
An Infinite-Feature Extension for Bayesian ReLU Nets
That Fixes Their Asymptotic Overconfidence

Agustinus Kristiadi
University of Tübingen

agustinus.kristiadi@uni-tuebingen.de

Matthias Hein
University of Tübingen

matthias.hein@uni-tuebingen.de

Philipp Hennig
University of Tübingen and MPI for Intelligent Systems, Tübingen

philipp.hennig@uni-tuebingen.de

Abstract

A Bayesian treatment can mitigate overconfidence in ReLU nets around the training
data. But far away from them, ReLU Bayesian neural networks (BNNs) can still
underestimate uncertainty and thus be asymptotically overconfident. This issue
arises since the output variance of a BNN with finitely many features is quadratic
in the distance from the data region. Meanwhile, Bayesian linear models with
ReLU features converge, in the infinite-width limit, to a particular Gaussian process
(GP) with a variance that grows cubically so that no asymptotic overconfidence
can occur. While this may seem of mostly theoretical interest, in this work, we
show that it can be used in practice to the benefit of BNNs. We extend finite
ReLU BNNs with infinite ReLU features via the GP and show that the resulting
model is asymptotically maximally uncertain far away from the data while the
BNNs’ predictive power is unaffected near the data. Although the resulting model
approximates a full GP posterior, thanks to its structure, it can be applied post-hoc
to any pre-trained ReLU BNN at a low cost.

1 Introduction

Approximate Bayesian methods, which turn neural networks (NNs) into Bayesian neural networks
(BNNs), can be used to address the overconfidence issue of NNs [1]. Specifically, Kristiadi et al. [2]
recently showed for binary ReLU classification networks that far away from the training data, i.e. when
scaling any input with a scalar α > 0 and taking the limit α→∞, the confidence of (Gaussian-based)
BNNs is strictly less than one—“being Bayesian” can thus mitigate overconfidence. This result is
encouraging vis-à-vis standard point-estimated networks, for which Hein et al. [3] showed earlier that
the same asymptotic limit always yields arbitrarily high confidence. Nevertheless, BNNs can still be
asymptotically overconfident, albeit less so than standard NNs, since the aforementioned uncertainty
bound can be loose.

We identify that this issue arises because the variance over function outputs of a BNN is asymptotically
quadratic, while the corresponding mean is asymptotically linear w.r.t. α. Intuitively, fixing this issue
requires adding an unbounded number of ReLU features with increasing distance from the training
data, so that the output mean stays unchanged but the associated variance grows super-quadratically.
And indeed there is a particular Gaussian process (GP), arising from the cubic spline kernel [4],
which has cubic variance growth and can be seen as a Bayesian linear model with countably infinite
ReLU features. In the context of the analysis, the fact that standard ReLU BNNs only use finitely
many features makes them “miss out” on some uncertainty that should be there. In this work, we
“add back” this missing uncertainty into finite ReLU BNNs by first extending the cubic spline kernel

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



−10 −5 0 5 10
−10

−5

0

5

10

(a) K = 6

−10 −5 0 5 10

(b) K = 20

−10 −5 0 5 10

(c) K = 60

−10 −5 0 5 10

(d) K =∞

Figure 1: The construction of a GP prior with the proposed “ReLU kernel”, as the limiting covariance
of the output of a Bayesian linear model with K ReLU features (grey), arranged at regular intervals,
oriented away from the origin. Red curves are function samples with the thick one being the mean,
and the red shade their std. dev. With finite K (a-c), the variance grows quadratically, leading to
the asymptotic overconfidence in ReLU BNNs. But, with K =∞ (d), the variance grows cubically
away from the origin. The fact that this kernel has zero mean and negligible variance near the origin
enables us to easily combine this GP with standard finite pre-trained ReLU BNNs.

to cover the whole input domain (Fig. 1) and then using the resulting GP to model residuals of
BNNs [5–7]. Conceptually, we extend finite BNNs into infinite ones. The proposed kernel has two
crucial properties: (i) It has negligible values around the origin, which we can assume without loss of
generality to be the region where the data reside, and (ii) like the cubic spline kernel, its variance
grows cubically in α. Using the first property, we can approximately decompose the resulting a
posteriori function output simply as a posteriori BNNs’ output plus a priori the GP’s output. This
extension can therefore be applied to any pre-trained ReLU BNN in a post-hoc manner. And due to
the second property, we can show that the extended BNNs are guaranteed to predict with uniform
confidence away from the data. This approach thus fixes ReLU BNNs’ asymptotic overconfidence,
without affecting the BNNs’ predictive mean. Finally, the method can be extended further while
still preserving all these properties, by also modeling the representations of input points with the
proposed GP. By doing so, the GP can adapt to the data well, and hence also improve the extended
ReLU BNNs’ non-asymptotic uncertainty.

A core contribution of this paper is the theoretical analysis: We show that our method (i) models
the uncertainty that ReLU BNNs lack, thus (ii) ensuring that the surrounding output variance
asymptotically grows cubically in the distance to the training data, and ultimately (iii) yields uniform
asymptotic confidence in the multi-class classification setting. These results extend the prior analysis
in so far as it is limited to the binary classification case and does not guarantee the asymptotically
maximum-entropy prediction. Furthermore, our approach is complementary to the method of Meinke
and Hein [8], which attains maximum uncertainty far from the data for non-Bayesian NNs. We
empirically confirm the analysis and show effectiveness in the non-asymptotic regime.

