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Abstract

This work models the costs and benefits of per-
sonal information sharing, or self-disclosure, in
online social networks as a networked disclosure
game. In a networked population where edges rep-
resent visibility amongst users, we assume a leader
can influence network structure through content
promotion, and we seek to optimize social wel-
fare through network design. Our approach con-
siders user interaction non-homogeneously, where
pairwise engagement amongst users can involve
or not involve sharing personal information. We
prove that this problem is NP-hard. As a solution,
we develop a Mixed-integer Linear Programming
algorithm, which can achieve an exact solution,
and also develop a time-efficient heuristic algo-
rithm that can be used at scale. We conduct nu-
merical experiments to demonstrate the properties
of the algorithms and map theoretical results to a
dataset of posts and comments in 2020 and 2021 in
a COVID-related Subreddit community where pri-
vacy risks and sharing tradeoffs were particularly
pronounced.

1 INTRODUCTION

Online social engagement allows users to connect with peers
and other contributors through discussion Brake [2012], Za-
farani and Liu [2013], Golbeck [2007]. Frequently, online
discussions entail self-disclosure, the voluntary sharing of
personal information with others, which can include identi-
fying or sensitive details such as location, age, gender, race,
political affiliation, religious beliefs, and cognitive or emo-
tional vulnerabilities Choi and Bazarova [2015]. Despite
apparent privacy risks, acts of self-disclosure can enhance
social rewards Hallam and Zanella [2017] by building trust,
promoting empathy, increasing legitimacy and likeability,

and deriving social support De Choudhury and De [2014],
Seiter and Brophy [2021]. These trade-offs have become
particularly evident over the past three years, during the
Covid-19 pandemic Nabity-Grover et al. [2020], Blose et al.
[2020], Umar et al. [2021], Amosun et al. [2021].

This work leverages a game-theoretic model to formalize
tradeoffs between privacy risks and social rewards in an
online social network. We define utility at the individual
user level, and in doing so, we enable a notion of global
social welfare. We study social welfare optimization through
strategic network design, operationalized through content
promotion, as a game-theoretic problem.

Our use of game theory is motivated by the view of self-
disclosure (SD) as inherently social and strategic behavior.
We posit that, implicitly or explicitly, users experience a
payoff for sharing behaviors, which is mediated by gains
and (privacy) losses. In parallel, a social network provider
benefits from engaged communities, where users’ gratifi-
cation and sense of community are maximized. In partic-
ular, we structure this problem as a Stackelberg game Li
and Sethi [2017] in which a leader moves first, and follow-
ers move sequentially thereafter. The OSN platform is the
game’s leader; it can significantly influence the pairwise
interactions defining the social network graph. OSN users
are followers in the game; each decides whether and what
to disclose about themselves, given their network of peers
and perceived costs and benefits of sharing.

We formalize this problem as a bi-level programming prob-
lem and prove that this problem is NP-hard. As a solution,
we linearize the problem to a mixed integer linear program-
ming problem, which can obtain the optimal solution for
a small network (e.g., 32 users). In addition, we propose a
Greedy naive solution and a time-efficient heuristic algo-
rithm for deployment at scale. The algorithm dynamically
maintains a rank of users based on their estimated utilities
and removes the nodes and associating edges with the most
negligible contribution to social welfare.

Finally, we put the networked disclosure game (NDG) into
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practice through simulations using the traces collected from
a real dataset of online conversations in a SubReddit for
COVID-positive users. We first evaluate our algorithmic
solutions’ performance and computational efficiency using
synthetic networks. Subsequently, we expand our experi-
ments on real-world data, identifying parameter values and
network criteria conducive to maximizing social welfare.

2 RELATED WORK

Self-disclosure. Self-disclosure has been studied as an in-
tentional and influenced behavior and has both intrinsic and
extrinsic rewards Abramova et al. [2017], Huang [2016],
Wang et al. [2016]. A growing body of work looks at SD
both in online communications and particularly in the con-
text of social networks. Work has shown that SD can sup-
port psychological well-being Wingate et al. [2020], Amo-
sun et al. [2021] and plays a role in building and main-
taining relationships, social connectedness, and emotional
support Barak and Gluck-Ofri [2007], Aharony [2016],
Shih et al. [2015], Wingate et al. [2020], Amosun et al.
[2021]. Increasingly, studies have explored self-disclosure
in OSNs where users interact with others also seeking these
benefits Lee et al. [2013], Andalibi et al. [2016], Huang
[2016], Pan et al. [2018], Trepte et al. [2018], Wingate et al.
[2020], Abramova et al. [2017], Hallam and Zanella [2017].
While several contributions have studied the impacts of
self-disclosure in social networks, this has been mostly qual-
itative work or has relied on small datasets for quantitative
observations Huang [2016], Hallam and Zanella [2017]. To
our knowledge, few studies have proposed computational
measurement of the social benefits of personal information
sharing. In Griffin et al. [2019] authors proposed a public
goods framework to measure self-disclosure benefits as a
shared resource, where voluntary disclosure is framed as
contributing to the richness of dialogue from which all par-
ticipants benefit. This framing neglects individual privacy
risks in the conceptualization of public good and is insuffi-
cient to capture the heterogeneity of individual disclosure
decisions as they are influenced by peers. Our work attempts
to fill this important gap by addressing the group-level social
benefits of self-disclosure.

