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Abstract

As Abstract Meaning Representation (AMR)001
implicitly involves compound semantic annota-002
tions, we hypothesize auxiliary tasks which are003
semantically or formally related can better en-004
hance AMR parsing. With carefully designed005
control experiments, we find that 1) Semantic006
role labeling (SRL) and dependency parsing007
(DP), would bring much more significant per-008
formance gain than unrelated tasks in the text-009
to-AMR transition. 2) To make a better fit for010
AMR, data from auxiliary tasks should be prop-011
erly “AMRized” to PseudoAMR before train-012
ing. 3) Intermediate-task training paradigm013
outperforms multitask learning when introduc-014
ing auxiliary tasks to AMR parsing. From an015
empirical perspective, we propose a principled016
method to choose, reform, and train auxiliary017
tasks to boost AMR parsing. Extensive experi-018
ments show that our method achieves new state-019
of-the-art performance on in-distribution, out-020
of-distribution benchmarks of AMR parsing.021
We will release our code upon acceptance.022

1 Introduction023

Abstract Meaning Representation (AMR) (Ba-024

narescu et al., 2013) parsing aims to translate a025

sentence to a directed acyclic graph, which rep-026

resents the relations among abstract concepts as027

shown in Figure 1. AMR can be applied to many028

downstream tasks, such as information extraction029

(Rao et al., 2017; Wang et al., 2017; Zhang and030

Ji, 2021), text summarization, (Liao et al., 2018;031

Hardy and Vlachos, 2018) question answering (Mi-032

tra and Baral, 2016; Sachan and Xing, 2016) and033

dialogue modeling (Bonial et al., 2020).034

Recently, AMR Parsing with the sequence-to-035

sequence framework achieves most promising re-036

sults (Xu et al., 2020; Bevilacqua et al., 2021).037

Comparing with transition-based or graph-based038

methods, sequence-to-sequence models do not039

require tedious data processing and is naturally040

compatible with auxiliary tasks (Xu et al., 2020)041
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Figure 1: The Abstract Meaning Representation (AMR),
Semantic Role Labeling (SRL), and Dependency Pars-
ing (DP) structure of the sentence “The boy wants to
leave.”

and powerful pretrained encoder-decoder models 042

(Bevilacqua et al., 2021). Previous work (Xu et al., 043

2020; Wu et al., 2021) has shown that the perfor- 044

mance of AMR parser can be effectively boosted 045

through co-training with certain auxiliary tasks, e.g. 046

Machine Translation or Dependency Parsing. 047

However, when introducing auxiliary tasks to en- 048

hance AMR parsing, we argue that three important 049

issues still remain under-explored in the previous 050

work. 1) How to choose auxiliary task? The task 051

selection is important since loosely related tasks 052

may even impede the AMR parsing according to 053

Damonte and Monti (2021). However, in litera- 054

ture there are no principles or consensus on how 055

to choose the proper auxiliary tasks for AMR pars- 056

ing. Though previous work achieves noticeable 057

performance gain through multi-task learning, they 058

do not provide explainable insights on why certain 059

task outperforms others or in which aspects the 060

auxiliary tasks benefit the AMR parser. 2) How 061

to bridge the gap between tasks ? The form and 062

semantic gaps between AMR parsing and auxiliary 063

tasks are non-negligible. For example, Machine 064

Translation generates text sequence while Depen- 065

dency Parsing (DP) and Semantic Role Labeling 066
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Figure 2: Illustration of methodology in this paper. We
proposed a principled method to select, transform and
train the auxiliary tasks.

