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ABSTRACT

Pre-trained language models, such as BERT and RoBERTa, have achieved remark-
able performance in semantic classification tasks. Yet, their effectiveness varies
with different textual expressions due to inherent preferences developed during
training. To address this limitation, we propose a framework that leverages large
language models (LLMs) to rewrite input texts in ways that better align with a target
classifier’s preferences, thereby enhancing its performance. To achieve this, we
introduce a training process for the LLM and an automated method for constructing
training data that encapsulates the classifier-specific preferences. Furthermore,
we present a multi-sampling and filtering strategy to address instability in LLM
outputs. Empirical evaluations on semantic classification datasets demonstrate that
our framework significantly improves classifier’s performances.

1 INTRODUCTION

Semantic text classification (Altinel & Ganiz, 2018)), such as classic sentiment classification or
natural language inference (NLI), has long been a cornerstone of natural language processing. The
field has witnessed transformative progress through the evolution of various approaches, ranging
from traditional machine learning models to pre-trained compact architectures like BERT (Devlin,
2018) and large language models (LLMs) such as GPT-3 (Brown, 2020). These models leverage
self-supervised pre-training and task-specific fine-tuning to achieve state-of-the-art performance.
However, a fundamental characteristic persists across model scales: inherent preferences (Jia &
Liang|, 2017 |Naik et al.| 2018)). Being data-driven, these models often exhibit varying performance
across different textual expressions with identical semantics due to biases and patterns inherent in
their training data.

Traditional approaches have focused on eliminating or mitigating model preferences through data
augmentation techniques. These include lexical-level perturbations (e.g., synonym replacement,
random token deletion), semantic-preserving transformations like back-translation (Sennrichl [2015)),
and generative methods employing GANs (Goodfellow et al., 2020) or LLMs to synthesize new
examples. These methods operate in a pre-training paradigm, where the goal is to enhance model
performance by generating more diverse training data before the model is fully trained. While
such strategies diversify training data and superficially shift model preferences by exposing it to
paraphrased inputs, they ultimately fail to eliminate preferences entirely and may even lead to
suboptimal solutions. This fundamental limitation stems from the intrinsic nature of preferences
(Jia & Liang, 2017} [Naik et al., |2018) — they are ingrained characteristics of models shaped by their
architectural biases and optimization trajectories, where even augmented data inevitably introduces
new preference patterns. Instead of endlessly trying to remove these preferences, we believe it’s more
practical to work with them.

To realize this, we propose a post-training approach harnessing the linguistic capabilities of LLMs
to dynamically rewrite input texts according to target model preferences during the inference phase.
Unlike traditional methods that rely on pre-training data augmentation, our approach adapts the input
to align with the model’s inherent characteristics at inference time, offering two key advantages:
(1) it eliminates the need for retraining the model and (2) it unlocks the model’s full potential by
aligning inputs with its preferred patterns. By aligning input expressions with a model’s preferred
patterns during inference, we aim to bridge the gap between arbitrary inputs and the model’s optimal
comprehension space. This approach introduces two core challenges: (1) How to identify preference-
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Figure 1: Overview of our approach. From left to right, it shows using an Classifier for direct
inference, methods for simple normalization of input, and our approach. The example is an NLI
task where the goal is to determine whether the relationship between sentence A and sentence B is
entailment, contradiction, or neutral.

aligned textual features that maximize model performance, and (2) How to ensure stable, high-quality
rewrites from stochastic LLM generations.

To address the first challenge of identifying preference-sensitive features, a natural starting point is to
hypothesize that simplifying textual complexity (e.g., shortening sentences, using high-frequency
vocabulary, or simplifying syntax) could align inputs with model preferences. This intuition stems
from extensive psycholinguistic studies on human language processing, where reduced linguistic
complexity has been shown to lower cognitive load and improve comprehension (Spencer et al.|
2019). However, as shown in Table [T} our empirical investigations reveal a striking divergence
between human and model behaviors: classification accuracy remains remarkably stable across texts
with widely varying complexity levels. Whether sentences contain 5 words or 25 words, whether
vocabulary consists of common terms or technical jargon, or whether syntactic structures are flat or
deeply nested—these complexity dimensions show negligible correlation with model performance.
This finding fundamentally challenges the assumption that model preferences can be optimized
through linguistically-driven complexity reduction.