Of note, recent work also has focused on automated models
to scale self-disclosure labels in small manually-annotated
data to larger samples Bak et al. [2012, 2014], Houghton
and Joinson [2012], Umar et al. [2019]. These models
employ highly curated dictionaries and extensive feature
engineering, which limit the inference process and per-
formance on unseen data. Other recent studies have used
transfer-learning techniques on NLP models for labeling
self-disclosure in text Pant et al. [2020]. We employ state-of-
the-art BERT-based models to label our dataset for analysis
in this work. Our emphasis is not on detecting utterances
of self-disclosure in online conversations but rather on the

impact these messages have on the welfare of their broader
community.

Social Influence. Social networks are extensively used for
information diffusion, with concrete examples such as viral
marketing Domingos and Richardson [2001] and targeted
advertisement Li et al. [2011]. These applications have gar-
nered significant attention from the social network analysis
community, specifically, the topic of influence maximization
Kempe et al. [2003]. At a high level, influence maximiza-
tion aims to select a small subset of seeds acting as the
source of influence with which the influence is maximized
under some information diffusion model, e.g., Independent
Cascade Wang et al. [2012], Linear Threshold Goyal et al.
[2011], where the influence is measured by the number of
affected nodes in the network. In contrast to a diffusion
setting, Irfan and Ortiz [2014] propose the Linear Influence
Game (LIG) as a simultaneous move game. Our inner net-
worked disclosure game features analogous utility functions
to LIG, albeit with binary actions confined to {0, 1}, posi-
tive weights, and undirected network structure. This enables
us to obtain a polynomial time solution for identifying a
Pure Strategy Nash Equilibrium (PSNE). Compared with
the influence works, our primary goal is to promote content
and design network structure, which are more similar to
recommendation Corò et al. [2019], Coró et al. [2021].

3 PROBLEM FORMULATION

We assume the conversational context of an OSN. Namely,
users interact and share "with" one another at a given time.
These interactions can be represented as a network graph.
We assume that all users within that context receive a (mea-
surable) reward for participation. In practice, the measure-
ment of reward is likely to be platform-dependent. Here, we
consider measures of social engagement, including likes,
shares, the sentiment of replies, and similar. We assume that
the act of self-disclosing comes at a privacy cost to the in-
dividual user. This cost can be instantiated in various ways,
i.e., proportional to the size of neighbors and other agents,
and can be set to any [0,1] value Liu and Terzi [2010]. In
our experiments, as we return in Section 5.2, this cost is
assumed constant and learned from users’ interactions with
peers.

From these assumptions, we cast the problem as a binary
networked game. Specifically, users who share personal
information incur an individual cost to privacy but receive
social or emotional rewards.

Central to this formulation is the notion of social welfare
Zheleva and Getoor [2009], defined as the total utility of all
participating users in the game, where utility is measured
as the difference between cost and reward. From this per-
spective, we explore interventions, e.g., content ranking and
recommendation, that OSN platforms might incorporate to



support greater social welfare.

Following, we introduce the mathematical models of (1) the
Networked Disclosure Game and (2) the Content Promotion
Networked Design.

Networked Disclosure Game (NDG). The networked dis-
closure game (NDG) is defined on a content promotion
network G = (V, E), where V = {1, ..., n} are the users,
and E ⊆ V × V is a reflection of whether two users can
see each other’s content (i.e. the interdependencies among
the players’ utilities). We use a binary decision variable
xi ∈ {0, 1} (i = 1, ..., N ) to indicate user i’s strategy to
self-disclose, i.e., xi = 1 if user i posts content containing
self-disclosure; otherwise xi = 0. We let x = (x1, ..., xN )
be the whole action profile.

As noted above, users engage in self-disclosure to obtain
benefits, e.g., emotional or informational support, broadly
represented as social connectivity. Our model invokes the
concepts proposed by social penetration theory, suggesting
that mutual information sharing is a cornerstone for building
relationships. In essence, users can reap the benefits from
their neighbors only when they indulge in self-disclosure.
Specifically, given a pair of users i and j sharing information
with each other (xi = xj = 1, and (i, j) ∈ E ), the benefit
that user i receives from user j is denoted by a weight wi,j

from i to j1. As such, we calculate the total benefit that
user i receives from his/her neighbors Ni = {j|(j, i) ∈ E}
as gi(xi,x−i) = xi

∑
j∈Ni

wj,ixj , where wj,i denotes the
potential impact user j has to user i, and x−i denotes the
strategy profiles except for user i.

On the other hand, self-disclosure comes at a potential pri-
vacy cost for a user, i.e., personal information that is volun-
tarily shared may result in increased privacy risks2. There-
fore, we define the utility for each user i as

Ui(xi,x−i|G) = gi(xi,x−i|G)− cixi (1)

where ci > 0 is the cost of user i for disclosing (e.g. per-
ceived privacy loss). To normalize the weights and the costs,
we assume

∑
j wj,i ≤ 1 and ci ∈ [0, 1].