(SRL) produces dependency trees and semantic067

role forests, respectively. The structural differences068

between DP, SRL and AMR are visualized in Fig-069

ure 1. Many prior studies (Xu et al., 2020; Wu070

et al., 2021; Damonte and Monti, 2021) do not at-071

tach particular importance to the gap, which might072

lead the auxiliary tasks to be what is called outlier-073

task (Zhang and Yang, 2021; Cai et al., 2017) in the074

Multitask Learning, deteriorating the performance075

of AMR parsing. 3) How to introduce auxiliary076

tasks more effectively? After investigating dif-077

ferent training paradigms to combine the auxiliary078

task training with the major objective (AMR pars-079

ing), we figure out that, although all baseline mod-080

els (Xu et al., 2020; Wu et al., 2021; Damonte and081

Monti, 2021) choose to jointly train the auxiliary082

tasks and AMR parsing with Multi-task Learning083

(MTL), Intermediate-task Learning (ITL) is a more084

effective way to introduce the auxiliary tasks. Our085

observation is also consistent with (Pruksachatkun086

et al., 2020; Poth et al., 2021), which improve other087

NLP tasks with enhanced pretrained models.088

In response to the above three issues, we sum-089

marize a principled method to select, transform090

and train the auxiliary tasks (Figure 2) to enhance091

AMR parsing from extensive experiments. 1) Aux-092

iliary Task Selection. We choose auxiliary tasks093

by estimating their similarities with AMR from094

the semantics and formality perspectives. AMR is095

recognized as a deep semantic parsing task which096

encompasses multiple semantic annotations, e.g.097

semantic roles, name entities and co-references. As098

a direct semantic-level sub-task of AMR parsing,099

we select SRL as one auxiliary task. Traditionally,100

formal semantics views syntactic parsing a precur-101

sor to semantic parsing, leading to the mapping102

between syntactic and semantic relations. Hence103

we introduce dependency parsing, a syntactic pars-104

ing task as another auxiliary task. 2) AMRization. 105

Despite being highly related, the output formats of 106

SRL, DP and AMR are distinct from each other. 107

To this end, we introduce transformation rules to 108

“AMRize” SRL and DP to PseudoAMR, intimating 109

the feature of AMR. Specifically, through Reen- 110

trancy Restoration we transform the structure of 111

SRL to a graph and restore the reentrancy within 112

arguments, which mimics AMR structure. Through 113

Redundant Relation Removal we conduct transfor- 114

mation in dependency trees and remove relations 115

that are far from semantic relations in AMR graph. 116

3) Training Paradigm Selection. We find that 117

ITL makes a better fit for AMR parsing than MTL 118

since it allows model progressively transit to the 119

target task instead of learning all tasks simultane- 120

ously, which benefits knowledge transfer (Zhang 121

and Yang, 2021). 122

We summarize our contributions as follows: 123

1. Semantically or formally related tasks, e.g., 124

SRL and DP, are better auxiliary tasks for 125

AMR parsing compared with distantly related 126

tasks, e.g. machine translation and machine 127

reading comprehension. 128

2. We propose task-specific rules to AMRize the 129

structured data to PseudoAMR. SRL and DP 130

with properly transformed output format fur- 131

ther improve AMR parsing. 132

3. ITL outperforms classic MTL methods when 133

introducing auxiliary tasks to AMR Parsing. 134

We show that ITL derives a steadier and better 135

converging process during training. 136

Extensive experiments show that our method 137

(PseudoAMR + ITL) achieves the new state-of-the- 138

art of single model on in-distribution (85.1 Smatch 139

score on AMR 2.0, 83.9 on AMR 3.0), out-of- 140

distribution benchmarks. Specifically we observe 141

that AMR parser gains larger improvement on the 142

SRL(+3.3), Reentrancy(+3.1) and NER(+2.0) met- 143

rics1, due to higher resemblance with the selected 144

auxiliary tasks. 145

2 Methodology 146

As shown in Figure 2, in this paper, we propose 147

a principled method to select auxiliary tasks (Sec- 148

tion 2.1), AMRize them into PseudoAMR (Section 149

2.2) and train PseudoAMR and AMR effectively 150

1Computed on AMR 2.0 and 3.0 dataset.
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Figure 3: Illustration of AMRization methods and Graph Linearization. The source sentence is “The boy wants to
leave."

