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Abstract

Generative pre-training has significantly advanced natural language understanding. Building
upon this success, recent research begins to innovate Large Vision Models (LVM) by leverag-
ing large-scale pre-training on visual sequences, where simultaneous consideration of image
token sequences within single images and across a set of images is of key importance. This
paper shows that sequential modeling on single images and across multiple images can be
efficiently and effectively decoupled. We introduce a two-stage learning pipeline, starting
with single-image pre-training, followed by fine-tuning on long image/video sequences. We
term this method Large Vision Model Lite (LVM-Lite). Extensive experiments showcase
the impressive performance of LVM-Lite across various generative and discriminative bench-
marks, comparable to specifically trained models without the need for task-specific training.
Importantly, LVM-Lite accelerates training speed substantially up to 2.7x and demonstrates
strong scalability.

1 Introduction

The scaling of models in both natural language processing (NLP) (Devlin et al., 2018} |Chowdhery et al., 2022}
Touvron et al., [2023) and computer vision (Radford et al.l 2021; [He et al.l 2021; |Dosovitskiy et al., 2020))
has led to significant advancements. In NLP, large language models (LLMs) like GPT (Radford et al., 2019;
Brown et al., [2020; |Achiam et al. |2023) have revolutionized the field, demonstrating the power of pre-trained
models in understanding and generating text through in-context learning. Similarly, in computer vision,
scalable methods such as CLIP (Radford et al.,|2021]), masked image modeling (He et al., 2021} |Bao et al.l
2021} Xie et al.l [2021]), and diffusion models (Dhariwal & Nichol, [2021; |Rombach et al., |2021) have pushed
the boundaries of image understanding and synthesis. Recently, the application of autoregressive pre-training
strategies in vision (Yu et al., |2021b; [Esser et al.l [2021a; [Yu et al., |2021a; 2022; El-Nouby et al.l 2024; Bai
et al., 2023 Ren et al.} [2023)), inspired by the success of LLMs, has shown promising progress. This scaling
up across domains underscores models’ ongoing evolution and potential to address increasingly complex tasks
by learning from vast amounts of data.

Nonetheless, the remarkable performance of these advanced models often comes with high computational
costs, limiting access for researchers without substantial computational resources. For instance, training the
LLaMA model (Touvron et al |2023)) requires up to 2,000 GPUs and 1.7 million GPU hours. This paper
focuses on efficient sequential modeling in the context of the recently developed Large Vision Models (LVM)
(Bai et al., |2023), which shows impressive scalability and proficiency in in-context learning for visual tasks.
The success of LVM largely stems from the scale of the model and more crucially the extensive scale of
data, encompassing a vast array of random image sequences, video sequences, and image/video-annotation
pairs. Notably, random image sequences, comprising 90% of the total dataset tokens and constructed
by concatenating single, weakly related or even unrelated image tokens, consume the most computation.
Due to the quadratic complexity of self-attention w.r.t. token length, training these random images as a
unified sequence incurs higher computational costs compared to training them as independent single images.
Additionally, these random image sequences, unlike natural language sequences, may harbor higher noise for
next-token prediction.
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Figure 1: Overview of the proposed LVM-Lite. Training process begins with the use of single-image
tokens with a reduced token length, followed by short fine-tuning on meaningful visual sequences. Once
trained, LVM-Lite can adapt to various vision tasks through in-context generation.

Motivated by these observations, we develop a two-stage training pipeline for efficient and scalable visual
sequential modeling. Illustrated in Figure [T our approach begins with dedicated pre-training on single
images, followed by fine-tuning on carefully curated long image/video sequences. This decoupling allows
us to efficiently scale up the model in pre-training, further enabling flexible task adaptation in fine-tuning.
We name this framework as Large Vision Model Lite (LVM-Lite). Comprehensive experiments showcase
its high training efficiency and strong in-context generation capabilities, e.g., we can attain up to 2.7x
training speed gains without compromising performance. Indeed, LVM-Lite achieves comparable performance
to specifically-trained models across various generative and discriminative benchmarks, including video
generation, image generation, and image understanding, without the need for task-specific training.