2 Background

Notation We denote a test point and its unknown label as x∗ and y∗, respectively. We denote any
quantity that depends on x∗ with the same subscript, in particular f∗ := f(x∗), k∗ := k(x∗,x∗).

2.1 Bayesian Neural Networks

We focus on multi-class classification problems. Let f : RN × RD → RC defined by (x,θ) 7→
f(x;θ) =: fθ(x) be a C-class ReLU network—a fully-connected or convolutional feed-forward
network equipped with the ReLU nonlinearity. Here, θ is the collection of all parameters of f . Given
an i.i.d. dataset D := (xm, ym)Mm=1, the standard training procedure amounts to finding a maximum
a posteriori (MAP) estimate θMAP = arg maxθ log p(θ | D).

One can also apply Bayes’ theorem to infer the full posterior distribution of θ—the resulting network
is called a Bayesian neural network (BNN). A common way to approximate the posterior p(θ | D)
of a BNN is by a Gaussian q(θ) := N (µ,Σ). Given this approximate posterior and a test point
x∗ ∈ RN , the prediction is given by p(y∗ | x∗,D) =

∫
softmax(fθ(x∗)) q(θ) dθ. The Gaussian

approximate posterior and softmax likelihood are our assumptions throughout this paper.

2



One can obtain a useful two-step closed-form approximation of the previous integral as follows. First,
we perform a network linearization on f around µ and obtain the following marginal over f(x∗):

p(f∗ | x∗,D) ≈ N (fµ(x∗),J
>
∗ ΣJ∗), (1)

where J∗ is the D × C Jacobian matrix of fθ(x∗) w.r.t. θ at µ. For brevity, let m∗ and V∗ be the
above mean and covariance. To obtain the predictive distribution, we then apply the generalized
probit approximation [9, 10]:

p(y∗ = c | x∗,D) =

∫
softmax(f∗)c p(f∗|x∗,D) df∗ ≈

exp(m∗c κ∗c)∑C
i=1 exp(m∗i κ∗i)

, (2)

where for each i = 1, . . . , C, the real number m∗i is the i-th component of the vector m∗, and
κ∗i := (1+π/8 v∗ii)−1/2 where v∗ii is the i-th diagonal term of the matrix V∗. Both approximations
above have been shown to be good both in terms of their errors and predictive performance [10–13].1

While analytically useful, these approximations can be expensive due to the computation of the
Jacobian matrix J∗. Thus, Monte Carlo (MC) integration is commonly used as an alternative, i.e. we
approximate p(y∗ | x∗,D) ≈ 1/S

∑S
s=1 p(y∗ | fθs(x∗)); θs ∼ q(θ). Finally, given a classification

predictive distribution p(y∗ | x∗,D), we define the predictive confidence of x∗ as the maximum
probability maxc∈{1,...,C} p(y∗ = c | x∗,D) over class labels. Far from the data, ideally the model
should produce the uniform confidence p(y∗ = c | x∗,D) = 1/C for all c = 1, . . . , C.

2.2 Asymptotic Overconfidence in BNNs

(a) Zoomed-in
0.50

0.75

1.00

(b) Zoomed-out
0.50

0.75

1.00

Figure 2: Confidence esti-
mates of a BNN.

Given a fixed point estimate θMAP, the ReLU network fθMAP yields
overconfident predictions, even for points far away from the train-
ing data [3]. That is, for almost any input x∗ ∈ RN , one
can show that there exists a class c ∈ {1, . . . , C} such that
limα→∞ softmax(fθMAP(αx∗))c = 1. Intuitively, this issue arises
because the ReLU network yields a piecewise-affine function with
finitely many linear regions (the domain of each affine function).
Under this setup, by scaling x∗ with α, at some point one arrives
at an “outer linear region” and in this region, the network is always
affine—either increasing or decreasing—even as α tends to infinity,
and thus its softmax output converges to a “one-hot vector”.

BNNs, even with a simple Gaussian approximate posterior, can
help to mitigate this problem in binary classifications, as shown by
Kristiadi et al. [2]. The crux of their proof is the observation that
in an outer linear region, the predictive distribution (via the probit
approximation) is given by2

p(y∗ = 1 | αx∗,D) ≈ σ

(
αu>x∗√

1 + π/8 v(αx∗)

)
, (3)

where σ is the logistic-sigmoid function, u is the parameter vector corresponding to the linear
region and the quadratic function v maps αx∗ to the variance of the network output. Unfortunately,
both the numerator and denominator above are linear in α and thus altogether p(y∗ = 1 | αx∗,D)
only converges to a constant strictly less than 1 as α → ∞, not necessarily the ideal uniform
confidence prediction. BNNs can therefore still be overconfident, albeit less so than the point-
estimated counterpart (Fig. 2).

2.3 ReLU and Gaussian processes

The ReLU activation function ReLU(z) := max(0, z) [14] has become the de facto choice of non-
linearity in deep learning. Given an arbitrary real number c, it can be generalized as ReLU(z; c) :=

1The network linearization comes with the error of O(‖θ− θMAP‖2) by Taylor’s theorem. Meanwhile for the
(generalized) probit approximation, low empirical error has been observed by [10, Fig. 1].

2We omit the bias parameter for simplicity.

3



max(0, z − c), with the “kink” at location c. An alternative formulation, useful below, is in terms
of the Heaviside function H as ReLU(z; c) = H(z − c) · (z − c). We may define a collection
of K such ReLU functions evaluated at some point in R as the function φ : R → RK with
z 7→ (ReLU(z; c1), . . . ,ReLU(z; cK))>. We call this function the ReLU feature map, which can
be interpreted as “placing” ReLU functions at different locations in R.