(Section 2.3) to boost AMR parsing. We formu-151

late both PseudoAMR and AMR parsing as the152

sequence-to-sequence generation problem. Given153

a sentence x = [xi]1≤i≤N , the model aims to154

generate a linearized PseudoAMR or AMR graph155

y = [yi]1≤i≤M (the right part of Figure 3) with a156

product of conditional probability:157

P (y) =
M∏
i=1

p(yi|(y1, y2, ..., yi−1))158

2.1 Auxiliary Task Selection159

When introducing auxiliary tasks for AMR parsing,160

the selected tasks should be formally or seman-161

tically related to AMR, thus the knowledge con-162

tained in them can be transferred to AMR parsing.163

Based on this principle of relevance, we choose se-164

mantic role labeling (SRL) and dependency parsing165

(DP) as our auxiliary tasks. We involve Translation166

and Summarization tasks for comparison.167

Semantic Role Labeling SRL aims to recover168

the predicate-argument structure of a sentence,169

which can enhance AMR parsing, because: (1) Re-170

covering the predicate-argument structure is also a171

sub-task of AMR parsing. As illustrated in Figure172

3(a,b), both AMR and SRL locate the predicates173

(‘want’, ‘leave’) of the sentence and conduct word-174

sense disambiguation. Then they both capture the175

multiple arguments of center predicate. (2) SRL176

and AMR are known as shallow and deep semantic177

parsing, respectively. It is reasonable to think that178

the shallow level of semantic knowledge in SRL is179

useful for deep semantic parsing.180

Dependency Parsing DP aims to parse a sen- 181

tence into a tree structure, which represents the 182

dependency relation among tokens. The knowl- 183

edge of DP is useful for AMR parsing, since: (1) 184

Linguistically, DP (syntax parsing task) can be the 185

precursor task of AMR (semantic parsing). (2) The 186

dependency relation of DP is also related to seman- 187

tic relation of AMR, e.g., as illustrated in Figure 188

1(c), ‘NSUBJ’ in DP usually represents ‘:ARG0’ in 189

AMR. Actually, they both correspond to the agent- 190

patient relations in the sentence. (3) DP is similar 191

to AMR parsing from the perspective of edge pre- 192

diction, because both of them need to capture the 193

relation of nodes (tokens/concepts) in the sentence. 194

2.2 AMRization 195

Although SRL and DP are highly related to AMR 196

parsing, there still exists gaps between them, e.g., 197

SRL annotations may be disconnected, while AMR 198

is always a connected graph. To bridge these gaps, 199

we transform them into PseudoAMR, which we 200

call AMRization. 201

2.2.1 Transform SRL to PseudoAMR 202

We summarize typical gaps between SRL and 203

AMR as: (1) Connectivity. AMR is a connected di- 204

rected graph while the structure of SRL is a forest. 205

(2) Span-Concept Gap. Nodes in AMR graph rep- 206

resent concepts (e.g., “boy”) while that of SRL are 207

token spans (e.g., “the boy”, “that boy”). Actually 208

all the mentioned token spans correspond to the 209

same concept. (3) Reentrancy. Reentrancy is an 210

important feature of AMR as shown in Figure 3(a), 211
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the instance boy is referenced twice as ARG0. The212

feature can be applied to conduct coreference reso-213

lution. However, there is no reentrancy in SRL. To214

bridge such gaps, we propose Connectivity For-215

mation, Argument Reduction and Reentrancy216

Restoration to transform SRL into PseudoAMR.217

Connectivity Formation To address the connec-218

tivity gap, we need to merge all SRL trees into a219

connective graph. Note that the merging doesn’t220

guarantee correctness in semantic level. As shown221

in Figure 3(b-1), we first add a virtual root node,222

then generating a directed edge from the virtual223

root to each root of SRL trees, thus the SRL anno-224

tation becomes a connected graph.225

Argument Reduction To address the Span-226

Concept Gap, as shown in Figure 3(b-2), if the227

argument of current predicate is a span with more228

than one token, we will replace this span with its229

head token in its dependency structure. Thus token230

spans “the boy”, “that boy” will be transformed to231

“boy”, more similar to the corresponding concept.232

Similar method has been to applied by (Zhang et al.,233

2021) to find the head of token spans of argument.234

Reentrancy Restoration For the reentrancy gap,235

we design a heuristic algorithm based on DFS to236

restore reentrancy in SRL. As shown in Figure 3(b-237

3), the core idea of the restoration is that we create238

a variable when the algorithm first sees a node. If239

the DFS procedure meets node with the same name,240

the destination of current edge will be redirected to241

the variable we have created at first. Please refer to242

Appendix A for the pseudo code of the reentrancy243

restoration. Note that the algorithm can not guaran-244

tee the merging of nodes is unbiased since there are245

might be different variables with same name in real246

AMR and SRL itself doesn’t provide information247

to rebuild all correct reentrancies. However, this248

simple transformation leads to significant improve-249

ments in terms of SRL and Reentrancy fine-grained250

scores of AMR parser as shown in Table 7, reveal-251

ing the transform can enhance knowledge transfer252

between SRL and AMR Parsing.253

2.2.2 Transform Dependency Structure to254

PseudoAMR255

We summarize the gaps between Dependency Tree256

and AMR as: (1) Redundant Relation. Some rela-257

tions in dependency parsing focus on syntax, e.g.,258

“:PUNCT” and “:DET”, which are far from seman-259

tic relations in AMR. (2) Token-Concept Gap. The260

basic element of dependency structure is token 261

while that of AMR is the concept, which captures 262

deeper syntax-independent semantics. We use Re- 263

dundant Relation Removal and Token Lemma- 264

tization to transform the dependency structure to 265

PseudoAMR to handle the gaps. 266

Redundant Relation Removal For the Redun- 267

dant Relation Gap, we remove some relations 268

which are far from the sentence’s semantics most 269

of the time, such as “PUNCT” and “DET”. As illus- 270

trated in Figure 3(c-1), by removing some relations 271

of the dependence, the parsing result become more 272

compact compared with original DP tree, forcing 273

the model to ignore some semantics-unrelated to- 274

kens during seq2seq training. 275

Token Lemmatization As shown in Figure 3(c- 276

2), for Token-Concept Gap, we conduct lemmati- 277

zation on the node of dependency tree based on the 278

observation that the affixes of single word do not 279

affect the concept it corresponds to. Together with 280

the smart-initialization (Bevilacqua et al., 2021) 281

by setting the concept token’s embedding as the 282

average of the subword constituents, the embed- 283

ding vector of lemmatized token (‘want’) becomes 284

closer to the vector concept (‘want-01’) in the em- 285

bedding matrix, therefore requiring the model to 286

capture deeper semantic when conducting DP task. 287

2.2.3 Linearization 288

After all AMRization steps, the graph structure of 289

SRL/DP also should be linearized before doing 290

seq2seq training. As depicted in the right part of 291

Figure 3, we linearize the graph by the DFS-based 292

travel, and use special tokens <R0>, ..., <Rk> to in- 293

dicate variables, and parentheses to mark the depth, 294

which is the best AMR linearization method of 295

Bevilacqua et al. (2021). 296

2.3 Training Paradigm Selection 297

After task selection and AMRization, we still need 298

to choose an appropriate training paradigm to train 299

PseudoAMR and AMR effectively. We explore 300

three training paradigms as follows: 301

Multitask training Following Xu et al. (2020); 302

Damonte and Monti (2021), we use classic schema 303

in sequence-to-sequence multitask training by 304

adding special task tag at the beginning of input 305

sentence and training all tasks simultaneously. The 306

validation of best model is conducted only on the 307

AMR parsing sub-task. 308
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Intermediate training Similar to Pruksachatkun309