2 Large Vision Model Lite

We first revisit LVM (Bai et all) 2023) in Sec. Next, we present a two-stage training framework,
encompassing single-image pre-training followed by sequence fine-tuning to speed up LVM training.
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2.1 A Close Look at LVM Training

Pre-tokenization and training. LVM utilizes a VQ-GAN model(Esser et al., 2021b), comprising an
encoder E to map input images into a latent space and a decoder GG for reconstruction from the latent
representation. LVM pre-tokenizes each image x € RF*WXC into a latent representation 2 = E(z), where
3 e RH'XW'xD , H' = % and W' = %. Subsequently, the quantization module ¢ quantizes each spatial code
Z;; at position (i, 7) in the feature map to its nearest codebook entry to form the tokens z, using the following
formula:

zg =q(2) = (argmin 12:; — zk||>

ZLEZ

where k indexes entries within the codebook Z. We flatten z, € RY W' into 1D dimension, tokenizing each
image into S = H’ x W’ tokens. Thus a visual sequence comprising N images has a total sequence length of
L =N x 8, denoted as Z = {zq,, 2¢,, ---, 2, }- A decoder-only transformer is trained to predict each token in
Z given all preceding tokens, with an autoregressive loss:

L—-1

;C - Z logp(zqm+1 |ZQ1:m)

m=1

which considers the entire image sequence Z, rather than individual images or smaller segments.

Generation. After training, the model generates new tokens by sampling from the probability distribution
of the next token, modulated by a temperature parameter 7. Additionally, we employ a top-K sampling
strategy to restrict the selection of the next token to the K most probable options predicted by the model. The
predicted token sequence Zg = {24, ,2g,, ..., Zg, } is then passed through VQ-GAN’s decoder G to reconstruct
the image.

= G(Zg)

The length n of generated tokens Zg controls the number of generated images.

Training configuration. Following the setup in previous work (Chang et al., 2022), the VQ-GAN model
is trained on LAION-2B (Schuhmann et al., [2022) with a codebook of 8192 entries. Our decoder-only
transformer is based on the LLaMA model (Touvron et all 2023). Each image is represented as a sequence
of S = 256 discrete tokens. A visual sequence is constructed from N = 16 randomly sampled images for
training. This forms our standard training protocol with a total sequence length of L = 4096.

2.2 Single-image Pre-training

From a detailed profiling of LVM (Bai et al., [2023)) training, most training efforts are spent on single-image
datasets like LAION, where 16 random images form a visual sequence. These random sequences take a
substantial amount of compute and carry more noise compared to natural visual sequences (e.g., videos).
Therefore, we explore the feasibility of training on individual images from single-image datasets with reduced
context length L, followed by fine-tuning on curated or natural image sequences.

Specifically, we reduce the number of images from N = 16 to N = 1 and the sequence length from L = 4096
to L = 256 in the single-image pre-training stage. With the same training objective, the model now predicts
the next token using only preceding tokens from the same image. This strategy significantly decreases model
FLOPs, reducing attention complexity from O(N25?) to O(S?). For instance, the model’s FLOPs in our
largest 3B model can be reduced by a substantial factor (19.4x, from 33 to 1.7 TFLOPs).

In practice, we keep the total number of training tokens the same as in LVM. We evaluate the effectiveness of
this two-stage approach with model performance on downstream tasks after second-stage fine-tuning. As
detailed in Table [d] this approach largely accelerates training with comparable performance. For instance,
our largest 3B model is ~ 2.1x faster than our baseline (62k vs.130k in TPU-v3 core hours). Next, we delve
into the specifics of the second-stage fine-tuning.
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2.3 Image-Sequence Fine-tuning

LVM (Bai et al., 2023) establishes the significance of sequence data from videos, images with annotations,
and videos with annotations. We curate our sequence dataset similarly into three categories for fine-tuning
(also visually shown in the bottom left of Figure |1)):

e Natural Sequence: This category primarily comprises video frames and diverse existing datasets

(Soomro et al., [2012; Perazzi et al 2016; Kuehne et al., 2011; Monfort et al., [2019; 2021; Reizenstein
et al.| 2021} [Goyal et al., 2017b; Das et all 2013} [Carreira et al.| [2019; Materzynska et al.| 2019; [Li
et al., [2021} [Sigurdsson et all, 2018} Murray et al., 2012} |[Grauman et all 2022)), along with 3D image
data (Deitke et all |2023). We generate sequences of 16 frames by random sampling.

o Discriminative Sequence: We utilize human-labeled image datasets such as Cityscapes
2016)), ADE20K (Zhou et al 2017), COCO(Lin et al.l [2014), and video datasets like Co3D(Reizenstein
et al., 2021), ViPSeg(Miao et al.,|2022)), VOS(Xu et al., 2018a)). Following LVM (Bai et al., |2023)),
we also employ models (Soria et al. [2020; [Cheng et al., 2022} [Yang et all [2024) to generate pseudo
labels on ImageNet-1K(Deng et al., [2009). Discriminative sequences are formed by repeated sampling
of “image, annotation” pairs eight times to align with the context length.

o Generative Sequence: We invert the order of pairs in the discriminative sequence to “annotation,
image” and repeat sampling eight times to construct generative sequences.