To overcome the limitations of complexity-based approaches highlighted above, we develop a novel
framework combining implicit preference learning with robust generation control. As shown in the
Figure[I]First, we automatically construct a preference dataset capturing performance variations across
semantic equivalents, then train an LLM through Direct Preference Optimization (DPO) (Rafailov
et al.,|2024) to internalize the target model’s decision patterns. During inference, we implement a
multi-sampling strategy with quality filtering—generating multiple candidate rewrites and selecting
the most stable consensus choice through similarity clustering. This design directly addresses the
second core challenge of ensuring reliable rewrites by mitigating the inherent stochasticity of LLM
generations, contrasting with conventional single-sample decoding approaches that suffer from output
instability.

To summarize, our contributions are as follows:

- We empirically validate that model preferences operate through mechanisms distinct from human
linguistic cognition, demonstrating that traditional text complexity metrics (e.g., sentence length,
lexical rarity) cannot reliably predict model behavior;

- We introduce a method for training the LLM to capture the preferences of the Classifier, along with
a technique for the automated construction of training data;

- We present a method that combines multiple sampling with a filtering strategy to address the issue
of instability in the outputs generated by the LLM.
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Table 1: Experiments on the Impact of Text Complexity on Model Performance. We repeatedly
sampled pairs of correctly and incorrectly predicted examples from the dataset. For each dataset,
there are two data points: the data on the left represents the proportion of instances where correctly
predicted examples scored higher than incorrect ones on the respective metric, while the data on the
right represents the opposite. The four metrics are: text length, average word frequency of all words
in the sample, average number of dependencies, and number of distinct part-of-speech tags.

Datasets
MRPC MNLI QQP RTE QNLI SST2
Text length 55.8 43.6 46.6 534 558 43.6 487 513 49.8 499 448 545
Word frequency 54.1 459 51.1 489 48.6 514 550 450 49.2 50.8 505 493
Dependencies 54.8 452 50.1 49.6 52.0 479 48.1 519 49.8 50.0 52.7 470
Diversity 47.0 399 414 412 420 399 423 375 375 426 444 421

Metric

Experimental results indicate that our method effectively enhances performance across various subsets
of the GLUE benchmark when applied to three different Classifiers. Specifically, it improves the
performance of the BART-base model by 0.72 points and the RoOBERTa-large model by 1.08 points
on the overall GLUE dataset.

2 RELATED WORKS

2.1 PSYCHOLINGUISTIC STUDIES

The role of linguistic complexity in cognitive and psycholinguistic research has gained significant
attention. Studies have demonstrated that textual complexity, encompassing lexical, syntactic, and
discourse-level features, significantly influences human cognitive processing and judgment (Spencer
et al., 2019)) in tasks such as text comprehension, readability assessment, and information recall,
as evidenced by neuroimaging studies showing differential brain activation patterns in response to
varying levels of linguistic complexity (Ferstl et al., 2008} Pylkkanen) [2019). At the lexical level,
metrics such as word frequency, word length, and lexical diversity (Kyle et al., 2018)) have been
extensively examined in relation to human cognitive load and processing efficiency. Inspired by
these findings in human cognitive processing of linguistic complexity, we aim to investigate whether
similar linguistic features affect NLP model performance, potentially enabling us to optimize text
generation for better model comprehension and task performance.

2.2 PREFERENCES MODELING

In earlier studies on model preference, the focus was primarily on experiments assessing models’
robustness to different expressions. For instance, adversarial examples have been used to evaluate
reading comprehension systems’ robustness, revealing models’ sensitivity to variations in expression
(Jia & Liang, 2017). Similarly, by analyzing misclassified examples in NLI models, researchers
have constructed stress test sets to determine whether models fail to reason correctly because certain
samples do not fit specific patterns (Naik et al.,|2018). Methods to enhance robustness have mostly
originated from the data perspective, such as improving a text classification model’s ability to
handle different expressions through data augmentation techniques (Wei & Zou, |2019). Alternatively,
lightweight adversarial filtering methods have been employed to filter biases from the original datasets
(Le Bras et al., [2020).