In this paper, we adopt the pure strategy Nash Equilib-
rium (PSNE) as our solution concept, i.e., Ui(xi,x−i|G) >
Ui(1− xi,x−i|G) ∀i. Moreover, we assume that each user
i breaks ties in favor of disclosing, i.e., user i chooses to

1For simplicity, we disregard the impact of negative social
interactions and assume that interactions generally provide some
benefit. Note that since trust and influence are not always sym-
metric, wj,i and wi,j can be different values, connected with the
benefit functions gi and gj separately

2Note that for the purposes of this model, risks may not be
immediately tangible or easy to quantify. This is irrelevant since
we model users’ own decision process and perceived rather than
objective risks.

disclose when

Ui(1,x−i|G) ≥ Ui(0,x−i|G), or simply
∑

j∈Ni
wj,ixj ≥ ci.

(2)
where Equ. (2) is called the threshold condition.

Theorem 3.1. The strategy profile x is a PSNE if and only
if (1) everyone who invests satisfies the threshold condition
and (2) other agents do not satisfy threshold condition, i.e.∑

j∈Ni
wj,ixj < ci (Detailed proof can be found in the

supplementary material).

We define social welfare as the sum utility of all the users.

SW (x|G) =
∑

i∈V Ui(xi,x−i|G) (3)

This formulation follows that of Yu et al. [2020], which
similarly seeks to find social welfare-optimal equilibrium
in the context of a binary networked public goods game.

Content Sharing Network Design. OSN platform
providers control whose content to show (or promote)
among a set of users V = {1, ..., N}. The decision to con-
nect or promote connections between two users i and j can
be considered a recommendation. We let E ⊆ V ×V denote
the set of recommended connections and λi,j denote the
cost of recommending each ei,j ∈ E .

Additionally, we assume the platform has a finite set of re-
sources or a budget B to promote users’ interactions, i.e.,∑

ei,j∈E λi,j ≤ B, where the recommended connections are
limited to an input edge set E in, i.e., E ⊆ E in. For instance,
in practice, the OSN’s action space is restricted by its infras-
tructure, which might only have the capability to promote a
limited set of users and their content. Our goal is to maxi-
mize social welfare by solving the Optimal Self-Disclosure
Sharing Problem (OSDSP), defined as follows.

Definition 3.2. (OSDSP) Given an input graph G in =
(V, E in), the user’s utility functions Ui(·|·), ∀i, and a budget
B ≥ 0, OSDSP in one shot can be defined as finding an
optimal edge set E ⊆ E in,

∑
ei,j∈E λi,j ≤ B, such that

the PSNE of the NDG defined on G = (V, E) maximizes
the social welfare. Here, when there are multiple PSNEs,
only the one with the highest maximized social welfare is
considered.

Theorem 3.3. The OSDSP problem is NP-hard.

Proof. We prove this theorem by constructing a polynomial
time reduction from the NP-complete problem subset sum
problem Bhasin [2015] to OSDSP. Before the proof, we
introduce the decision problems of both subset sum and
OSDSP:

Definition: The decision problem of subset sum.
Instance: Given a set of M positive integers A =
{a1, ..., aM} and a target sum value A.
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Figure 1: The OSDSP instance in the NP hard proof

Question: Whether exists a subset A′ ⊆ A, such that the
sum of the elements in A′ is equal to A, i.e.,

∑
ai∈A′ ai =

A.

Definition: The decision problem of OSDSP.
Instance: Given an input network G in = (V, E in), impact co-
efficients {wi,j}ei,j∈E in , recommendation costs (edge costs)
{λi,j}ei,j∈E in , cost coefficients {ci}i∈V , a constant U , and
a budget limit B.
Question: Whether exists a solution (x,G) such that
SW (x|G) ≥ U and

∑
ei,j∈E λi,j ≤ B.

Given any subset sum problem instance, we can construct
the following OSDSP instance:
1) There are 2M users (nodes) in the network;
2) As Fig. 1 shows, G in is composed of M disjoint sub-
graphs G in

1 , ...,G in
M , where each G in

i is composed of two
nodes v2i−1 and v2i connecting by an edge e2i−1,2i with
edge cost λ2i−1,2i = ai;
3) In each G in

i , the two nodes v2i−1 and v2i have their costs
c2i−1 = c2i = 1.5ai, and w2i−1,2i = w2i,2i−1 = 2ai;
4) U = A and B = A.

This reduction process from subset sum to OSDSP is per-
formed in polynomial time. Before showing the correctness
of this reduction, we first give Lemma 3.1 as a prepara-
tion (the detailed proof can be found in the supplementary
material):

Lemma 3.1. For each sub-graph G in
i , there are only two

possible PSNEs: (1) both nodes v2i−1 and v2i self-disclose,
or (2) neither nodes disclose itself.

We show the correctness of the polynomial reduction, i.e.,
a solution exists for the subset sum instance if only if there
exists a feasible solution for the OSDSP instance. Note that
in Case (1) of Lemma 3.1, the total social welfare of G in

i is
ai

2 + ai

2 = ai and the total cost of the promoted edges is
ai. In Case (2), the total social welfare of G in

i is 0 (no node
disclosed itself), and the total promoted edge cost is 0.

