCiT-S12
performs better than both, by a substantial margin. We can
also observe that our recipe brings improvements across the
board for other architectures: ConvNeXt-T, PoolFormer-M12,
and DeiT-S.
Validating success on large-scale models (Table VI). Given
that our training recipe successfully generalizes across network
architectures, we use it to train larger-scale models. For this
experiment, we train on a 64-core TPUv4 pod, while scaling
batch size and learning rate accordingly. The total training time
for XCiT-S12 is 19h30m, for XCiT-M12 it is 33h, and for XCiT-

TABLE VI: Scaling to larger models. We test our recipe
on larger variants XCiT and compare it to robust ResNets.
The XCiT variants outperform ResNets by a wide margin,
and achieve top rank on the RobustBench [24] benchmark.
Finally, we use our training recipe for ConvNeXT [34],
PoolFormer [32], and DeiT [30]. We use baseline results from
Bai et al. [2] and Salman et al. [50].

Architecture Parameters GFLOPs
Accuracy

Clean AutoAttack

GELU ResNet-50 [2] 25M 4.11 67.38 35.51

WideResNet-50-2 [50] 68M 11.47 68.46 38.14

XCiT-S12 26M 4.82 72.34 41.78

XCiT-M12 46M 8.54 74.04 45.24

XCiT-L12 104M 18.97 73.76 47.60

PoolFormer-M12 22M 3.22 66.16 34.72

DeiT-S 22M 4.61 66.80 37.90

ConvNeXt-T 29M 4.50 71.64 44.44

0 50 100
Epoch

0

25

50
T

ra
in

ro
bu

st
ac

cu
ra

cy
(%

)
Model

XCiT-S12

XCiT-M12

XCiT-L12

0 50 100
Epoch

0

25

50

V
al

ro
bu

st
ac

cu
ra

cy
(%

)

Model

XCiT-S12

XCiT-M12

XCiT-L12

Fig. 4: Learning curves for the XCiT models. We show the
progress of the training (Left) and validation (Right) FGSM
accuracy for XCiT-{S,M,L}12 trained with our recipe.

L12 it is 39h. We provide our detailed setup in Appendix D,
and we show the progress of the validation FGSM accuracy
in Fig. 4. When increasing the scale of the model from S12 to
M12, we observe consistent improvement in robust accuracy
(from 41.78% to 45.24%). Regarding XCiT-L12, instead, we
first observe that, when trained with 1-step FGSM, it achieves
sub-par robust accuracy (43.78%). Investigating more, we
note that XCiT-L12 has better PGD-10 accuracy than XCiT-
M12 (52.22% vs. 51.50%) on the RobustBench ImageNet-
1k subset. However, when it comes to APGD-CE (the first
of the AutoAttack ensemble), XCiT-L12 is outperformed by
XCiT-M12 (46.14% vs. 47.58%). For this reason, we train
XCiT-L12 using 2-step FGSM, which results in a model with
better robust accuracy than XCiT-M12 (47.60% vs. 45.24%).
Finally, to understand the accuracy-robustness trade-off, we
also standardly train these networks for 100 epochs. XCiT-S12,
M12, and L12 achieve 80.36%, 81.71%, and 82.65% clean
accuracy, respectively. This suggests that adversarial training
in ViT sacrifices ∼ 10% clean accuracy to achieve robustness.
Comparison with the EasyRobust library models. Mao et
al. [53] recently released EasyRobust, a PyTorch library to
perform adversarial training. Concurrently to our work, they
released several models on GitHub (albeit without a paper



that gives information about how they trained the models).
These models have been trained with a variety of recipes4. In
particular, ViT-S has been trained with the canonical recipe,
while the other models in Table VI have been trained with
the same data augmentation we use in our recipe, plus the
Lightning noise data augmentation, used in the robustness
library [55]. All the models have been trained for 300 epochs.
As they have been trained for 3× the number of epochs as
ours, it is not straightforward to draw a comparison. In any
case, we note that their top-performing models (when taking
into account FLOPs and parameters), i.e., Swin-S (73.41%
clean and 46.76% AutoAttack accuracy) and Swin-B (75.05%
clean and 47.42% AutoAttack accuracy), have been trained
without strong data augmentations and show very promising
results. We leave for future research on whether integrating
the other elements of our recipe (i.e., ε warm-up and larger
weight decay) can further improve the performance of these
models.

B. Beyond pre-training: Success of our approach with transfer
learning

Setup. We consider four datasets, namely CIFAR-10 and
CIFAR-100 [56], Caltech-101 [57], and Oxford flowers [58].
These datasets cover a diverse range in terms of the number of
images and image resolution. For all datasets, we use ε = 8/255
in both pre-training and finetuning. Our baselines will be
XCiT-S12 and ResNet-50 pre-trained with the canonical recipe,
which we compare their success with networks pre-trained
with our proposed recipe. Additional details about pre-training,
as well as the performance of the resulting models, can be
found in Appendix D. When finetuning, we use the identical
recipe as pre-training for the high-resolution dataset, and a
slightly different one, employing TRADES-10 [10], for the low-
resolution ones. We provide extensive details on our finetuning
procedure in Appendix D.
Success in finetuning on high resolution datasets. We finetune
our pre-trained networks on both Caltech-101 and Oxford
Flowers for 20 epochs. From Table VIIa we can see that: 1)
we can easily fine-tune on both datasets out-of-the-box. 2) Our
XCiT achieves the best results, by a significant margin, for
both the standardly and adversarially trained models. 3) We can
observe that, for XCiT-S12, there is a very good robustness-
accuracy trade-off, as the robust model trained on Caltech-101
has a small drop of 2.77% w.r.t. the standardly fine-tuned model
(vs. a 5.59% drop for ResNet-50), and the robust model trained
on Oxford Flowers has a drop in terms of clean accuracy of
8.79% (vs. an 11.77% drop for ResNet-50). 4) Despite the
larger clean accuracy, XCiT-S12 is more robust, having a robust
accuracy better by 27.25% on Caltech-101, and 15.16% better
on Oxford Flowers. 5) The models pre-trained with our recipe
lead to better results across the board when compared to the
models pre-trained with the canonical recipe.
Adapting to small resolution images. As we pre-train on
the ImageNet-1k dataset at 224 × 224 resolution, we first

4We discussed the parameters with the authors via e-mail.

need to modify the network architecture to adapt to small
resolutions, i.e., 32 × 32 for CIFAR-10 and CIFAR-100.
Previous work [23] achieves this by down-sampling the weights
of the convolutional layer that is used by ViT to embed each
patch. For XCiT, we adapt the patch-processing module, which
converts patches to 1-D vectors, by changing the stride of
subsequent convolutions from two to one. We finetune the
networks for 20 epochs and report our results in Tables VIIb
and VIId. We provide additional details about the models’
adaptation and fine-tuning hyper-parameters in Appendix D.
To highlight the necessity of pre-training, we also train from
scratch on CIFAR-10 using the same setup without pre-training
for 300 epochs. We also do a training run using additional
synthetic data from Sehwag et al. [15] to compensate for the
smaller size of the dataset. Moreover, we compare our models to
the WideResNet-28-10 by Hendrycks et al. [59], who fine-tune
a model pre-trained on a sub-sampled version of ImageNet-
1k, and to the fine-tuned ResNet-50 pre-trained by Salman et
al. [50]. Our models perform better than both baselines. In
particular, we suspect the performance of the ResNet-50 to
be sub-optimal because of the mismatch in resolution, while
this factor may not affect XCiT as much. As a matter of
fact, XCiT is shown to be more resilient to changes in image
resolution [28], while Salman et al. [50], when using their pre-
trained model for standardly fine-tuning, up-sample both CIFAR
datasets. Finally, we note that our XCiT-L model fine-tuned on
CIFAR-100, at the time of the submission, would rank second
in the corresponding RobustBench leaderboard [24], with better
performance than more compute-intensive architectures.

V. UNDERSTANDING THE SUCCESS OF VISION
TRANSFORMERS IN ADVERSARIAL TRAINING

So far, we have shown that changing architecture can
improve adversarial robustness by a large margin when using an
appropriate training recipe. Now, we first investigate a potential
reason for this: we hypothesize that, for the top-performing
models, few-step attacks are more effective than a conventional
ResNet or an XCiT trained with the canonical recipe. This
attack effectiveness makes the models more robust at test time,
as the models have seen stronger attacks during training. After
that, we further explore one consequence of robust models: we
propose a way to quantify the semantic nature of adversarial
perturbations. We show that the perturbations targeting a robust
XCiT-S have more semantic features than those targeting a
robust GELU ResNet-50, reflecting the fact that the robust
XCiT-S has larger robust accuracy than the robust ResNet-50.

A. Attack effectiveness influences adversarial training

Adversarial training (Eq. (1)) solves a min-max opti-
mization where the inner maximization aims to generate
strong adversarial examples, while the outer minimization
optimizes the network parameters to correctly classify these
adversarial examples. The choice of the network architecture
simultaneously impacts the optimization success in both min
and max problems. Better network architectures can certainly
achieve better solutions for outer min problems (e.g., scaling



TABLE VII: Advantages of the pre-training recipe also directly transfer to fine-tuning. When finetuning results on both
high and low-resolution datasets, we find that our proposed recipe achieves better performance. The XCiT-S12 marked with
(c) is the one pre-trained using the canonical recipe used for standard training, while (ours) refers to models pre-trained with
our proposed recipe. Both models are adapted by changing the stride of the initial convolution to change the patch size. Note
that pre-training and finetuning methods (standard/adversarial) are kept identical for Caltech-101 and Oxford Flowers. The
ResNet-50 pre-trained checkpoint is from Salman et al. [50], and is adapted to small resolutions by changing the stride of the
first convolution layer, and the WideResNet-28-10 in Tables VIIb and VIId are from Hendrycks et al. [59].

(a) Fine-tuning on high-resolution datasets.