2.4 In-context Evaluation

LVM-Lite performs in-context generation by structuring the input sequence as “prompt, query”. The prompts
consist of images of questions and answers to allude to the task (e.g., “image, segmentation map” for the
semantic segmentation task). The model then generates contents based on the query image. We elaborate on
our evaluation designs for various visual benchmarks.

For video generation, the visual prompt consists of the first five frames sampled from a video, adhering to
the common practice in video prediction tasks (Yu et al., |2023} |Skorokhodov et all [2021)). We then prompt
the model to generate the subsequent 11 frames, sampling one clip from each video for evaluation. For
image generation, we use “annotation, image” pair to specify the task, such as “segmentation map, image”
for segmentation-to-image generation. Similar inputs apply to edge-map-to-image and depth-map-to-image
generation. For image understanding, we evaluate on widely recognized semantic segmentation benchmarks
with “image, segmentation map” prompt. The segmentation map is generated by applying KNN within a
predefined color map as described in (Wang et al. 2023a) aligned with official sources (Zhou et al., 2017}
[Cordts et al.l [2016]).

3 Experiments

3.1 Main Results

We demonstrate the effectiveness of LVM-Lite on various generative and discriminative benchmarks, including
video generation, image generation, and image understanding.

Data. Following LVM 2023)), we utilize large-scale DataComp-1B (Gadre et al) [2023) dataset
for single-image pre-training and three types of visual sequences for fine-tuning, including natural visual
sequences (e.g., videos and 3D images), discriminative sequences and generative sequences (see details in
Appendix). We preprocess single-image data into 256 tokens and visual sequence data (16 frames or 8
image-annotation pairs) into 4096 tokens with a pre-trained tokenizer and train the model once on all data.

Training and Evaluation. Following LVM (Bai et al.| 2023))’s computation setting, we pre-train our model
on ~300B tokens from images in Datacomp-1B; this is equivalent to ~900 training epochs on ImageNet-
1K (Deng et al.,[2009). The fine-tuning phase uses 96B tokens (~300 ImageNet-1K epochs). Batch sizes of
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Table 1: Comparison on video generation. We generated videos at 16 x 256 x 256 resolution given the
first 5-frames as prompts following (Yu et all|2023) and computed FVD with ground truth. *The UCF-101
results are class-conditional (Hong et al.| [2023; [Yu et al., 2023).

Model ‘ UCF-101 ‘ SS-V2 ‘ K600
| FVD-16f | | ISt | FVD-16f | | FVD-16f |

CogVideo*(Hong et al.|[2023) 626.0 50.5 - 109.2
MAGVIT*(Yu et al.||2023) 76.0 89.3 314 9.9
LVM-lite-300M 252.2 33.7 172.1 193.1
LVM-lite-1B 222.7 34.9 165.3 180.9

LVM-lite-3B 188.2 33.8 138.9 166.3
Ground truth rec. ‘ 119.0 ‘ 35.9 ‘ 84.1 ‘ 98.6

Table 2: Comparison on conditional image generation. Images resolution is set to 256 x 256. Seg.:
segmentation mask. Depth: relative depth map. Edge: edge map. N/A: not applicable.

Model ‘ ImageNet-1K ‘ ADE20K-G ‘ City.-G

‘ FID | ‘ IS 1 ‘ FID | ‘ FID |

Pix2PixHD (Wang et al.||2018) N/A 73.3 104.7
DP-SIMS(Berrada et al.|[2023) N/A 22.7 38.2
VQ-GAN(Esser et al.|[2021b) 5.2 ‘ 280.3 33.5 N/A

synthesis condition ‘ seg. ‘ depth ‘ edge ‘ seg.

LVM-lite-300M 70.9 | 13.0 | 56.8 | 17.5 | 56.7 | 20.7 41.2 92.9
LVM-lite-1B 57.1 | 17.1 | 43.3 | 242 | 43,5 | 27.1 42.4 85.3
LVM-lite-3B 42.3 | 24.1 | 31.9 | 33.7 | 33.7 | 35.6 39.7 84.1
Ground truth rec. ‘ 8.0 ‘ 338.0 ‘ 20.4 ‘ 72.2

8192 and 512 are used for context lengths of 256 and 4096, respectively. We use the AdamW optimizer with
a base learning rate of 1.5e-4, tapering to an end learning rate of 1.5e-5. The learning rate for fine-tuning
starts at 1.5e-5 and ends at 1.5e-6.