⇒: Assuming exists a solution A′ = {ai1 , ai2 , ..., aim}
for the subset sum instance, i.e.,

∑m
l=1 ail = A, we can

construct a feasible solution of the OSDSP instance: For
each sub-graph G in

il
(l = 1, ...,m), we promote the edge

e2i−1,2i and let the nodes disclose, i.e., x2i−1 = x2i = 1.
The total social welfare in G in

il
is equal to

∑m
l=1 ail = A ≥

U and the total cost
∑m

l=1 ail = A ≤ B.

⇐: Assuming exists a solution (x,G) in the OSDSP in-
stance, where the edges (nodes resp.) in the sub-graphs
G in
i1
,G in

i2
, ...,G in

im
are promoted (disclosed resp.). Hence,

SW (x|G) =
m∑
l=1

ail ≥ U = A (4)

∑
ei,j∈E

λi,j =

m∑
l=1

ail ≤ B = A (5)

indicating that
∑m

l=1 ail = A. Hence A′ = {ai1 , ..., aim}
is a feasible solution of the subset sum instance.

4 ALGORITHM DESIGN

Due to the hardness of OSDSP (Theorem 3.3), in this sec-
tion, we aim to design algorithms that can achieve near-to-
optimal solutions with high time efficiency.

OSDSP can be decomposed into two subproblems:
Inner problem - Given a promotion network G, how to find
an optimal PSNE x of NDG to maximize the social welfare.
The inner problem establishes a relationship between the
promotion network G and its maximum social welfare, de-
noted by σ(G) (formally defined in Definition 4.3).
Outer problem - Given σ(G), how to find the optimal pro-
motion network G∗ to maximize the social welfare while sat-
isfying the budget limit. Like Coró et al. [2021], we assume
that promoting each piece of content has an equal cost for
simplicity since in reality the amount of online space each
content occupies is similar when displayed. Then the outer
problem can be formulated as G∗ = argmax|E|≤B σ(G).

To solve the inner problem, we design an iterative algo-
rithm in Section 4.1 and prove that the algorithm can
achieve the optimal PSNE. For the outer problem, we
prove that it is super modular under certain conditions
( ci
wj,i

≤ 1,∀(i, j) ∈ E in) in Section 4.2. Based on the
insights obtained in Section 4.1 and Section 4.2, we design
two time-efficient heuristic algorithms to solve OSDSP in
Section 4.3. Finally, to evaluate how close the heuristic can
achieve the optimal of OSDSP, in Section 4.4, we design a
mixed integer linear programming (MILP) based method
that can achieve the optimal solution in a relatively small
scale, as a benchmark of the heuristic in Section 5.

4.1 INNER PROBLEM: SOLVING THE NDG

Given a promotion network, the NDG is likely to have mul-
tiple PSNEs. For example, x = 0 is a PSNE, denoted as a
trivial PSNE. We are interested in the optimal PSNE that
maximizes social welfare in the inner problem.

To find the optimal PSNE, we design an iterative algorithm
called the MaxInvest algorithm. The pseudo-code is shown



in Algorithm 1. Here, we use the superscript (k) to denote
the values set/derived in iteration k.

The algorithm starts by initializing a potential benefit value
h
(0)
i =

∑
j∈Ni

wj,ix
(0)
j for each node i (i = 1, ..., n) by

assuming each node i discloses, i.e., x(0)
i = 1 (line 2). Then

the algorithm traverses each code i and deactivate it (by
setting x

(0)
i = 0) when its threshold condition h

(0)
i ≥ ci

is not satisfied (line 3). Since deactivating nodes will also
decrease their neighbors’ potential benefit values, in the
next part (line 4-12), we iteratively check the threshold
conditions of the deactivated nodes’ neighbors: We maintain
a queue Q and in each iteration k, we pop the front node
off the queue and deactivate it (line 6). We then check its
neighbors’ threshold conditions (line 10) and push the ones
violating the conditions onto Q (line 11). This process is
repeated until the queue is empty.

Algorithm 1 MaxInvest

1: procedure MAXINVEST(E)
2: Initialization: an empty queue Q, a potential bene-

fit array
{
h
(0)
1 , ..., h

(0)
n

}
, where h

(0)
i =

∑
j∈Ni

wj,ixj ;

a strategy profile x(0) =
{
x
(0)
1 , ..., x

(n)
n

}
, where

x
(0)
i = 1, ∀i ∈ V .

3: Check the threshold condition, i.e. h(0)
i ≥ ci for

each node and push those who violate the condition
onto Q;

4: Iteration index k ← 1;
5: while Q is not empty do
6: Pop the front node i off Q;
7: Deactivate node i by set x(k)

i = 0;
8: for each node i’s neighbour node j do
9: Update the potential benefit h

(k)
j =

h
(k−1)
j − wi,j ;

10: if h(k)
j < cj and x

(k−1)
j = 1 then

11: Push node j onto Q;
12: k ← k + 1;
13: Return: x(k)

Next, we prove that the users’ action profile x returned by
MaxInvest is both feasible (in Theorem 4.1), i.e., x is a
PNSE, and optimal (in Theorem 4.2), i.e., it achieves the
maximum social welfare.