Fine-tuning Model
Dataset

Caltech-101 Oxford Flowers

Clean AutoAttack Clean AutoAttack

Standard
ResNet-50 86.97 7.56 86.28 1.96

XCiT-S12 (c) 89.92 0.96 88.13 0.99

XCiT-S12 (ours) 90.36 17.12 91.65 5.71

Adversarial
ResNet-50 81.38 34.49 74.51 32.75

XCiT-S12 (c) 86.18 58.84 76.26 42.42

XCiT-S12 (ours) 87.59 61.74 82.86 47.91

(b) CIFAR-10 adversarial fine-tuning.

Model Clean Accuracy AA Accuracy

WideResNet-28-10 [59] 87.11 54.92

ResNet-50 84.80 41.56

XCiT-S12 (c) 89.07 54.37

XCiT-S12 (ours) 90.06 56.14

XCiT-M12 (ours) 91.30 57.27

XCiT-L12 (ours) 91.73 57.58

(c) Pre-training is necessary for smaller datasets. Fine-tuning perfor-
mance when a XCiT-S12 model is 1) trained from scratch 2) trained from
scratch with extra synthetic data [15] 3) pre-trained on ImageNet-1k.

Pre-training Synthetic data
Accuracy

Clean Accuracy AA Accuracy

✗ ✗ 82.84 39.49

✗ ✓ 80.01 47.88

✓ ✗ 90.06 56.14

(d) CIFAR-100 adversarial fine-tuning.

Model Clean Accuracy AA Accuracy

WideResNet-28-10 [59] 59.23 28.42

ResNet-50 61.28 22.01

XCiT-S12 (c) 65.44 30.97

XCiT-S12 (ours) 67.34 32.19

XCiT-M12 (ours) 69.21 34.21

XCiT-L12 (ours) 70.76 35.08

in neural network size leads to better performance). However,
their success in adversarial training can simultaneously stem
from the ability to achieve a better solution for the inner
max problem, i.e., generate stronger adversarial examples. It is
common to use only a few gradient steps [4], even one in some
cases [54], to reduce the computational burden of adversarial
training. Thus the key question is not whether it’s easier to
generate strong adversarial examples for ViTs but whether it’s
easier under few-steps gradient attacks. Our approach in this
direction is not without precedent, as previous work on CNNs
observed that better robustness with improved architectural
components is because they may make it easier to generate
effective adversarial examples in a few steps [1].
Attacking XCiT with gradient-based attacks is as tractable
as attacking ResNet. While it is empirically well known that
it is moderately tractable to optimize adversarial examples with
gradient-based methods on adversarially trained ResNets [4],
to the best of our knowledge this has not been studied in the
case of adversarially trained ViTs. For this reason, we compute
the loss given by separate PGD attacks ran with a different
number of steps (1, 5, 10, 50, 100, 200, 500), scaling the
attack step size accordingly: the maximum loss is reached by
attacks that use at least 100 steps. We run this experiment
with twenty different random restarts for each point to see
if they all converge to similar maxima: all the runs for each
point show extremely similar loss curves, for both the robust

XCiT-S12 and the robust ResNet-50 (Fig. 5). Finally, in Fig. 6
we show how the loss changes at every step during twenty
separate PGD-500 runs, each starting from a different random
start, targeting the same point, with a relatively large step size.
This shows that the attack converges after a few steps. We
show more results for both experiments on thirty-one more
random samples in Appendix I.

0 200 400

Attack steps

0.025

0.050

0.075

0.100

L
os

s

Model

XCiT-S12 (ours)

GELU-ResNet-50

Fig. 5: Is PGD-200 a good
Oracle? Saturating of the
cross-entropy loss in separate
runs of PGD attacks with dif-
ferent numbers of steps, per-
turbing the same input. Plots
for additional points are in Ap-
pendix I.

0 200 400

Attack steps

0.025

0.050

0.075

0.100

L
os

s

Model

XCiT-S12 (ours)

GELU-ResNet-50

Fig. 6: Attacks with differ-
ent initialization converge to
very similar losses. Evolution
of the loss for different runs
of PGD attacks perturbing
the same input, using a large
step size. Plots for additional
points are in Appendix I.

Effectiveness of k-step attacks. We use the following metric
(dk) to measure the tractability of the inner maximization



problem with a k-step gradient attack, which we call attack
effectiveness:

dk =
L(x+ δk, y;θ)− L(x+ δO, y;θ)

L(x+ δO, y;θ)
(2)

where δk is the perturbation generated with k step attacks
while δO is the perturbation generated with an Oracle, i.e.,
a strong attack. As commonly done, we use cross-entropy
loss (L). This metric measures the strength of a k-step attack
compared to the strongest attack. As validated previously, using
a very high number of attack iterations appears to find the
local optimum. Thus we use 200 attack steps as an Oracle. We
measure the effectiveness of adversarial examples generated
with PGD-{1, 2, 5, 10} attacks. We use the full ImageNet-1k
validation dataset (50,000 images) for this experiment.
Few step attacks are highly effective for the most successful
models. Throughout training progress (epochs 1 to 100), we
find that a single-step attack is more effective against our trained
XCiT than a ResNet-50 network (Fig. 7a). A similar trend is
observed when we ablate across the number of attack steps
(Fig. 7b). This does not hold just for transformers: we observe
that the modern ConvNeXt model, which is as successful as
XCiT, also enjoys high effectiveness of few-steps attacks. Both
observations suggest that the ease of optimizing the inner max
problem with few-step attacks does indeed heavily impact the
success of a model in adversarial training.
Attack effectiveness in proposed vs canonical training recipe.
Since the min and max problems are solved alternatively,
i.e., network parameters are continuously updated, the ability
the generate strong adversarial examples under fixed steps
attacks would vary over time. To analyze this phenomenon,
we compare the effectiveness of attacks when attacking the
XCiT-S12 trained with the canonical training recipe (with just
the ε warm-up from our recipe): we observe that when using
the canonical recipe, the attacks are extremely ineffective, also
compared to ResNet’s training. This shows that the way we
perform the (outer) min optimization of adversarial training
influences the ease of (inner) max optimization, and an effective
training recipe is crucial for successful training.
Discussion. Intuitively, one could argue that it’s easy to generate
attacks for poorly trained models, and these models show no
robust accuracy. However, in our case, the XCiT-S12 trained
with our recipe, not only has nontrivial performance, but the
clean accuracy is better than that of the XCiT-S12 trained with
the canonical recipe. Nonetheless, few-steps attacks generate
more powerful adversarial examples for these models, and
doing more steps does not bring a significant advantage. On
the other hand, for other models, such as the XCiT-S12 trained
with the canonical recipe or the GELU ResNet-50, doing more
attack steps brings a larger advantage, suggesting that for these
models the inner max optimization is harder.

B. Semantic nature of XCiT’s adversarial perturbations

Earlier works have demonstrated that adversarial perturba-
tions for robust CNNs have semantic, interpretable patterns

25 50 75 100
Epoch

0

50

R
ob

us
t

lo
ss

re
l.

di
ff

.
(%

)

Model

XCiT-S12

XCiT-S12∗

ResNet-50

ConvNeXt-T

(a) Relative difference between
the adversarial loss computed
with PGD-1 and the one com-
puted with PGD-200, varying
over the training epochs.

1 2 5 10
Attack steps

0

20

R
ob

us
t

lo
ss

re
l.

di
ff

.
(%

)

Model

XCiT-S12

XCiT-S12∗

ResNet-50

ConvNeXt-T

(b) Relative difference between
the adversarial losses computed
with PGD attacks with 1, 2, 5,
and 10 steps, and the adversar-
ial loss computed with PGD-
200, averaged across 10 epochs.

Fig. 7: Few-step attacks of the more robust models are more
effective throughout the training. We test whether the higher
robustness of models relates to the ease of optimization of
adversarial loss, i.e., using few-step attacks during adversarial
training. We measure the relative difference in the success of
a few-step attack, i.e., weak but fast, compared to a strong
one. We can observe that the relative difference is smaller
for the more robust models. This suggests that these few-step
attacks (with often one or two steps) are more effective for
XCiT-S and ConvNeXt, hence making the final models more
robust. We can also observe a significant difference between
the XCiT-S12 trained with our recipe and the one trained with
the canonical recipe (marked as “XCiT-S12∗”).
These results are computed on the ImageNet-1k validation set

and the confidence intervals are over three runs.

rather than unintelligible noise as in the case of non-robust net-
works [35]. Given the different nature of the ViTs architectures
such as XCiT, compared to CNNs, it is natural to ask whether
a similar characteristic also emerges for these architectures.
Hence, we explore the perturbations targeting a robust XCiT
and compare them with those targeting a non-robust XCiT from
timm [60], and those targeted to the robust GELU ResNet-50
by Bai et al. [2].

Quantifying the semantic nature of perturbations. To
quantify how semantic the perturbations are, we propose
to classify untargeted adversarial perturbations with high-
performing, standardly trained models. We hypothesize that if a
perturbation is semantic enough (i.e., tries to change the nature
of the input from the point of view of the human eye), then
it should be classified with the class it tries to evade, as the
perturbations should be focused on the shapes characterizing
such class in the input image. We use, as classifiers, ConvNeXt-
XL [34], with 87.01% clean accuracy, BeiT-L [61], with
87.48% clean accuracy, and Swin-B [62], with 86.32% clean
accuracy on ImageNet-1k, using the implementation and pre-
trained weights from the timm library [60]. All the models
accept input size 224×224. We generate PGD-100 perturbations
for the 5000 images subset of RobustBench for our robust XCiT-
S12 and a non-robust XCiT-S12 with pre-trained weights from
timm [60], as well as for a robust ResNet-50 from Bai et al.



[2] and a non-robust ResNet-50 from the timm library (shared
by Wightman et al. [42]). We scale the perturbations into the
[0, 1] range. We show some example images of perturbations
in Fig. 8. We can see from Table VIII that, according to this
metric, the perturbations generated for both robust models lead
to non-trivial accuracies and that the perturbations generated
for XCiT-S12 have indeed semantic characteristics, and more
so than those generated for the robust ResNet-50. We provide
additional feature visualizations in Appendix J.