With the advent of LLMs, the concept of “preference” has become more pronounced. Researchers
have found that differently phrased prompts can lead to vastly different generated results, prompting
the development of various prompt-improvement strategies. For example, some methods involve
formulating multiple candidate instructions and using reinforcement learning to select the best prompt,
while adjusting it in real-time according to the context (Zhou et al.| 2022). Other approaches involve
adding slight directional stimuli to the prompt to guide LLMs toward producing more optimal
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outputs (Li et al.| 2024)). Rewriting queries to bridge the gap between search inputs and the required
knowledge, thereby improving retrieval performance (Ma et al.| 2023).

3 METHODS

3.1 TASK FORMULATION

Text classification is a fundamental task in natural language processing that involves assigning
predefined categories or labels to textual inputs. The task can be formally defined as follows: Given
a dataset D = (z;, yi)fio, where each x; represents the input text or document, and y; denotes the
corresponding class label or category. The goal of text classification is to learn a model that maps
each input text x; to its appropriate label y;.

3.2 FRAMEWORK

As shown in Figure[2] We propose a framework for leveraging an LLM to rewrite text classification
inputs, including training phrase (a&b) and inference phrase (c).

For the training phrase, we separated a portion of the dataset and utilized the LLM to paraphrase
this data. We generated multiple paraphrased variations (a.1). Next, we employed the Classifier to
perform inference on the paraphrased data. From the results, we selected certain paraphrases to be
used as fine-tuning data for the LLM (a.2). Following this, we fine-tuned the LLM (a.3) and used it
to paraphrase the original data once more, resulting in a new set of paraphrased samples (a.4). We
then repeated the inference process with the Classifier to identify suitable data for Direct Preference
Optimization (DPO) training for the LLM (a.5). Subsequently, we carried out DPO training on the
LLM (a.6). The DPO training data was then input into the Classifier to retrieve embedding data for
these paraphrased samples (b.1). Using this embedding data, we trained a filter (b.2).

The mathematical formulation is presented below, where P denotes the large language model (LLM)
paraphraser and C’ represents the selector based on the classifier C’s judgments (specific methods are
described in the DPO-training section).

V(zi,yi) € D, P(x:) = {pi1, .-, pir}

N
Dr = |J{pis | Clpis) = i}
=1
N

DdPO = U {(p:;7pzk)

i=1

pi; € P(z:), C'(pf) = 17}
Pa € P(z:), C'(pz,) = 0

For the inference phrase, we integrated the workflows of both the LLM and Classifier with the filter,
establishing a comprehensive process: Utilizing an LLM, multiple sampling-based rewrites of the
input are generated (c.1). Subsequently, a filter is employed to discard low-quality rewrites (¢.2). The
high-quality rewrites, along with the original input, are then processed using a Classifier for inference
(c.3). The output with the highest confidence is selected as the final prediction.

3.3 LLM TRAINING

SFT Firstly, we perform a supervised fine-tuning (SFT) process on the LLM. This fine-tuning
primarily aims to stabilize its output format and provide a preliminary warm-up for preference
modeling. We input samples from the dataset into the LLM and, based on feedback from the
Classifier, separate out the well-rewritten outputs. These selected outputs are then fed back into
the LLM for fine-tuning. This process resembles a self-boosting training mechanism for the LLM,
enabling it to gain an initial understanding of the kind of rewrites it should produce. A well-rewritten
output selection rule here is to make the output distribution of the Classifier closer to the correct label.

DPO Next, we employ the DPO (Direct Preference Optimization) approach to conduct preference
optimization training for the LLM. In this optimization process, unlike previous methods that fit
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Figure 2: Overall architecture of our approach. (a) The process of obtaining, and evaluating the
paraphrased data, and using them to train the model. (b) Train a filter within the DPO training data’s
encodings of the Classifier. (c) The final inference process.

human preferences, the Classifier is tasked with providing preference data to the LLM. Specifically,
for the same input, if the rewritten version generated by the LLM shifts the predictions of the
Classifier in the correct direction, this rewrite is considered a positive response; otherwise, it is
deemed a negative response. The data organization method is as follows:

* First, we utilize the Classifier’s prediction correctness and confidence level (from softmax
results) as filtering criteria.

