
Unlocking the Mysteries of OpenAI o1:
A Survey of the Reasoning Abilities of Large Language Models

Guoyin Wang▼, Shengyu Zhang♣, Tianyu Zhan♣, Zhouzhou Shen♣, Jiwei Li♣,
Xueyu Hu♣, Xiaofei Sun♣, Fei Wu♣, Gelei Deng▲, Jie Zhang⋆, Runyi Hu▲,

Tianwei Zhang▲, Xiaoya Li♦, Shuhe Wang♠ and Eduard Hovy♠

▼01.AI ♣Zhejiang University ▲Nanyang Technological University
⋆CFAR and IHPC, A*STAR ♦University of Washington ♠The University of Melbourne

Abstract

The release of OpenAI’s o1 marks a significant milestone in AI, achieving proficiency comparable to
PhD-level expertise in mathematics and coding. While o1 excels at solving complex reasoning tasks,
it remains a closed-resource model, limiting its accessibility and broader application in academic and
industrial contexts. Despite numerous efforts to replicate o1’s results, these attempts often focus on isolated
aspects of the model (e.g., training, inference), neglecting the holistic interplay between components and
failing to provide a global picture of the pathways to enhance LLMs’ reasoning capabilities, and replicate
o1’s performance. Currently, there is no systematic review of these replication efforts, nor a clear survey of
the major issues that must be addressed to achieve comparable performance to o1.

In this survey, we are going to provide a systematic review of the most up-to-date state of knowledge on
reasoning LLMs, helping researchers understand the current challenges and advancements in this field.
We will summarize recent efforts to replicate o1’s performances, and more importantly, address the key
obstacles in enhancing the reasoning abilities. We will (1) review the basic concepts and techniques behind
o1 and efforts in replicating o1 models; (2) detail efforts in constructing logical and structured reasoning
datasets; (3) delve into important training techniques (e.g., supervised fine-tuning, reinforcement learning,
DPO) that harness these datasets to ensure the model acquires robust logical reasoning and structured
problem-solving capabilities; and (4) explores different inference techniques (e.g., tree-of-thoughts, critic-
based approaches, self-correction strategies) in reasoning LLMs that assist in navigating the problem space
and identifying efficient problem-solving paths. We will also summarize the current challenges and discuss
opportunities for further improvement of reasoning LLMs.1

Figure 1: Word cloud of the keywords used in the titles of the papers involved in this survey.

1The latest update was on Jan.20, 2025.
Project page can be found at: https://github.com/ShuheSH/A-Survey-of-the-Reasoning-Abilities-of-LLMs.

https://github.com/ShuheSH/A-Survey-of-the-Reasoning-Abilities-of-LLMs

1 Introduction

Large language models (LLMs) (Jiang et al., 2023; Bai et al., 2023; OpenAI, 2023; Yang et al., 2024a;
Dubey et al., 2024; OpenAI, 2024a; Mistral AI, 2024; Team et al., 2024b; Liu et al., 2024a; Wake et al.,
2024; Shao et al., 2024b; OpenAI, 2024b; GLM et al., 2024) have achieved remarkable performance in
numerous language tasks (Sun et al., 2023b; Wang et al., 2023b; Wan et al., 2023; Sun et al., 2023c,a;
Wang et al., 2023a; Sun et al., 2023d; Liu et al., 2024c; Yao et al., 2024; Wang et al., 2024d). Despite
their impressive capabilities, LLMs still face significant challenges in reasoning. They struggle with tasks
that require logical deduction, numerical calculations, or consistent chains of thought. Errors are observed
even in simple tasks that demand multi-step thinking, highlighting gaps in how these models acquire,
represent, and apply knowledge (Cobbe et al., 2021b; Wei et al., 2022; Wang and Lu, 2023; Shakarian
et al., 2023; Shi et al., 2023; Chang et al., 2024; Ahn et al., 2024).

The release of OpenAI o1 (OpenAI, 2024b) marks a significant milestone in AI, particularly in enhanc-
ing its reasoning abilities. OpenAI o1 is capable of solving complex reasoning tasks and demonstrates
capabilities comparable to PhD-level proficiency in math and coding. Unfortunately, o1 is a closed-
resource model, which limits its accessibility and potential for broader academic and industrial use. This
restricted access hinders collaborative efforts to further refine its abilities and limits the opportunity for
researchers and developers to build upon its foundation. Additionally, the lack of transparency in the
model’s underlying architecture and training data raises concerns about bias and fairness, making it
difficult to fully understand its decision-making processes.

As a result of the closed-resource nature of o1, numerous efforts have emerged to replicate o1’s
impressive results (Shao et al., 2024b; Mistral AI, 2024; Team, 2024b; o1 Team, 2024; Zhao et al., 2024b;
Team, 2024a; DeepSeek-AI et al., 2024). o1, however, is a highly complex system, with substantial
improvements across multiple AI modules, including training methodologies, inference mechanisms,
datasets, and evaluation processes. Existing efforts to replicate o1 tend to focus on isolated aspects of the
model, often neglecting the holistic interplay between these components, and, as a result, missing the full
picture in enhancing LLMs’ reasoning abilities. As a result, there is currently no systematic review of the
efforts to replicate o1, and more importantly, no clear survey of the major issues that must be addressed to
achieve comparable performance across all these dimensions.

In this survey, we provide a systematic review of the challenges and opportunities involved in replicating
o1’s performance. Specifically, we aim to identify the key obstacles in enhancing the reasoning abilities
of LLMs and offer a comprehensive review of recent efforts to address them:

(1) At the dataset level, we will review recent efforts in constructing high-quality, diverse, and
representative datasets that play a pivotal role in enhancing LLMs’ reasoning capabilities. By incorporating
challenging reasoning problems, well-structured scenarios, and diverse contexts, these datasets bridge the
gap between the generic text data on which most LLMs are typically trained, which often lacks complex
reasoning problems, and the reasoning tasks that demand advanced reasoning abilities.

(2) At the training level, we will delve into different training techniques that harness these datasets to
ensure the model acquires robust logical reasoning and structured problem-solving capabilities. These
techniques include supervised training, where labeled data fully guides the model’s learning process;
reinforcement learning, which optimizes decision-making through trial-and-error and reward-based
feedback; and direct preference optimization, which aligns model outputs with user or system-defined
preferences. Additionally, we will examine various adaptations and hybrid approaches of these methods,
focusing on their strengths, limitations, and synergies to create a balanced and effective training framework.

(3) At the inference level, we will provide an in-depth review of techniques designed to identify and
execute reasoning paths during the decoding process in LLMs. These techniques include tree-of-thoughts
methods, critic-based approaches for evaluating and refining outputs, self-correction strategies to enhance
solution accuracy, and other advanced methodologies aimed at improving the model’s reasoning and
decision-making capabilities in diverse contexts.

The rest of this survey is organized as follows:

• Section 2 provides an introduction of OpenAI O1, briefing its techniques and performances on
benchmarks.

U
nl

oc
k

th
e

M
ys

te
ri

es
of

O
pe

nA
Io

1

Introduction

Overview of OpenAI o1

Different Versions

Key Feature

Performances on Benchmarks

Key Techniques

Reasoning Datasets Construction

Fine-tuning with Reasoning Datasets

Inference with Thinking

Reproducing OpenAI o1

Marco-o1 Zhao et al. (2024a)

o1-coder Zhang et al. (2024d)

rStar-Math Guan et al. (2025)

Kimi-k1.5 Team et al. (2025)

DeepSeek-R1 DeepSeek-AI et al. (2025)

Datasets

PRM800K o1-Journey Self-Explore Swamy et al. (2024); Qin et al. (2024); Hwang et al. (2024a)

MARIO MathGenie DeepSeekMath Liao et al. (2024b); Lu et al. (2024); Shao et al. (2024a)

Compute-Optimal Sampling MathScale Geo170K Bansal et al. (2024); Tang et al. (2024); Gao et al. (2023)

Training

Supervised Fine-tuning

ToRA Gou et al. (2024)

AlphaLLM Tian et al. (2024a)

MARIO Liao et al. (2024a)Reinforcement Learning

Direct Preference Optimization

Inference

Tree of Thoughts

Breadth-first Search Yao et al. (2024); Yuan et al. (2024)

Depth-first Search Yao et al. (2024); Feng et al. (2023)

Monte Carlo Tree Search Zhang et al. (2024b); Tian et al. (2024b)

Automated Reasoning Critic McAleese et al. (2024); Xi et al. (2024)

Self-Correction Kumar et al.; Gao et al. (2024)

Inference Scaling Laws Snell et al. (2024); Wu et al. (2024)

Evaluation

GPQA OlympiadBench Minerva Rein et al. (2023); He et al. (2024a); Lewkowycz et al. (2022)

GSM8K MATH AIME Cobbe et al. (2021a); Hendrycks et al. (2021); AI-MO (2025)

Codeforces Mirzayanov (2025)

Analysis

Safer LLMs Guan et al. (2024)

Run-Time Strategies Nori et al. (2024)

Benefits of CoT Sprague et al. (2024)

Limits of Reasoning LLMs Jiang et al. (2024)

Multi-Hop Reasoning in LLMs Yang et al. (2024b)

Reasoning Step length Jin et al. (2024)

Faithfulness of CoT Lanham et al. (2023)

Controlling Reasoning Length Chen et al. (2024d); Jang et al. (2024); Han et al. (2024)

Multi-modal Reasoning LLMs

Insight-V LLaVA-CoT-11B Sketchpad Dong et al. (2024); Xu et al. (2024); Hu et al. (2024)

ChartPalI-5B SpatialVLM Chain-of-Table Carbune et al. (2024); Chen et al. (2024a); Wang et al. (2024f)

Gemini QVQ-72B-Preview Team et al. (2023); Team (2024a)Conclusion

Figure 2: An overview of this survey, which covers the key aspects for replicating o1: dataset construction, training,
inference strategies, and evaluation.