TABLE VIII: Semantic characteristics in adversarial pertur-
bations. For each robust network, we first generate adversarial
perturbations (ε = 4

255 , ℓ∞, scaled to [0, 1]) using untar-
geted attack. We provide an example visualization of these
perturbations in Figure 8. Measuring the top-5 accuracy using
pre-trained ConvNeXt-XL, BeiT-L, and Swin-L models, we
observe that robust XCiT-S perturbations indeed have semantic
characteristics, even higher than a robust ResNet-50.

Perturbations generator
Classifier

ConvNeXt-XL [34] BeiT-L [61] Swin-L [62]

Robust
XCiT-S12 (ours) 43.86 49.52 40.24

GELU ResNet-50 [2] 38.40 45.02 36.70

Non-robust
XCiT-S12 [28] 0.84 0.78 0.84

ResNet-50 [42] 0.82 0.74 0.80

VI. RELATED WORK

Vision Transformers and variants The ViT [18] is an
architecture that was adapted for computer vision tasks from
the transformer [39], which was first meant for natural language
processing. After the introduction of the transformer, several
variants have been proposed. Some of these are: DeiT [30], to
reduce the need for pre-training on extremely large datasets,
CaiT [31], to train deeper ViTs, XCiT [28], to use a more
efficient attention-like operation, LeViT [33], a CNN-ViT
hybrid to speed-up transformer inference, and the Swin
Transformer [62], which is a hierarchical transformer which
can perform image segmentation and object detection.
Robustness of Vision Transformers to non-adversarial
perturbations. Whether ViTs are more robust than CNNs
has been a controversial topic so far, with contrasting results
based on the different contexts and settings where the models
are tested. On the one hand, many recent works [2, 19, 20]
agree on the fact that ViTs are more robust than CNNs when it
comes to out-of-distribution samples. Although, more recently,
Pinto et al. [63] find that ViTs suffer from simplicity bias
similarly to CNNs [64], and that, when compared to modern
CNNs such as ConvNeXt, there is no clear winner.
Adversarial robustness of Vision Transformers At the same
time as they assess ViTs’ robustness to natural perturbations,
many works also study the robustness of non-adversarially
trained ViTs to adversarial examples. In particular, in the case
of attacks with ε ≤ 0.01, ViTs show better robustness than
CNNs [20, 21, 65]. However, when running stronger attacks,
such as APGD or AutoAttack, with ε = 4/255, both ResNets

and ViTs have 0% robust accuracy [2, 23, 66]. Finally, Mao
et al. [67] propose the Robust ViT (RVT), a ViT with specific
architectural innovations which show additional robustness
to FGSM and PGD-5 attacks. However, they do not test the
robustness of RVT to stronger attacks such as AutoAttack.

Adversarially trained Vision Transformers. Shao et al.
[23] adversarially fine-tuned non-robust ViTs, pre-trained on
ImageNet-1k. Since they use a non-robust pre-trained network,
they achieve suboptimal performance [59]. Bai et al. [2]
comes closest to our work: they noticed poor performance
of DeiT-S transformers with data augmentation in adversarial
training. We show that similar challenges persist with other
ViT architectures, such as XCiTs. While Bai et al. [2] advocate
for a progressively increasing augmentation budget, we show
that avoiding strong data augmentation entirely can achieve
state-of-the-art performance. Even further, we perform an
in-depth analysis of adversarially robust ViTs in both pre-
training and finetuning. Wu et al. [22] propose a technique
to make adversarial training of transformers more efficient.
This mechanism reduces the training time while increasing the
robust accuracy over 1-step FGSM. However, since they use the
canonical training recipe from DeiT [30], the robust accuracy
of their models could be sub-optimal. Finally, concurrently
with this work, Mao et al. [53] published the checkpoints of
several ViTs who are adversarially trained and show promising
performance. However, the training recipe for their models is
not public and there is no paper discussing their results.

Robustness through architectural development. Xie et al.
[1] observe that, in ResNets and other CNN variants, the
usage of smooth activation functions, such as SiLU [68] and
GELU [3] increases the robustness of adversarially trained
models: their hypothesis is that smoother activation functions
make the inner maximization problem in Eq. (1) easier to solve.
This behavior is also observed by Bai et al. [2]: ResNet-50
is more robust when employing GELU. Huang et al. [17]
observe that increasing the capacity of a model helps with
robustness, but there is a trade-off given by the fact that
additional capacity makes the model less smooth and less robust.
However, reducing the capacity of the last stage can improve
this trade-off. Similar observations are done in concurrent work
by Wu et al. [69] who propose a technique to efficiently find
a suitable TRADES’ λ when training wide models.

Improving the robustness-accuracy-efficiency trade-off.
Apart from the work by Wu et al. [22] mentioned above,
other previous work addresses the problem of efficiency of
robustness in different ways. One line of work focuses on
making adversarial training more efficient: Shafahi et al. [70]
proposes to re-use adversarial examples from previous epochs,
while Wong et al. [54] find an effective way to perform
adversarial training with just 1-step FGSM. On the other hand,
Sehwag et al. [71] and Kundu et al. [72] work on compressing
the model’s size by pruning in ways that are fully compatible
with adversarial training. Other works show that both robustness
and accuracy are improved when we use either extra unlabeled
data [73] or synthetic data [14, 15].



Fig. 8: Example adversarial perturbations for robust vs. non-robust models. Comparison between the adversarial perturbations
generated for a robust XCiT-S12, a robust GELU ResNet-50 by Bai et al. [2] and a regular XCiT-S12 from the timm [60]
library. The perturbations, generated with a ℓ∞ attack (ε= 4

255 ), are scaled to the [0, 1] range, and, for the sake of visualization,
transformed into black and white images. Similar to robust CNNs [35], as demonstrated for a ResNet-50 here, robust XCiT
perturbations also exhibit semantic characteristics in its adversarial perturbations. When quantitatively compared, we find that
XCiT adversarial perturbations have even more semantic information than the robust ResNet-50 perturbation.

VII. DISCUSSION AND CONCLUSION

Architectures and custom recipes. This work shows that,
by shifting architecture, we can significantly improve the
robustness of image classification models, by keeping a good
accuracy-robustness-efficiency tradeoff. We do so by identifying
an architecture that has a good fit for adversarial training:
the Cross-Covariance Image Transformer (XCiT). We also
show that to achieve optimal results, it is important to find a
tailored training recipe, which may differ from the canonical
training recipe for standard training. Using this custom recipe,
we achieve good results which are better than the current
state-of-the-art, both in terms of clean and robust accuracy.
On the other hand, we have also tested this training recipe
on ConvNeXt, a recently proposed modern convolutional
architecture, showing that, with our training recipe, it can
reach state-of-the-art performance. We leave to future research
whether the performance can be further boosted with a custom-
tailored recipe for ConvNeXt and the architectural innovations
to come (both for training from scratch and fine-tuning).

Fine-tuning. We further successfully show that ViTs can be
efficiently robustly fine-tuned, for larger perturbation sizes, to
very high accuracy on smaller datasets. As a matter of fact, our
tailored training recipe also works for larger perturbations with
minimal changes. This enables efficiently fine-tuning these
models to other datasets and doing adversarial training on
smaller high-resolution datasets. Moreover, given the trends
shown in standard training of ViTs and previous work about
adversarial training, we believe that XCiT could further benefit
from being trained on larger datasets such as ImageNet-21k
and then fine-tuned on downstream datasets. We suggest that
researchers should consider this option when doing adversarial
training for ViT-like models, given that, as we have shown, a
model can be fine-tuned efficiently in a few epochs.

Analyses. We show a potential explanation of the improved
robustness of XCiT and ConvNeXt compared to ResNet and

XCiT trained with the canonical recipe: for former models, the
1-step attack is more effective throughout the whole training
procedure. Finally, we analyze the gradients of our robust
XCiT and compare the visualizations to a state-of-the-art robust
ResNet: we quantify that the perturbations found for XCiT are
more semantic than those of ResNet, suggesting that the robust
XCiT’s perturbations are more aligned with human perception.
We believe that further insightful analyses can be carried on,
given the different nature of ViT-like models. For this reason,
we release the checkpoints of our models trained for different
epsilons. We believe that this enables researchers to do further
analyses that will improve our understanding of why such a
simple recipe is particularly suitable for adversarial training.

VIII. ACKNOWLEDGEMENTS

We thank Google’s TPU Research Cloud (TRC) Program5,
which provided us with extremely generous computing re-
sources. We also thank Maksym Andriushchenko, Jacopo
Teneggi, Florian Tramèr, Chong Xiang, and Xinyu Tang for
their feedback about this work. This work was also supported
in part by the National Science Foundation under grants
CNS-1553437 and CNS-1704105, the ARL’s Army Artificial
Intelligence Innovation Institute (A2I2), the Office of Naval
Research Young Investigator Award, the Army Research Office
Young Investigator Prize, Schmidt DataX award, Princeton
E-ffiliates Award, and Princeton Gordon Y. S. Wu Fellowship.

REFERENCES

[1] C. Xie, M. Tan, B. Gong, A. Yuille, and Q. V.
Le, “Smooth adversarial training,” arXiv preprint
arXiv:2006.14536, 2020.

[2] Y. Bai, J. Mei, A. L. Yuille, and C. Xie, “Are trans-
formers more robust than cnns?” Advances in Neural
Information Processing Systems, vol. 34, 2021.

5https://sites.research.google/trc/about/

https://sites.research.google/trc/about/


[3] D. Hendrycks and K. Gimpel, “Gaussian error linear
units (gelus),” arXiv preprint arXiv:1606.08415, 2016.

[4] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to
adversarial attacks,” arXiv preprint arXiv:1706.06083,
2017.

[5] B. Biggio et al., “Evasion attacks against machine
learning at test time,” in Joint European conference on
machine learning and knowledge discovery in databases,
Springer, 2013, pp. 387–402.

[6] C. Szegedy et al., “Intriguing properties of neural
networks,” arXiv preprint arXiv:1312.6199, 2013.

[7] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and
A. Madry, “Robustness may be at odds with accuracy,”
arXiv preprint arXiv:1805.12152, 2018.

[8] S. Lee, H. Lee, and S. Yoon, “Adversarial vertex mixup:
Toward better adversarially robust generalization,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 272–281.