* For correctly predicted original inputs: rewrites that maintain correctness and improve
confidence are considered positive; others negative.

* For incorrectly predicted inputs: rewrites that either correct the prediction or reduce confi-
dence (while remaining incorrect) are positive; others negative.

* When only positive candidates exist, the original input is treated as negative; when no
positives exist, the original is considered positive.

In summary, while the fine-tuning part equips the LLM with an understanding of how to generate
sentences with “semantically similar” meanings, the DPO training phase teaches the LLM the
preferences of the Classifier. These preferences highlight that two sentences with similar semantics
can elicit varying levels of reasoning ability from the Classifier due to differences in vocabulary,
morphology, or syntax. By pairing these sentences as inputs for training the LLM, we can leverage its
extensive knowledge of natural language to capture subtle distinctions that are challenging to identify
using rule-based methods and reformulate sentences into forms that the Classifier is more adept at
handling.

3.4 INFERENCE

After obtaining a trained rewriter, during the inference phase, we initially filter the input data.
Samples with a confidence level above a certain threshold « are deemed unnecessary for rewriting
enhancement. For samples with a confidence level below a, we employ the rewriter to generate
rewritten versions using prompts consistent with those used during training. We sample K times
to obtain K rewritten texts. For binary classification tasks, this involves rewriting both sentences
and combining them with the other original text, resulting in 2 * K rewritten texts. These rewritten
samples are then screened using a filter to retain those considered superior to the original text. Finally,
the small model performs inference using these rewritten texts and the original text, selecting the
output with the highest confidence as the predicted result.
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Filter Due to the sampling strategy of the LLM, it is challenging to ascertain what specific
preferences they have learned from Classifiers. Additionally, due to the enormous number of
parameters in the LLM, it is challenging to analyze the extent to which it models preferences for
the Classifier. To evaluate the outputs at a data level, we train a Filter using the DPO data from
the previous step to perform filtering. One crucial component is the filter, which we need to train
effectively to help us eliminate low-quality rewrites. We employ the following approach to train the
filter:

Based on existing research on pre-trained models with a transformer (Vaswani, 2017) architecture,
such as BERT or RoBERTa, different layers in these models focus on different types of information.
Word or phrase information tends to concentrate in the lower layers, syntactic and grammatical
information in the middle layers, and this information becomes diluted in the higher layers, which
focus more on semantics (Jawahar et al 2019). In semantic text classification tasks, semantics play a
crucial role in the final decision-making while preferences should manifest in different expressions;
hence, these preferences are likely to be reflected in the mid to lower layers’ encodings.

Due to the minimal differences between the original and rewritten texts, it is challenging to directly
capture the Classifier’s preference information from the text. To deeply model the Classifier’s
preferences, we utilize its internal encoding information. We use the embeddings of the token, which
is employed for the final classification, across all layers in the model. For RoOBERTa, specifically,
we use the text’s [CLS] (Devlin, 2018) embeddings from each layer of the model as a substitute for
directly using the original text. We concatenate the [CLS] embeddings of the positive sample from
all layers and then subtract the embeddings of the negative sample to obtain a difference embedding,
labeled as “true”. For the other half of the data, reverse the operation and label the result as “false”.
These difference embeddings are then passed through several fully connected layers (Rumelhart et al.,
1986) to perform a binary classification task. Taking Roberta-Large as an example, the process of
filter training is as follows:

L
H(z) = (P h'(2), h'(z) = RoBERTa""” () (1)

=1

+ oy JH@E) -H@") y=1
Alz",z )_{H(x)H(nﬁ) y=0 2
fo(A) = FFNN(A(zt,z7)) 3)
)
For the training loss of the filter:
1 N

L£(B) = —= [yi log i + (1 — y:) log(1 — y)] &)

i=1
where §j; = sigmoid(fp(4;)) is the predicted score of the classifier.