Consider a linear model g : R × RK → R defined by g(x;w) := w>φ(x). Suppose φ regularly
places K generalized ReLU functions centered at (ci)

K
i=1 on [cmin, cmax] ⊂ R, where cmin < cmax.

If we consider a Gaussian prior p(w) := N
(
w
∣∣0, σ2K−1(cmax − cmin)I

)
, then as K → ∞, the

distribution over g is a Gaussian process with mean 0 and covariance (full derivation in Appendix A):

k̂1(x, x′; cmin, σ
2) := σ2H(x̄− cmin)

(
1

3
(x̄3 − c3min) −1

2
(x̄2 − c2min)(x+ x′) + (x̄− cmin)xx′

)
.

Here, the superscript 1 denotes the fact that this function is over a 1-dimensional input space and
x̄ := min(x, x′). Since the expression above does not depend on cmax, we can consider the limit
cmax → ∞, and thus this kernel is non-zero on (cmin,∞). This covariance function is the cubic
spline kernel [4]. The name indicates that posterior mean of the associated GP is piecewise-cubic.
But it also has variance k̂1(x, x; cmin, σ

2) which is cubic in x and negligible for x close to cmin.

3 Infinite-Feature Extension for ReLU BNNs

From Section 2.2 it becomes clear that the asymptotic miscalibration of ReLU BNNs is due to
the finite number of ReLU features used, which results in only quadratic variance growth. An
infinite-ReLU GP with the cubic spline kernel has cubic variance growth, which, combined with
the probit approximation, yields uniform confidence in the limit. But of course, full GP inference is
prohibitively expensive. In this section, we propose a cheap, post-hoc way to extend any pre-trained
ReLU BNN with the aforementioned GP by extending the cubic spline kernel and exploiting its two
important properties. We will see that the resulting model approximates the full GP posterior and
combines the predictive power of the BNN with a guarantee for asymptotically uniform confidence.
While in our analysis we employ network linearization for analytical tractability, the method can be
applied via MC-integration as well (cf. Section 5). All proofs are in Appendix B.

3.1 The Double-Sided Cubic Spline Kernel

The cubic spline kernel is one-sided in the sense that it has zero variance on (−∞, cmin), and therefore
is unsuitable for modeling over the entire domain. This is easy to fix by first setting cmin = 0

to obtain a kernel
−→
k 1(x, x′;σ2) := k̂1(x, x′; 0, σ2) which is non-zero only on (0,∞). Now, by

an entirely analogous construction with infinitely many ReLU functions pointing to the opposite
direction (i.e. left) via ReLU(−z; c), we obtain another kernel

←−
k 1(x, x′;σ2) :=

−→
k 1(−x,−x′;σ2),

which is non-zero only on (−∞, 0). Combining them together, we obtain the following kernel, which
covers the whole real line: k1(x, x′;σ2) :=

←−
k 1(x, x′;σ2) +

−→
k 1(x, x′;σ2)—see Fig. 1. Note in

particular that the variance k1(0, 0) at the origin is zero. This is a key feature of this kernel that
enables us to efficiently combine the resulting GP prior with a pre-trained BNN.

For multivariate input domains, we define

k(x,x′;σ2) :=
1

N

N∑
i=1

k1(xi, x
′
i;σ

2) (4)

for any x,x′ ∈ RN with N > 1. We here deliberately use a summation, instead of the alternative of
a product, since we want the associated GP to add uncertainty whenever at least one input dimension
has non-zero value. (By contrast, a product k(x,x′) is zero if one of the k1(xi, x

′
i) is zero.) We call

this kernel the double-sided cubic spline (DSCS) kernel. Similar to the one-dimensional case, two
crucial properties of this kernel are that it has negligible variance around the origin of RN and for
any x∗ ∈ RN and α ∈ R, the value k(αx∗, αx∗) is cubic in α.

4



3.2 ReLU-GP Residual

For simplicity, we start with real-valued BNNs and discuss the generalization to multi-dimensional
output later. Let f : RN × RD → R be an L-layer, real-valued ReLU BNN. Since f by itself can be
asymptotically overconfident, it has residual in its uncertainty estimates far from the data. Our goal is
to extend f with the GP prior that arises from the DSCS kernel, to model this uncertainty residual.
We do so by placing infinitely many ReLU features over its input space RN by following the DSCS
kernel construction in the previous section. Then, we arrive at a zero-mean GP prior GP(f̂ | 0, k)

over a real-valued random function f̂ : RN → R. Following previous works [15, 6, 7], we use this
GP prior to model the residual of f by defining

f̃ := f + f̂ , where f̂ ∼ GP(0, k), (5)

and call this method ReLU-GP residual (RGPR).

We now analyze RGPR. Besides linearization, we assume that the DSCS kernel has, without loss
of generality, a negligibly small value at the data, i.e. k(xm,x∗) ≈ 0 for all (xm)Mm=1 and any
i.i.d. test point x∗. Note that this can always be satisfied by centering and scaling. The error of this
approximation is stated in the following.

Lemma 1. Let 0 < δ < 1, and let σ2 > 0 be a constant. For any x,x′ ∈ RN with ‖x‖2, ‖x′‖2 ≤ δ
we have k(x,x′;σ2) ∈ O(δ3).