et al. (2020), we first fine-tune the pretrained model310

on the intermediate task (PseudoAMR parsing),311

followed by fine-tuning on the target AMR parsing312

task under same training setting.313

Multitask & Intermediate training We apply314

a joint paradigm to further explore how differ-315

ent paradigms affect AMR parsing. We first con-316

duct multitask training, followed by fine-tuning on317

AMR parsing. Under this circumstance, Multitask318

training plays the role as the intermediate task.319

3 Experiments320

3.1 Datasets321

AMR Datasets We conducted out experiment322

on two AMR benchmark datasets, AMR 2.0 and323

AMR 3.0. AMR2.0 contains 36521, 1368 and 1371324

sentence-AMR pairs in training, validation and test-325

ing sets, respectively. AMR 3.0 has 55635, 1722326

and 1898 sentence-AMR pairs for training vali-327

dation and testing set, respectively. We also con-328

ducted experiments in out-of-distribution datasets329

(BIO,TLP,News3) and low-resources setting.330

Auxiliary Task Datasets Apart from DP/SRL,331

we choose NLG tasks including summarization and332

translation to evaluate the contributions of auxiliary333

tasks. Description of datasets is listed Appendix C.334

3.2 Evaluation Metrics335

We use the Smatch scores (Cai and Knight, 2013)336

and further the break down scores (Damonte et al.,337

2017) to evaluate the performance.338

To fully understand the aspects where auxil-339

iary tasks improve AMR parsing, we divide the340

fine-grained scores to two categories: 1) Concept-341

Related including Concept, NER and Negation342

scores, which care more about concept centered343

prediction. 2) Topology-Related including Unla-344

beled, Reentrancy and SRL scores, which focus on345

edge and relation prediction. NoWSD and Wikifi-346

cation are listed as isolated scores because NoWSD347

is highly correlated with Smatch score and wikifi-348

cation relies on external entity linker system.349

3.3 Experiment Setups350

Model Setting We use current state-of-the-art351

Seq2Seq AMR Paring model SPRING (Bevilacqua352

et al., 2021) as our main baseline model and apply353

BART-Large (Lewis et al., 2020) as our pretrained354

model. Blink (Li et al., 2020) is used to add wiki355

tags to the predicted AMR graphs. We do not ap- 356

ply re-category methods and other post-processing 357

methods are the same with Bevilacqua et al. (2021) 358

to restore AMR from token sequence. The hyper- 359

parameters tuning details is listed in Appendix D 360

AMRization Setting For SRL, we explore four 361

AMRization settings. 1) Trivial. Concept :multi- 362

sentence and relation :snt are used to represent the 363

virtual root and its edges to each of the SRL trees. 364

2) With Argument Reduction. We use dependency 365

parser from Stanford CoreNLP Toolkit (Manning 366

et al., 2014) to do the argument reduction. 3) With 367

Reentrancy Restoration 4) All techniques. 368

For DP, we apply four AMRization settings 1) 369

Trivial. Extra relations in dependency tree are 370

added to the vocabulary of BART 2) With Lemma- 371

tization. We use NLTK (Bird, 2006) to conduct 372

token lemmatization 3) With Redundant Relation 373

Removal. We remove PUNCT, DET, MARK and 374

ROOT relations. 4) All techniques. 375

3.4 Main Results 376

We report the result (ITL + All AMRization Tech- 377

niques) on benchmark AMR 2.0 and 3.0 in Table 1. 378

On AMR 2.0, our models with DP or SRL as inter- 379

mediate task gains consistent improvement over the 380

SPRING model by a large margin (1.1 Smatch) and 381

reach new state-of-the-art for single model (85.1 382

Smatch). Compared with SPRING with 200k extra 383

data, our models achieve higher performance with 384

much less extra data (40k v.s. 200k), suggesting 385

the effectiveness of our intermediate tasks. We also 386

compare our models with contemporary work (Lam 387

et al., 2021; Zhou et al., 2021b). It turns out that 388

our ensemble model beats its counterpart with less 389

extra data, reaching a higher performance (85.3 390

Smatch). In fact, even without ensembling, our 391

model still performs better than those ensembling 392

models, showing the effectiveness of our methods. 393

On AMR 3.0, Our models consistently outper- 394

form other models under both single model (83.9 395

Smatch) and ensembling setting (84.0 Smatch). 396

Same as AMR 2.0, our single model reaches higher 397

Smatch score than those ensembling models, re- 398

vealing the effectiveness of our proposed methods. 399

Fine-grained Performance To better analyse 400

how the AMR parser benefits from the interme- 401

diate training and how different intermediate tasks 402

affect the overall performance. We report the fine- 403

grained score as shown in Table 1. We can tell 404
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Model Extra Data SMATCH NoWSD Wiki
Concept-related Topology-related