The results indicate that this method is effective, confirming that the Classifier’s preferences are
indeed reflected in its internal parameters. With this filter in place, we are able to filter the LLM’s
paraphrased outputs to achieve higher-quality final results.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Benchmarks We focus on semantic classification tasks with ample training data, which allows us
to collect preference data for Classifiers. Our experiments are conducted on a widely-used benchmark
GLUE (Wang, 2018)), which consists of multiple subsets. Among these subsets, the CoLA task is
grammar-based; the remaining tasks are semantic in nature. As samples with grammar errors are
automatically corrected by LLMs during rewriting, this renders our approach ineffective in those
cases. Therefore, we utilize the subsets excluding CoLA. Our objective is to examine the ability
that our work can enhance performance across various semantic classification tasks by assisting
Classifiers in rewriting inputs. For cost considerations, in subsequent analytical experiments, we
conducted experiments on three subsets: MRPC, MNLI, and SST-2.
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Table 2: Experimental results on GLUE development set. The performance of the text complexity
reduction method is represented by the average of the four metrics mentioned above. We use accuracy
as the evaluation metric.

Methods MNLI SST-2 QNLI MRPC QQP RTE  Avg

BART-base 8399 9440 9182 8533 8997 7959 8752
+Complexity reduction 83.84 94.66 91.67 85.51 89.93  80.27  87.65
+Distill-R1-Qwen-1.5B  84.49  94.66  92.02  86.11 90.03 8199 88.22
+LLaMA-2-13B-chat 84.54 9491 9202 86.26 90.03 8095 88.12
+Qwen-2.5-14B-Instruct  84.68  95.16  92.07 8586 90.05 81.63  88.24

RoBERTa-Large 88.72 9620 9382 8371 9090 86.19 89.92
+Complexity reduction 88.67 9639 9338 86.03 9030 8347 89.71
+Distill-R1-Qwen-1.5B  89.12  96.69 9392 86.52 91.08 86.87  90.70
+LLaMA-2-13B-chat 89.81 9646 9397 87.13 9110 87.55 91.00
+Qwen-2.5-14B-Instruct  89.46  96.95 9398 87.77 9095 86.87 91.00

Qwen-2.5-7B-Instruct 66.06 90.58 78.87 66.19 70.04 7959 7522
+Complexity reduction 66.73 9033  78.17 66.67 7143 7688  75.04
+Distill-R1-Qwen-1.5B  68.25 90.84  80.73  66.85 72.12  80.27  76.51
+LLaMA-2-13B-chat 68.67 91.09 80.89 67.61 7321 80.95  77.07
+Qwen-2.5-14B-Instruct  68.34  91.86 8294 68.67 7420 81.63 77.94

Large Models and Classifiers For the model rewriting task, we utilize LLaMA-2-13B-Chat
(Touvron et al.,2023), Qwen-2.5-14B-Instruct (Yang et al., 2024) and DeepSeek-R1-Distill-Qwen-
1.5B (Guo et al.} 2025)). For the GLUE dataset, we employ BART-base (Lewis,|[2019) and RoBERTa-
Large (Liul 2019) as expert Classifiers, with each model trained on the different subsets of GLUE
and Qwen?2.5-7B-Instruct as a zero-shot Classifier. Due to cost considerations, only RoOBERTa-Large
and LLaMA-13B-Chat were used in the analytical experiments. Additionally, Since DeepSeek-
R1-Distill-Qwen-1.5B is significantly slower at generating training data, we primarily used data
produced by Qwen-2.5-14B-Instruct (with <think></think> prepended to the output to adapt it for
reasoning-model training), mixed with a small portion of DeepSeek-R1-Distill-Qwen-1.5B’s own
generated data containing reasoning processes, to train the model.

4.2 MAIN RESULTS

As shown in Table 2] in contrast to the straightforward method of lowering the complexity of input
text, our method effectively enhances performance across various subsets of the GLUE benchmark
when applied to three different Classifiers. Specifically, it boosts the performance of BART-base
by 0.72 points and RoBERTa-large by 1.08 points on the overall GLUE dataset. For BART, our
method yields relatively uniform improvements across various subsets. In contrast, for ROBERTa, the
rewriting approach shows particularly significant enhancement on the MRPC dataset. We hypothesize
that this may be due to the presence of considerable noise in the MRPC data for RoOBERTa, which
is somewhat mitigated during the rewriting process by the LLM. For the Qwen model, since its
task accuracy under zero-shot conditions is significantly lower, our method demonstrates a more
pronounced improvement, achieving an increase of 2.72 points. Additionally, it is worth noting that
on tasks like GLUE, large models such as LLaMA and Qwen inherently underperform compared to
models like BART and RoBERTa, which are trained on full datasets. However, even in such cases,
our method can still enable them to surpass the capabilities of models that originally outperformed
them. In addition, our approach does not degrade the original performance of the Classifiers on any
of the datasets. This demonstrates that our method is not only effective in improving accuracy but
also safe to use without risking negative impacts on the models’ inherent capabilities.