• Section 4 details recent efforts in constructing logical and structured reasoning datasets.

• Section 5 details training techniques that leverage reasoning datasets to build large language models
with strong logical and structured reasoning capabilities.

• Section 6 explores commonly used inference techniques in reasoning LLMs that assist in navigating
the problem space and identifying efficient problem-solving paths.

• Section 8 summarizes the current challenges and discusses opportunities for further improvement of
reasoning LLMs.

• Section 9 briefs recent efforts in building LLMs with multi-modal reasoning abilities.

• We conclude this survey in Section 10.

2 Overview of OpenAI o1

OpenAI’s o1 series represents a significant advancement in artificial intelligence, focusing on enhanced
reasoning capabilities to tackle complex, multi-step tasks. Unlike previous models, o1 is designed to
spend more time "thinking" before responding, making it particularly effective in areas such as science,
mathematics, and programming.

2.1 Different Versions of o1
The o1 series represents a line of models, with each version designed with different model sizes, inference
speeds, and prices to cater to diverse use cases. Additionally, each version has specific reasoning
capabilities that allow it to perform better in various domains like mathematics, programming, and science.
The following is a breakdown of the release dates, abilities, and features of the different o1 models:

• o1-Preview, released on September 12, 2024 offers advanced multi-step reasoning and excels in
complex problem-solving tasks. It features the "chain of thought" process to enhance reasoning
accuracy but requires higher computational resources and has slower inference speed.

• o1-Mini, released on September 12, 2024, is a faster, more cost-effective alternative to the o1-
Preview, offering 80% lower costs while still providing good reasoning for tasks like coding and
STEM problems. It’s designed for users who prioritize speed over the depth of reasoning and is ideal
for developers, students, and quick technical applications.

• Full o1, released on December 5, 2024, provides the highest level of reasoning power, with capabil-
ities on par with PhD-level expertise in fields like math, science, and programming. It’s the most
accurate and reliable option for professionals requiring precise, multi-step analysis but comes with
higher computational costs and slower performance.

• o1-Lite, to be released on January 2025, is a lightweight, cost-efficient version of the full o1, offering
moderate reasoning abilities for general tasks at faster speeds. It’s designed for small businesses,
educational platforms, and individual users who need basic problem-solving capabilities at a reduced
price, without the need for deep analysis or heavy computational resources.

2.2 Key Feature: Thinking before Response Generation
The key feature of the o1 model is that it allocates more time to “thinking” before generating responses: it
conducts human-like “thinking” actions that produce detailed, step-by-step solutions when dealing with
reasoning problems, such as:

The Given Question:
How many Rs are in “strawberry”?

Generated by o1:
There are three ’R’s in the word "strawberry."
Here’s the breakdown: S - T - R - A - W - B - E - R - R - Y

• 3rd letter: R

• 8th letter: R

• 9th letter: R

So, the letter ’R’ appears three times in "strawberry."

By allocating more "thinking" time, the model can decompose complex, multi-step problems into smaller,
manageable components. On one hand, this allows the o1 model to produce well-structured and coherent
solutions to reasoning problems; on the other, it offers transparency into the reasoning process, enabling
users to understand how the model reached its answers.

2.3 Performances on Benchmarks

o1 models have demonstrated superior performance on challenging tasks, achieving results comparable to
PhD students in fields like physics, chemistry, and biology:

• AIME 2024 (Math): The o1 model achieved a score of 13.9, placing it among the top 500 students
nationally and above the cutoff for the USA Mathematical Olympiad.

• GPQA (Chemistry, Physics and Biology): The o1 model surpassed the performance of recruited
human experts with PhDs, becoming the first model to do so on this benchmark.

• 2024 International Olympiad in Informatics (Coding): The o1 model scored 213 points and ranked
in the 49th percentile.

• Programming Contests Hosted by Codeforces (Coding): The o1 model achieved an Elo rating of
1673, performing better than 93% of competitors.

As shown in Table 1 and Figure 3, the evaluation of o1 demonstrates remarkable gains over gpt-4o
across a diverse array of reasoning-intensive benchmarks, including competition math, code-generation
challenges, and domain-specific question answering. On average, o1 exhibits substantially higher pass@1
and consensus@64 accuracy than its predecessor, suggesting that targeted architectural and training
improvements have led to more robust reasoning capabilities., o1 achieves new state-of-the-art results in
multiple categories, such as surpassing PhD-level experts on GPQA Diamond and attaining a top-500 rank
on the AIME 2024 exam, which underscores its ability to rival human performance on challenging tasks.

Figure 4 presents some human evaluation results between openai o1 and gpt-4o. Interestingly, the
human preference evaluations reveal that o1 does not uniformly outperform gpt-4o across all domains.
While o1 demonstrates a pronounced advantage in more structured, logic-driven tasks, such as computer
programming, data analysis, and mathematical calculation (where it wins over 70% of all cases), it lags
slightly behind gpt-4o in more subjective or stylistic tasks like personal writing. For editing text, o1 and
gpt-4o are comparable, suggesting that the model’s improvements in reasoning do not necessarily translate
to an equally strong edge in language polish or creative composition.

2.4 Speculated Techniques in o1

OpenAI o1 is a closed-source model, and as a result, there has been speculation surroundings the
techniques behind its development. Various blogs, reports, and technical papers have attempted to
deconstruct its capabilities, offering hypotheses about its underlying architecture, datasets, training
methods, and reasoning processes. Some speculate that o1 leverages advanced forms of reinforcement
learning and unsupervised learning, while others suggest a highly refined chain of thought approach to
enhance its multi-step reasoning.

2.4.1 Constructing Reasoning Formatted Datasets

Building the training dataset is the initial step in equipping the model with the desired capabilities. For
reasoning LLMs, this involves constructing a reasoning formatted dataset. Unlike standard datasets, which
may focus on single-step tasks or basic understanding, reasoning formatted datasets emphasize logical
progression, multi-step thinking, and structured problem-solving approaches. For example:

Example 1:
Input: What is the sum of the first 10 positive integers?
Reasoning Path:

• Step 1: The first 10 positive integers are 1, 2, 3, · · · , 10.

• Step 2: The sum of a sequence can be calculated using the formula (n× (n+ 1))/2(n× (n+
1))/2(n× (n+ 1))/2.

• Step 3: Substituting n = 10, we get (10× 11)/2 = 55(10× 11)/2 = 55(10× 11)/2 = 55.

• Answer: The sum is 55.

Example 2:
Input: If Alice is older than Bob and Bob is older than Charlie, who is the oldest?
Reasoning Path:

• Step 1: Alice is older than Bob.

• Step 2: Bob is older than Charlie.

• Step 3: Thus, Alice is older than both Bob and Charlie.

• Answer: Alice is the oldest.

In prior research (Swamy et al., 2024), OpenAI researchers discovered that exposing LLMs to reasoning
formatted data enables them to learn logical patterns and enhance their accuracy. Here, we provide a
brief overview of reasoning formatted datasets. We will detail methods for constructing such datasets are
discussed in Section 4.

2.4.2 Training LLMs on Reasoning Formatted Dataset

After constructing the datasets, people speculated that the next step is to fine-tune o1 on these specialized
reasoning datasets. This process often involves supervised fine-tuning (SFT) (Zhang et al., 2023) and
reinforcement learning (RL) (Wang et al., 2024e) techniques to optimize the o1’s performance. Supervised
fine-tuning is the initial step in training reasoning LLMs. This process mainly involves training the o1-like
reasoning LLMs to generate complete reasoning paths in response to the given questions. Through this
approach, LLMs learn to follow logical chains, produce coherent outputs, and establish a solid foundation
for tackling more advanced reasoning problems and employing sophisticated techniques. For more specific
andn detaied techniques, we put in Section 5.1.

Reinforcement learning is another speculated core step in fine-tuning o1. One popular route is the large-
scale Reinforcement Learning from Human Feedback (RLHF) paradigm. This method uses reasoning
datasets (e.g., mathematical proofs or compiler feedback code traces) and employs a reward model that
captures correctness, logical consistency, and sometimes per-step “process” quality. An alternative strategy
uses Monte Carlo Tree Search (MCTS) to drive exploration. The model can propose and evaluate multiple
partial solutions, with MCTS guiding the generation of high-quality trajectories and off-policy RL (or
supervised fine-tuning) refining the policy. For more technical details regarding reinforcement learning in
reasoning LLMs, we put in Section 5.2.

2.4.3 Inference with Advanced Thinking Strategies

Researchers speculate that the inference approach of o1 combines a series of reasoning techniques:

Problem breakdown which deconstructs complex problems into smaller, manageable parts (as illus-
trated below), which makes it easier to arrive at a correct solution;

The Given Question:
How many Rs are in “strawberry”?

Decomposition:

• Identify all the words: S - T - R - A - W - B - E - R - R - Y

• Identify which positions are the word R: 3rd letter, 8th letter, and 9th letter.

• Calculate: The letter ’R’ appears three times

Mistake recognition and self correction which detects and rectifies errors in their reasoning, much
like a human reassessing and adjusting a flawed approach. Such as when get a response “The area is
10× 5 = 50” by given a question “What is the area of a triangle with a base of 10 and a height of 5?”.
A critic model is employed, or the o1-like reasoning LLM itself is prompted, to evaluate whether the
response is accurate. If an error is identified, the o1-like reasoning LLM will immediately generate a new
answer. This iterative process continues until the critic model or the LLM determines that the generated
response is correct.

Solution Exploration which involves o1-like reasoning LLMs examining multiple potential solution
paths before reaching a final answer, ensuring the selection of the most logical and accurate result. This
process resembles a tree structure, where the input problem serves as the root node, each node represents a
step in the solution, and the path from a leaf node to the root forms a complete solution path. The o1-like
reasoning LLM employs various search strategies to construct this solution tree and evaluate the validity
of each path, resulting in more precise and insightful outcomes.