We conduct in-context evaluation following the settings in Section Specifically, for video generation
capabilities, we evaluate on UCF-101 (Soomro et all|2012), Something-Something V2 (SS-V2) (Goyal et al.l
2017b|) and Kinetics-600 (K600) (Carreira et al., [2018). Frame prediction performance is measured with
the 16-frame FVD(Unterthiner et al., |2019)) and IS metric, leveraging a C3D model (Tran et al. 2015) on
UCF-101. For image generation, we evaluate conditional image generation on ImageNet-1K (Deng et al., 2009)
and ADE-20K (Zhou et al., 2017)). Performance is assessed using FID (Parmar et al 2022) and IS (Salimans
et al.l 2016) following the ADM protocol (Dhariwal & Nichol, 2021). Prompts and queries include relative
depth maps from depthanything (Yang et al., |2024)), segmentation maps from mask2former (Cheng et al.,
2022)), and edge maps from DexiNed (Soria et al.l [2020). We evaluate semantic segmentation performance for
image understanding on ADE-20K and Cityscapes (Cordts et al., 2016) datasets. Performance is measured
with mIOU and FID between ground truth and generated masks.

Implementation Details. Our models are trained using TPU-v3 pods on Google Cloud. Our largest
model, LVM-Lite-3B, completes training in ~10 days on a v3-256 TPU pod. In comparison, LVM-3B(Bai
et al.l |2023)) requires 14 days to train on a more extensive v3-512 TPU pod.

Video Generation. As presented in Table [} LVM-Lite demonstrates impressive video generation capabili-
ties and remarkable scalability from 300M to 3B parameters, with the FVD score decreasing from 252 to
188 on UCF-101. We achieve comparable performance to CogVideo (Hong et all 2023)) with a much smaller
model size. Compared to MagVit(Yu et al. [2023)), LVM-Lite attains superior training efficiency with only 900
ImageNet-1K epochs, whereas MagVit requires fine-tuning computation equivalent to ~4000 ImageNet-1K
epochs. Notably, our model handles a broader range of tasks without additional task-specific fine-tuning.



Under review as submission to TMLR

Figure 2: Video generation on K600. We generate high-fidelity videos With resolutions of 16 x 256 x 256
using LVM-Lite-300M (top two rows) and LVM-Lite-3B (bottom two rows)
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Figure 3: Video generation on SS-V2. LVM-Lite generates videos with high temporal consistency.

As depicted in the qualitative results from Figures 2] and [3] LVM-Lite produces higher resolution frames
than previous efforts (Skorokhodov et al., |2021} |Yu et al., |2023) and generates actions with high fidelity for
motion-centric data in SS-V2.

Image Generation and Understanding. As presented in Table 2] and Figure [d] LVM-Lite achieves
comparable performance with specialist models on image generation while using only a single training cycle.
On ImageNet-1K, LVM-Lite generates realistic images from segmentation masks, edge maps, and depth
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Table 3: Comparison on image understanding. We evaluate the image semantic segmentation task.

Model | ADE20K-D | City-D
| mIOU 4 | FID | | mIOU 1

Mask2Former(Cheng et al.l 2022} ‘ 57.7 ‘ - ‘ 83.3

Painter(Wang et al.[[2023a) 49.9 - N/A
LVM-lite-300M 2.3 266.7 9.0
LVM-lite-1B 0.9 233.9 8.9
LVM-lite-3B 0.7 92.8 10.3
Ground truth rec. ‘ 35.2 ‘ 93.8 ‘ 58.6

Figure 4: Image generation on ImageNet-1K. Top: 300M model. Bottom: 3B model. Our models can
produce high-quality images across various modalities without fine-tuning on specific datasets.

maps. Model scaling also greatly enhances image generation, especially on ImageNet-1K, with LVM-Lite-3B
outperforming LVM-Lite-300M by 23.0-28.6 in FID. Nonetheless, LVM-Lite faces challenges with image
understanding as shown in Table [3] yielding lower mIOU compared with segmentation specialists. This
modest segmentation performance might be partly attributed to the noise introduced in the tokenization of
segmentation labels—performance is substantially lower even with reconstruction from ground truth tokens.
This is compounded by the lack of pixel-to-pixel supervision, which is widely used in supervised specialists
but not in next-token predictions in LVM.
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Table 4: Pre-training ablation. We compare pretraining on single images vs random image sequences on
three benchmarks and report the model forward TFLOPs under the batch size of 1. *We compare the total
training wall clock time in core hours measured on 256 TPU-V3 with the same number of samples. Random
image seq.: 16-random-image sequence pretraining. Singe image: single-image pretraining. We also report
VQ-GAN’s reconstruction performance using the ground truth as input.