4.3 ABLATION STUDY

We conducted ablation experiments to investigate the roles of different components in our work. We
broke down the entire framework into three parts and examined their performance when removed: (a)
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Table 3: Experimental results of the ablation study. Tested the effects of removing supervised
fine-tuning, DPO training, and filtering separately.

Methods MNLI MRPC SST-2
RoBERTa-Large 88.72  83.71  96.20
Our Method 89.81 87.13 96.46

w/o Filter 89.51 86.89  96.20
w/o DPO 89.31 86.37  95.75
w/o SFT 88.76  85.10  95.50

w Reverse Training 87.82 83.83  95.18

the fine-tuning process of the LLM, (b) the DPO training process, and (c) the filter screening process.
The results are presented in Table [3]

(1) First, we attempted to eliminate the filter and relied solely on the Classifier’s own confidence to
determine which samples needed rewriting. We used all rewritten versions as well as the original
output, directly selecting the result with the highest confidence score as the final output. In this
scenario, performance declined, which we attribute to the Classifier’s confidence not fully reflecting
correctness. Furthermore, the proportion of examples that could be correctly predicted by the
Classifier was very high, so even a small fraction being incorrectly rewritten by the LLM significantly
impacted the overall outcome.

(2) We verified that not using DPO resulted in a more significant performance drop compared to not
using the filter. We believe this is because the fine-tuning process alone allows the LLM to learn only
what constitutes a good rewrite without a direct understanding of bad rewrites, leading to suboptimal
overall rewriting quality. This also demonstrates that our DPO training process successfully modeled
the Classifier’s preferences through the LLM and taught the LLM how to cater to these preferences.

(3) We tried performing DPO without fine-tuning the model first. Since the DPO training process
focuses on contrasting good and bad outcomes, the specific output format and content of the rewriting
task were not adequately trained. In this case, the LLM tended to generate a lot of unnecessary
additional content. Even with truncation and screening, the final performance decreased significantly.
Therefore, it is crucial to use a small amount of data to fine-tune the model to stabilize the output
format.

(4) We attempted to train the rewriter using opposite data, specifically utilizing data that should have
been classified as poor rewrites. This approach serves to validate, from a reverse perspective, that
we have successfully captured the model’s preferences. Contrary to our expectations, for the MRPC
dataset, even a rewriter fitted to its negative preferences ultimately resulted in some performance
improvement. The reason for this may align with the analysis we provided in Section 4.2.

4.4 REWRITING ANALYSIS

We begin by comparing our reinforcement learning-based rewriting approach with methods that
rely on manually designed prompts. As shown in Table ] While the hand-crafted prompt approach
demonstrates certain effectiveness in specific dataset-model combinations, its performance exhibits
considerable instability across different datasets. This inconsistency highlights a fundamental chal-
lenge: predefined prompts struggle to generalize appropriate rewriting directions that reliably align
with the preferences of the downstream classifier. It is precisely this inability to consistently derive
optimal rewriting strategies through prompt engineering that motivates our transition to reinforcement
learning. By explicitly modeling the task model’s preferences via SFT+DPO, our approach achieves
stable and effective text rewriting, leading to more robust performance improvements across diverse
datasets.

We analyzed the proportion of samples rewritten in our method and the proportion of rewritten results
used as final input. We only used LLM rewriting for some of the samples whose confidence is below
the set threshold. The rule for selecting the final input involves a filtering out rewrites it deems inferior
to the original input. The version either the original or rewritten that results in the highest confidence
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Table 4: Experimental results comparing our method with approaches using manually designed
prompts. Among these, DAR stands for "Disambiguation and Reference Resolution", LSR for
"Logical Structure Refinement", and FCR for "Formal Coherence Reformulation”. The rewriter is
Qwen-2.5-14B-Instruct. For specific prompt details, please refer to the appendix.