Dataset Metric gpt-4o o1-preview o1

Competition Math AIME (2024) cons@64 13.4 56.7 83.3
pass@1 9.3 44.6 74.4

Elo 808 1,258 1,673Competition Code CodeForces Percentile 11.0 62.0 89.0
cons@64 56.1 78.3 78.0GPQA Diamond pass@1 50.6 73.3 77.3
cons@64 63.2 73.7 68.4Biology pass@1 61.6 65.9 69.2

Chemistry cons@64 43.0 60.2 65.6
pass@1 40.2 59.9 64.7

cons@64 68.6 89.5 94.2Physics pass@1 59.5 89.4 92.8
MATH pass@1 60.3 85.5 94.8
MMLU pass@1 88.0 90.8 92.3

MMMU (val) pass@1 69.1 n/a 78.2
MathVista (testmini) pass@1 63.8 n/a 73.9

Table 1: Official evaluation results of o1 on typical benchmarks (o1 Contributors, 2024).

Figure 3: Official sub-category evaluation results of o1 on typical benchmarks (o1 Contributors, 2024).

Figure 4: Official human evaluation results of o1 (o1 Contributors, 2024).

3 Recent Efforts in Reproducing OpenAI o1

Currently, many efforts have been made to replicate OpenAI’s o1 or specific capabilities of o1 (such as
code generation and mathematical reasoning). We have collected eight such works, among which six
are open-source, three provide reports or papers, and four include comparisons with o1. For detailed
information, please refer to Table 2. In the following section, we will focus on introducing the works that
have provided reports or papers.

Model Organization # Params Open Source Report/Paper
Available

Comparison
with o1

Gemini 2.0 Flash (Google AI) - ✗ ✗ ✗

QVQ-72B-Preview (QwenLM, QVQ) 72B ✓ 1 ✗ ✓

Marco-o1 (Zhao et al., 2024a) 7B ✓ 2 ✓ 8 ✗

Skywork o1 (o1 Team, 2024) 8B ✓ 3 ✗ ✗

QwQ-32B-Preview (QwenLM, QwQ) 32B ✓ 4 ✗ ✓

o1-Coder (Zhang et al., 2024d) - ✓ 5 ✓ 9 ✗

rStar-Math (Guan et al., 2025) 1.5B,3B,7B ✓ 6 ✓ 10 ✓

Kimi-k1.5 (Team et al., 2025) - ✗ ✓ 11 ✓

DeepSeek-R1 (DeepSeek-AI et al., 2025) 671B-A31B ✓ 7 ✓ 12 ✓

1
https://huggingface.co/Qwen/QVQ-72B-Preview

2
https://github.com/AIDC-AI/Marco-o1

3
https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B

4
https://huggingface.co/Qwen/QwQ-32B-Preview

5
https://github.com/ADaM-BJTU/o1-Coder

6
https://github.com/zhentingqi/rStar

7
https://huggingface.co/deepseek-ai/DeepSeek-R1

8
https://arxiv.org/pdf/2501.04519

9
https://arxiv.org/pdf/2411.14405

10
https://arxiv.org/pdf/2412.00154

11
https://arxiv.org/pdf/2501.12599

12
https://arxiv.org/pdf/2501.12948

Table 2: Overview of recent efforts in reproducing OpenAI o1. The format ‘671B-A31B’ refers to MoE models
with 141B total and 39B active parameters.

3.1 Marco-o1

Macro-o1 (Zhao et al., 2024a), developed by Alibaba, explores the generalization capabilities of the o1
model in open-ended domains lacking clear standards or quantifiable rewards, unlike disciplines with
standard answers such as mathematics, physics, or coding. It employs techniques like Chain-of-Thought
(CoT) fine-tuning, Monte Carlo Tree Search (MCTS), reflective processes, and advanced reasoning to
address complex real-world challenges. Experimental results indicate that Macro-o1 exhibits o1-like
reasoning abilities, achieving significant accuracy gains of +6.17% on the MGSM (English) dataset and
+5.60% on the MGSM (Chinese) dataset, highlighting its improved reasoning performance. Additionally,
it pioneers the application of large reasoning models (LRMs) in machine translation, particularly excelling
in translating slang expressions, while investigating inference-time scaling laws in multilingual contexts.

As illustrated in Figure 5, Macro-o1’s core idea is to first fine-tune a base LLM using a combined
dataset and then perform inference with MCTS to expand the solution space. The fine-tuning dataset
comprises three components: the refined Open-O1 CoT Dataset (O1, 2025), a Marco-o1 CoT Dataset
generated via MCTS, and the Marco Instruction Dataset. During inference, two action strategies are
applied within the MCTS framework: “step as action” for efficient exploration and “mini-step as action”
(32 or 64 tokens) for finer granularity. The latter broadens the solution space by incorporating more
detailed reasoning steps, enhancing the model’s capacity to handle complex tasks. A reflection mechanism
further improves performance by prompting the model to reevaluate its reasoning with phrases like: “Wait!
Maybe I made some mistakes! I need to rethink from scratch.” This self-reflection helps correct errors in
difficult problems. The final solutions are selected based on calculated confidence scores, as shown in
Figure 5.

3.2 o1-Coder

o1-Coder (Zhang et al., 2024d), developed by Beijing Jiaotong University, aims to evaluate the per-
formance of OpenAI’s o1 model in coding tasks by adapting it to better address programming-related
problem-solving challenges. The goal is to enhance the model’s capabilities through focused improve-
ments. o1-Coder combines reinforcement learning (RL) with Monte Carlo Tree Search (MCTS) to
strengthen the model’s System-2 reasoning abilities. The system involves training a Test Case Generator
(TCG) for standardized testing, utilizing MCTS to generate reasoning-augmented code data, and iteratively

https://huggingface.co/Qwen/QVQ-72B-Preview
https://github.com/AIDC-AI/Marco-o1
https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://github.com/ADaM-BJTU/o1-Coder
https://github.com/zhentingqi/rStar
https://huggingface.co/deepseek-ai/DeepSeek-R1
https://arxiv.org/pdf/2501.04519
https://arxiv.org/pdf/2411.14405
https://arxiv.org/pdf/2412.00154
https://arxiv.org/pdf/2501.12599
https://arxiv.org/pdf/2501.12948

Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions

Dataset Number of Samples
Open-O1 CoT Dataset (Filtered) [OpenO1 Team, 2024] 45,125
Marco-o1 CoT Dataset (Synthetic) 10,000
Marco Instruction Dataset 5,141
Total 60,266

Table 1 | Overview of Marco Reasoning Datasets.

Figure 2 | The overview of Marco-o1.

ensures the model remains competent across a wide range of tasks, maintaining its general
e!ectiveness while significantly boosting its reasoning flair.

3. Solution Space Expansion via MCTS
We integrate LLMs with MCTS to enhance the reasoning capabilities of our Marco-o1 model:

• Nodes as Reasoning States: In the MCTS framework, each node represents a reasoning state of
the problem-solving process.

• Actions as LLM Outputs: The possible actions from a node are the outputs generated by the LLM.
These outputs represent potential steps or mini-steps in the reasoning chain.

• Rollout and Reward Calculation: During the rollout phase, the LLM continues the reasoning
process to a terminal state.

• Guiding MCTS: This reward score 𝐿 is used to evaluate and select promising paths within the

3

Figure 5: The overview of Marco-o1 (Zhao et al., 2024a). Macro-o1 is fine-tuned using a combination of three
datasets. During the MCTS inference stage, action strategies at two levels are utilized to achieve a balance between
efficiency and performance. The confidence score for each generated token ti is calculated by applying the softmax
function to its log probability along with the log probabilities of the top 5 alternative tokens. The overall reward
score v for the rollout sequence is then obtained by averaging the confidence scores across all tokens. The figure is
adapted from Zhao et al. (2024a).

refining the policy model to evolve from pseudocode to fully functional code. The model is still under
development, and further updates along with experimental results will be shared in future versions.

As illustrated in Figure 6, the o1-Coder framework consists of six key steps: 1. The process begins by
training a Test Case Generator (TCG), denoted as γTCG, to automatically create test cases based on the
given problem descriptions. 2. Next, Monte Carlo Tree Search (MCTS) is applied to the original code
dataset, producing a new dataset Dprocess. This dataset incorporates reasoning processes and a validity
indicator to distinguish correct from incorrect steps. 3. The dataset is then used to fine-tune the policy
model πθ, encouraging it to adopt a “think before acting” approach. 4. The reasoning data from the
previous step is used to initialize a process reward model (PRM), ρPRM, which evaluates the quality of
reasoning steps. 5. Both the PRM, ρPRM, and TCG, γTCG, provide rewards based on process and outcome,
respectively. This enables reinforcement learning to iteratively update the policy model πθ. 6. Finally,
the updated policy model generates new reasoning data, which is used to refine the PRM ρPRM, creating
a self-improving iterative cycle through steps 4, 5, and 6. This approach forms a feedback loop that
enhances the model’s reasoning and coding performance over time.

3.3 rStar-Math

rStar-Math (Guan et al., 2025), developed by Microsoft, demonstrates that small language models (SLMs)
can match or surpass the mathematical reasoning abilities of OpenAI’s o1 model, without the need for
distillation from larger models. This is achieved through “deep thinking” via Monte Carlo Tree Search
(MCTS), where an SLM-based math policy conducts test-time searches, guided by a process preference
model (PPM) also built on SLMs. The core advancements of rStar-Math lie in three key solutions
designed to overcome training challenges for the two SLMs: a code-enhanced Chain-of-Thought (CoT)
data synthesis method, a PPM training framework, and a self-evolution strategy. Extensive experiments
demonstrate significant improvements on the MATH benchmark. rStar-Math enhances the accuracy of
Qwen2.5-Math-7B from 58.8% to 90.0% and Phi3-mini-3.8B from 41.4% to 86.4%, outperforming o1-

Figure 2: Self-Play+RL training framework.

in this study. For code generation, this means first thinking through and writing out a detailed
pseudocode, which is then used to generate the final executable code. The advantages are two-
fold: adaptability, as the same pseudocode can lead to different concrete code implementations; and
controllable granularity, as adjusting the level of detail in the pseudocode can control the granularity
of the reasoning/search behavior.