model size | random image seq. | single image | TFLOPs | speedup* | UCF-101 | ADE20K-G | ADE20K-D
- | FVD-16f | [ IS1 | FID, | mIOUt | FID|
. v X 4.1 x1 274.6 33.8 59.3 17 | 1035
300M
X 4 0.2 x2.7 291.2 34.2 50.0 1.1 129.0
v X 7.9 x1 268.7 34.6 48 | 10 | 1294
600M
X v 0.4 x1.7 274.2 34.0 48.9 1.9 | 1108
v X 12.8 x1 256.0 | 34.5 45 | 09 |1366
1B
X v 0.6 x1.8 262.8 34.1 44.8 1.7 | 108.0
v X 33.0 x1 212.3 34.2 453 | 11 | 1259
3B
X v 1.7 x2.1 232.4 38.8 40.8 0.9 94.0

ground truth rec. | | 1190 |359] 204 | 352 | 93.8

Table 5: Fine-tuning ablation. We compare fine-tuning performance across different dataset combinations
on a 300M model using the same compute budget.

model size ‘ fine-tuning datasets ‘ UCF-101 ‘ ADE20K-G ‘ ADE20K-D
- ‘ natural seq. ‘ generative seq. ‘ discriminate seq. ‘ random seq. ‘ FVD-16f | ‘ IS ‘ FID] ‘ mIOU?T ‘ FID]
v X X X 284.0 34.3 187.0 0.3 132.3
X v X X 440.5 27.7 44.7 0.3 102.0
X X v X 842.9 15.2 120.0 1.3 116.0
300M X X X v 812.5 8.8 147.2 01 |126.3
v 4 X X 299.2 34.2 46.1 0.5 117.7
v v v X 291.2 34.2 50.0 1.1 129.0
v v v v 372.6 37.8 75.7 0.5 91.8
ground truth rec. | - | 1190 [359| 204 35.2 | 938

3.2 Ablation Study

We extensively ablate LVM-Lite to showcase its training efficiency and flexible task adaptation. We adopt the
standard settings in Section but reduce training budgets to 200-epoch pre-training and 100-epoch fine-
tuning. We follow the same procedure outlined in Sectionto evaluate video generation on UCF-101 (Soomro
et al.l [2012)) and image generation and understanding on ADE-20K (Zhou et al.| |2017)).

Single-image Pre-training. Decoupling single-image pre-training from sequence fine-tuning is the core of
LVM-Lite. We first ablate the effect of pre-training on single images vs random image sequences. As reported
in Table 4l we observe a significant training acceleration, up to x2.7, by pre-training on single images with
reduced context length (from 4096 to 256) without any loss in performance. Notably, TFLOPs can be
significantly reduced up to x20 with the same number of training tokens. Our proposed training method
achieves performance comparable to pre-training with random image sequences for the three tasks. Thus,
single-image pre-training is a good and efficient initializer for downstream tasks. However, a slight decrease
in performance was noted in semantic segmentation, likely due to the lack of pixel-to-pixel supervision in
next token prediction.

Sequence Fine-tuning. Next we ablate sequence fine-tuning, exploring the effects of different fine-tuning
datasets, including natural sequences, discriminative sequences and generative sequences on various tasks. As
presented in Table |5 and Figure [5] models fine-tuned on a specific data category excel in tasks related to
that category. For example, models fine-tuned on natural sequences perform best in video generation with
subpar performance in image generation and understanding. Default fine-tuning across all three categories



Under review as submission to TMLR

Figure 5: Qualitative results on fine-tuning ablation. Top two rows: fine-tuning on natural sequences.
Mid two rows: fine-tuning on generative sequences. Next two rows: fine-tuning on discriminative
sequences. Bottom two rows: fine-tuning on all categories. Prompts are not shown for image generation
and segmentation. Red rec.: query frames, segmentation maps, or images.

Table 6: Model & schedule scaling. We adopt the strategy of equating seen images to the number of
training epochs with ImageNet-1K (Deng et al.l |2009)) images to set controllable training budgets. Subsequently,
with the training budget fixed, we scale the model size across three scales.

model size | pre-training | fine-tuning | UCF-101 | ADE20K-G |  ADE20K-D
\ \ | FVD-16f | | ISt | FID| | mIOU* | FID |
200 100 291.2 | 342 50.0 L1 129.0
400 100 2904 | 337 53.5 1.7 105.1
300M 800 100 275.9 | 333 49.6 1.8 107.3
800 200 263.8 | 344 44.2 1.4 119.1
800 300 252.2 | 337 41.2 2.3 266.7
300M 800 300 252.2 | 337 41.2 2.3 266.7
1B 800 300 222.7 | 349 42.4 0.9 233.9
3B 800 300 1882 | 33.8 39.7 0.7 92.8
ground truth rec. | - \ - | 1190 |359| 204 | 352 | 938

emerges as a versatile solution capable of effectively addressing both generative and discriminative tasks. In
particular, we note that the inclusion of random image sequences during fine-tuning significantly degrades
performance across all tasks, reinforcing that random image sequences introduce noise with a detrimental
effect on training.