Methods MNLI  SST-2  QNLI MRPC  QQP RTE Avg.
BART-base 83.99 94.40 91.82 85.33 89.97 79.59 87.52
+Prompt-DAR 84.04 94.40 91.92 85.16 89.95 80.27 87.62
+Prompt-LSR 84.59 9491 91.77 85.45 89.80 80.27 87.80
+Prompt-FCR 84.09 94.66 91.97 85.04 90.00 80.27 87.67
+Our method 84.68 95.16 92.07 85.86 90.05 81.63 88.24
RoBERTa-Large 88.72 96.20 93.82 83.71 90.90 86.19 89.92
+Prompt-DAR 89.36 96.20 92.72 86.26 90.80 86.87 90.37
+Prompt-LSR 89.26 95.96 93.88 86.72 90.75 82.79 89.89
+Prompt-FCR 89.31 96.20 93.78 85.10 90.95 84.15 89.92
+Our method 89.46 96.95 93.98 87.77 90.95 86.87 91.00
Qwen-2.5-7B-Instruct  66.06 90.58 78.87 66.19 70.04 79.59 75.22
+Prompt-DAR 66.11 90.33 78.82 65.89 69.90 79.59 75.11
+Prompt-LSR 66.11 90.32 79.12 66.65 69.94 80.27 75.40
+Prompt-FCR 66.21 91.09 78.87 66.37 70.04 80.95 75.59
+Our method 68.34 91.86 82.94 68.67 74.20 81.63 77.94

Table 5: Experimental results of the proportion of rewriting results used. %Rewritten reflects how
many samples were rewritten, %Utilization reflects how many samples used the rewrite as the final
input, while %Right2Wrong and % Wrong2Right indicate the changes in the Classifier’s prediction
results for samples in %Utilization.

Methods MNLI MRPC  SST-2

J%oRewritten 12.40% 7.42%  0.52%
% Utilization 10.03% 6.40% 0.26%
%Right2Wrong 11.96% 13.64% 0%

%Wrong2Right 22.83% 67.05% 100%

output from the Classifier is chosen. As shown in Table[5] on the MNLI dataset, approximately 10%
of the samples are replaced with rewritten results. Of these, the majority do not alter the Classifier’s
original predictions, about 22% correct previously incorrect predictions, and about 12% lead to
incorrect predictions. On the MRPC dataset, although fewer samples use the rewritten outputs, the
correction rate reaches 67%, which explains our strong performance on MRPC. For the SST-2 dataset,
since the Classifier’s accuracy is already over 96% with highly confident outputs, only 0.26% of the
samples are deemed to require the rewritten version after filtering. Notably, all of these cases involve
correcting errors made by the Classifier when using the rewritten input.

5 CONCLUSION

In this paper, we propose a reinforcement learning-based method for modeling task model preferences,
which leverages LLMs to adaptively rewrite input texts, thereby unleashing the full performance
potential of task models. It is important to emphasize that our work is not merely aimed at achieving
improvements on experimental benchmarks, but rather focuses on unlocking the upper capability
boundaries of task models through preference-guided input rewriting. Our approach provides a
general and flexible framework that enhances model performance without modifying the underlying
architecture, offering new insights into model interaction and capability expansion.
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A APPENDIX

A.1 GENERALIZATION ANALYSIS

As shown in Table[6] we experiment with utilizing an LLM rewriter, trained on a specific dataset,
to enhance performance on other datasets without employing a filter. The experimental results
indicate that for the MRPC and MNLI datasets, all three rewriters contribute to improvements in
the performance of the Classifier. However, on the relatively simpler SST-2 dataset, even the SST-
2-specific rewriter fails to enhance the performance without the filter. We hypothesize that these
observations can be attributed to several factors. Firstly, LLMs inherently possess certain natural
language knowledge, which allows them to assist Classifiers by rewriting inputs, even in the absence
of deep cognition of specific preferences. Secondly, our approach primarily aims to enable Classifiers
to better utilize their inherent capabilities. Given the simplicity of the SST-2 task, the abilities of the
Classifier may already be maximized, making further improvements challenging. Lastly, we believe
that the preferences of the Classifiers trained on these datasets share common traits. This may stem
from the similarity of the tasks or the similarity of the model architectures.