The outlined framework is provided in Algorithm 1, which consists of six steps. (1) The first step is
training the test case generator (TCG) ωTCG, which is responsible for automatically generating test
cases based on the question. (2) In the second step, we run MCTS on the original code dataset to
generate code dataset with reasoning processes Dprocess, including a validity indicator to distinguish
between correct and incorrect reasoning steps. (3) Once we have data that includes the reasoning
process, the third step is to fine-tune the policy model εω, training it to behave in a “think before
acting” manner. (4) The reasoning process data can also be used to initialize the process reward
model (PRM) ϑPRM, which evaluates the quality of reasoning steps. (5) The fifth step is the most
crucial: with PRM ϑPRM providing process rewards and TCG ωTCG providing outcome rewards, the
policy model εω is updated with reinforcement learning. (6) In the 6th step, based on the updated
policy model, new reasoning data can be generated. This new data can then be used to fine-tune the
PRM again (4th step). Therefore, steps 4, 5, and 6 form an iterative cycle, where self-play continues
to drive model improvements. The flow between the six steps is illustrated in Fig. 2. The following
section will introduce each step in detail.

3 METHOD AND INTERMEDIATE RESULTS

3.1 TEST CASE GENERATOR TRAINING

3.1.1 OBJECTIVE

A Test Case Generator is a tool designed to automate the creation of input-output test cases, which
plays a critical role in supporting program verification in code generation tasks.

During the training phase, the correctness of the generated code is typically assessed with standard
input-output test cases. The pass rate of these test cases serves as a key metric for evaluating the
quality of the generated code and acts as an outcome reward signal to guide the training of the
policy model. This reward signal helps the model refine its generation strategy, thereby enhancing
its capability to produce accurate and functional code.

In the inference phase, when the trained model is tasked with code generation, standard test cases are
often not available to verify the correctness of the generated code. The test case generator mitigates

3

Figure 6: The overview of o1-Coder’s (Zhang et al., 2024d) Self-Play+RL training framework. It integrates a Test
Case Generator (TCG), Monte Carlo Tree Search (MCTS), and a Process Reward Model (PRM) to iteratively refine
the policy model πθ through reasoning-based reinforcement learning. The cycle involves generating reasoning data,
updating the PRM, and enhancing the model’s capability to produce high-quality reasoning code. The figure is
adapted from Zhang et al. (2024d).

preview by +4.5% and +0.9%, respectively. On the USA Math Olympiad (AIME), rStar-Math successfully
solves an average of 53.3% (8/15) of the problems, placing it within the top 20% of high school math
students.

As shown in Figure 7, rStar-Math trains a math policy SLM and a process preference model (PPM)
integrated with Monte Carlo Tree Search (MCTS) for deep thinking. The training involves three key
innovations. First, a code-augmented CoT data synthesis method uses MCTS rollouts to generate step-by-
step reasoning trajectories annotated with self-assigned Q-values. The policy SLM samples candidate
nodes, producing one-step CoTs and corresponding Python code. Only nodes with successful code
execution are retained, reducing errors. Q-values are assigned to each step based on its contribution,
ensuring accurate reasoning trajectories. Second, a PPM to enable reliable prediction of reward labels
for math reasoning steps. Rather than using noisy Q-values directly, the PPM distinguishes correct steps
from incorrect ones using preference pairs and optimizes its scoring with a pairwise ranking loss (Ouyang
et al., 2022). This improves the accuracy of stepwise reward assignment compared to traditional methods
(Chen et al., 2024b). Finally, a four-round self-evolution framework refines the policy model and PPM.
Starting with a dataset of 747k math word problems, each round uses the updated models to generate
better training data. This iterative process leads to: (1) a stronger policy SLM, (2) a more reliable PPM,
(3) improved reasoning trajectories, and (4) expanded data coverage for more challenging math problems.

3.4 Kimi-k1.5

Kimi-k1.5 (Team et al., 2025), developed by Moonshot AI, is a multi-modal LLM which represents a
significant advancement in scaling reinforcement learning (RL). The authors introduce a novel approach
by focusing on long context scaling, extending the context window of RL to 128k, and refining policy
optimization methods. Unlike traditional RL frameworks that rely on complex techniques such as
MCTS, value functions, and process reward models, Kimi-k1.5 establishes a streamlined and effective
RL framework. The model achieves state-of-the-art reasoning performance across various benchmarks
and modalities, rivaling OpenAI’s o1 (see Figure 8). Additionally, the authors introduce long2short
methods that utilize long-CoT techniques to enhance short-CoT models, significantly outperforming
existing models like GPT-4o and Claude Sonnet 3.5 by up to 550% (see Figure 9).

The development of Kimi-k1.5 involves several stages: pretraining, vanilla supervised fine-tuning

(a) step-by-step verified reasoning trajectory

Step 1 Step 2

MCTS-driven deep thinking

Answer step
 (correct)

One step

Apply Verifiers
(PPM/ python)

SLM

-0.5

0.8

0.6

0.7

PPM
question …

final step

..

full solutions

..
(b) Construction of per-step preference pairs based on Q-values

SLM-r1
PPM-augmented

MCTSPPM-r2 PPM-r3 PPM-r4

SLM-r2 SLM-r3 SLM-r4Terminal-guided
MCTS

Terminal-guided
MCTS

PPM-augmented
MCTS

Round 1 Round 2 Round 3 Round 4

..

(c) 4 rounds of self-evolution

Q-value
filtering

-0.70.5

1 1-1 -1 Answer step
 (wrong)

Figure 1: The overview of rStar-Math.

In the test-time compute paradigm, the key is to train a powerful policy model that generates promising
solution steps and a reliable reward model that accurately evaluates them, both of which depend
on high-quality training data. Unfortunately, it is well-known that off-the-shelf high-quality math
reasoning data is scarce, and synthesizing high-quality math data faces fundamental challenges. For
the policy model, it is challenging to distinguish erroneous reasoning steps from the correct ones,
complicating the elimination of low-quality data. It is worth noting that in math reasoning, a correct
final answer does not ensure the correctness of the entire reasoning trace [Lanham et al., 2023].
Incorrect intermediate steps significantly decrease data quality. As for the reward model, process
reward modeling (PRM) shows a great potential by providing fine-grained feedback on intermediate
steps [Lightman et al., 2023]. However, the training data is even scarcer in this regard: accurate
step-by-step feedback requires intense human labeling efforts and is impractical to scale, while those
automatic annotation attempts show limited gains due to noisy reward scores [Luo et al., 2024, Wang
et al., 2024c, Chen et al., 2024]. Due to the above challenges, existing distill-based data synthesis
approaches to training policy models, e.g., scaling up GPT4-distilled CoT data [Tang et al., 2024,
Huang et al., 2024], have shown diminishing returns and cannot exceed the capability of their teacher
model; meanwhile, as of today, training reliable PRMs for math reasoning remains an open question.

In this work, we introduce rStar-Math, a self-evolvable System 2-style reasoning approach that
achieves the state-of-the-art math reasoning, rivaling and sometimes even surpassing OpenAI o1 on
challenging math competition benchmarks with a model size as small as 7 billion. Unlike solutions
relying on superior LLMs for data synthesis, rStar-Math leverages smaller language models (SLMs)
with Monte Carlo Tree Search (MCTS) to establish a self-evolutionary process, iteratively generating
higher-quality training data. To achieve self-evolution, rStar-Math introduces three key innovations.

First, a novel code-augmented CoT data synthesis method, which performs extensive MCTS rollouts to
generate step-by-step verified reasoning trajectories with self-annotated MCTS Q-values. Specifically,
math problem-solving is decomposed into multi-step generation within MCTS. At each step, the
SLM serving as the policy model samples candidate nodes, each generating a one-step CoT and the
corresponding Python code. To verify the generation quality, only nodes with successful Python
code execution are retained, thus mitigating errors in intermediate steps. Moreover, extensive MCTS
rollouts automatically assign a Q-value to each intermediate step based on its contribution: steps
contributing to more trajectories that lead to the correct answer are given higher Q-values and
considered higher quality. This ensures that the reasoning trajectories generated by SLMs consist of
correct, high-quality intermediate steps.

Second, a novel method that trains an SLM acting as a process preference model, i.e., a PPM to
implement the desired PRM, that reliably predicts a reward label for each math reasoning step. The
PPM leverages the fact that, although Q-values are still not precise enough to score each reasoning
step despite using extensive MCTS rollouts, the Q-values can reliably distinguish positive (correct)
steps from negative (irrelevant/incorrect) ones. Thus the training method constructs preference pairs
for each step based on Q-values and uses a pairwise ranking loss [Ouyang et al., 2022] to optimize
PPM’s score prediction for each reasoning step, achieving reliable labeling. This approach avoids
conventional methods that directly use Q-values as reward labels [Luo et al., 2024, Chen et al., 2024],
which are inherently noisy and imprecise in stepwise reward assignment.