Conc. NER Neg. Unll. Reen. SRL
A

M
R

2.
0

Cai and Lam (2020) N 78.7 79.2 81.3 88.1 87.1 66.1 81.5 63.8 74.5
Fernandez Astudillo et al. (2020) N 80.2 80.7 78.8 88.1 87.5 64.5 84.2 70.3 78.2
Zhou et al. (2021a) 70k 81.8 82.3 78.8 88.7 88.5 69.7 85.5 71.1 80.8
SPRING (Bevilacqua et al., 2021) N 83.8 84.4 84.3 90.2 90.6 74.4 86.1 70.8 79.6
SPRING (w/ silver) (Bevilacqua et al., 2021) 200k 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
SPRING (Ours) N 84.0 84.3 83.5 89.9 91.8 75.1 87.1 71.3 81.3
Ours (w/ DP) 40k 85.0 85.4 84.1 90.4 92.5 74.7 88.2 74.7 83.1
Ours (w/ SRL) 40k 85.1 85.6 83.6 90.4 91.4 75.7 88.2 75.0 83.5

*Graphene 4SE (Lam et al., 2021) 200k 84.8 85.3 83.9 90.6 92.2 75.2 88.0 71.4 83.5
*Structure-awareE (Zhou et al., 2021b) 47k 84.9 - - - - - - - -
Ours (w/ SRL) E 40k 85.3 85.7 83.9 90.7 92.2 75.0 88.4 75.0 83.6

A
M

R
3.

0

Bevilacqua et al. (2021) (w/ silver) 200k 83.0 83.5 82.7 89.8 87.2 73.0 85.4 70.4 78.9
Ours (w/ DP) 40k 83.9 84.3 81.6 89.7 89.2 73.0 87.0 73.7 82.3
Ours (w/ SRL) 40k 83.9 84.3 81.0 89.7 88.4 73.9 87.0 73.9 82.5

*Graphene 4SE (Lam et al., 2021) 200k 83.8 84.2 81.9 90.1 88.3 74.6 86.9 70.2 82.5
*Structure-awareE (Zhou et al., 2021b) 47k 83.1 - - - - - - - -
Ours (w/ SRL)E 40k 84.0 84.5 80.7 90.0 88.9 73.1 87.1 73.9 82.6

Table 1: SMATCH and fine-grained F1 scores on AMR 2.0 and 3.0. E denotes result with model ensemble (the
details of the ensembling models are described in Appendix B). We conduct ensembling by averaging the parameters
of models from three random seeds following Zhou et al. (2021b). Model with * denotes contemporary work.

that by incorporating intermediate tasks, consider-405

able increases on most sub-metrics, especially on406

the Topology-related terms, are observed. On both407

AMR 2.0 and 3.0 our single model with SRL as408

intermediate task achieves the highest score in Un-409

labeled, Reentrancy and SRL metrics, suggesting410

that SRL intermediate task improves our parser’s411

capability in Coreference and SRL.412

DP leads to consistent improvement in topology-413

related metrics, which also derives the best result414

on NER sub-task (92.5 on AMR 2.0, 89.2 on AMR415

3.0). We suppose that the ":nn" relation which sig-416

nifies multi-word name entities in dependency pars-417

ing helps the AMR parser recognize multi-word418

name entities. Generally speaking, AMR parser419

gains large improvement in Topology-related sub-420

tasks and NER by incorporating our intermediate421

tasks in terms of the Smatch scores.422

3.5 Exploration in Auxiliary Task Selection423

We explore how different tasks affect AMR parsing424

apart from DP and SRL. We involve two classic425

conditional NLG tasks, Summarization and Trans-426

lation for comparison as shown in Table 2.427

The comparison implies that SRL and DP are428

better auxiliary tasks for AMR Parsing even un-429

der the circumstance where their counterparts ex-430

ploit far more data (40k v.s. 400k). In fact, the431

performance of MT drops while introducing more432

data, which contradicts with Xu et al. (2020) ’s433

findings that more MT data can lead to better re-434

sult when pretraining the raw Transformer model.435

However, this is not surprising under the back-436

Model Extra SMATCH Conc. Topo.

Ours (w/ NLG)
- w/ DialogSum 13k 84.5 85.5 81.5
- w/ CNNDM 40k 84.4 85.5 81.7
- w/ CNNDM 80k 84.2 85.1 81.4
- w/ EN-DE 40k 84.4 85.3 81.5
- w/ EN-DE 80k 84.4 85.4 81.4
- w/ EN-DE 200k 84.2 84.6 81.2
- w/ EN-DE 400k 83.6 84.9 80.6
Ours (w/ Parsing)
- w/ DP 40k 85.0 85.9 82.0
- w/ SRL 40k 85.1 85.8 82.2

Table 2: Result of Task Selection. We first train BART
on different auxiliary tasks for 10 epochs before AMR
Parsing. We also report the average scores of Concept-
related (Conc.) and Topology-related metrics (Topo.)