[9] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and
A. Madry, “Adversarially robust generalization requires
more data,” Advances in neural information processing
systems, vol. 31, 2018.

[10] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and
M. Jordan, “Theoretically principled trade-off between
robustness and accuracy,” in International conference
on machine learning, PMLR, 2019, pp. 7472–7482.

[11] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu,
“Improving adversarial robustness requires revisiting
misclassified examples,” in International Conference
on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=rklOg6EFwS.

[12] D. Wu, S.-T. Xia, and Y. Wang, “Adversarial weight
perturbation helps robust generalization,” Advances
in Neural Information Processing Systems, vol. 33,
pp. 2958–2969, 2020.

[13] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg,
O. Wiles, and T. A. Mann, “Data augmentation can
improve robustness,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[14] S. Gowal, S.-A. Rebuffi, O. Wiles, F. Stimberg, D. A.
Calian, and T. A. Mann, “Improving robustness using
generated data,” Advances in Neural Information Pro-
cessing Systems, vol. 34, 2021.

[15] V. Sehwag et al., “Robust learning meets generative
models: Can proxy distributions improve adversarial
robustness?” arXiv preprint arXiv:2104.09425, 2021.

[16] S. Dai, S. Mahloujifar, and P. Mittal, “Parameterizing
activation functions for adversarial robustness,” in 2022
IEEE Security and Privacy Workshops (SPW), IEEE,
2022, pp. 80–87.

[17] H. Huang, Y. Wang, S. Erfani, Q. Gu, J. Bailey, and X.
Ma, “Exploring architectural ingredients of adversarially
robust deep neural networks,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[18] A. Dosovitskiy et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” ArXiv,
vol. abs/2010.11929, 2021.

[19] S. Paul and P.-Y. Chen, “Vision transformers are robust
learners,” arXiv preprint arXiv:2105.07581, 2021.

[20] S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T.
Unterthiner, and A. Veit, “Understanding robustness of
transformers for image classification,” in Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 10 231–10 241.

[21] A. Aldahdooh, W. Hamidouche, and O. Deforges, “Re-
veal of vision transformers robustness against adversarial
attacks,” arXiv preprint arXiv:2106.03734, 2021.

[22] B. Wu, J. Gu, Z. Li, D. Cai, X. He, and W. Liu, “Towards
efficient adversarial training on vision transformers,”
arXiv preprint arXiv:2207.10498, 2022.

[23] R. Shao, Z. Shi, J. Yi, P.-Y. Chen, and C.-J. Hsieh, “On
the adversarial robustness of vision transformers,” arXiv
preprint arXiv:2103.15670, 2021.

[24] F. Croce et al., “Robustbench: A standardized
adversarial robustness benchmark,” arXiv preprint
arXiv:2010.09670, 2020.

[25] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan,
and M. Shah, “Transformers in vision: A survey,” ACM
Computing Surveys (CSUR), 2021.

[26] Image classification on imagenet (papers with code),
[Accessed Sep 1, 2022], 2022. [Online]. Available: https:
/ /paperswithcode .com/sota / image- classification- on-
imagenet.

[27] A. P. Steiner, A. Kolesnikov, X. Zhai, R. Wightman,
J. Uszkoreit, and L. Beyer, “How to train your vit? data,
augmentation, and regularization in vision transformers,”
Transactions of Machine Learning Research, 2022.
[Online]. Available: https://openreview.net/forum?id=
4nPswr1KcP.

[28] A. El-Nouby et al., “Xcit: Cross-covariance image
transformers,” ArXiv, vol. abs/2106.09681, 2021.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition. arxiv 2015,” arXiv
preprint arXiv:1512.03385, 2015.

[30] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablay-
rolles, and H. Jégou, “Training data-efficient image
transformers & distillation through attention,” in Interna-
tional Conference on Machine Learning, PMLR, 2021,
pp. 10 347–10 357.

[31] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve,
and H. J’egou, “Going deeper with image transformers,”
ArXiv, vol. abs/2103.17239, 2021.

[32] W. Yu et al., “Metaformer is actually what you need for
vision,” arXiv preprint arXiv:2111.11418, 2021.

[33] B. Graham et al., “Levit: A vision transformer in
convnet’s clothing for faster inference,” in Proceedings
of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 12 259–12 269.

[34] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell,
and S. Xie, “A convnet for the 2020s,” in Proceedings

https://openreview.net/forum?id=rklOg6EFwS
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://openreview.net/forum?id=4nPswr1KcP
https://openreview.net/forum?id=4nPswr1KcP


of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[35] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras,
B. Tran, and A. Madry, “Adversarial robustness as
a prior for learned representations,” arXiv preprint
arXiv:1906.00945, 2019.

[36] R. Rade and S.-M. Moosavi-Dezfooli, “Helper-based
adversarial training: Reducing excessive margin to
achieve a better accuracy vs. robustness trade-off,” in
ICML 2021 Workshop on Adversarial Machine Learning,
2021. [Online]. Available: https://openreview.net/forum?
id=BuD2LmNaU3a.

[37] L. Rice, E. Wong, and Z. Kolter, “Overfitting in adversar-
ially robust deep learning,” in International Conference
on Machine Learning, PMLR, 2020, pp. 8093–8104.

[38] F. Croce and M. Hein, “Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks,” ArXiv, vol. abs/2003.01690, 2020.

[39] A. Vaswani et al., “Attention is all you need,” Advances
in neural information processing systems, vol. 30, 2017.

[40] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L.
Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image
Database,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2009.

[42] R. Wightman, H. Touvron, and H. Jégou, “Resnet strikes
back: An improved training procedure in timm,” arXiv
preprint arXiv:2110.00476, 2021.

[43] A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in
Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett, Eds., Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.
cc / paper / 9015 - pytorch - an - imperative - style - high -
performance-deep-learning-library.pdf.

[44] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y.
Yoo, “Cutmix: Regularization strategy to train strong
classifiers with localizable features,” in Proceedings of
the IEEE/CVF international conference on computer
vision, 2019, pp. 6023–6032.

[45] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le,
“Randaugment: Practical automated data augmentation
with a reduced search space,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2020, pp. 702–703.

[46] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“Mixup: Beyond empirical risk minimization,” arXiv
preprint arXiv:1710.09412, 2017.

[47] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang,
“Random erasing data augmentation,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 34,
2020, pp. 13 001–13 008.

[48] T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu,
“Bag of tricks for adversarial training,” arXiv preprint
arXiv:2010.00467, 2020.

[49] F. Croce et al., RobustBench website, [Accessed Sep 1,
2022], 2021. [Online]. Available: https://robustbench.
github.io.

[50] H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and
A. Madry, “Do adversarially robust imagenet models
transfer better?” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 3533–3545, 2020.

[51] F. Croce and M. Hein, “Minimally distorted adversarial
examples with a fast adaptive boundary attack,” in
Proceedings of the 37th International Conference on
Machine Learning, H. D. III and A. Singh, Eds.,
ser. Proceedings of Machine Learning Research, vol. 119,
PMLR, Jun. 2020, pp. 2196–2205. [Online]. Available:
https://proceedings.mlr.press/v119/croce20a.html.

[52] M. Andriushchenko, F. Croce, N. Flammarion, and
M. Hein, “Square attack: A query-efficient black-box
adversarial attack via random search,” in European
Conference on Computer Vision, Springer, 2020, pp. 484–
501.

[53] X. Mao et al., EasyRobust: A large-scale robust training
toolkit, https : / / github . com / alibaba / easyrobust /
tree / 4c0ec0b0c908004b5c65f718de43a530a0856366,
[Online; accessed 24-August-2022], 2022.

[54] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better
than free: Revisiting adversarial training,” arXiv preprint
arXiv:2001.03994, 2020.

[55] L. Engstrom, A. Ilyas, H. Salman, S. Santurkar, and
D. Tsipras, Robustness (python library), 2019. [Online].
Available: https://github.com/MadryLab/robustness.

[56] A. Krizhevsky, “Learning multiple layers of features
from tiny images,” University, Tech. Rep., 2009.

[57] L. Fei-Fei, R. Fergus, and P. Perona, “Learning gen-
erative visual models from few training examples: An
incremental bayesian approach tested on 101 object
categories,” Computer Vision and Pattern Recognition
Workshop, 2004.

[58] M.-E. Nilsback and A. Zisserman, “Automated flower
classification over a large number of classes,” in Pro-
ceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing, Dec. 2008.

[59] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-
training can improve model robustness and uncertainty,”
in Proceedings of the 36th International Conference
on Machine Learning, K. Chaudhuri and R. Salakhut-
dinov, Eds., ser. Proceedings of Machine Learning
Research, vol. 97, PMLR, Jun. 2019, pp. 2712–2721.
[Online]. Available: https://proceedings.mlr.press/v97/
hendrycks19a.html.

[60] R. Wightman, Pytorch image models, https : / /github.
com / rwightman / pytorch - image - models, 2019. DOI:
10.5281/zenodo.4414861.

[61] H. Bao, L. Dong, S. Piao, and F. Wei, “BEit: BERT
pre-training of image transformers,” in International

https://openreview.net/forum?id=BuD2LmNaU3a
https://openreview.net/forum?id=BuD2LmNaU3a
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://robustbench.github.io
https://robustbench.github.io
https://proceedings.mlr.press/v119/croce20a.html
https://github.com/alibaba/easyrobust/tree/4c0ec0b0c908004b5c65f718de43a530a0856366
https://github.com/alibaba/easyrobust/tree/4c0ec0b0c908004b5c65f718de43a530a0856366
https://github.com/MadryLab/robustness
https://proceedings.mlr.press/v97/hendrycks19a.html
https://proceedings.mlr.press/v97/hendrycks19a.html
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861


Conference on Learning Representations, 2022. [Online].
Available: https : / / openreview . net / forum ? id = p -
BhZSz59o4.

[62] Z. Liu et al., “Swin transformer: Hierarchical vision
transformer using shifted windows,” in Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV), Oct. 2021, pp. 10 012–10 022.

[63] F. Pinto, P. H. Torr, and P. K. Dokania, “An impartial
take to the cnn vs transformer robustness contest,” arXiv
preprint arXiv:2207.11347, 2022.