Finally, a four-round self-evolution recipe that progressively builds both a frontier policy model
and PPM from scratch. We begin by curating a dataset of 747k math word problems from publicly
available sources. In each round, we use the latest policy model and PPM to perform MCTS,

2

Figure 7: The overview of rStar-Math (Guan et al., 2025): (a) Star-Math uses Monte Carlo Tree Search (MCTS) for
“deep thinking,” where a math policy SLM guides test-time search, aided by a process reward model based on an
SLM. (b) MCTS rollouts assign Q-values to intermediate steps based on their contribution: steps that help more
trajectories reach the correct answer receive higher Q-values and are deemed higher quality. (c) Both the policy
SLM and process reward model (PPM) are developed from scratch and continuously refined to enhance reasoning
performance. The figure is adapted from Guan et al. (2025).

(SFT), long-CoT supervised fine-tuning, and reinforcement learning (RL). The primary innovation lies
in the RL phase, where the authors construct a high-quality RL prompt set designed to guide the model
toward robust reasoning while mitigating risks such as reward hacking and overfitting to superficial
patterns. This prompt set is characterized by three key properties: diverse coverage, balanced difficulty,
and accurate evaluability. During RL training, three critical strategies are employed:

• Online Policy Mirror Descent: A variant of this algorithm is used to optimize the training process
(Abbasi-Yadkori et al., 2019; Mei et al., 2019; Tomar et al., 2020).

• Length Penalty: A reward mechanism is introduced to control the rapid growth of token length,
thereby enhancing token efficiency.

• Sampling Methods: Two sampling techniques are utilized to improve training efficiency: (1)
Curriculum sampling: This method progressively trains the model from simpler to more complex
tasks, enhancing both training efficiency and model performance. (2) Prioritized sampling: This
strategy focuses on areas where the model underperforms by sampling problematic tasks more
frequently, proportional to their failure rates, thereby accelerating learning in weaker areas.

While long-CoT models demonstrate strong performance, they often require more test-time tokens
compared to standard short-CoT LLMs. To address this, the authors propose four methods to transfer the
reasoning capabilities of long-CoT models to short-CoT models, a challenge referred to as the long2short
problem. These methods include: (1) Model Merging: Combining a long-CoT model with a shorter
model by averaging their weights. (2) Shortest Rejection Sampling: Using the long-CoT model to
generate multiple responses to the same question and selecting the shortest correct response for SFT.
(3) Direct Preference Optimization (DPO): Forming pairwise preference data using positive (shortest
correct solution) and negative (longer solutions) samples for DPO training. (4) Long2short RL: A
two-phase training approach where, after standard RL training, a model with optimal performance and
token efficiency is selected for a second phase. In this phase, a length penalty is applied, and the maximum
response length is reduced to encourage more concise responses.

3.5 DeepSeek-R1

DeepSeek-R1 (DeepSeek-AI et al., 2025), developed by DeepSeek, is a state-of-the-art reasoning model
that achieves performance comparable to OpenAI’s o1 series models. This work pioneers the use of pure
reinforcement learning (RL) to enhance language model reasoning capabilities, focusing on self-evolution
without relying on supervised data. The authors first train DeepSeek-R1-Zero, a model derived from
DeepSeek-V3-Base, using large-scale RL without supervised fine-tuning (SFT). This preliminary model

KIMI K1.5:
SCALING REINFORCEMENT LEARNING WITH LLMS

TECHNICAL REPORT OF KIMI K1.5

Kimi Team

ABSTRACT

Language model pretraining with next token prediction has proved effective for scaling compute but
is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new
axis for the continued improvement of artificial intelligence, with the promise that large language
models (LLMs) can scale their training data by learning to explore with rewards. However, prior
published work has not produced competitive results. In light of this, we report on the training practice
of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques,
multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy
optimization methods are key ingredients of our approach, which establishes a simplistic, effective
RL framework without relying on more complex techniques such as Monte Carlo tree search, value
functions, and process reward models. Notably, our system achieves state-of-the-art reasoning
performance across multiple benchmarks and modalities—e.g., 77.5 on AIME, 96.2 on MATH
500, 94-th percentile on Codeforces, 74.9 on MathVista—matching OpenAI’s o1. Moreover, we
present effective long2short methods that use long-CoT techniques to improve short-CoT models,
yielding state-of-the-art short-CoT reasoning results—e.g., 60.8 on AIME, 94.6 on MATH500, 47.3
on LiveCodeBench—outperforming existing short-CoT models such as GPT-4o and Claude Sonnet
3.5 by a large margin (up to +550%).

Kimi k1.5 long-CoT OpenAI o1 OpenAI o1-mini QwQ-32B PreviewQVQ-72B-Preview

Vision

74.9
71 71.4

MathVista
(Pass@1)

70

77.3

70.3

MMMU
(Pass@1)

Code

94 94
88

62

Codeforces
(Percentile)

62.5
67.2

53.1

40.6

LiveCodeBench v5
24.12-25.2 (Pass@1)

Math
96.2 94.8

90 90.6

MATH 500
(EM)

77.5
74.4

63.6

50

AIME 2024
(Pass@1)

Figure 1: Kimi k1.5 long-CoT results.

ar
X

iv
:2

50
1.

12
59

9v
1

 [c
s.A

I]
 2

2
Ja

n
20

25

Figure 8: Results of Kimi-k1.5 (Team et al., 2025) long-CoT. The figure is adapted from Team et al. (2025).
Kimi k1.5 TECHNICAL REPORT

Kimi k1.5 short-CoT OpenAI 4o Claude 3.5 Sonnet DeepSeek V3LLaMA-3.1 405B-Inst.

General

CodeMath
47.3

33.4

LiveCodeBench v4 24.08-24.11
(Pass@1-COT)

36.3

28.4

40.5

31.1

Qwen2.5 72B-Inst.

87.4 87.2

MMLU (EM)

88.3 88.6 88.5
85.3

94.6

74.6

MATH-500 (EM)

78.3
73.8

90.2

80

60.8

9.3

AIME 2024 (Pass@1)

16

23.3

39.2

23.3

68 69.1

MMMU_val(Pass@1)

66.4 64.5
70.1

63.8

MathVista_test(Pass@1)

65.3
69.7

87.2 84.3

IF-Eval (Prompt Strict)

86.5 86 86.1 84.1

91.7
87.9

CLUEWSC (EM)

85.4 84.7
90.9 91.4 88.3

76

C-Eval (EM)

76.7

61.5

86.5 86.1

Qwen2-VL

Vision

Figure 2: Kimi k1.5 short-CoT results.

1 Introduction

Language model pretraining with next token prediction has been studied under the context of the scaling law, where
proportionally scaling model parameters and data sizes leads to the continued improvement of intelligence. (Kaplan
et al. 2020; Hoffmann et al. 2022) However, this approach is limited to the amount of available high-quality training
data (Villalobos et al. 2024; Muennighoff et al. 2023). In this report, we present the training recipe of Kimi k1.5,
our latest multi-modal LLM trained with reinforcement learning (RL). The goal is to explore a possible new axis
for continued scaling. Using RL with LLMs, the models learns to explore with rewards and thus is not limited to a
pre-existing static dataset.

There are a few key ingredients about the design and training of k1.5.

• Long context scaling. We scale the context window of RL to 128k and observe continued improvement of
performance with an increased context length. A key idea behind our approach is to use partial rollouts to improve
training efficiency—i.e., sampling new trajectories by reusing a large chunk of previous trajectories, avoiding
the cost to re-generate the new trajectories from scratch. Our observation identifies the context length as a key
dimension of the continued scaling of RL with LLMs.

• Improved policy optimization. We derive a formulation of RL with long-CoT and employ a variant of online
mirror descent for robust policy optimization. This algorithm is further improved by our effective sampling strategy,
length penalty, and optimization of the data recipe.

• Simplistic Framework. Long context scaling, combined with the improved policy optimization methods, estab-
lishes a simplistic RL framework for learning with LLMs. Since we are able to scale the context length, the learned
CoTs exhibit the properties of planning, reflection, and correction. An increased context length has an effect of
increasing the number of search steps. As a result, we show that strong performance can be achieved without
relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models.

• Multimodalities. Our model is jointly trained on text and vision data, which has the capabilities of jointly reasoning
over the two modalities.

Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models.
Specifically, our approaches include applying length penalty with long-CoT activations and model merging.

Our long-CoT version achieves state-of-the-art reasoning performance across multiple benchmarks and modalities—e.g.,
77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista—matching OpenAI’s o1. Our
model also achieves state-of-the-art short-CoT reasoning results—e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on
LiveCodeBench—outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin
(up to +550%). Results are shown in Figures 1 and 2.

2

Figure 9: Results of Kimi-k1.5 (Team et al., 2025) short-CoT. The figure is adapted from Team et al. (2025).

demonstrates significant reasoning improvements, with the pass@1 score on AIME 2024 increasing
from 15.6% to 71.0%. With majority voting, the score further rises to 86.7%, matching the performance
of OpenAI-o1-0912. To address issues such as poor readability, language mixing, and to further boost
reasoning performance, the authors introduce DeepSeek-R1. This enhanced model incorporates a small
amount of cold-start data and a multi-stage training pipeline, achieving performance on par with OpenAI-
o1-1217 (see Figure 10).

The RL training process for DeepSeek-R1-Zero employs Group Relative Policy Optimization (GRPO)
(Shao et al., 2024b), which eliminates the need for a critic model by estimating baselines from group
scores. The reward system is rule-based, consisting of two main components: accuracy rewards and
format rewards. The accuracy reward evaluates the correctness of responses, while the format reward
enforces the use of ‘<think>’ and ‘</think>’ tags to structure the reasoning process. During training, an
intermediate version of the model exhibited an "aha moment" (see Figure 11), where it learned to allocate
more time to reevaluate its initial approach, demonstrating the evolving reasoning capabilities facilitated
by RL.

The training process for DeepSeek-R1 consists of two alternating stages of SFT and RL, structured as
follows:

• Initial Cold Start SFT: The process begins with the collection of thousands of high-quality,
readability-focused long CoT datasets. These datasets are used to fine-tune DeepSeek-V3-Base,
establishing a robust foundation for subsequent RL training.