ground of Intermediate-task Learning where we 437

already have a pretrained model with large-scale 438

pretraining. Whether the intermediate tasks’ form 439

fits for the target task is far more important than 440

the amount of data in the intermediate-task as also 441

revealed by Poth et al. (2021). According to their 442

observation, tasks with the most data (QQP 363k, 443

MNLI 392k) perform far worse ( -97.4% relative 444

performance degradation at most) on some target 445

tasks compared with tasks having much smaller 446

datasets (CommonsenseQA 9k, SciTail 23k) which 447

on the contrary give a positive influence. 448

In conclusion, our findings suggest that the selec- 449

tion of intermediate task is important and should be 450

closely related to AMR parsing in form, otherwise 451

it would even lead to a performance drop for AMR 452

parsing. 453

6



0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
Cosine Similarity Distribution

Translation
SRL
DP

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5
L2 Distance Distribution

Translation
SRL
DP

Figure 4: The distance distribution of sentences repre-
sentation. SRL and DP consistently provide more sim-
ilar sentence representation to AMR than Translation.
The computation is illustrated in Figure 6 in appendix.

4 Analysis454

4.1 More Similar Sentence Representation455

To examine how different auxiliary tasks affect456

AMR parsing, we collect the sentences’ representa-457

tion from different tasks’ trained encoders. We use458

the average hidden state of the encoder’s output as459

the sentence representation. We compute the Co-460

sine Similarity and L2 distance between auxiliary461

tasks’ representation and AMR’s representation for462

same sentence. The test split of AMR 2.0 is used463

for evaluation. Finally, We apply Gaussian distribu-464

tion to fit the distribution of distances and draw the465

probability distribution function curves as shown466

in Figure 4. It turns out that under both distance467

metrics, SRL/DP consistently provide more similar468

sentence representation to AMR than Translation469

and SRL/DP are more similar to AMR parsing. It470

empirically justifies our hypothesis that semanti-471

cally or formally related tasks can lead to a better472

initialization for AMR parsing.473

4.2 Ablation Study on AMRization Methods474

As shown in Table 3, we conduct ablation study475

on how different AMRization methods affect the476

performance AMR parsing. For both SRL and477

DP, jointly adopting our AMRization techniques478

can further improve the performance of AMR pars-479

ing significantly, comparing to trivial linearization.480

The imperfect reentrancy restoration method leads481

to a significant improvement in terms of both the482

Topology and Concept related scores. It reveals that483

transformation of structure to mimic the feature of484

AMR can better the knowledge transfer between485

shallow and deep semantics.486

As shown in Table 7, compared with jointly us-487

ing the two techniques, it is worth noting that model488

with solely Reentrancy Restoration reaches high-489

est fine-grained scores in especially on Reentrancy490

Model SMATCH Conc. Topo.

Ours (w/ Semantic Role Labeling) 84.5 85.5 81.6
- w/ Arg. Reduction(AR) 84.8 85.6 81.9
- w/ Reen. Restoration(RR) 85.0 86.1 82.5
- w/ AR+RR 85.1 85.8 82.2

Ours (w/ Dependency Parsing) 84.4 84.7 81.7
- w/ Redundant Relation Removal (RRR) 84.5 85.2 81.8
- w/ Lemmatization (Lemma) 84.7 85.5 81.7
- w/ RRR + Lemma 85.0 85.9 82.0

Table 3: We report the average scores of Concept-related
scores and Topology-related scores. The full scores are
listed in Table 7. The improvement of involving all
techniques against trivial linearization is significant with
p < 0.005 for both SRL and DP.

Model Extra SMATCH

Ours (w/ Intermediate)
- w/ DP 40k 85.0
- w/ SRL 40k 85.1
- w/ DP,SRL 80k 84.7
Ours (w/ Multitask)
- w/ DP 40k 83.7
- w/ SRL 40k 83.6
- w/ DP,SRL 80k 83.5
Ours (w/ Multi. + Inter.)
- w/ DP 40k 84.1
- w/ SRL 40k 84.1
- w/ DP,SRL 80k 83.9

Table 4: Analysis on Training Paradigms. Intermediate-
task training is more suitable for AMR parsing than
Multitask training

and SRL scores. To explore the reason why it out- 491

perform adopting both techniques, we analyse the 492

number of restored reentrancy. The result shows 493

that about 10k more reentrancies are added when 494

Argument Reduction (AR) is previously executed. 495

It’s expected since AR replaces the token span to 496

the root token. Compared with token span, sin- 497

gle token is more likely to be recognized as the 498

correference variable according to the Reentrancy 499

Restoration (RR) algorithm, thus generating more 500

reentrancy, which might include bias to the model. 501

This explains why solely using RR can lead to bet- 502

ter results on SRL and Reen. 503

4.3 ITL Outweighs MTL 504

We report the result of different fine-tuning 505

paradigms in Table 4. It justifies our assumption 506

that classic multitask learning with task tag as pre- 507

viously applied in Xu et al. (2020); Damonte and 508

Monti (2021) does not compare with intermediate 509

training paradigm for AMR Parsing task. 510

As shown in Figure 5, Intermediate-task train- 511

ing provides a faster and better converging process 512
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Figure 5: The loss curve on development set of AMR
2.0 for different training paradigms.