Lemma 4.1. Let h(k)
i denote hi in the kth iteration in Max-

Invest. For any iteration k1 < k2, we have h
(k1)
i ≥ h

(k2)
i ,

i.e., the potential benefit of each node i is non-increasing
over iterations in MaxInvest.

Proof. h
(k1)
i − h

(k2)
i =

∑
j∈Ni

wj,i

(
x
(k1)
j − x

(k2)
j

)
≥ 0.

Theorem 4.1. x returned by MaxInvest is a PSNE.

Proof. Let K be the total number of iterations of MaxInvest.
We need to prove that (1) for any xi = 1, h(K)

i ≥ ci, and
(2) for any xi = 0, h(K)

i < ci.

(1) For the sake of contradiction, we assume that there exists
xi = 1 such that h(K)

i < ci. First, h(0)
i ≥ ci; otherwise

node i is removed at initialization. According to Lemma
4.1, there must exists an iteration k (k ≤ K − 1) such
that h(k)

i ≥ ci and h
(k+1)
i < ci. The decrease of hi at the

iterations k + 1 has to be caused by the leave of at least
one of i’s neighbors, say node vj . Then, when removing vj ,
as vj’s neighbor, i’s updated threshold condition has to be
checked, which is h(k+1)

i < ci, and hence vj should have
been added to Q and removed by the algorithm terminates,
which is contradicted with the assumption that xi = 1.

(2) For each xi = 0, we let ki denote the iteration when node
i is removed, which indicates that h(ki)

i < ci. According
to Lemma 4.1, h(K)

i ≤ h
(ki)
i < ci. The proof is completed.

Lemma 4.2. Suppose x is the profile returned by the Max-
Invest. For any PSNE profile x′, we have x′ ≤ x.

Theorem 4.2. (Optimality) Given G, the strategy profile
x returned by Algorithm 1 is a PSNE that maximizes the
social welfare.

4.2 ANALYSIS OF THE OUTER PROBLEM

In this part, we analyze the properties of the outer problem
under certain conditions. Note that the MaxInvest algorithm
for the inner problem has established the relationship be-
tween any promotion network G and the maximum social
welfare it can achieve. Such a relationship can be described
by the optimal social welfare function (Definition 4.3):

Definition 4.3. We define the optimal social welfare func-
tion σ as a map from a given edge set E ⊆ E in to the
social welfare of the profile x returned by the MaxInvest
σ(E) = SW (x|(V, E)), where x = MaxInvest(E).

Accordingly, the outer problem of OSDSP can be rewritten
as:

max σ(E) s.t. |E| ≤ B. (6)

Note that we don’t have the closed form of the function
σ (·), which can be only evaluated by running the MaxInvest
algorithm (Algorithm 1). Next, we first prove that σ(E)
is monotonic (Theorem 4.5) and super-modular when
ci

wj,i
≤ 1,∀(i, j) ∈ E in (Theorem 4.6).

Definition 4.4. We define the optimal investment function of
a given edge set E ⊆ E in as the number of the invest agents
of the profile x returned by the MaxInvest I(E) =

∑
i∈V xi,

where x = MaxInvest(E).



Theorem 4.5. (Monotonicity) For all pairs of the edge
sets S and T such that S ⊆ T ⊆ E(in), we have (1)
MaxInvest(S) ≤MaxInvest(T ), (2) I(S) ≤ I(T ),and
(3) σ(S) ≤ σ(T ).

Theorem 4.6. The optimal social welfare function σ(E) is
super-modular when ci

wj,i
≤ 1,∀(i, j) ∈ E in.

Proof. We prove that for any edge e∗ ∈ E(in), and all pairs
of the set S ⊆ T ⊆ E(in), σ(·) satisfies σ(S ∪ {e∗}) −
σ(S) ≤ σ(T ∪ {e∗})− σ(T ). Detailed proof and general
cases for both the optimal investment function and social
welfare function are presented in the supplementary material.

4.3 HEURISTIC ALGORITHMS OF THE OUTER
PROBLEM

Algorithm 2 Greedy(Gin = (V, E in), B)

1: Initialize E = ∅;
2: while |E| ≤ B do
3: for all edge e ∈ {E in\E} do
4: ∆e = σ(E ∪ {e})− σ(E);
5: E = E ∪ {e∗ = argmaxe∆e};
6: Output E

Based on the insights obtained from Section 4.1 and Section
4.2, in this section, we provide two heuristic algorithms to
solve OSDSP.
Greedy. The first naive heuristic is the Greedy algorithm,
of which the pseudo-code is shown in Algorithm 2. The
algorithm initializes the promoted edge set E by empty (line
1), and then greedily selects the edge with the highest SW
marginal gain and adds it to E (line 2–5) until the number
of promoted edges reaches the budget.

RankHeuristic (Rank). The pseudo-code of the second
heuristic, RankHeuristic, is shown in Algorithm 3. The ba-
sic idea of the algorithm is to first initialize the promoted
edge set E by E in (line 2), use MaxInvest to obtain the op-
timal action profile x (line 3), and rank the active nodes
based their Ui (line 4). After that, the algorithm iteratively
deactivates the nodes with the least potential contribution
to social welfare (lines 6-7) and the edges directed from the
nodes (lines 8-9) until the budget is satisfied, i.e., |E| ≤ B.