Using this approximation, we show the approximate GP posterior of f̃ .

Proposition 2 (RGPR’s GP Posterior). Let f : RN × RD → R be a ReLU BNN with weight
distribution N (θ | µ,Σ), and let D := (xm, ym)Mm=1 =: (X,y) be a dataset. Assume that
‖xm‖2, ‖x‖2 ≤ δ for all m = 1, . . . ,M and any i.i.d. test point x ∈ RN , with 0 < δ < 1. Then
given an i.i.d. input point x∗ ∈ RN , under the linearization of f w.r.t. θ around µ, the GP posterior
over f̃∗ is a Gaussian with mean and variance

E(f̃∗ | D) ≈ f(x∗;µ) + h>∗ C
−1(y − f(X;µ)), (6)

Var(f̃∗ | D) ≈ g(x∗)
>Σg(x∗) + k(x∗,x∗)− h>∗ C−1h∗, (7)

respectively, where h∗ := (Cov(f(x∗), f(x1)), . . . ,Cov(f(x∗), f(xM )))>, while C is the co-
variance matrix (Cov(f(xi), f(xj)))

M
ij , and f(X;µ) := (f(x1;µ), . . . , f(xM ;µ))>. More-

over, the approximation error in (6) is in O
(
(δ6‖C−1‖‖m‖)/(1− δ3‖C−1‖)

)
where m =

C−1(y − f(X;µ)), while the error in (7) is in O
(
(δ6(‖C−1‖+ ‖C−1‖‖m‖))/(1− δ3‖C−1‖)

)
wherem = C−1h∗.

While this result is applicable to any Gaussian weight distribution, an interesting special case is where
we assume that the BNN is well-trained, i.e. we have a Gaussian (approximate) posterior p(θ | D)
which induces accurate prediction and high output confidence on each of the training data. In this
case, the last term of (6) is negligible since the residual y − f(X;µ) is close zero. Moreover, notice
that the last term in (7) can be upper-bounded by

h>∗ C
−1h∗ ≤ λmax‖h∗‖2 = λmax

M∑
m=1

Cov(f(x∗), f(xm))2,

where λmax denotes the largest eigenvalue of C−1. The last summand above can further be upper-
bounded via the Cauchy-Schwarz inequality by Cov(f(x∗), f(xm))2 ≤ Var(f(x∗))Var(f(xm)).
But our assumption implies that Var(f(xm)) is close to zero for all m = 1, . . . ,M . Thus, if f is a
pre-trained ReLU BNN, we approximately have

f̃∗ ∼ N (f(x∗;µ), g>∗ Σg∗ + k∗), (8)

which can be thought of as arising from the sum of two Gaussian r.v.s. f∗ ∼ N (f(x∗;µ), g>∗ Σg∗)
and f̂∗ ∼ N (0, k∗)—we are back to the definition of RGPR (5). Thus, unlike previous works on
modeling residuals with GPs [15, 6, 7], the GP posterior of RGPR can approximately be written as a
posteriori f plus a priori f̂ . RGPR can hence be applied post-hoc, after the usual training process of

5



the BNN. Furthermore, we see that RGPR does indeed model only the uncertainty residual of the
BNN since it only affects the predictive variance. In particular, it does not affect the output mean of
the BNN and thus preserves its predictive accuracy—this is often desirable in practice since the main
reason for using deep ReLU nets is due to their accurate predictions.

Generalization to BNNs with multiple outputs is straightforward. Let f : RN × RD → RC be a
vector-valued, pre-trained, L-layer ReLU BNN with posterior N (θ | µ,Σ). We assume that the
following real-valued random functions (f̂ (c) : RN̂ → R)Cc=1 are i.i.d. as the GP prior GP(0, k)

(5). Thus, for any x∗ ∈ RN , defining f̂∗ := (f̂
(1)
∗ , . . . , f̂

(C)
∗ )>, we have p(f̂∗) = N (0, k∗I), and so

under the linearization of f , this implies that the marginal GP posterior of RGPR is approximately
given by the following C-variate Gaussian

p(f̃∗ | x∗,D) ≈ N (fµ(x∗),J
>
∗ ΣJ∗ + k∗I). (9)

We can do so since intuitively (9) is simply obtained as a result of “stacking” C independent f̃ (c)
∗ ’s,

each of which satisfies Proposition 2. The following lemma shows that asymptotically, the marginal
variances of f̃∗ grow cubically as we scale the test point.

Lemma 3 (Asymptotic Variance Growth). Let f : RN×RD → RC be a pre-trained ReLU network
with posterior N (θ | µ,Σ) and f̃ be obtained from f via RGPR. Suppose that the linearization of f
w.r.t. θ around µ is employed. For any x∗ ∈ RN with x∗ 6= 0 there exists β > 0 such that for any
α ≥ β and each c = 1, . . . , C, the variance Var(f̃ (c)(αx∗)) under (9) is in Θ(α3).

Equipped with this result, we are now ready to state our main result. The following theorem shows
that RGPR yields the ideal asymptotic uniform confidence of 1/C given any pre-trained ReLU
classification BNN with an arbitrary number of classes.

Theorem 4 (Uniform Asymptotic Confidence). Let f : RN × RD → RC be a C-class pre-
trained ReLU network equipped with the posterior N (θ | µ,Σ) and let f̃ be obtained from f via
RGPR. Suppose that the linearization of f and the generalized probit approximation (2) is used for
approximating the predictive distribution p(y∗ = c | αx∗, f̃ ,D) under f̃ . For any input x∗ ∈ RN

with x∗ 6= 0 and for every class c = 1, . . . , C, we have limα→∞ p(y∗ = c | αx∗, f̃ ,D) = 1/C.