Model BIO TLP News3

SPRING 59.7 77.3 73.7
SPRING + silver 59.5 77.5 71.8
SPRINGE 60.5 77.9 74.7
Ours 61.2 78.9 75.4

Table 5: Analysis on OOD data. E denotes result given
by the ensembling of models. Our model exploits SRL
as the intermediate task.

than MTL. We assume this is due to the huge gap513

between AMR parsing and auxiliary tasks which514

may harm the optimization process of MTL. The515

process of optimizing all auxiliary tasks simultane-516

ously may introduce noise to AMR Parsing.517

We also find that under the setting of ITL, se-518

quentially training SRL and DP tasks did not bring519

further improvement to AMR parsing. We guess520

this is due to the catastrophic forgetting problem.521

Further regularization during training might help522

the model progressively learn from different auxil-523

iary tasks and relieve catastrophic forgetting.524

4.4 Exploration in Out-of-Distribution525

Generalization526

Following Bevilacqua et al. (2021); Lam et al.527

(2021), we assess the performance of our mod-528

els when trained on out-of-distribution (OOD) data.529

The models trained solely on AMR 2.0 training530

data are used to evaluate out-of-distribution perfor-531

mance on the BIO, the TLP and the News3 dataset.532

Table 6 shows the result of our out-of-533

distribution experiments. Our model surpass other534

models even the ensembled one(Lam et al., 2021),535

creating new state-of-the-art for single model.536

5 Related Work537

AMR Parsing AMR parsing is a challenging538

semantic parsing task, since AMR is a deep se-539

mantic representation and consists of many sep-540

arate annotations (Banarescu et al., 2013) (e.g., 541

semantic relations, named entities, co-reference 542

and so on). There are four major methods to do 543

AMR Parsing currently, sequence-to-sequence ap- 544

proaches (Ge et al., 2019; Xu et al., 2020; Bevilac- 545

qua et al., 2021), tree-based approaches (Zhang 546

et al., 2019b,a), graph-based approaches (Lyu and 547

Titov, 2018; Cai and Lam, 2020) and transition- 548

based approaches (Naseem et al., 2019; Lee et al., 549

2020; Zhou et al., 2021a). 550

There are two ways to incorporate other tasks to 551

AMR Parsing. Goodman et al. (2016) builds AMR 552

graph directly from dependency trees while (Ge 553

et al., 2019) parse directly from linearized syntactic 554

tree. Xu et al. (2020) introduces Machine Trans- 555

lation, Constituency Parsing as pretraining tasks 556

for Seq2Seq AMR parsing and Wu et al. (2021) in- 557

troduces Dependency Parsing for transition-based 558

AMR parsing. However all of them do not take 559

care of the semantic and formal gap between the 560

auxiliary tasks and AMR parsing. 561

Multitask & Intermediate-task Learning 562

Multi-task Learning (MTL) (Caruana, 1997) aims 563

to jointly train multiple related tasks to improve 564

the performance of all tasks. Different from MTL, 565

Intermediate-task Learning (ITL) is proposed 566

to enhance pretrained models e.g. BERT by 567

training on intermediate task before fine-tuning 568

on the target task. Recent studies(Pruksachatkun 569

et al., 2020; Poth et al., 2021) on ITL expose that 570

choosing right intermediate tasks is important. 571

Tasks that don’t match might even bring negative 572

effect to the target even if it has far more data. 573

Xu et al. (2020); Damonte and Monti (2021); 574

Procopio et al. (2021) utilize auxiliary tasks in a 575

MTL fashion with specific task tags. Bevilacqua 576

et al. (2021); Zhou et al. (2021b) adopt sliver train- 577

ing data in a ITL paradigm. However, there is no 578

work comparing ITL and MTL when introducing 579

auxiliary tasks to enhance PTM-based AMR parser. 580

6 Conclusion 581

In this paper, We find that semantically or formally 582

related tasks, e.g. SRL and DP are better auxiliary 583

tasks for AMR parsing and can further improve 584

the performance by proper AMRization methods 585

to bridge the gap between tasks. And Intermediate- 586

task Learning is more effective in introducing aux- 587

iliary tasks compared with Multitask Learning. Ex- 588

tensive experiments and analyses show the effec- 589

tiveness and priority of our proposed methods. 590
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A Algorithms833

Algorithm 1 Reentrancy Restoration for SRL
Input: Treenode:T
Output: Graph:G
Description: T is root node of the original SRL

after node ROOT is added to form tree structure.
G is the output graph with possible reentrancy re-
stored.
Global Variables: Dict: V={}. Here Dict is the

official data structure of Python’s dictionary.
1: for predicate in T.sons do
2: for son in predicate.sons() do
3: if son.name in V.keys() then
4: son = V[son.name]
5: # restore reentrancy
6: else
7: V[son.name] = son
8: return T