[64] H. Shah, K. Tamuly, A. Raghunathan, P. Jain, and
P. Netrapalli, “The pitfalls of simplicity bias in neural
networks,” in Advances in Neural Information Process-
ing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33, Curran Asso-
ciates, Inc., 2020, pp. 9573–9585. [Online]. Available:
https : / / proceedings . neurips . cc / paper / 2020 / file /
6cfe0e6127fa25df2a0ef2ae1067d915-Paper.pdf.

[65] P. Benz, S. Ham, C. Zhang, A. Karjauv, and I. S.
Kweon, “Adversarial robustness comparison of vision
transformer and mlp-mixer to cnns,” arXiv preprint
arXiv:2110.02797, 2021.

[66] K. Mahmood, R. Mahmood, and M. Van Dijk, “On the
robustness of vision transformers to adversarial exam-
ples,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 7838–7847.

[67] X. Mao et al., “Towards robust vision transformer,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 12 042–12 051.

[68] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning,” Neural Networks, vol. 107,
pp. 3–11, 2018.

[69] B. Wu, J. Chen, D. Cai, X. He, and Q. Gu, “Do
wider neural networks really help adversarial robustness?”
Advances in Neural Information Processing Systems,
vol. 34, pp. 7054–7067, 2021.

[70] A. Shafahi et al., “Adversarial training for free!”
Advances in Neural Information Processing Systems,
vol. 32, 2019.

[71] V. Sehwag, S. Wang, P. Mittal, and S. Jana, “Hydra:
Pruning adversarially robust neural networks,” Advances
in Neural Information Processing Systems, vol. 33,
pp. 19 655–19 666, 2020.

[72] S. Kundu, M. Nazemi, P. A. Beerel, and M. Pe-
dram, “A tunable robust pruning framework through
dynamic network rewiring of dnns,” arXiv preprint
arXiv:2011.03083, 2020.

[73] Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi,
and P. S. Liang, “Unlabeled data improves adversarial
robustness,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[74] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revis-
iting unreasonable effectiveness of data in deep learning
era,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 843–852.

[75] I. Loshchilov and F. Hutter, “Decoupled weight decay
regularization,” arXiv preprint arXiv:1711.05101, 2017.

[76] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler,
and D. Soudry, “Augment your batch: Improving gen-
eralization through instance repetition,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 8129–8138.

[77] C. Herrmann et al., “Pyramid adversarial training
improves vit performance,” arXiv preprint
arXiv:2111.15121, 2021.

APPENDIX

A. The vision transformer architecture

We now cover the basic building blocks of the (vision)
transformer architecture: attention and multi-head attention, the
MLP block, positional encoding, and tokens embedding.

1) Attention: The attention function maps a query vector
and a set of key-value vector pairs to an output vector. In
particular, the form of attention by Vaswani et al. [39], called
Scaled Dot-Product Attention, can be formally expressed as

Attention(Q,K,V ) = Softmax
(
QKT

√
dk

)
V , (3)

where Q, K, and V represent respectively the set of queries,
keys, and values grouped in matrices, and dk represents the
dimension of the queries and the keys, while the values have
dimension dv. The product is scaled by 1√

dk
to compensate

for the fact that the dot products can reach large values in
magnitude when dk is large. Large values would saturate
softmax and make its gradients very small. In practice, in the
context of NLP, attention is computed among different words
(or parts of words). Given a set of words (e.g., a sentence), it
measures how much a word is dependent on another word in
the same set. For instance, in the sentence “This is a paper
about Vision Transformers”, “this” will attend to “is”, which
will, in turn, attend to “paper”. The main advantage of attention,
when compared to convolutions, is the ability to capture long-
distance dependencies between tokens, which is something
convolutions fail to do because of the local nature of the
convolution operator. A potential advantage of using attention
for computer vision tasks is that it can measure how much
a portion of an image attends to another one, enabling the
possibility of working more at a global level than a local one,
as convolutions do. For instance, in an image of a cat, the tail,
or the paws, will attend to the cat’s head, and vice-versa.

2) Multi-Head Attention: Before passing Q, K, and V
to the Attention function, Vaswani et al. [39] linearly project,
using learnable matrices, the inputs into vectors with dimension
dk, dk, and dv respectively. Moreover, instead of doing it just
once, they do it h times, and each projection is passed to the
Attention function simultaneously, creating the so-called Multi-
Head Attention. After the parallel processing, the resulting
matrices are concatenated and linearly projected, using, again,
a learnable matrix. Parallel processing enables the model to

https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=p-BhZSz59o4
https://proceedings.neurips.cc/paper/2020/file/6cfe0e6127fa25df2a0ef2ae1067d915-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6cfe0e6127fa25df2a0ef2ae1067d915-Paper.pdf


efficiently process information from different representations
of the inputs. Formally,

MultiHead(Q,K,V ) = Concat(head1, . . . , headh)W
O,

where headi = Attention(QWQ
i ,KWK

i ,V W V
i ),

(4)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv ,

and WO ∈ Rhdv×dmodel are the learnable matrices used to
linearly project the inputs and the result of the Attention
operation. Finally, we call Self-Attention the special case where
K = V , and –analogously– Multi-Head Self-Attention (MSA)
a Multi-Head Attention in the case where K = V .

3) The MLP block and the overall Transformer block: After
computing self-attention for the inputs, the result is passed to
a fully connected Multi-Layer Perceptron (MLP) block with
one hidden layer. Formally, given an input x, and learnable
weights and biases W1, b1, W2, b2, and an activation function
ρ, the MLP block can be expressed as

MLP(x) = ρ(xW1 + b1)W2 + b2. (5)

The vision transformer uses the Gaussian Error Linear Unit
(GELU) [3] activation and apply layer normalization to the
input of each MSA and MLP block.

To summarize, given an input xl to the l-th Vision Trans-
former block, a multi-head self-attention block MSA, an
MLP block, and a layer normalization block LN, the overall
Transformer block can be expressed as:

x′
l = xl +MSA(LN(xl))

xl+1 = x′
l +MLPGELU(LN(x′

l)).
(6)

4) Positional encoding: The reader can observe that atten-
tion, per se, considers the input as a set, and not as a sequence.
Hence, all information about the position of the inputs is
completely lost. For this reason, Vaswani et al. [39] add the
so called Positional Encodings to the input embeddings before
feeding them to the encoder and the decoder. The positional
encodings have the same size as the embeddings of the input
tokens, i.e., dmodel. In the case of the vision transformer, the
positional embeddings are learned parameters.

5) Input tokenization and positional encoding: Considering
each pixel as a token and computing attention between every
pixel would be computationally unfeasible, as the attention
operation has O(n2) complexity for both memory and runtime.
For this reason, Dosovitskiy et al. [18] split the image into
non-overlapping input patches. The patches are embedded into
tokens by reducing, by the size of the patches, the overall
number of inputs to the attention operation. The patches are
embedded by linearly projecting them to vectors of dimension
Rd

model. Given an image of size (H,W ) and patches of size
(P, P ), the resulting number of patches is N = HW/P 2.

6) Class token: After the input tokens are generated, a vector
— called [class] token — is prepended to the sequence of
tokens and processed along with the other tokens. The initial
state of this vector is a learnable parameter of the model. The
class token is meant to attend to the most relevant parts of an

image, e.g., in the case of an image with a cat, the [class]
token will attend to the patches, including the cat’s head, its
tail, and its whiskers. Finally, at the end of the last block, there
is the so-called “MLP Head”: an MLP which takes as input
the [class] token resulting from the last attention block,
and maps it to the class predicted for the input.

7) Performance and variations of Vision Transformers:
ViTs achieve state-of-the-art performance on several datasets,
such as ImageNet-1k [41], CIFAR-10, and CIFAR-100 [56]. In
particular, their maximum potential is reached when they are
pre-trained on larger datasets, such as ImageNet-21k and JFT-
300M [74]. In this way, they can learn representations that are
more generalizable and do not overfit when they are trained on
smaller datasets such as CIFAR-10 and CIFAR-100. To reduce
the need for pre-training on larger datasets, concurrent work
Steiner et al. [27] and Touvron et al. [30] shows that a tuned
training recipe, strong regularization, and data augmentations,
such as CutMix [44], RandAugment [45], MixUp [46], and
RandomErasing [47], lead to a ten-fold decrease in the need of
data to achieve the same performance. In particular, Touvron
et al. [30] call the model trained with this training recipe DeiT.
On the architectural point of view, instead, it has been proposed
to specialize layers for patches processing and classification
separately, with the aim of more effectively train deeper
ViTs [31], and to use different operations than multi-head self-
attention, such as cross-covariance attention [28] or average
pooling [32].

B. Transformer variations

We now give an overview of two transformer architectures
we employ in our experiments, i.e., CaiT [31] and XCiT [28].

1) Class Attention in Transformers (CaiT): In order to train
deeper ViTs, Touvron et al. [31] introduce two innovations:
LayerScale and Class Attention.

a) LayerScale: LayerScale consists of two learnable
diagonal matrices: one is multiplied to the result of the attention
operation, and the other is multiplied to the result of the MLP
block. Formally, given the two LayerScale diagonal matrices
diag(λl,1, . . . λl,d) and diag(λ′

l,1, . . . λ
′
l,d), the transformer

block function becomes

x′
l = xl + diag(λl,1, . . . λl,d)MSA(LN(xl))

xl+1 = x′
l + diag(λ′

l,1, . . . λ
′
l,d)MLP(LN(x′

l)).
(7)

In the case of deeper architectures (i.e., with a total of 24
transformer blocks), these diagonal matrices are initialized to
a value ε. This value is equal to 0.1 for architectures with up
to depth 18, 10−5 for those with depth 24, and 10−6 for those
with depth 38.

b) Class Attention: On the other hand, class attention
introduces a new way to handle the [class] token: instead
of prepending it to the sequence of the input tokens at the
beginning of the sequence of transformer blocks, Touvron
et al. [31] first process the input tokens through a series of
Transformer blocks (according to Eq. (7)), in a stage called self-
attention stage. They then prepend the [class] token, and
go through a series of blocks composed of a Multi-Head Class



Attention block followed by an MLP block. They call this stage
class-attention stage. A Multi-Head Class Attention block is
like a Multi-Head Self-Attention block where only the Attention
of the [class] to the other tokens is computed, and the other
tokens are left untouched. Formally, given a [class] token
xclass, a vector z = [xclass;xpatches] given by the concatenation
of the class token and the patches, learnable weight matrices
Wq, Wk, Wv, and Wo in Rd×d, and corresponding bias
vectors bq, bk, bv, and bo in Rd where d is the size of the
token embeddings, they first perform the projections:

Q = Wqxclass + bq

K = Wkz + bk

V = Wvz + bv.