As a sketch of the proof for this theorem, consider the special case of binary classification. Here, we
notice that the variance v in the probit approximation (3) is now a cubic function of α under RGPR,
due to Lemma 3. Thus, it is easy to see that the term inside of σ decays like 1/

√
α far away from the

training data. Therefore, in this case, p(y = 1 | αx∗,D) evaluates to σ(0) = 1/2 as α → ∞, and
hence we obtain the asymptotic maximum entropy prediction.

We remark that the pre-trained assumption on f in Lemma 3 and Theorem 4 can be removed.
Intuitively, this is because under the scaling of α on x∗, the last term of (7) is in Θ(α2). Thus, it is
asymptotically dominated by the Θ(α3) growth induced by the DSCS kernel in the second term. We
however present the statements as they are since they support the post-hoc spirit of RGPR.

3.3 Extending RGPR to Non-Asymptotic Regimes

(a) Input Only
0

30

60

90

120

(b) Input & Hiddens
0

30

60

90

120

Figure 3: Variance of f̂ .

While the previous construction is sufficient for modeling uncertainty
far away from the data, it does not necessarily model the uncertainty
near the data region well. Figure 3(a) shows this behavior: the
variance of the GP prior equipped with the DSCS kernel grows
slowly around the data and hence, even though Theorem 4 will still
apply in the limit, RGPR has a minimal effect on the uncertainty of
the BNN in non-asymptotic regimes.

A way to address this is to adapt RGPR’s notion of proximity be-
tween input points. This can be done by using the higher-level data
representations already available from the pre-trained NN—a test
point close to the data in the input space can be far from them in the
representation space, thereby the DSCS kernel might assign a large
variance. Based on this intuition, we extend RGPR by additionally

6



placing infinite ReLU features on the representation spaces of the point-estimated network fµ induced
by the BNN f , where µ is the mean of the Gaussian posterior of f , as follows.

For each l = 1, . . . , L− 1 and any input x∗, let Nl be the size of the l-th hidden layer of fµ and h(l)
∗

be the l-th hidden representation of x∗. By convention, we assume that N0 := N and h(0)
∗ := x∗.

Now, we place for each l = 0, . . . , L− 1 an infinite number of ReLU features on the representation
space RNl , and thus we obtain a random function f̂ (l) : RNl → R distributed as GP(0, k). Then,
given that N̂ :=

∑L−1
l=0 Nl, we define f̂ : RN̂ → R by f̂ := f̂ (0) + · · ·+ f̂ (L−1), i.e. we assume that

{f̂ (l)}L−1
l=0 are independent. This function is therefore a function over all representation (including

the input) spaces of fµ, distributed as the additive Gaussian process GP(0,
∑L−1
l=0 k). In other words,

given all representations h∗ := (h
(l)
∗ )L−1

l=0 of x∗ under fµ, the marginal over the function output
f̂(h∗) is given by

p(f̂∗) = N

(
0,

L−1∑
l=0

k
(
h

(l)
∗ ,h

(l)
∗ ;σ2

l

))
. (10)

We can then use this definition of f̂ as a drop-in replacement in (5) to define RGPR. Figure 3(b)
visualizes the effect: the low-variance region modeled by f̂ becomes more compact around the data.

The analysis from the previous section still applies here since it is easy to see that the variance of f̂∗
in (10) is still cubic in α. In practice, however, it is not necessarily true anymore that each h(l)

∗ is
close to the origin in RNl . To fix this, one can center and scale each h(l)

∗ via standardization using
the mean Ex∈D(h(l)(x)) and scaled standard deviation r

√
Varx∈D(h(l)(x)) with r > 1, before

evaluating the kernel in (10) (these quantities only need to be computed once). Note that by tuning
the DSCS kernel’s hyperparameter σ2 such that confidence over the training data is preserved (cf. the
next section), RGPR becomes insensitive to the choice of r since intuitively the tuning procedure
will make sure that the DSCS kernel does not assign large variance to the training data. Therefore, in
practice we set r = 1.

Algorithm 1 provides a pseudocode of RGPR for classification predictions via MC-integration. The
only overhead compared to the usual MC-integrated BNN prediction step are (marked in red) (i) a
single additional forward-pass over fµ, (ii) L evaluations of the DSCS kernel k, and (iii) sampling
from a C-dimensional diagonal Gaussian. Their costs are negligible compared to the cost of obtaining
the standard MC-prediction of f , which, in particular, requires multiple forward passes.

3.4 Hyperparameter Tuning

Algorithm 1 MC-prediction for RGPR. Differ-
ences from the standard procedure are in red.
Input:

Pre-trained L-layer, ReLU BNN classifier f with
posterior N (θ | µ,Σ). Test point x∗ ∈ RN . Cen-
tering and scaling function std. Hyperparameters
(σ2

l )
L−1
l=0 . Number of MC samples S.