• First Reasoning-oriented RL Stage: The model undergoes large-scale reasoning-oriented RL,
leveraging the same methodology applied in DeepSeek-R1-Zero to enhance its reasoning capabilities.
Upon convergence, the resulting checkpoint is utilized to gather additional SFT data for the next
stage.

• Second SFT Stage: This phase focuses on further refining the model through a combination of
reasoning and non-reasoning data. For reasoning data, specialized prompts are curated, and reasoning
trajectories are generated via rejection sampling using the RL checkpoint from the previous stage. For
non-reasoning data, such as writing, factual QA, self-cognition, and translation, the DeepSeek-V3
pipeline is utilized, integrating portions of the DeepSeek-V3 SFT dataset. Finally, DeepSeek-V3-
Base is fine-tuned for two epochs using this comprehensive dataset to ensure optimal performance
across a wide range of tasks.

• Second RL Stage for all Scenarios: A final RL phase is conducted to align the model with
human preferences, enhancing its helpfulness and harmlessness while further refining its reasoning
abilities. Specifically, the model is trained using a combination of reward signals and diverse prompt
distributions to ensure robust and generalizable performance.

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-AI

research@deepseek.com

Abstract

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without super-
vised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities.
Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing
reasoning behaviors. However, it encounters challenges such as poor readability, and language
mixing. To address these issues and further enhance reasoning performance, we introduce
DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-
R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the
research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models
(1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

Figure 1 | Benchmark performance of DeepSeek-R1.

ar
X

iv
:2

50
1.

12
94

8v
1

 [c
s.C

L]
 2

2
Ja

n
20

25

Figure 10: Results of DeepSeek-R1 (DeepSeek-AI et al., 2025). The figure is adapted from DeepSeek-AI et al.
(2025).

4 Datasets

In this section, we provide a detailed overview of the construction processes for reasoning datasets that can
be used in developing reasoning LLMs like OpenAI o1. These datasets are typically constructed using one
or a combination of the following two strategies: the machine-generated, where a trained model provides
feedback, responses or grades, and the human-generated, where humans are asked to provide feedback.
Some datasets rely on a single strategy, while others combine both approaches. Datasets that we will cover
here include PRM800K (Swamy et al., 2024), O1-Journey (Qin et al., 2024), Self-Explore (Hwang et al.,
2024a), MARIO (Liao et al., 2024b), MathGenie (Lu et al., 2024), DeepSeekMath (Shao et al., 2024a),

Question: If 𝐿 > 1, then the sum of the real solutions of
√
𝐿 →↑

𝐿 + 𝑀 = 𝑀 is equal to

Response: <think>
To solve the equation

√
𝐿 →↑

𝐿 + 𝑀 = 𝑀, let’s start by squaring both · · ·(√
𝐿 →↑

𝐿 + 𝑀
)2

= 𝑀2 =↓ 𝐿 →↑
𝐿 + 𝑀 = 𝑀2.

Rearrange to isolate the inner square root term:
(𝐿 → 𝑀2)2 = 𝐿 + 𝑀 =↓ 𝐿2 → 2𝐿𝑀2 + (𝑀2)2 = 𝐿 + 𝑀 =↓ 𝑀4 → 2𝐿𝑀2 → 𝑀 + (𝐿2 → 𝐿) = 0
. . .
Wait, wait. Wait. That’s an aha moment I can flag here.
Let’s reevaluate this step-by-step to identify if the correct sum can be · · ·
We started with the equation:√
𝐿 →↑

𝐿 + 𝑀 = 𝑀
First, let’s square both sides:
𝐿 →↑

𝐿 + 𝑀 = 𝑀2 =↓ ↑
𝐿 + 𝑀 = 𝐿 → 𝑀2

Next, I could square both sides again, treating the equation: · · ·
. . .

Table 3 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,

allowing us to witness the power and beauty of reinforcement learning.

Drawback of DeepSeek-R1-Zero Although DeepSeek-R1-Zero exhibits strong reasoning
capabilities and autonomously develops unexpected and powerful reasoning behaviors, it faces
several issues. For instance, DeepSeek-R1-Zero struggles with challenges like poor readability,
and language mixing. To make reasoning processes more readable and share them with the
open community, we explore DeepSeek-R1, a method that utilizes RL with human-friendly
cold-start data.

2.3. DeepSeek-R1: Reinforcement Learning with Cold Start

Inspired by the promising results of DeepSeek-R1-Zero, two natural questions arise: 1) Can
reasoning performance be further improved or convergence accelerated by incorporating a small
amount of high-quality data as a cold start? 2) How can we train a user-friendly model that
not only produces clear and coherent Chains of Thought (CoT) but also demonstrates strong
general capabilities? To address these questions, we design a pipeline to train DeepSeek-R1. The
pipeline consists of four stages, outlined as follows.

2.3.1. Cold Start

Unlike DeepSeek-R1-Zero, to prevent the early unstable cold start phase of RL training from
the base model, for DeepSeek-R1 we construct and collect a small amount of long CoT data
to fine-tune the model as the initial RL actor. To collect such data, we have explored several
approaches: using few-shot prompting with a long CoT as an example, directly prompting
models to generate detailed answers with reflection and verification, gathering DeepSeek-R1-
Zero outputs in a readable format, and refining the results through post-processing by human
annotators.

In this work, we collect thousands of cold-start data to fine-tune the DeepSeek-V3-Base as
the starting point for RL. Compared to DeepSeek-R1-Zero, the advantages of cold start data

9

Figure 11: An intriguing "aha moment" observed in an intermediate version of DeepSeek-R1-Zero (DeepSeek-AI
et al., 2025), where the model demonstrates the ability to rethink its approach using an anthropomorphic tone.
This moment not only highlights the model’s evolving reasoning capabilities but also underscores the remarkable
potential and elegance of reinforcement learning in fostering advanced cognitive behaviors. The figure is adapted
from DeepSeek-AI et al. (2025).

Compute-Optimal Sampling (Bansal et al., 2024), MathScale (Tang et al., 2024) and Geo170K (Gao et al.,
2023). An overview of these datasets is shown in Table 3.

4.1 PRM800K

PRM800K (Swamy et al., 2024) is an open-source large-scale dataset consisting of step-level human
feedback labels, created using a combination of machine-generated and human-generated strategies. It
includes 800K step-level annotations drawn from 75K solutions to 12K problems sourced from the MATH
dataset. Each dataset instance comprises two primary components: "steps" and "labels". The "steps"
represent intermediate reasoning steps produced by the GPT-4 language model in a sequential format. The
"labels" are human-generated annotations for each step, categorizing them as correct (positive), incorrect
(negative), or ambiguous (neutral). The dataset was created through the following process:

1. Solution Generation: GPT-4 is used to generate step-by-step solutions to MATH problems.

2. Filtering: Only solutions with correct final answers were retained.

3. Human Annotation: Labelers assigned positive, negative or neutral labels to each individual step,
with a particular focus on "convincing wrong-answer" solutions - high-rated but incorrect examples,
as illustrated in Figure 12 - to maximize the utility of feedback.

4.2 O1-Journey

O1-Journey (Qin et al., 2024) is an open-source English reasoning dataset consisting of 677 instances,
of which 327 are allocated for training. It is also created using a combination of machine-generated
and human-generated strategies. Each instance in O1-Journey contains three components: "question",
"answer", and "longCOT". The "question" specifies the problem or task to be solved, the "answer"
provides the correct solution, and the "longCOT" offers a comprehensive reasoning process, including
intermediate steps, reflections, and corrections. The details for O1-Journey construction are as follows:

Dataset Data Source Data Scale Machine
Generated

Human
Generated Open-source

PRM800K (Swamy et al., 2024)1 MATH 800K annotations ✓ ✓ ✓1

O1-Journey (Qin et al., 2024)2 MATH, PRM800K 677 instances ✓ ✓ ✓2

Self-Explore (Hwang et al., 2024a) GSM8K, MATH Model-specific ✓ ✗ ✗

MARIO (Liao et al., 2024b)3 GSM8K, MATH, MetaMath 28.8K instances ✓ ✓ ✓3

MathGenie (Lu et al., 2024) GSM8K, MATH 170K qa pairs ✓ ✗ ✗

DeepSeekMath (Shao et al., 2024a)4 AlgebraicStack, arXiv, GitHub 120B tokens ✓ ✓ ✓4

Compute-Optimal Sampling (Bansal et al., 2024) GSM8K, MATH, etc. Model-specific ✓ ✗ ✗

MathScale (Tang et al., 2024)5 GSM8K, MATH 2M qa pairs ✓ ✗ ✓5

G-LLaVA (Gao et al., 2023)6 Geometry3K, GeoQA+ 170K instances ✓ ✗ ✓6

1 https://github.com/openai/prm800k
2 https://github.com/GAIR-NLP/O1-Journey
3 https://github.com/MARIO-Math-Reasoning/MARIO

4 https://github.com/deepseek-ai/DeepSeek-Math
5 https://github.com/XylonFu/MathScale
6 https://github.com/pipilurj/G-LLaVA

Table 3: An overview of currently widely-adopted reasoning datasets for LLMs.

Figure 12: A screenshot of the interface used to collect feedback in PRM800K. The figure is borrowed from Swamy
et al. (2024).

1. Reasoning Tree Construction: A pretrained policy model is used to generate reasoning trees for
examples in MATH and PRM800K. The reasoning trees will be further evaluated by a reward model
and incorrect trees will be discarded.

2. Reasoning Data Expansion: a multi-agent system is implemented to generate detailed reasoning
data. One agent produces reasoning steps, while another critic and provides feedback. This iterative
process ensures that reflections, backtracking, and revisions align with human-like thought processes.