(8)

They then compute class attention as

CA(Q,K,V ) = WoSoftmax

(
QKT√

d/h

)
V + bo, (9)

where QKT ∈ Rh×1×p, and h is the number of heads and p
is the number of patches. The class-attention stage is composed
of two Class Attention blocks, and the resulting architecture is
dubbed Class Attention in Transformers (CaiT).

2) Cross-Covariance Attention and XCiT: Dosovitskiy et
al. [18] show that using a smaller patch size brings better
results. However, the attention operation has O(n2) complexity
for both memory and runtime, making decreasing the patch
size hard. For this reason, El-Nouby et al. [28] propose an
alternative to the attention operation, called Cross-Covariance
Attention, with complexity O(n). The corresponding ViT-like
architecture is called Cross-Covariance Image Transformer
(XCiT). Overall, XCiT has a structure analogous to that of CaiT
(i.e., with self-attention and class-attention phases), with the
difference that it employs Cross-Covariance Attention instead
of Self-Attention. As a further difference, models with depth
12 initialize LayerScale’s ε to 1 instead of 0.1 (as discussed
in Paragraph B1a).

a) Cross-Covariance Attention: Cross-Covariance At-
tention (XCA) is an attention mechanism based on cross-
covariance, which works along the features dimension, i.e.,
along each dimension of the token embeddings. Given a queries
matrix Q, a keys matrix K, and a values matrix V , cross-
covariance attention is defined as

XC-Attention(Q,K,V ) = V Softmax

(
K̂T Q̂

τ

)
, (10)

where K̂ and Q̂ are the L2-normalized versions (i.e., with unit
L2 norm) of K and Q. It is called cross-covariance attention as,
in the case of self-attention K̂T Q̂ = WT

k XTXWq is the cross
covariance matrix of K̂ and Q̂, Cov(K̂, Q̂). Cross-covariance
is linear in time in the number of elements in X , i.e., the
number of patches N . We can interpret XCA as a dynamic,
data-dependent, 1×1 convolution along the axis of the features
of the embeddings, as each patch is multiplied by the same
data-dependent weight-matrix.

Finally, τ corresponds to a learnable temperature scaling
parameter, which is applied to help the convergence of the
training procedure.

b) Local Patch Interaction: Given the nature of XCA,
the patches do not explicitly interact with each other. For this
reason, after computing XCA, El-Nouby et al. [28] apply the
so-called Local Patch Interaction (LPI), which consists of two
3× 3 depth-wise convolutional layers with batch normalization
and GELU activation between the two layers.

c) Convolutional Patch Projection: Differently than the
previous works about ViTs introduced above, following Graham
et al. [33], El-Nouby et al. [28] embed the input patches into
tokens using a series of 3 × 3 convolutions of stride 2 with
GELU activation in between. As an example, for a model
with embedding dimension dmodel with patch size 16, an RGB
input image of size (3, 224, 224) goes through the follow-
ing transformations: (3, 224, 224) → (dmodel/8, 112, 112) →
(dmodel/4, 56, 56) → (dmodel/2, 28, 28) → (dmodel, 14, 14). We
note that 224/16 = 14, i.e., the final result, as expected, is a
set of 14× 14 vectors of size dmodel, each of which is mapped
from a patch. Finally, they use fixed, sinusoidal positional
encoding as in the original work from Vaswani et al. [39].

C. Data augmentations

Apart from classic data augmentation strategies, such as
random flipping, there are more advanced data augmentation
techniques. The ones employed by Touvron et al. [30] are
MixUp, CutMix, RandAugment, and Random Erasing.
MixUp and CutMix. MixUp [46] consists of creating an
image X̃ ∈ {0, 1}H×W of size (H, W) and a corresponding
label ỹ as the convex combination of two images and their
respective labels. This means that, given two images X1 and
X2, with respective one-hot-encoded labels y1 and y2, MixUp
generates an image X̃ = λX1 + (1− λ)X2, and the same is
applied to the one-hot-encoded labels: the resulting label is
ỹ = λy1 + (1− λ)y2. CutMix [44] follows a similar principle
by cutting a portion of an image and superimposing it on
another image. Formally, the resulting image is computed as
X̃ = M ⊙X1 +(1−M)⊙X2, where 1 is the matrix of all
ones, and M is a masking matrix. In particular, the masking
matrix M has zeros everywhere apart from the bounding box
B delimited by the coordinates (rx, ry, rh, rw), where rx and
ry are sampled uniformly along the height and the width of the
image, rh = H

√
1− λ and rw = W

√
1− λ. In this way, the

box is placed randomly in the image and has area proportional
to λ. We show some examples for these data augmentations
in Fig. 9.
RandAugment. RandAugment [45] improves the so-called
automated augmentations, which automatically select the best
augmentations for a given model and task, among a given
list of possible transformations (e.g., rotation and brightness
change). Automated augmentations are effective, but need
a separate search phase. RandAugment reduces the search
space, which enables training without a prior search phase.
In particular, given K augmentations, RandAugment chooses



(a) MixUp example.

(b) CutMix example.

Fig. 9: Examples for MixUp (Top) and CutMix (Bottom) data
augmentations.

each transformation with probability 1/K. We show an example
for three RandAugment augmentations in Fig. 10.
Random Erasing. Finally, Random Erasing [47] randomly
selects a portion of pixels in an image, and occludes them,
either by setting them to 0 or by sampling their value from a
normal distribution with mean and standard deviation equal to
those of the dataset. We show an example for Random Erasing
in Fig. 11.

D. Setup and hyperparameters

In this section, we give additional details about the training,
evaluation, and implementation setups.
Training hyperparameters. Apart from the experiments on
larger models, we run all the training runs using VMs with 8
TPUv3 cores. In all the runs, unless otherwise stated, we use the
same setup as the one used for DeiT [30]. We use as a batch size
64× 8 = 512 (i.e. 64 samples per TPU core), and the learning
rate is chosen according to the formula provided by Touvron
et al. [30] (i.e. lr = 0.0005× batch size

512 ), which corresponds to
0.0005 with the batch size we use in most experiments. For all
the training runs on ImageNet-1k, we train the model for 110
epochs, with a learning rate cosine decay with a final value of
5× 10−5, a 10-epochs warm-up from 5× 10−6 and 10 epochs
cool-down. We use the AdamW optimizer [75]. Apart from
the architecture ablation (Section III-B), we do not employ
repeated augmentations [76] to save training time. Repeated
augmentations consist of repeating each batch 3 times: the first
one without data augmentations and the following ones with it.
Hence, employing repeated augmentations would be equivalent
to doing 3× the number of epochs. On the other hand, for
XCiT-M12, XCiT-L12, ConvNeXt, and PoolFormer, we use
TPUv4 pods with either 32 or 64 TPU cores. As mentioned
above, we increase the total batch size according to the model
size and on the number of devices in use, and we scale the
learning rate according to the rule stated above.
Training runtime. We train all three XCiT variants on a pod
with 64 TPUv4 cores to compare the training time. We use the
largest batch size that can fit into each device, which is 256 for
XCiT-S12 and XCiT-M12, and 128 for XCiT-L12. We scale
the learning rates as described in the paragraph above. The

total training time for XCiT-S12 is 19h30m, for XCiT-M12 it
is 33h, and for XCiT-L12 it is 39h.
Training attack setup. Finally, unless otherwise stated, we use
FGSM for adversarial training [54], initializing the adversarial
perturbation to be uniformly distributed in [−ε, ε], and adding
10−5 to avoid numerical instability. Moreover, we apply early-
stopping, i.e., we evaluate the checkpoint at the epoch where
the model was performing best in terms of FGSM accuracy
on the test set.
Large epsilon pre-training setup. We pre-train an XCiT-
S12 on ImageNet-1k with ε = 8/255. Using the same setup
as the ε = 4/255 training, we observe strong label leaking
(which was also observed by previous work on ViTs adversarial
training [77]). To solve this, we use 2-steps FGSM instead of
1-step FGSM as the attack for adversarial training. By doing
so, we manage to train a model which has 25.00% AutoAttack
accuracy and 63.46% clean accuracy on the subset of 5000
images from RobustBench when using ε = 8/255 as attack
budget. We similarly train an XCiT-M12 and an XCiT-L12,
using the same setup. Moreover, as a baseline, we attempt to
pre-train an XCiT-S12 robust to ε = 8/255 perturbations using
the canonical training recipe. However, we observe that the
training fails. For this reason, we adopt the epsilon warm-up
from our tailored training recipe. Finally, we pre-train a ResNet-
50 with GELU activation function, using the same setup as Bai
et al. [2]. To validate the correctness of our implementation
and setup, we first successfully reproduce their results with
ε = 4/255. However, when training a model robust to ε = 8/255
perturbations with this setup, the resulting model is worse than
the ReLU ResNet-50 pre-trained by Salman et al. [50]6. For
this reason, in the fine-tuning experiments, we fine-tune this
network. We show the full pre-training results in Table XI.
High-resolution finetuning setup. We fine-tune the model pre-
trained on ImageNet-1k with ε = 8/255 on the high-resolution
datasets Caltech-101 and Oxford Flowers. We fine-tune using
ε = 8/255 for 20 epochs and the same training recipe as the one
used for pre-training, with the difference that we do adversarial
training with 1-step FGSM instead of 2-steps, and we do not
employ a warm-up for ε. We also do a fine-tuning run without
adversarial training to better quantify the clean-robust accuracy
tradeoff.
Low-resolution finetuning setup. The pre-trained XCiT
models are meant for inputs with patch size 16. However,
such a patch size would be too large for datasets of smaller
images such as CIFAR-10 and CIFAR-100 (which have 32×32
resolution). For this reason, we need a way to adapt the model
to support a different patch size. Previous work [23] achieves
this by down-sampling the weights of the convolutional layer
that is used by ViT to embed each patch. However, XCiT uses
4 subsequent convolutional layers to embed 16×16 patches into
1-D vectors, and each layer has stride 2 [33]. To embed 4×4
patches, we need to use just 2 subsequent convolutions with
stride 2. For this reason, we adapt our model by setting the