Scalability. First, we establish the schedule scalability of LVM-Lite. As illustrated in Table [0} increasing
pre-training epochs enhances downstream task performance. 800-epoch pre-training significantly augments
video generation performance compared to 200-epoch pre-training (291.2 vs. 275.9). Extending fine-tuning
schedule from 100 to 300 epochs also improves performance further by 23.7. Next, we demonstrate the model
scalability of LVM-Lite. As presented in Table [6] and Figures [2] and [@] a 3B model markedly outperforms a
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Prompt:

|

Query: T: 0.1 T:0.3

Top-K: 2048 Top-K: 8192

Figure 6: Evaluation hyper-parameters. The influence of temperature (T, from 0.1 to 0.9), Top-K (from
10 to 8192), and the number of prompts (Num. from 1 to 6) on the evaluation performance.

300M model on video and image generation. For instance, LVM-Lite-3B surpasses LVM-Lite-300M by 64 on
the FVD score on UCF-101. Scaling benefits video generation more than image understanding, likely due to
the decoder-only architecture being more effective and the VQ-GAN appearing better suited for generation
tasks.

Evaluation parameters We examine the impact of varying three key parameters for evaluation: the
number of prompts from 1 to 6, the top-k range from 100 to 8192, and the temperature from 0.1 to 0.9. We
focus on the conditional image generation task on ADE20K. As shown in Figure [6] these parameters are
crucial for modulating the diversity and creativity of the generated outputs. Aligned with observations in
LLMs, a lower temperature and top-k setting produces more coherent results, while a higher temperature
and top-k encourage greater creativity and novelty in the generative process. We also find that generated
images are more realistic as the number of prompts increases.

4 Related Works

Pre-trained Vision Models. Before the advent of LLMs, pre-trained vision models serve as improved
feature extractors for downstream tasks like image classification (Sun et al., 2017), object detection(Girshick:
et al., [2015} |Girshickl 2015} Ren et all, 2015), video classification(Bertasius et al., 2021} [Arnab et al., [2021} [Li
et al., [2022; [Fan et al., 2021) and semantic segmentation(Cheng et al., 2022; [Ren et al 2015 Long et al.
[2015; [He et al.l 2017)). Self-supervised learning (Doersch et al., 2015; |Chen & He, [2020; (Chen et al. [2020a;
He et al. [2019} (Chen et all, 2020b) share the same goal and recent proposed masked auto-encoder (He|
et al. [2021} [Tong et all [2022} |Bao et all [2021) based methods showcase outstanding scaling ability of vision

lo—I

10
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transformers. Natural language supervision (Radford et al., |2021} |Jia et al., |2021} |Li et al., |2023b)) is an
effective scaling-up method for various vision downstream tasks. Contrary to approaches that offer merely a
vision backbone, our work develops a vision generalist akin to LLMs, designed to undertake downstream
tasks without extensive fine-tuning.

Visual in-context Learning. Language models, exemplified by GPT-3 (Brown et al.l |2020]), have excelled
in in-context learning. Similarly, vision-language models (Liu et al., [2023; [Alayrac et al., 2022 |Jaegle et al.|
2021} |Li et all, 2023a) demonstrate this capability leveraging vast datasets. Close to another trend of visual
Prompting techniques (Bar et al.l |2022; [Wang et al.l |2023b; Wu et al., 2023} |[Wang et al., 2023ajc), our work
further enhances the performance by utilizing visual cues to guide learning and task interpretation. We
emphasize the potential of large-scale training to enable in-context learning ability.