1: (h
(l)
∗ )L−1

l=1 = forward(fµ,x∗)

2: vs(x∗) =
∑L−1

l=0 k(std(h
(l)
∗ ), std(h

(l)
∗ );σ2

l )
3: for s = 1, . . . , S do
4: θs ∼ N (θ | µ,Σ)
5: fs(x∗) = f(x∗;θs)

6: f̂s(x∗) ∼ N (0, vs(x∗)I)

7: f̃s(x∗) = fs(x∗) + f̂s(x∗)
8: end for
9: return 1/S

∑S
s=1 softmax(f̃s(x∗))

The kernel hyperparameters (σ2
l )L−1
l=0 =: σ2

control the variance growth of the DSCS kernel.
Since RGPR is a GP model, one way to tune σ2

is via marginal likelihood maximization. How-
ever, this leads to an expensive procedure even
if a stochastic approximation [16] is employed
since the computation of the RGPR kernel (9)
requires the network’s Jacobian and the explicit
kernel matrix need to be formed. Note how-
ever that those quantities are not needed for
the computation of the predictive distribution
via MC-integration (Algorithm 1). Hence, a
cheaper yet still valid option to tune σ2 is to use
a cross-validation (CV) which depends only on
predictions over validation data Dval [17, Ch. 5].

A straightforward way to perform CV is by
maximizing the validation log-likelihood (LL).
That is, we maximize the objective LLL(σ2) :=∑
x∗,y∗∈Dval

log p(y∗ | x∗,D;σ2). However, this tends to yield overconfident results outside the
training data (Fig. 4). Thus, similar to Kristiadi et al. [2], we can optionally add an auxiliary

7



(a) Untuned (b) Marg. Likelihood (c) CV with LLL (d) CV with LOOD

0.50

0.75

1.00

Figure 4: Different objectives for tuning σ2. Shades are predictive confidence. Untuned σ2 =
(1, . . . , 1) in (a). Dout consists of uniform noise images.

term to LLL that depends on some OOD dataset Dout, resulting in LOOD(σ2) := LLL(σ2) +

λ/C
∑
x∗∈Dout

∑C
c=1 log p(y = c | x∗,D;σ2). In particular, the additional term is simply the

negative cross-entropy between the predictive distribution and the uniform probability vector of
length C, with λ = 0.5 as proposed by Hendrycks et al. [18]. Note that both objectives can be
optimized via gradient descent without the need of backprop through the network. See Fig. 4 for
comparison between different objectives. In Section 5, we discuss the choice of Dout.

4 Related work

Mitigation of asymptotic overconfidence has been studied recently: Hein et al. [3] noted, demon-
strated, and analyzed this issue, but their proposed method does not work for large α. Kristiadi
et al. [2] showed that a Bayesian treatment could mitigate this issue even as α → ∞. However,
their analysis is restricted to binary classification and the asymptotic confidence of standard ReLU
BNNs only converges to a constant in (0, 1). In a non-Bayesian framework, Meinke and Hein [8]
used density estimation to achieve the uniform confidence far away from the data. Nevertheless, this
property has not been previously achieved in the context of BNNs.

Unlike a line of works that connects NNs and GPs [19–21, etc.] which studies properties of NNs
as GPs in an infinite-width limit, we focus on combining finite-width BNNs with a GP a posteriori.
Though similar in spirit, our method thus differs from Wilson et al. [22] which propose a combination
of a weight-space prior and a function-space posterior for efficient GP posterior sampling. Our
method is also distinct from other methods that model the residual of a predictive model with a GP
[5, 15, 6, 7, etc.] since RGPR models the uncertainty residual of BNNs, in contrast to the predictive
residual of point-estimated networks, and RGPR does not require further posterior inference given a
pre-trained BNN.

Cho and Saul [19] proposed a family of kernels for deep learning, called the arc-cosine kernels. The
first-order arc-cosine kernel can be interpreted as a ReLU kernel but it only has a quadratic variance
growth and thus is not suitable to guarantee the uniform asymptotic confidence. While higher-order
arc-cosine kernels have super-quadratic variance growth, they ultimately cannot be interpreted as
ReLU kernels, and hence are not as natural as the cubic-spline kernel in the context of ReLU BNNs.

5 Empirical Evaluations

We empirically validate Theorem 4 in the asymptotic regime and the effect of RGPR on non-
asymptotic confidence estimates in multi-class image classification. The LeNet architecture [23] is
used for MNIST, while ResNet-18 [24] is used for CIFAR10, SVHN, and CIFAR100—details in
Appendix D. For each dataset, we tune σ2 via a validation set of size 2000 obtained by splitting the
corresponding test set. Following Hein et al. [3], Dout consists of smoothed noise images, which are
obtained via random permutation, blurring, and contrast rescaling of the original dataset—they do
not preserve the structure of the original images and thus can be considered as synthetic noise images.
Particularly for ResNet, we use the outputs of its residual blocks to obtain input representations h∗.

5.1 Asymptotic Regime

In this experiment, we use the last-layer Laplace approximation (LLL) as the base BNN, which has
previously been shown to be a strong baseline [2]. Results with other, more sophisticated BNNs

8



20 40 60 80 100
0

0.5

1

α

C
on

fid
en

ce

(a) MNIST

20 40 60 80 100

α

(b) CIFAR10

20 40 60 80 100

α

(c) SVHN

20 40 60 80 100

α

BNN
BNN-RGPR
Uniform Conf.

(d) CIFAR100

Figure 5: Confidence of a vanilla BNN (LLL) and the same BNN with RGPR, as a function of α.
Test data are constructed by scaling the original test set. Curves are means, shades are ±1 std. devs.
Note that in (b) and (d), even though close, the BNN does not achieve the uniform confidence.