6The checkpoints from this paper can be downloaded from https://github.
com/microsoft/robust-models-transfer

https://github.com/microsoft/robust-models-transfer
https://github.com/microsoft/robust-models-transfer


Fig. 10: Original image (Left) and three examples of augmented images generated by RandAugment

Fig. 11: Original image (Left) and example of erasure generated
by Random Erasing (Right).

stride of the first two convolutional layers to 1. Regarding the
ResNet-50, instead, we substitute the first convolutional layer
(which has originally kernel size 7 and stride 2) with one with
kernel size 3 and stride 1, and we remove the first pooling layer.
Given the smaller size and resolution of the CIFAR datasets, we
fine-tune the robustly trained model using TRADES [10], with
PGD-10 as the attack. Similar to the high-resolution datasets,
we fine-tune for 20 epochs. However, we remove the color jitter
data augmentation, as the inputs are smaller and would make
the task too hard. Moreover, we search for the best learning
rate, which we find to be 2× 10−4 (as opposed to 5.0× 10−5

that we used for pre-training and the high-resolution datasets).
We probably need a larger learning rate to better tune the input
embedding layer whose structure we change. Finally, given the
smaller resolution of the images, we change the values for the
random scale and crop data augmentation as follows: the ratio
of possible crop ranges from [0.75, 1.33] to [0.95, 1.05], and
the input re-scaling range from [0.08, 1.0] to [0.8, 1.2]. If we
kept these large ranges, then very few pixels of the original
image would remain after cropping and resizing, hence the
task would be too hard, and the model would underfit.
Evaluation setup. For the final ablation and the scaled-up
models trained on ImageNet-1k, we run AutoAttack [38],
an ensemble of white- and black-box attacks. We run the
attack on the subset of 5000 ImageNet-1k images used for
the RobustBench benchmark [24]. Given that AutoAttack is
composed of four attacks, two of which are black-box, it is
computational expensive. To strike a balance between strength
and computational cost, instead, we assess the robustness of

the individual ablations using APGD-CE [38]. APGD-CE is a
parameter-free attack, which is the first of the ensemble that
makes up AutoAttack. We run this attack with 5 restarts and
100 iterations, the same settings of the attack that is part of
AutoAttack. Finally, we compute the FLOPs and number of
parameters using the fvcore library7.

Additional implementation details. We base our imple-
mentation on the PyTorch Image Models repository [60]8,
which includes the timm library and provides a template
training script. This library uses the PyTorch framework [43].
In particular, given that we run our experiments on Tensor
Processing Unit (TPU) devices, we use the PyTorch XLA
library, which compiles PyTorch code to the XLA9 Intermediate
Representation (XLA IR), needed to run the computations
on TPUs. The XLA IR consists of a graph representing the
computation performed on tensors. The graph is then compiled
and optimized (e.g., by fusing operations when possible). To
use timm’s utility functions to work with TPUs, we use the
bits_and_tpu branch of PyTorch Image Models10, which
introduces the compatibility of the library with XLA and TPUs.
We adapt timm’s default training script to perform adversarial
training.

Because of an existing bug we identified in PyTorch XLA11,
when we run the attacks (e.g., FGSM) during training, we have
to set the model to the .train() mode (which influences the
behavior of batch normalization layers). However, this should
not impact the overall robustness of the models [48]. Moreover,
while all the AutoAttack and APGD-CE evaluations are run
on V100 GPUs, hence with the model in .eval() mode,
in the case of the attack effectiveness experiment (sec:attack-
effectiveness) we run the evaluations on TPUs, thus with the
model in .train() mode. We do so as the large number of
evaluations we run (160) would have been unfeasible with our
GPU compute budget.

Carbon emissions. Finally, the carbon footprint of the project,

7https://github.com/facebookresearch/fvcore
8https://github.com/rwightman/pytorch-image-models/
9XLA stands for Accelerated Linear Algebra, more information about the

XLA compiler can be found here: https://www.tensorflow.org/xla/architecture
10https://github.com/rwightman/pytorch-image-models/tree/bits and tpu.

The branch may be eventually merged into main. Hence, this URL may
become invalid.

11https://github.com/pytorch/xla/issues/3361

https://github.com/rwightman/pytorch-image-models/
https://www.tensorflow.org/xla/architecture
https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu
https://github.com/pytorch/xla/issues/3361


measured via Google Cloud’s Carbon Footprint Console12, is
33 kgCO2. For scale, a flight from Paris to London generates
around 55.7 kgCO2 per person in economy class13.

E. Additional ablation results

We show in Table IX the full results for the data augmenta-
tion ablation. We can observe that the setups with the heaviest
data augmentations rank at the bottom.

F. PGD Results

We report the results for PGD attacks in Table X.

G. Pre-training results

We show in Table XI the results for training runs with
ε = 8/255. These are the models we use for fine-tuning.

H. Additional plots regarding attack effectiveness

We show, in Figs. 12 and 13 additional results regarding the
attack effectiveness experiment.

I. Additional samples for the optimization sanity checks

We show the loss for different attack steps for 32 different
samples from ImageNet-1k in Fig. 14 (XCiT-S12), and Fig. 15
(ResNet-50), and the loss progression of the loss in one attack
targeting the same 32 samples in Fig. 16 (XCiT-S12), and
Fig. 17 (ResNet-50).

J. Additional experiment about XCiT’s gradients

Direct feature visualization. Gradients of robust CNNs are
more aligned with human perception [35]. In particular, in their
work, they introduce a visualization technique called direct
feature visualization, by which they maximize the output of
a model at a specific activation in the penultimate layer by
optimizing an input image via PGD. They observe that the
images generated in this way using an adversarially-trained
model contain semantically meaningful information without
the need for regularization terms on the input. We explore a
variation of this experiment: instead of maximizing a specific
activation, starting from uniformly random inputs, we run a
targeted attack that targets a random class, i.e., we change the
input so that it is classified with the given class with the highest
confidence. We do so by optimizing the input via PGD-100,
using ε = 15. To the best of our knowledge, we are the first
to run a similar experiment on a robust ViT-like model. We
can see a set of random images and classes in Fig. 18.

We make the following observations: 1) The non-robust
XCiT gradients have no semantic meaning. 2) Regarding the
first image on the left, whose target class is “small white” (a
butterfly species), for both the robust models, we can see a
white portion in the shape of a butterfly with a black spot,
which is what a small white butterfly looks. 3) Regarding
the image targeting “feather boa” (feathery party apparel), we
can see, in the case of the robust XCiT-S12, long, colorful

12https://cloud.google.com/carbon-footprint
13Computed on https://www.icao.int/environmental-protection/Carbonoffset/

Pages/default.aspx

structures with feather-like edges. 4) For the images targeting
the “pot” class, we can see the borders of a pot in the case
of the robust XCiT-S12. We can also observe that we can see
some plants as well, meaning that, probably, in the datasets,
pots are most often represented when containing plants. 5)
Finally, in the last image on the right, which should target the
“border collie” class, we can see a Border Collie for the robust
XCiT-S12 and the head of one in the lower right corner for
the robust ResNet-50.
Perturbations visualization. We also visualize the adversarial
perturbations generated with a PGD-100 attack for a robust
and a non-robust XCiT, compared to those generated for a
robust ResNet-50. Given that a perturbation δ is in [−ε, ε], we
rescale it to [0, 1] to visualize it as an image. For this reason,
we compute the visualized images δviz =

δ+ε
2ε and we visualize

the intensity of the perturbation by transforming the image to
grey-scale colors.

We can see a random sample of images and their respective
perturbations in Fig. 8. We note that the shapes of the original
images are visible in the robust XCiT and ResNet perturbations,
while they are not in the non-robust ones.

https://cloud.google.com/carbon-footprint
https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx
https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx


TABLE IX: Weak data augmentation is better. The strategies that perform best are those with just Random Erasing, or
no heavy augmentation, such as RandAugment, at all. We report the full results results in this table, sorted by APGD-CE
accuracy. In all the runs we keep weak data augmentation that are commonly used (random flip and crop, and color jitter).
(Arch: XCiT-N12)

Data Augmentation Policy Accuracy

MixUp CutMix RandAugment Random Erasing Clean APGD-CE

✗ ✗ ✗ ✓ 67.28 39.22
✗ ✗ ✗ ✗ 66.78 39.22
✓ ✗ ✗ ✗ 61.04 38.56
✓ ✗ ✗ ✓ 60.46 38.26
✓ ✓ ✗ ✗ 62.04 38.18
✗ ✗ ✓ ✗ 65.34 37.64
✗ ✗ ✓ ✓ 64.76 37.62
✓ ✓ ✗ ✓ 59.80 37.20
✓ ✗ ✓ ✗ 57.16 36.74
✗ ✓ ✗ ✗ 61.62 36.30
✓ ✓ ✓ ✗ 57.60 36.06
✗ ✓ ✗ ✓ 61.70 35.74
✓ ✗ ✓ ✓ 55.64 35.70
✓ ✓ ✓ ✓ 55.96 35.38
✗ ✓ ✓ ✗ 56.64 32.92
✗ ✓ ✓ ✓ 55.64 32.40

TABLE X: PGD accuracy decreases with the number of steps. We run the PGD attack with 5, 10, 50, and 100 steps for
ε = 8/255. We observe that, as expected, the robust accuracy gently plateaus at 50 steps, with no significant difference between
50 and 100 steps, for all three models. We run the attack on the full ImageNet validation set, using as a step size 1.5 · ε/n),
where n is the number of attack steps.