5 Conclusion

Generative pre-training has inspired innovations in visual understanding through large-scale pre-training on
visual sequences. Our work introduces a novel two-phase decoupled learning approach, enhancing training
efficiency without sacrificing performance. Our proposed LVM-Lite excels in video prediction and conditional
image/video generation, demonstrating comparable performance to specialist models across benchmarks. By
evaluating LVMSs’ in-context learning capabilities comprehensively on various benchmarks, we show that our
LVM-Lite can successfully speed up the whole training process and demonstrate strong scalability.
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A Appendix / supplemental material

A.1 Implementation details

Model configuration. In our experiments, we systematically explore four models whose configurations are
listed in Table [7] These models are based on a decoder-only architecture, specifically leveraging the Llama-2
framework (Touvron et al., 2023)), chosen for its efficiency and adaptability to our framework. Due to limited
computation resources, our largest 3B model adopted an advanced block-parallel transformer(Liu & Abbeel,
2023) to reduce memory requirements further. All of our experiments are conducted on a 256-core TPU-v3.
Our implementation is based on JAX(Bradbury et al., |2018])

Table 7: Model architecture

model size ‘ hidden dim ‘ MLP dim ‘ heads ‘ layers

300M 1024 2688 8 22
600M 1536 4096 16 22
1B 2048 5504 16 22
3B 3200 8640 32 26

Table 8: Hyperparameters for pre-training and fine-tuning.

hyperparameter ‘ single-image pre-training ‘ sequence fine-tuning
learning rate schedule linear warmup and cosine decay
weight decay 0.1

optimizer AdamW (Loshchilov & Hutter}, [2019))
optimizer momentum £1 =0.9,82 =0.95

base learning rate 1.5e-4 1.5e-5
final learning rate 1.5e-5 1.5e-6
warmup steps 2000 0
total training steps 125112 15639
batch size 8192 512
context length 256 4096

A.2 Training and evaluation.

We also provide detailed pre-training and fine-tuning hyperparameters in Table [§] We use training hyperpa-
rameters based on (Bai et al., [2023]). To enhance efficiency, we ensure that the total number of processed
tokens per iteration remains constant, increasing the pre-training batch size by x16. For our evaluation, we
utilize prompts to specify tasks in line with (Bai et al [2023). Instead of employing seven pairs of images,
we discovered that a single pair is adequate for task indication. These prompts are illustrated in Figure
[l Our approach allows us to assess qualitative and quantitative results across different tasks. We set the
Top-K as 100 and the temperature as 1. For the video prediction task. we sample 16 frames from the original
video to be the ground truth and use the first 5 frames as prompt. We ask the model to generate the rest
11 frames. For ImageNet-1K(Deng et al.l |2009) generation, we evaluate our model on the validation set.
We randomly sample one of the training set prompts and use the same prompt for all validation images.
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prompt query output

Figure 7: Example of prompts in our metric-evaluation. We use a single prompt containing one image pair to
indicate a task.

We use (Soria et all [2020) to infer the edges map, mask2former(Cheng et al., 2022) to generate semantic
masks, and depth-anything(Yang et al |2024) to predict depth map. For ADE20K (Zhou et al., [2017)) and
Cityscapes(Cordts et al., 2016]) generation task, we use ground truth segmentation map to be the condition.
For each task, we first adjust the image size to 256 x 256 using bilinear interpolation and apply the nearest
neighbor interpolation method to resize the masks.

A.3 Datasets

Here, we present in detail how we construct our datasets. For training, we mainly follow LVM(Bai et al.
to construct our datasets; we pre-process most datasets listed in in the same manner.
We list all datasets used in our experiments in Table [0} We always keep 16 images for different tasks as the
length of image sequences. Thus, for video generation task, we sample 16 frames from the original video. For

image-based tasks, we use 8 image pairs to form a single image sequence. For evaluation, we show the details
of datasets we used in Table
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Table 9: Full training dataset. We follow LVM(Bai et al., [2023) to construct datasets but divide them into

generative and discriminative tasks.

dataset

| task type |

annotation source

random image sequence

DataComp-1B(Gadre et al.] 2023

‘ inpainting ‘

ground truth

natural sequence

UCF101 (Soomro et al]
i o o[0T}

ime (Sonfort ot al.| 5021
Charad es v 1

z
Careis et aT 0TS
Jester 'lm

CharadesE m
AVA (
Ego4D (G

3) Rendered Multiviews

video generation

ground truth

generative sequence

image to image
segmentation map to image
depth map IM to image
edge map l to image
1npamtmg
colorization
instance segmentation to image
segmentation map to image
style transfer

segmentation mapCheng et a 02 to video

ground truth

VIPSe panoptic segmentation to video
Co3D (Reizenstein et al. object mask to video
Co3D (Reizenstein et al. depth to video

discriminative sequence
COCO object detection
ADE20K ( m Cltyscapes m semantic segmentation ground truth
ImageNet-1K ( . semantic segmentation Mask2Former l
COCO (Lin et al.[[2014 human pose ground trut
COCO (Lin et al. 2014 , ImageNet-1K (Deng et al.||2009} depth map image Depth-anything | 2024
COCO (Lin et al.| 2014), ImageNet-1K (Deng et al.| 009 edge detection DexiNed (Soria et al.] 020
SIDD (Abdelhamed et al. ﬂ denoised image ground trut.
|ml|m light-enhanced image ground truth
VIPSeg {l video panoptic segmentation ground truth
VOS 1M video object segmentation ground truth
Co3D (Reizenstein et al.] video object segmentation ground truth
Co3D (Reizenstein et al.] video object segmentation ground truth