A.2 NUMBERS OF REWRITES ANALYSIS

Then, we investigated the impact of the number of rewrites per input sample on performance, as
illustrated in Figure [3| Except for the SST-2 dataset, we found that providing just one rewrite per
sample is sufficient to improve the accuracy. In the case of SST-2, due to the already high accuracy of
the Classifier, at least two rewrites per sample are needed to achieve noticeable performance gains.
Furthermore, we observed that when the number of rewrites reaches three, the performance tends to
converge. Beyond this point, additional rewrites may sometimes mislead the Classifier into making
incorrect predictions with high confidence. Therefore, for our main experiments, we set the number
of rewrites to three. This approach balances the benefits of rewrites with the risk of introducing errors.

A.3 MANUAL PROMPT DETAILS

In order to systematically guide the language model to generate text rewrites with different stylistic
and structural properties, we manually designed three distinct prompts, each targeting a specific
aspect of textual improvement: Disambiguation and Reference Resolution (DAR), Logical Structure
Refinement (LSR), and Formal Coherence Restoration (FCR). The detailed content of each prompt is
provided in Table
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Table 6: Experimental results of the generalization study. All methods are without a filter.
Methods MNLI MRPC SST-2

RoBERTa-Large 88.72 8371  96.20
+ MNLI-Rewriter 89.51  86.61 95.95
+ MRPC-Rewriter 88.97  86.89 95.69

+ SST-2-Rewriter 88.82 86.55  96.20
MNLI MRPC SST2
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Figure 3: Effect of the number of rewriting.

A.4 PARAMETER SETTINGS

In our experiments, the threshold « is set to 0.6, the sample times K is set to 3, the learning rate and
training epochs for SFT of the LLM are set to 1le-4 and 3, the learning rate and training epochs for
DPO of the LLM are set to 5e-6 and 3, and the temperature during inference is set to 0.7.

Notably, if we were to sample the classifier’s output confidence and accuracy and set « accordingly, for
instance, for a model with 85% accuracy, the optimal « should be such that samples with confidence
below a account for 15% of the total, the performance could be further improved. However, for the
sake of generalization, we did not adopt this approach in our experiments. This implies that the actual
upper bound of our method is slightly higher than what is demonstrated in the main experiments.

A.5 USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we used Large Language Models (LLMs) solely for the purpose of
improving language and clarity. Specifically, LLMs were used for proofreading, grammar correction,
and minor phrasing improvements.

We reviewed and edited all output generated by the LLMs, and takes full responsibility for all content
and ideas presented in this work.
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Table 7: Detailed prompt designs for each rewriting strategy.

Name Prompt Content

DAR  Rewrite the following text to resolve any ambiguity and ensure clear
reference resolution. Requirements:
1. Identify and clarify all ambiguous pronouns (e.g., ‘it’, ‘this’, ‘they’)
by replacing them with the specific nouns they refer to.
2. Disambiguate any words or phrases that could have multiple meanings.
3. Ensure that every reference is unmistakably clear.
4. Maintain the core semantics of the original text unchanged.
5. Output only the rewritten text.
Text: {text}
Rewritten text:

LSR Rewrite the following text to make its logic more clear and direct. Re-
quirements:
1. Express implied relationships (e.g., causality, contrast) using explicit
linking words (e.g., ‘because’, ‘therefore’, ‘but’).
2. Simplify complex clause structures, striving to use simple subject-
verb-object sentences.
3. Absolutely maintain the core semantics of the original text unchanged.
4. Just output rewrited text. Do not output any extra content.
Text: {text}
Rewritten text:

FCR  Rewrite the following text to enhance its formal coherence and semantic

precision. Requirements:

1. Replace colloquial expressions and informal phrasing with their
formal equivalents.

2. Ensure strict grammatical correctness and syntactic completeness.

3. Maintain precise semantic equivalence while improving textual flu-
ency.

4. Resolve any ellipsis or fragmented structures into complete sentences.
5. Just output rewrited text. Do not output any extra content.

Text: {text}

Rewritten text:

13
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