3. Data Augmentation: Human annotators manually refine the extended reasoning data.

4.3 Self-Explore
Self-Explore (Hwang et al., 2024a) is a dataset designed to enhance the reasoning capabilities of large
language models, relying solely on machine-generated data. It leverages fine-grained rewards derived
from the model’s generated rationales, making the data scale specific to the model. The Self-Explore
process is detailed as follows:

1. Fine-tuning the Base Model: The process begins by fine-tuning a base model MSFT using an initial
human-curated dataset, such as GSM8K or MATH.

2. Generating Pairwise Dataset: The model then generates multiple rationales to create a dataset,
denoted as DGEN. By comparing predictions to the ground truth, correct and incorrect rationales are
identified, forming a pairwise dataset Dpair.

https://github.com/openai/prm800k
https://github.com/GAIR-NLP/O1-Journey
https://github.com/MARIO-Math-Reasoning/MARIO
https://github.com/deepseek-ai/DeepSeek-Math
https://github.com/XylonFu/MathScale
https://github.com/pipilurj/G-LLaVA

Dpair

Target Model

C1

ŷCORRECT ŷINCORRECT

Problem

C2 C3 C4 ...	

C1 C2 C3 C4 ...	

Pas
s

Problem + Step 1

C2 Step 2
First Pit

Correct Comple/on from the
Step Before the First Pit

Ques/on
+ All preceding steps

🔎

Joy can read 8 pages of a book in 20 minutes. How many hours
will it take her to read 120 pages?

Since 1 hour is 60 minutes, then 20 minutes is 20/60 =
1/3 of an hour.

If Joy can read 8 pages in 20 minutes, then she can read
8 x (1/3) = <<8*(1/3)=2.66>>2.66 pages in 1 hour.

Therefore, it will take her 120/2.66 =
<<120/2.66=44>>44 hours to read 120 pages.

The answer is 44

Firs
t

Pit🕳

Problem

ŷINCORRECT

Step 1: Success

Completes N Times

Step 2: Fail

Explora(on Result

Trains with

Dpair DpairDg-pair

Figure 13: Overview of SELF-EXPLORE (Hwang et al., 2024a). A pairwise dataset (Dpair) constructed through
outcome supervision uses incorrect rationales to guide the target model in generating multiple completions at
each step. If the correct answer is not produced from these completions, that step is identified as the first pit. By
leveraging the first pit, Dpair is transformed into a granular preference dataset (Dg-pair), providing more detailed
learning signals during training. The figure is borrowed from Hwang et al. (2024a).

Figure 14: The dataset format of MARIO (Liao et al., 2024b). A reformatting example combines text analyses with
corresponding code snippets in a single display. The figure is borrowed from Liao et al. (2024b).

3. Locating the "First Pit": A critical step involves detecting the initial flawed reasoning step, termed
the "first pit," within incorrect rationales. This is determined by examining continuations from each
step. If no continuation leads to the correct answer, the corresponding step is marked as the "first
pit," as illustrated in Figure 13. This process produces a detailed pairwise dataset Dg-pair.

4. Enhancing the Model: Finally, the Dg-pair dataset is employed for fine-grained preference learning
techniques, further refining the model’s reasoning capabilities.

Note that Self-Explore is not open-source.

4.4 MARIO

MARIO (Liao et al., 2024b) is an open-source mathematical reasoning dataset that integrates text analysis
and code snippets, derived from the GSM8K, MATH, and MetaMath datasets. It comprises approximately
28.8K solutions generated through GPT-4 annotations, human reviews, and self-training. The dataset is
structured in an HTML-like format, with text enclosed in <p> tags and code in <code> tags, as illustrated
in Figure 14. The study employs the REACT instruction framework to ensure that GPT effectively utilizes
external tools when required. The dataset was created through the following process:

1. Solution Generation for GSM8K and MATH: As depicted in Figure 15, initial solutions for these
datasets were generated using a large language model and subsequently verified by humans to correct
simple errors.

2. Self-Training for MATH: Self-training was applied to improve the coverage rate for MATH using an
additional sampling strategy.

3. Dataset Enhancement with MetaMath: An additional 240K transformed questions from MetaMath
were introduced, significantly enhancing the dataset’s diversity.

Figure 15: The data pipeline of Mario (Liao et al., 2024b). The data pipeline describes the generation process for
the GSM8K and MATH datasets. GPT-4 generates initial annotations, which are then verified by humans to correct
simple errors. For the MATH dataset, an extra sampling approach, based on a self-trained LLM, is used. The figure
is borrowed from Liao et al. (2024b).

4.5 MathGenie
MathGenie (Lu et al., 2024) is a dataset designed to generate synthetic mathematical problems aimed
at improving the mathematical reasoning skills of large language models. The resulting dataset, Math-
GenieData, comprises 170K question-solution pairs, including 110K sourced from GSM8K and 60K
from MATH. This dataset is utilized for fine-tuning various pre-trained models. The framework follows a
three-step process, as illustrated in Figure 16:

1. Iterative Solution Augmentation: A seed dataset of 15K math problems and solutions, derived
from GSM8K and MATH is expanded using a fine-tuned LLaMA-2 70B model. Through iterative
augmentation, diverse solutions are generated that significantly deviate from the originals, ensuring
greater variety and broader coverage.

2. Question Back-Translation: Augmented solutions are converted into new math questions using the
fine-tuned LLaMA-2 70B model. By leveraging solution constraints, the framework ensures that the
newly generated questions are both reliable and meaningful.

3. Verification-Based Solution Filtering: A solution generator, fine-tuned on the LLaMA-2 70B model,
produces code-integrated solutions for the newly generated questions. These solutions undergo a
rigorous verification process that integrates natural language and code rationales, ensuring that only
accurate solutions are retained.

Note that MathGenie is not open-source.

4.6 DeepSeekMath
The DeepSeekMath Corpus (Shao et al., 2024a) is an open-source, large-scale, high-quality mathematical
reasoning dataset containing 120 billion tokens. The dataset is generated by both machines and humans.
Its primary data source is Common Crawl, supplemented by contributions from AlgebraicStack, arXiv,

Verification-based Filtering

…

Step 3: Verification-Based Solution Filtering

Step 1 : Iterative Solution Augmentation

Solution Augmentation

Model (𝑀𝑡𝑒𝑥𝑡)

Seed Solutions (𝑆0) Solutions 1(𝑆1) Solutions 2 (𝑆2) Solutions K (𝑆𝐾)

Backtranslation Model

(𝑀𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑛𝑠)
Augmented Solutions (𝑆𝐴𝑢𝑔) Augmented Questions (𝑄𝐴𝑢𝑔)

Solution Generation and

Verification Model (𝑀𝑐𝑜𝑑𝑒)

Augmented Questions (𝑄𝐴𝑢𝑔)
Augmented Questions and Code

Integrated Solutions (𝑄𝐴𝑢𝑔, 𝑆𝑐𝑜𝑑𝑒
𝐴𝑢𝑔

)

Filtered Augmented Questions and

Code Integrated Solutions (𝑄𝐴𝑢𝑔, 𝑆𝑐𝑜𝑑𝑒
𝐴𝑢𝑔

)
Verification

Iterative Solution Augmentation

Question Backtranslation

Step 2: Question Backtranslation

Code-Integrated Solution
Generation

Figure 16: Framework of MathGenie (Lu et al., 2024). Step 1: The Iterative Solution Augmentation method adds
more examples to human-annotated solutions in the GSM8K and MATH datasets. Step 2: Question Back-translation
turns these solutions into new questions. Step 3: Verification-Based Solution Filtering selects reliable code-based
solutions by generating and verifying them through a series of validation steps. The figure is borrowed from Lu
et al. (2024).

Math Seed
Math Corpus

1. Train a FastText Model 2. Recall Math-Related Webpages
From Common Crawl

3. Discover Math-Related Domains4. Annotate Math-Related
URL Path From Labelers

Deduplicated Common Crawl
40B HTML pages

Figure 17: Pipeline of DeepSeekMath (Shao et al., 2024a). The iterative process for gathering math-related web
pages from Common Crawl. The figure is borrowed from Shao et al. (2024a).

GitHub, and other natural language texts. Designed to enhance language models’ mathematical reasoning
capabilities, the dataset is multilingual, with a particular focus on English and Chinese mathematical
content.

The dataset is constructed through an iterative process of data collection and refinement, as illustrated
in Figure 17:

1. Training the Classifier: Initially, a fastText-based classifier is trained using OpenWebMath as positive
examples and diverse web pages as negative examples. Subsequent classifier training is conducted
using the collected web pages.

2. Extracting Mathematical Content: The classifier extracts additional mathematical content from
Common Crawl, which is then refined through human annotation. To maintain quality and avoid data
contamination, web pages that include questions or answers from benchmarks are filtered out.

This iterative process enhances classifier accuracy and incrementally expands the dataset.

Figure 18: Overview of MathScale. MathScale starts with seed math questions and follows three steps: concept
extraction, concept graph construction, and mathematical reasoning data generation. This produces the MathScaleQA
dataset, which is used to train LLMs. The figure is borrowed from Tang et al. (2024).

4.7 Compute-Optimal Sampling
Compute-Optimal Sampling (Bansal et al., 2024) examines the effectiveness of synthetic data in enhanc-
ing the reasoning capabilities of language models (LMs). It compares data generated by weaker but
computationally cheaper (WC) LMs with data produced by stronger yet more computationally expensive
(SE) models. It uses MATH and GSM8K as seed datasets. Synthetic data is generated by sampling multiple
candidate solutions for each problem using either a WC model (e.g., Gemma2-9B) or an SE model (e.g.,
Gemma2-27B) under a fixed computational budget. Candidate solutions are filtered according to the
accuracy of the final answer, and the resulting data is utilized for supervised fine-tuning of LMs. The
study evaluates three fine-tuning paradigms:

1. Knowledge Distillation: A student LM acquires knowledge from synthetic data generated by a
teacher LM.

2. Self-Improvement: An LM improves its reasoning abilities using its own generated synthetic data.

3. Weak-to-Strong Improvement: A stronger LM improves its reasoning ability using synthetic data
generated by a weaker LM.