Table 10: Evaluation datasets and metrics used for comparison for Table 4.

dataset | split&number of samples | metric
frame prediction

UCF101 (Soomro et al.|[2012) test & 3783 FVD&IS

Something-something v2 (Goyal et al. I |2017a} validation & 24777 FVD

Kinetics 600 (]Carrelra et al.||2019) validation & 31593 FVD
image synthesis

ImageNet-1K (Deng et al. ] OOQ' validation & 50000 FID

ADE20K (Zhou et al.[[2019) validation & 2000 FID

Cityscapes (Cordts et al.| [2016} validation & 500 FID

semantic segmentation
ADE20K (Zhou et al. ] 019b validation & 2000 mIOU&FID
Cityscapes (Cordts et al. ”2016} validation & 500 mIOU&FID
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A.4 Additional Results

Our additional quality evaluation spans tasks on COCO(Lin et al., [2014)), ImageNet-1K(Deng et al., 2009),
and VIPSeg(Miao et al.l |2022)) datasets shown in Figure and We demonstrate our model’s capability
on COCO in human pose estimation and object detection. We utilize (Brooks et al., [2023) for style transfer
to showcase our approach’s adaptability. On ImageNet-1K, we cover edge detection, inpainting, semantic
segmentation, relative depth estimation, and colorization, illustrating the model’s versatility across different
image processing challenges. Additionally, VIPSeg’s qualitative results are included, where the task involves
generating frames from 8 object masks, highlighting our model’s proficiency in image synthesis.

Long-video Generation. We enhance LVM-Lite’s capability to generate longer videos by fine-tuning it
with the SS-V2 dataset to process 64 frames after 1500 iterations. We highlight the proficiency of LVM-Lite
to generate high-quality, extended sequences sequences in Figure

A.5 Limitation and Broader Impacts

As discussed in Section [3.I] while our model shows excellent scalability, high-quality generation capabilities,
and general task awareness, its performance on discriminative tasks, such as semantic segmentation, remains
significantly lower compared to current state-of-the-art in-domain models. This modest segmentation perfor-
mance may be partly due to the noise introduced during the tokenization of segmentation labels—performance
remains substantially lower even with reconstruction from ground truth tokens. Additionally, the lack of
pixel-to-pixel supervision, commonly used in supervised specialist models, further compounds the issue, as it
is not employed in next-token prediction within LVM. Addressing this issue is beyond our current scope, as
our focus is on efficiency and providing a comprehensive study on training effective LVM. We plan to leave
this as future work.

Since this paper focuses on democratizing the training burden of current large vision models, we believe
that migrating the training difficulty can help researchers reduce their research cycles and dedicate more
efforts to developing robust novel methods. However, this paper’s potential negative social impact is that
our generative model might produce content using harmful or privacy-concerning training data that may be
overlooked. To mitigate this, we will rigorously test our model and consider implementing gated access for
safety concerns.
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Figure 8: COCO(Lin et al. 2014)) evaluation.Red: the generated results. First four rows: segmentation task.
Second four rows: segmentation to images. For all examples, we use three prompts that contain 6 images in
total to indicate the task and one query mask/image.
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Figure 9: ImageNet-1K (Deng et al., [2009) qualitative evaluation on validation set. Red: the generated results.
For all examples, we use three prompts that contain 6 images in total to indicate the task and one query. We
show edge detection, inpainting, semantic segmentation, relative depth estimation, and colorization tasks.
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Figure 10: Other tasks’ qualitative evaluation set. Red: the generated results. For all examples, we use three
prompts that contain 6 images in total to indicate the task and one query. We show human pose estimation,
object detection and style transfer tasks.
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Figure 11: VIPSeg(Miao et al., |2022) qualitative results. Task: given 8 masks, generate the corresponding
frames.
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Figure 12: 64-frame video generation. Left: default train with 16-frame (4096 context length). Right:
extended 64-frame (16K context length). Red rec.: a short action clip prompt. Task: predict the next 60
frames. Spatial resolution:256 x 256.
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