Model Clean Accuracy
Robust Accuracy

PGD-5 PGD-10 PGD-50 PGD-100

XCiT-S12 72.34 49.16 48.91 48.71 48.69

XCiT-M12 74.04 51.96 51.71 51.55 51.53

XCiT-L12 73.76 53.75 53.52 53.37 53.36

TABLE XI: The training recipe also works for larger epsilons. Results for training with ε = 8/255: we can observe that, for
XCiT, the performance improves with scale.

Model Clean Accuracy AA Accuracy

GELU ResNet-50 58.08 17.14
ReLU ResNet-50 [50] 54.90 19.72
XCiT-S12 63.46 25.00
XCiT-M12 67.80 26.58
XCiT-L12 69.24 28.74



0

10

20

30

40

50

60

70

R
ob

us
t

lo
ss

re
la

ti
ve

di
ff

er
en

ce
(%

)

steps = 1 steps = 2

20 40 60 80 100
Epoch

0

10

20

30

40

50

60

70

R
ob

us
t

lo
ss

re
la

ti
ve

di
ff

er
en

ce
(%

)

steps = 5

20 40 60 80 100
Epoch

steps = 10

Model

ResNet-50

XCiT-S12

XCiT-S12∗

ConvNeXt-T

Fig. 12: Comparison, across different attack steps, of the relative difference between the adversarial loss computed with the
given attack steps and the adversarial loss computed with PGD-200, and how this quantity changes every 10 training epochs.



0

10

20

30

40

50

60

70

R
ob

us
t

lo
ss

re
la

ti
ve

di
ff

er
en

ce
(%

)

epoch = 10 epoch = 20

0

10

20

30

40

50

60

70

R
ob

us
t

lo
ss

re
la

ti
ve

di
ff

er
en

ce
(%

)

epoch = 30 epoch = 40

0

10

20

30

40

50

60

70

R
ob

us
t

lo
ss

re
la

ti
ve

di
ff

er
en

ce
(%

)

epoch = 50 epoch = 60

0

10

20

30

40

50

60

70

R
ob

us
t

lo
ss

re
la

ti
ve

di
ff

er
en

ce
(%

)

epoch = 70 epoch = 80

1 2 5 10
Attack steps

0

10

20

30

40

50

60

70

R
ob

us
t

lo
ss

re
la

ti
ve

di
ff

er
en

ce
(%

)

epoch = 90

1 2 5 10
Attack steps

epoch = 100

Model

ResNet-50

XCiT-S12

XCiT-S12∗

ConvNeXt-T

Fig. 13: Comparison, every 10 epochs, of the relative difference between the adversarial loss computed with different numbers
of attack steps and the adversarial loss computed with PGD-200.



0

1

2

3

4

L
os

s

0.5

1.0

1.5

2.0

0.08

0.10

0.12

0.14

0.04

0.05

0.06

0.07

1

2

3

4

5

6

L
os

s

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.06

0.08

0.10

0.12

0.14

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.12

0.14

0.16

0.18

L
os

s

0.12

0.13

0.14

0.15

0.16

0.17

0.08

0.10

0.12

0.14

0.2

0.4

0.6

0.8

0.06

0.07

0.08

0.09

0.10

L
os

s

0.10

0.15

0.20

0.25

0.30

0.06

0.08

0.10

0.12

0.14

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.07

0.08

0.09

0.10

L
os

s

0.07

0.08

0.09

0.10

0.10

0.15

0.20

0.25

0.30

0.4

0.6

0.8

1.0

0.2

0.3

0.4

0.5

L
os

s

0.2

0.3

0.4

0.5

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.10

0.12

0.14

0.16

0.18

0.20

0.2

0.3

0.4

0.5

L
os

s

2

3

4

5

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.05

0.06

0.07

0.08

0.09

0.10

0 200 400
Attack steps

0.2

0.4

0.6

0.8

1.0

L
os

s

0 200 400
Attack steps

1.0

1.5

2.0

2.5

3.0

0 200 400
Attack steps

0.06

0.08

0.10

0.12

0.14

0.16

0 200 400
Attack steps

0.2

0.4

0.6

0.8

Fig. 14: Comparison between different runs of PGD attacks with different numbers of steps for XCiT-S12, for 32 different
random points from ImageNet-1k.



2

3

4

5

L
os

s

1

2

3

0.02

0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08

0.10

0.12

2

3

4

5

6

L
os

s

0.10

0.15

0.20

0.25

0.30

0.04

0.06

0.08

0.10

0.12

0.14

0.2

0.3

0.4

0.5

0.6

0.10

0.15

0.20

0.25

L
os

s

0.15

0.20

0.25

0.30

0.35

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.4

0.6

0.8

1.0

1.2

0.02

0.03

0.04

0.05

0.06

L
os

s

0.05

0.10

0.15

0.20

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

0.10

0.02

0.03

0.04

L
os

s

0.010

0.015

0.020

0.025

0.030

0.1

0.2

0.3

0.4

1.0

1.5

2.0

2.5

3.0

0.4

0.6

0.8

L
os

s

0.2

0.4

0.6

0.8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.1

0.2

0.3

0.4

0.5

0.6

0.4

0.6

0.8

1.0

L
os

s

0.05

0.10

0.15

0.20

0.25

0.04

0.06

0.08

0.10

0.12

0.14

1.0

1.5

2.0

2.5

0 200 400
Attack steps

2

3

4

5

L
os

s

0 200 400
Attack steps

0.05

0.10

0.15

0.20

0 200 400
Attack steps

0.4

0.6

0.8

1.0

1.2

0 200 400
Attack steps

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Fig. 15: Comparison between different runs of PGD attacks with different numbers of steps for GELU ResNet-50, for 32
different random points from ImageNet-1k.



0

1

2

3

4

L
os

s

0.5

1.0

1.5

2.0

0.08

0.10

0.12

0.14

0.04

0.05

0.06

0.07

1

2

3

4

5

6

L
os

s

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.06

0.08

0.10

0.12

0.14

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.12

0.14

0.16

0.18

L
os

s

0.12

0.13

0.14

0.15

0.16

0.17

0.08

0.10

0.12

0.14

0.2

0.4

0.6

0.8

0.06

0.07

0.08

0.09

0.10

L
os

s

0.10

0.15

0.20

0.25

0.30

0.06

0.08

0.10

0.12

0.14

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.070

0.075

0.080

0.085

0.090

0.095

0.100

L
os

s

0.07

0.08

0.09

0.10

0.10

0.15

0.20

0.25

0.30

0.4

0.6

0.8

1.0

0.2

0.3

0.4

0.5

L
os

s

0.2

0.3

0.4

0.5

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.10

0.12

0.14

0.16

0.18

0.20

0.2

0.3

0.4

0.5

L
os

s

2

3

4

5

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.05

0.06

0.07

0.08

0.09

0.10

0 200 400
Attack steps

0.2

0.4

0.6

0.8

1.0

L
os

s

0 200 400
Attack steps

1.0

1.5

2.0

2.5

3.0

0 200 400
Attack steps

0.06

0.08

0.10

0.12

0.14

0.16

0 200 400
Attack steps

0.2

0.4

0.6

0.8

Fig. 16: Evolution of the loss for different runs of an attack, using a large step size for XCiT-S12, for 32 different random
points from ImageNet-1k.



2

3

4

5

L
os

s

1

2

3

4

0.02

0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08

0.10

0.12

2

3

4

5

6

L
os

s

0.10

0.15

0.20

0.25

0.30

0.04

0.06

0.08

0.10

0.12

0.14

0.2

0.3

0.4

0.5

0.6

0.10

0.15

0.20

0.25

L
os

s

0.15

0.20

0.25

0.30

0.35

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.4

0.6

0.8

1.0

1.2

1.4

0.02

0.03

0.04

0.05

0.06

L
os

s

0.05

0.10

0.15

0.20

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

0.10

0.02

0.03

0.04

L
os

s

0.010

0.015

0.020

0.025

0.030

0.035

0.1

0.2

0.3

0.4

1.0

1.5

2.0

2.5

3.0

0.4

0.6

0.8

L
os

s

0.2

0.4

0.6

0.8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.1

0.2

0.3

0.4

0.5

0.6

0.4

0.6

0.8

1.0

L
os

s

0.05

0.10

0.15

0.20

0.25

0.04

0.06

0.08

0.10

0.12

0.14

1.0

1.5

2.0

2.5

0 200 400
Attack steps

2

3

4

5

L
os

s

0 200 400
Attack steps

0.05

0.10

0.15

0.20

0 200 400
Attack steps

0.4

0.6

0.8

1.0

1.2

0 200 400
Attack steps

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Fig. 17: Evolution of the loss for different runs of an attack, using a large step size for GELU ResNet-50, for 32 different
random points from ImageNet-1k.



Fig. 18: Comparison between the gradient accumulation for a robust XCiT-S12 and a non-robust ResNet-50.


	Introduction
	Background
	Overview of adversarial training
	Overview of Vision Transformers

	Finding an effective adversarial training recipe for vision transformers
	The canonical training recipe leads to suboptimal performance in adversarial training
	Architecture choice: Architectural innovations significantly benefit adversarial training
	Data-augmentation: Adversarial training of ViTs requires weak augmentation
	Optimization setup: Tuning attack curriculum and additional regularization brings further improvements

	Validating our training recipe at scale
	Validating success on the full ImageNet-1k dataset
	Beyond pre-training: Success of our approach with transfer learning

	Understanding the success of Vision Transformers in adversarial training
	Attack effectiveness influences adversarial training
	Semantic nature of XCiT's adversarial perturbations

	Related work
	Discussion and Conclusion
	Acknowledgements
	Appendix
	The vision transformer architecture
	Attention
	Multi-Head Attention
	The MLP block and the overall Transformer block
	Positional encoding
	Input tokenization and positional encoding
	Class token
	Performance and variations of Vision Transformers

	Transformer variations
	Class Attention in Transformers (CaiT)
	Cross-Covariance Attention and XCiT

	Data augmentations
	Setup and hyperparameters
	Additional ablation results
	PGD Results
	Pre-training results
	Additional plots regarding attack effectiveness
	Additional samples for the optimization sanity checks
	Additional experiment about XCiT's gradients