4.4 A MIXED INTEGER LINEAR
PROGRAMMING

We offer an optimal solution (at a relatively small scale)
using the MILP framework. We let the indicator variable
pi,j denote whether the connection between users i and j is

Algorithm 3 RankHeuristic

1: procedure RANK(G = (V, E in), B)
2: Initialization: E = E in;
3: x = MaxInvest(E);
4: Sort the active nodes (with xi = 1, Ui > 0) in

ascending order according to Ui (the ordered users are
denoted by as Q);

5: Remove the edges connecting the removed nodes
from E ;

6: while |E| > B and Q is not empty do
7: Remove the node i with least utility in Q;
8: for i’s neighbor j do
9: Remove ei,j from E ;

10: x = MaxInvest(E);
11: Compute the utility of the remaining users;
12: Order the nodes based on their utilities update

Q;
13: Return: E

promoted, i.e., if ei,j ∈ E , pi,j = 1; otherwise pi,j = 0. As
we assume visibility to be symmetric, i.e. E is undirected),
we have the constraints pi,j = pj,i, ∀i, j ∈ V . We let
P = {pi,j}n×n. The mixed integer programming (MIP)
version of OSDSP can be formulated as

max
P

SW (x,P) =
∑
i∈V

xi

∑
ej,i∈E in

wj,ixjpj,i (7)

s.t. xi ∈ arg max
xi∈{0,1}

xi

∑
ej,i∈E in

wj,ixjpj,i,∀i (8)

∑
ei,j∈E in

λi,jpi,j ≤ B (9)

xi ∈ {0, 1}, ∀i ∈ N , pi,j ∈ {0, 1}, ∀ei,j ∈ E in(10)

The constraint Equ. (8) can be replaced by Equ. (11):

xi

∑
j xjwj,ipj,i−cixi ≥ (1− xi)

∑
j xjwj,ipj,i−ci (1− xi)

(11)
i.e., user i can achieve a higher utility when choosing xi

than choosing 1− xi, which reduces the bi-level structure
of OSDSP to a single-level MIP problem. Here, we can
linearize Equ. (11) by introducing intermediate variables
mi,j for ∀i, j ∈ V , such that:

0 ≤ mj,i ≤Mxj and wj,ipj,i−M(1−xi) ≤ mj,i ≤ wj,ipj,i.
(12)

Accordingly, each pj,ixj in Equ. (11) can be replaced by
mj,i as

mj,i =

{
0 if xj = 0
wj,ipj,i if xj = 1

⇒ mj,i = wj,ipj,ixj .

Then we linearize the non-linear term ximi,j by introducing
variables vi = xi(

∑
j mj,i) ≥ 0, ∀i ∈ V and a big positive



number M . The following constraints should be satisfied :∑
j mj,i −M(1− xi) ≤ vi ≤

∑
j mj,i,∀i (13)

and 0 ≤ vi ≤Mxi,∀i (14)

Consequently, OSDSP can be formulated as a MILP:

max SW (x|G) =
∑
i∈V

SWi (x,P) (15)

s.t. Constraints(9)− (14) (16)

5 EXPERIMENTS

We conduct extensive experiments on both (1) synthetic
networks and (2) real-world data representing users’ online
conversations during the Covid-19 crisis. For the latter set
of experiments, we collected and labeled a rich dataset from
the Reddit community, and following, we discuss our results
in the context of that dataset. Our experiments are imple-
mented in Python. All experiments have been performed on
an Intel(R) Core(TM) i9-9820X CPU @ 3.30GHz. 3

5.1 EXPERIMENTS ON SYNTHETIC DATA

This section presents our results for the following algorith-
mic solutions to solve the OSDSP problem. (1) Betweeness:
As the simplest baseline, we consider an algorithm that se-
lects edges based on the descending betweenness centrality.
A node’s betweenness is the number of shortest paths from
every pair of nodes that pass through the node. (2) Greedy:
The greedy algorithm described in Algorithm 2. (3) MILP:
We use the optimization tool CPLEX IBM [2021] to com-
pute the exact solution formulated in Eq. (15). (4) Rank:
The RankHeuristic algorithm described in Algorithm 3.

We evaluate the performance of each algorithmic solution
on the following three types of synthetic networks,
G = (N , E in): (1) Complete networks, which implies the
full rights of the network operator to promote contents
(link) for pair of nodes; (2) Erdős-Rényi networks Erdös
and Rényi [1959], which choose each of the possible
edges with a given probability; (3) Barabasi-Albert (BA)
networks Barabási and Albert [1999], scale-free networks
with power-law degree distribution, and common in the
online world. In our network generation process, 3 edges
are attached to a new node from existing nodes. We present
our findings for the optimality of the solutions and run-time.

Performance Analysis. We set the influence weight be-
tween agents as wi,j = w = 1/N,∀i, j ∈ V . We denote
the user’s cost-weight ratio as γ = c

w . We assume that a
node has probability η to have γ ≤ 1 (private cost is set to
c ∼ U(0, w)) and probability 1 − η to be (c ∼ U(w,N)).