0 50 100 150
0

2

4

6

NLL ↓

0 50 100 150
0

0.5

1

1.5

Brier ↓

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Accuracy ↑

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Confidence ↓

NLL Brier ECE MMC Acc
0.00

0.25

0.50

0.75

1.00

Metric

MAP Temp. Scaling Deep Ens.

GP-DSCS LLL LLL-RGPR-LL

LLL-RGPR-OOD

Figure 6: (Top) Rotated-MNIST (x-axes are rotation angles). (Bottom) Corrupted-CIFAR10—values
are normalized to [0, 1] and are averages over all types of corruption and all severity levels.

[25–27] are in Appendix D—we observe similar results there. Figure 5 shows confidence estimates
of both the BNN and the RGPR-imbued BNN over 1000 samples obtained from each of MNIST,
CIFAR10, SVHN, and CIFAR100 test sets, as the scaling factor α increases. As expected, the vanilla
BNN does not achieve the ideal uniform confidence prediction, even for large α. This issue is most
pronounced on MNIST, where the confidence estimates are far away from the ideal confidence of 0.1.
Overall, this observation validates the hypothesis that BNNs have residual uncertainty, leading to
asymptotic overconfidence that can be severe. We confirm that RGPR fixes this issue. Moreover, its
convergence appears at a finite, small α; without a pronounced effect on the original confidence.

5.2 Non-Asymptotic Regime

Table 1: OOD data detection in terms of FPR@95.
All values are in percent and averages over five
OOD test sets and over 5 prediction runs.

Methods MNIST CIFAR10 SVHN CIFAR100

MAP 28.2 38.9 17.8 72.2
TS 28.4 34.9 17.6 71.9
DE 23.0 51.0 11.3 74.7
GP-DSCS 27.8 46.7 19.1 69.1
LLL 24.8 29.8 15.7 69.5

LLL-RGPR-LL 3.9 29.6 13.8 65.8
LLL-RGPR-OOD 3.6 24.2 9.6 63.0

We report results on standard dataset shift and
out-of-distribution (OOD) detection tasks. For
the former, we use the standard rotated-MNIST
and CIFAR10-C datasets [28, 29] and mea-
sure the performance using the following met-
rics: negative log-likelihood (NLL), the Brier
score, expected calibration error (ECE), accu-
racy, and average confidence. Meanwhile, for
OOD detection, we use five OOD sets for each
in-distribution dataset. The FPR@95 metric
measures the false positive rate of an OOD de-
tector at a 95% true positive rate. We use LLL
as the base BNN for RGPR and compare it against the MAP-trained network, temperature scaling
[TS, 30], the method of Qiu et al. [7] with the DSCS kernel (GP-DSCS, see Appendix C), and Deep

9



Ensemble [DE, 31], which is a strong baseline in this regime [28]. We denote the RGPR tuned via
LLL and LOOD with the suffixes “-LL” and “-OOD”, respectively. More results are in Appendix D.

On the rotated-MNIST benchmark, we observe in Fig. 6 that RGPR consistently improves the base
LLL, especially when tuned with LOOD, while still preserving the calibration of LLL on the clean
data. LLL-RGPR attains better results than GP-DSCS, which confirms that applying a GP on top
of a trained BNN is more effective than on top of MAP-trained nets. Some improvements, albeit
less pronounced (see Table 3 in the appendix for the complementary numerical values), are also
observed in CIFAR10-C. For OOD detection (Table 1) we find that LLL is already competitive with
all baselines, but RGPR can still improve it further, making it better than Deep Ensemble. Further
results comparing RGPR to recent non-Bayesian baselines [32, 33] are in Appendix D.

Finally, we discuss the limitation of LOOD. While the use of additional OOD data in tuning σ2

improves both dataset-shift and OOD detection results, it is not without a drawback: LOOD induces
slightly worse calibration in terms of ECE (Table 6 in Appendix D). This implies that one can
somewhat trade the exactness of RGPR (as assumed by Proposition 2) off with better OOD detection.
This trade-off is expected to a degree since OOD data are often close to the training data. Hence,
the single multiplicative hyperparameter σ2

l of each the DSCS kernel in (10) cannot simultaneously
induce high variance on outliers and low variance on the nearby training data. Table 10 (Appendix D)
corroborates this: When a Dout “closer” to the training data (the 32×32 ImageNet dataset [34]) is
used, the ECE values induced by LOOD become worse (but the OOD performance improves further).
Note that this negative correlation between ECE and OOD detection performance also presents in
state-of-the-art OOD detectors (Section D.3.5). So, if the in-distribution calibration performance is
more crucial in applications of interest, LLL is a better choice for tuning σ2 since it still gives benefits
on non-asymptotic outliers, but preserves calibration better than LOOD.

6 Conclusion

Extending finite ReLU BNNs with an infinite set of additional, carefully placed ReLU features fixes
their asymptotic overconfidence. We do so by generalizing the classic cubic spline kernel, which,
when used in a GP prior, yields a marginal variance growing cubically in the distance between a
test point and the training data. The simplicity of our method is its main strength: RGPR causes no
additional overhead during BNNs’ training, but nevertheless meaningfully approximates a full GP
posterior, because the proposed kernel contributes only negligible prior variance near the training
data. RGPR can thus be applied post-hoc to any pre-trained ReLU BNN and causes only a small
overhead during prediction. We also showed how RGPR can be extended further—again in a post-hoc
manner—to also correct the BNN’s uncertainty near the training data, by modeling residuals in the
higher layers of the network. The intuition behind RGPR is relatively simple, but it bridges the
domains of deep learning and non-parametric/kernel models: Correctly modeling uncertainty across
the input domain requires a non-parametric model of infinitely many ReLU features, but only finitely
many such features need to be trained to make good point predictions.