B Ensemble Models’ Methods834

Graphene-4SE Lam et al. (2021) make use of 4835

SPRING models from different random seeds and836

their proposed graph ensemble algorithm to do the837

ensembling. They also include another ensemble838

model named Graphene All which includes four839

checkpoints from models of different architectures,840

SPRING(Bevilacqua et al., 2021), APT(Zhou et al.,841

2021a), T5, and Cai&Lam(Cai and Lam, 2020).842

We do not report the score of Graphene All since843

it aggregates models with different inductive bias844

while our ensemble model only use models from845

one structure. It is out of the scope for fair compar-846

ison.847

Structure-awareE Zhou et al. (2021b) use en-848

semble results from 3 models’ combination to gen-849

erate the ensemble model.850

Ours (w/ SRL)E We use the setting the same as851

Zhou et al. (2021b), we use the average of three852

models’ parameters as the ensemble model.853

C Auxiliary Datasets Description854

C.1 Summarization855

CNN/DM(Hermann et al., 2015) The CNN /856

DailyMail Dataset is an English-language dataset857

containing news articles as written by journalists858

at CNN and the Daily Mail. The dataset is widely859

accepted as benchmark to test models’ performance 860

of summarizing . 861

DIALOGSUM(Chen et al., 2021) The Real-Life 862

Scenario Dialogue Summarization (DIALOGSUM), 863

is a large-scale summarization dataset for dialogues. 864

Unlike CNN/DM which focuses on monologue 865

news summarization, DIALOGSUM covers a wide 866

range of daily-life topics in the form of spoken 867

dialogue. We use all the training data (13k) to 868

conduct the intermediate training. 869

C.2 Translation 870

WMT14 EN-DE We select the first 871

40k,80k,200k and 400k training examples 872

from WMT14 EN-DE training set to form EN-DE 873

translation intermediate tasks. 874

C.3 Dependency Parsing 875

PENN TREEBANK(Marcus et al., 1999) The 876

Penn Treebank (PTB) project selected 2,499 stories 877

from a three year Wall Street Journal (WSJ) collec- 878

tion of 98,732 stories for syntactic annotation. We 879

only utilize the dependency structure annotations 880

to form our intermediate dependency parsing task. 881

There are 39,832 (~40k) sentences. 882

C.4 Semantic Role Labeling 883

ONTONOTES(Weischedel et al., 2017) The 884

OntoNotes project is built on two resources, fol- 885

lowing the PENN TREEBANK(Marcus et al., 1999) 886

for syntax and the PENN PROPBANK for predicate- 887

argument structure. We select 40k sentences with 888

SRL annotations to form intermediate task. 889

D Model Tuning Description 890

We tune the hyper-parameters on the SPRING base- 891

line, and then adding the auxiliary data using just 892

those hyper-parameters without any changing. 893

We use RAdam (Liu et al., 2019) as our opti- 894

mizer, and the learning rate is 3e−5. Batch-size is 895

set to 2048 tokens with 10 steps accumulation. The 896

dropout rate is set to 0.3. 897

Parameter Searching Space

Learning rate 1e-5, 3e-5, 5e-5, 1e-4
Batch-size 256, 512, 1024, 2048, 4096
Grad. accu. 10
Dropout 0.1, 0.2, 0.3

Table 6: Hyper-parameters searching space
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The boy wants to leave .

Encoders

Auxiliary
Tasks

AMR 
Parsing

SRL

DP

MT

Sentence
(unseen in all training) Representations L2 Distance

[0.1,0.1,0.2,…,-1.3]1x1024

[2.1,0.1,0.2,…,-1.8]1x1024

[0.5,0.7,-0.8,…,3.3]1x1024

[1.5,0.2,-0.5,…,2.3]1x1024

0.3

0.45

0.7

Figure 6: Illustration of how to compute sentence representation distance of different tasks. The sentences used for
evaluate are never seen in the training of AMR Parsing and other auxiliary tasks. Cosine Similarity is computed the
same way. We collect all sentences’ distance of one encoder to draw the Gaussian distribution curve.

Model Extra Data SMATCH NoWSD Wiki
Concept-related Topology-related

Conc. NER Neg. Unll. Reen. SRL

A
M

R
2.

0

SPRING (w/ silver) (Bevilacqua et al., 2021) 200k 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
Ours (w/ Semantic Role Labeling) 40k 84.5 84.9 84.0 90.2 91.8 74.6 87.7 74.2 82.8
- w/ Arg. Reduction(AR) 40k 84.8 85.2 83.9 90.4 92.2 74.2 88.1 74.5 83.0
- w/ Reen. Restoration(RR) 40k 85.0 85.4 83.5 90.6 92.1 75.6 88.2 75.5 83.7
- w/ AR+RR 40k 85.1 85.6 83.6 90.4 91.4 75.7 88.2 75.0 83.5
Ours (w/ Dependency Parsing) 40k 84.4 84.9 82.9 90.1 90.5 73.5 87.8 74.3 82.9
- w/ Redundant Relation Removal (RRR) 40k 84.5 85.0 83.5 90.2 91.2 74.3 88.0 74.5 82.9
- w/ Lemmatization (Lemma) 40k 84.7 85.2 83.8 90.2 91.2 75.0 88.0 74.1 83.0
- w/ RRR + Lemma 40k 85.0 85.4 84.1 90.4 92.5 74.7 88.2 74.7 83.1

Table 7: Full scores of ablation on AMRization methods.
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