3The code is available at https://github.com/
jtongxin/CSD-NDG

The budget B is set to B = bN , where b is denoted as a
budget factor, and N is the number of nodes in the network.

We show social welfare results with varying η parameters
in the 32-node BA and Complete network with 20 random
seeds. In Figure 2 and Figure 3, the mean social welfare
increases when η increases from 0 to 1. We can see that
the Rank algorithm approximates the optimal solution
well when η is low, whereas the Greedy algorithm shows
better performance when facing the high η. This is because
(1) when η is low, the Rank algorithm efficiently removes
the edges connecting to nodes that are expensive and
hard to incentivize; and (2) when η is high, the degree of
supermodularity of the σ(·) is bounded, which benefits the
Greedy algorithm.

Naturally, a higher promoting budget is beneficial to pro-
mote social welfare. Figure 4 demonstrates the overall so-
cial welfare with the budget factor b changed from 1.0
(B = 32) to 4.0 (B = 128). The optimality gap between
the Greedy algorithm and MILP optimal solution is gener-
ally enlarged when the budget increases, whereas the Rank
heuristic shows a stable and good performance.

Finally, we tune the edge creation probability (0.3, 0.5, 0.7,
1.0) of ER networks and discuss the effect of the search
space (implies the size of E in). Figure 5 demonstrates that
we can find better MILP and Greedy solutions resulting in
higher social welfare when we have larger E in. However,
the Rank heuristic may have a more significant optimality
gap when the edge design space is enlarged.

Run time Analysis. To test the scalability of this method,
we generate networks (Complete, BA, ER) of multiple node
sizes and generate the ER networks with different generation
probabilities.

Figure 6 shows the average running time in the log scale of
the algorithms in Complete networks with b = 3 by tuning
the size of network N = 16, 20, 24, 32. We can see that the
average running time of MILP achieves more than 104 secs
when it goes to 32 nodes.

We also examine the running time regarding η in Figure 7.
When η increases, the average running time of MILP is
significantly affected. Note that the run-time of Greedy,
Betweenness, and Rank are stable as excepted (variances are
tiny), so we do not plot the error bars. However, the running
time of MILP has a huge variance. We can find some cases
with incredibly long running time when η = 1.0, shown in
Figure 8.

Although the MILP method provides an exact solution, it
does not scale when the network has hundred of nodes
(or more), and neither can greedy algorithms. One idea to
reduce the time complexity is to cut the input edge space E in.
Figure 9 shows the running time when E in is created using a
smaller probability, trading off the performance (Figure 5).

https://github.com/jtongxin/CSD-NDG
https://github.com/jtongxin/CSD-NDG
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Figure 2: SW v.s. η of Com-
plete networks, B = 96 over
total |E in| = 1024
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Figure 3: SW v.s. η of BA
networks, B = 32 over total
|E in| = 87
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Figure 4: SW v.s. budget fac-
tor in Complete networks,
η = 0.5
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Figure 5: SW v.s. Edge Cre-
ation Probability in ER net-
works. η = 0.5, b = 3.0
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Figure 6: Running time
(mean) v.s. N in the Com-
plete networks.
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Figure 7: Running time
(mean) v.s. η in the 32-node
Complete networks.
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Figure 8: Running time of
the MILP solutions v.s. η in
Complete Networks.
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Figure 9: Running time
(mean) v.s. Edge Creation
Prob. in ER networks.

5.2 EXPERIMENTS ON REAL DATA

Data Set. Our dataset represents posts and comments
collected from the Reddit online conversation platform. We
collected data from the Subreddit community “CovidPos-
itive” at three distinct moments during the pandemic. We
consider 5629 posts and 50,526 associated comments from
15,172 unique users. For each comment or post, we collect
the timestamp, message text, author id, and which reply the
text is to (if any).

The three-part dataset represents selected posts and related
comments collected from August 2020, September 2020,
and April 2021. These periods were selected to capture snap-
shots of pandemic-centered conversations at different stages.
In particular, April 2021 is seen as an important counterpoint
to the August and September 2020 data, coinciding with
the initial widespread availability of the COVID-19 vaccine.
For each of the three periods, we create a representative
social network graph (shown in Supplementary Material)
where nodes are unique users and weighted, directed edges
represent pairwise interactions between users in the form
of a reply to a post or comment. Over all three months, the
number of high-SD users totals more than half of all users
in each network. This is an exceptional finding based on
prior literature and one we suggest is connected with the
particularly sensitive nature of the Subreddit. Descriptive
statistics for each month are given in Table 1. Subreddit is
most active in terms of user participation in August 2020.

Label Generation. We leverage BERT-based (pre-trained

using bidirectional transformers Devlin et al. [2019]) ap-
proach to identify self-disclosure instances in our dataset.
BERT’s contextualized word representation and high label-
ing accuracy make it a suitable choice for this task, with
superior performance compared to other existing techniques.