Acknowledgments and Disclosure of Funding

The authors gratefully acknowledge financial support by the European Research Council through
ERC StG Action 757275 / PANAMA; the DFG Cluster of Excellence “Machine Learning - New
Perspectives for Science”, EXC 2064/1, project number 390727645; the German Federal Ministry of
Education and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A); and funds
from the Ministry of Science, Research and Arts of the State of Baden-Württemberg. AK is grateful
to the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for support. AK
is also grateful to Felix Dangel, Jonathan Wenger, Nathanael Bosch, Runa Eschenhagen, Christian
Fröhlich, and other members of the Methods of Machine Learning group for feedback.

10



References
[1] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks Are Easily Fooled: High Confidence

Predictions for Unrecognizable Images. In CVPR, 2015.

[2] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, Even Just a Bit, Fixes Overconfi-
dence in ReLU Networks. In ICML, 2020.

[3] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why ReLU Networks Yield High-
Confidence Predictions Far Away from the Training Data and How to Mitigate the Problem. In CVPR,
2019.

[4] Grace Wahba. Spline Models for Observational Data. SIAM, 1990.

[5] BJN Blight and L Ott. A Bayesian Approach to Model Inadequacy for Polynomial Regression. Biometrika,
62, 1975.

[6] Anthony O’Hagan. Curve Fitting and Optimal Design for Prediction. Journal of the Royal Statistical
Society: Series B (Methodological), 40, 1978.

[7] Xin Qiu, Elliot Meyerson, and Risto Miikkulainen. Quantifying Point-Prediction Uncertainty in Neural
Networks via Residual Estimation with an I/O Kernel. In ICLR, 2020.

[8] Alexander Meinke and Matthias Hein. Towards Neural Networks That Provably Know When They Don’t
Know. In ICLR, 2020.

[9] Mark N Gibbs. Bayesian Gaussian Processes for Regression and Classification. Ph. D. Thesis, Department
of Physics, University of Cambridge, 1997.

[10] David JC MacKay. The Evidence Framework Applied to Classification Networks. Neural computation,
1992.

[11] Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. ’In-Between’
Uncertainty in Bayesian Neural Networks. arXiv, 2019.

[12] Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving Predictions of Bayesian Neural
Networks Via Local Linearization. In AISTATS, 2020.

[13] Zhiyun Lu, Eugene Ie, and Fei Sha. Uncertainty Estimation with Infinitesimal Jackknife, Its Distribution
and Mean-Field Approximation. arXiv preprint arXiv:2006.07584, 2020.

[14] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. In
ICML, 2010.

[15] Grace Wahba. Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in
Regression. Journal of the Royal Statistical Society: Series B (Methodological), 40, 1978.

[16] James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable Variational Gaussian Process
Classification. In AISTATS, 2015.

[17] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

[18] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep Anomaly Detection with Outlier Exposure.
In ICLR, 2019.

[19] Youngmin Cho and Lawrence K Saul. Kernel Methods for Deep Learning. In NIPS, 2009.

[20] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep Neural Networks as Gaussian Processes. In ICLR, 2018.

[21] Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate Inference
Turns Deep Networks Into Gaussian Processes. In NeurIPS, 2019.

[22] James T Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Peter Deisenroth.
Efficiently Sampling Functions from Gaussian Process Posteriors. In ICML, 2020.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, 86(11), 1998.

11



[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In CVPR, 2016.

[25] Hippolyt Ritter, Aleksandar Botev, and David Barber. A Scalable Laplace Approximation for Neural
Networks. In ICLR, 2018.

[26] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A
Simple Baseline for Bayesian Uncertainty in Deep Learning. In NeurIPS, 2019.

[27] Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing. Stochastic Variational Deep Kernel
Learning. In NIPS, 2016.

[28] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty under Dataset Shift. In NeurIPS, 2019.

[29] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robustness to Common Corrup-
tions and Perturbations. In ICLR, 2019.

[30] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural Networks.
In ICML, 2017.

[31] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In NIPS, 2017.

[32] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple Unified Framework for Detecting
Out-of-Distribution Samples and Adversarial Attacks. In NIPS, 2018.

[33] Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty Estimation Using a Single
Deep Deterministic Neural Network. In ICML, 2020.

[34] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A Downsampled Variant of ImageNet as an
Alternative to the CIFAR Datasets. arXiv preprint arXiv:1707.08819, 2017.

[35] Nicholas J Higham. A Survey of Componentwise Perturbation Theory, volume 48. American Mathematical
Society, 1994.

[36] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[37] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding Deep Neural
Networks with Rectified Linear Units. In ICLR, 2018.

[38] Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting Misclassified and Out-of-Distribution
Examples in Neural Networks. In ICLR, 2017.

[39] Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional Variational Bayesian Neural
Networks. In ICLR, 2019.

12


	Introduction
	Background
	Bayesian Neural Networks
	Asymptotic Overconfidence in BNNs
	ReLU and Gaussian processes

	Infinite-Feature Extension for ReLU BNNs
	The Double-Sided Cubic Spline Kernel
	ReLU-GP Residual
	Extending RGPR to Non-Asymptotic Regimes
	Hyperparameter Tuning

	Related work
	Empirical Evaluations
	Asymptotic Regime
	Non-Asymptotic Regime

	Conclusion