Our training dataset is the OffMyChest conversation dataset
used for a self-disclosure detection task developed as part
of the AFFCON 2020 Shared Task Jaidka et al. [2020].
The original dataset consists of 12,860 labeled sentences
and 5,000 unlabeled sentences sampled from comments on
subreddits within the OffMyChest community. We use the
label of informational disclosure, emotional disclosure and
do not distinguish between them in our analysis

We then utilized the uncased pre-trained BERT model to
fine-tune for annotation, as proposed in Devlin et al. [2019].
Our loss function for this task was binary cross-entropy. Pre-
cisely, we use 80% of the Affcon training data for training
and the remaining 20% for validation. We use an early stop
strategy in training: we stop training when the validation
loss does not decrease in 2 epochs. We choose the model
that has the smallest loss on the validation set. Our F-1 score
is 0.76, (precision 0.90, recall 0.66). We use a batch size
of 16, max token size 200, for 10 epochs. Our learning rate
is set as 2e-5. We obtained a 0.77 F1-score for information
disclosure (precision 0.92, recall 0.66). The F1-score for
emotional disclosure is 0.75 (precision 0.87, recall 0.65).
This is consistent with the best-known performing model for
emotional and information disclosure annotations on this
dataset Pant et al. [2020]. We obtain 27155 self-disclosed



Month Nodes Edges Weighted degree Number of SCC Size of largest SCC Modularity
August 2020 6786 18688 3.3 3476 3139 0.528

September 2020 3305 7950 2.9 1657 1518 0.531
April 2021 4533 13013 3.5 2273 2164 0.605

Table 1: Network statistics for the three months of SubReddit data. SCC represents a strongly connected component.
Modularity is calculated using the Louvain algorithm on the undirected network.
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Figure 10: SW v.s. budget ra-
tio in real data
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Figure 11: SD ratio v.s. bud-
get ratio in real data.

(either emotional or informational) sentences out of a total
of 50526.

Algorithmic Results. Given the reply network structures
and Reddit dataset of August 2020, September 2020, and
April 2021 as a starting point, we build the network Gin =
(V, E in) as the undirected version of the reply network,
and the user’s utilities functions Ui,∀i ∈ V as follows. (1)
wi,j : The influence weight coefficient of from agent i to j,
proportion to the number of replies, denoted as rj,i from
user j to user i in the reply network. We normalize wi,j by
dividing the maxv∈N

∑
u rv,u. In this way,

∑
i wi,j ≤ 1

is guaranteed. (2) ci: The privacy cost coefficient of each
user i. If the agent disclosed in the real data (xreal

i = 1), we
sample the costs ci from U(0, hi), where hi =

∑
j wj,ix

real
j .

Otherwise, ci ∼ U(hi, 1). We calculate the coefficients
ci based on actual self-disclosure for both i’s posts and
comments. If the node has ever disclosed in any post or
comments during the period, we consider xreal

i = 1.

We use the RankHeuristic algorithm to simulate the con-
tent promotion and NDG over the networks, varying the
budget ratio b = B/N from 0.2 to 3.0. Each experiment
averages over 20 random seeds. Figure 10 compares the
overall social welfare over the three months. We can ob-
serve that with the increase of the budget limit, the overall
social welfare increases monotonically when b < 1.0 in
all three months. When considering overall self-disclosure,
many users are associated with low privacy cost coefficients.
Thus, RankHeuristic can find an edge set that can induce
saturated social welfare within a relatively small budget.

As reported in Figure 11, we also find that the self-disclosure
ratio achieved by our algorithm in September is high, and
the ratio in April is low when the budget is low. When we
increase the budget, the gap between them is shrunk.

Due to the limited space, the computation time of

RankHeuristic for the three months is listed in Table 1 in
the supplementary file.

6 CONCLUSIONS AND DISCUSSIONS

In this work, we have developed a framework to rigorously
model the impact of users’ decisions in sharing personal in-
formation in online communities, wherein these individuals
seek social reward, e.g., emotional support during a crisis,
and in doing so, incur a cost to privacy. The presented theo-
retical results enable modeling social welfare on a directed
network of interacting users. Critically, our approach allows
us to find social network structures that optimize social wel-
fare within platform constraints while respecting individual
users’ heterogeneous privacy preferences. Our research can
guide the development of effective practices for ranking and
recommending content on platforms, particularly in online
communities that prioritize social support and connections
despite potential privacy risks.

Despite the merits of this work, we acknowledge its limi-
tations. A limitation of our work is precise mapping to the
complexity of real-world scenarios and behaviors. Relatedly,
it is knowingly difficult to quantify users’ privacy prefer-
ences or individual benefits. Hence, fully validating this
work is an important next step. Besides, the potential impact
of fairness on content sharing, specifically the potential for
biased treatment resulting in unequal access to opportuni-
ties for content promotion and shared information, has not
been thoroughly examined when maximizing social welfare.
Addressing fairness issues is a crucial aspect of future work.

Additional work should explore dependencies between so-
cial contexts where self-disclosure and support behaviors
may be differently aligned, for instance, considering users’
selfish behavior and negative/non-supportive interactions.
Follow-on studies might also consider inducing the desired
equilibrium Yu et al. [2021] to incentivize social welfare
convergence at a reasonable pace. Finally, future work could
fit this model to other datasets, varying in size, membership,
audience, and topical focus.
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