The results indicate that models fine-tuned on WC-generated data consistently outperform those fine-tuned
on SE-generated data across multiple benchmarks and fine-tuning paradigms. These findings challenge
the prevailing reliance on SE models for creating synthetic data, indicating that WC models could provide
a more computationally efficient approach for training sophisticated reasoning models.

4.8 MathScale
MathScale (Tang et al., 2024) is an open-source dataset designed to generate high-quality mathematical
reasoning datasets using large language models such as GPT-3.5. The resulting dataset, MathScaleQA, is
machine-generated and contains 2 million math question-answer pairs, developed through a three-step
process illustrated in Figure 18:

1. Concept Extraction: GPT-3.5 identifies "topics" (e.g., "Arithmetic operations") and "knowledge
points" (e.g., "Dot product properties") from 20,000 seed math questions. This process results in
2,000 topics and 8,000 knowledge points. The seed questions are sourced from the MwpBench
training set, which aggregates datasets such as GSM8K, MATH, TAL-SCQ, Math23k, Ape210k,
GaokaoBench-Math, and AGIEval.

2. Concept Graph Construction: A graph is created with nodes representing topics and knowledge
points, while edges indicate their co-occurrence. A random walk algorithm is applied to sample
novel combinations of topics and knowledge points.

Geometry Characteristic

Logic Form

Similar(Triangle(A,B,C),Triangle(C,B,D))

...

Info Items
Image Description

Q: Point B is in line AC, line AB is

x (x=1), line AC is y (y=3), line BC

is ?

A: Denote BC as z, we can build the

equation x+z=y, therefore z=y-x,

which simplifies to z=3-1=2. Thus,

BC is 2.

Q: Point B is in line AC, line AB

is u, line AC is 3, line BC is 2.

What is the value of u?

A: Denote AB as u, we can

determine u by solving u+2=3.

Therefore, u equals 1.

Reasoning DiversityGeometric Scalability Conditional Uniqueness

Q: Given that Point B lies on line segment

AC, with AB=1 unit and AC=3 units, what

is the length of segment BC?

A: BC can be determined by subtracting the

length of segment AB from the length of
segment AC. Since AB is 1 unit and AC is 3

units, BC = AC - AB, which equals 2 units.

1. Triangle ABC is similar

to triangle CBD.
…

Q: ⊙ O is the circumscribed circle

of △ABC, … ∠ABO=30.0, then

the size of ∠ACB is ?

A: In triangle AOB, OA=OB,
∠ABO=30°; Therefore,

∠AOB=180°- 2∠ABO=120°;
Therefore, ∠ACB=1/2 ∠AOB=60°

QA Example1

The diagram consists of a triangle ABC

inscribed within a circle O. Points A, B, and

C are the vertices of the triangle, and they

lie on the circumference of the circle. The

center of the circle is marked as point O.

Contrastive QA pairs

Geometric Description Generation via Information Recovery

Variable Substitution and Equation Solving Value Scaling Re-Formulating Condition as Unknown Sentence Paraphrase

Generate Contrastive QA Pairs for Basic Elements

Logic Structure UniquenessDiagram Representation Uniqueness

: Generate data using text-only LLM : Multimodal Geometric Alignment Data : Multimodal Geometric Instruction Data

Q: Is point D the lies on line BC?

A: No, … , point D lies on the line
segment AB.

Q: Point B is in line AC, line AB is

1, line AC is 3, line BC is ?

A: Line BC is 2.

QA Example2

QA Example2 QA Example2 QA Example2

Q: Point B is in line AC, line

AB is 2, line AC is 6, line BC is ?

A: The length of BC is 4 units,

obtained by subtracting AB (2

units) from AC (6 units).

Geometric Solution Generalizability

Figure 19: Framework for generating Geo170K (Gao et al., 2023). Multi-modal geometric data is generated based
on the features of geometry problems. The figure is borrowed from Gao et al. (2023).

3. Data Generation: Based on the sampled combinations, GPT-3.5 generates new math questions and
answers. The dataset undergoes a decontamination process to remove questions overlapping with the
MwpBench test set.

4.9 Geo170K
Geo170K (Gao et al., 2023) is an open-source synthetic multimodal geometry dataset containing over
170K instances, including 60K image-caption pairs and 110K question-answer (QA) pairs. The dataset
is designed to enhance multimodal large language models (MLLMs) in solving geometric problems by
integrating textual and visual inputs. It is entirely machine-generated.

The dataset comprises two primary components: "alignment data" and "instruction data" as depicted in
Figure 19. The construction of Geo170K follows these steps:

1. Data Generation: Existing geometry datasets (e.g., Geometry3K and GeoQA+) and ChatGPT are
used to generate new data, including image descriptions and QA pairs.

2. Image Descriptions: ChatGPT generates detailed descriptions of geometric images based on QA
pairs and creates contrastive QA pairs to improve the model’s understanding of geometric elements.

3. Instruction Data: The dataset is expanded by generating instruction-tuning data through processes
such as equation solving, value scaling, condition reformulation, and sentence paraphrasing.

4. Dataset Creation: Image descriptions, QA pairs, and instruction data are combined to form the
Geo170K dataset.

5 Training

As discussed earlier, reasoning datasets are meticulously structured, often representing step-by-step
problem-solving processes. Effectively training LLMs on such datasets requires methodologies that

Figure 20: A two-step learning approach proposed in ToRA (Gou et al., 2024). In the first step of Imitation Learning,
target LLM is prompted to tool-integrated Reasoning trajectories (TORA-CORPUS) and use this corpus to fine-tune
a model. In the second step of output space shaping, a teacher model is used to maintain strong reasoning while
keep diversified output trajectories. The figure is adapted from (Gou et al., 2024).

maximize the utility of each reasoning step, whether correct or erroneous. This section explores three key
training paradigms designed to leverage reasoning datasets for training o1-like reasoning LLMs:

1 Supervised Fine-tuning (SFT): A foundational technique that refines pre-trained LLMs by explicitly
teaching structured reasoning patterns through labeled (INSTRUCTION, ANSWER) pairs.

2 Reinforcement Learning from Human Feedback (RLHF): A refinement approach that aligns
LLM outputs with human preferences or quality signals, further enhancing reasoning skills through
iterative optimization.

3 Direct Preference Optimization (DPO): A simplified alternative to RLHF that directly optimizes
fine-tuned LLMs for preferred reasoning outputs without requiring intermediate reward modeling.

A summary of each of these paradigms is presented in Table 4. Below we present their methodologies,
strengths, and contributions to reasoning-focused training in details.

5.1 Supervised Fine-tuning

Supervised Fine-tuning (SFT) serves as the cornerstone for developing reasoning capabilities in LLMs.
By utilizing structured (instruction, answer) pairs, SFT provides explicit guidance, enabling models to
learn systematic reasoning patterns and produce accurate outputs across complex reasoning tasks. The
process typically begins with a pre-trained LLM, which embodies extensive general knowledge and
linguistic understanding. SFT fine-tunes these models on task-specific datasets, emphasizing logical
reasoning, problem-solving, and domain-specific expertise. These datasets often reflect deterministic
reasoning frameworks, enabling the model to generate consistent and interpretable outputs for tasks
such as mathematical problem-solving, program synthesis, and logical deduction. To further optimize
performance, SFT is frequently integrated with complementary training paradigms. For instance, multi-
task fine-tuning leverages diverse datasets to improve generalization, while curriculum learning structures
training data to progressively increase task difficulty. This adaptability allows SFT to be tailored to
specific reasoning requirements, making it a versatile and essential component of LLM training.

ToRA is a series of Tool-integrated Reasoning Agents designed to address the persistent challenges in
mathematical problem-solving by combining natural language reasoning with program-based tool use
(Gou et al. (2024)) . As demonstrated in Figure 20, ToRA leverages SFT on curated tool-use trajectories
from mathematical datasets such as GSM8k and MATH, enabling models to interleave natural language

Paper Key Innovation Main Techniques

Sec. 5.1 Supervised Fine-tuning (SFT)
ToRA
(Gou et al., 2024)

Tool-integrated Mathematical Focused
Reasoning Agents

Imitation Learning, Output Space Shaping

AlphaLLM
(Tian et al., 2024a)

Self Improving Training SFT with Monte Carlo Tree Search

MARIO
(Liao et al., 2024a)

Mathematical Reasoning Framework Data Enhancement with GPT-4, Human Re-
view, and Self-training

Sec. 5.2 Reinforcement Learning from Human Feedback (RLHF)
Self-Critiquing
(Saunders et al., 2022a)

Fundations of Language Model Self-
Critiquing

AI-assisted Human Feedback,

OVM
(Yu et al., 2023)

Evaluating the Potential of Incomplete Rea-
soning Paths

Outcome-supervised Value Models

PPO-MCTS
(Liu et al., 2024b)

Value-Guided Decoding trhough PPO Proximal Policy Optimization, Monte
Carlo Tree Search

MATH-SHEPHERD
(Wang et al., 2024b)

Eliminatioin of Human Annotation step-wise verification through MCTS

Qwen-2.5-math
(Zhang et al., 2025)

Enhanced Process Reward Model LLM-as-a-judge

Roadmap to o1
(Zeng et al., 2024)

Combination of Various Techniques to Re-
produce o1

Policy Initialization, Reward Shaping, Pol-
icy Gradient

PROCESSBENCH
(Zheng et al., 2024)

Benchmark for Error Identification in
Mathematical Reasoning

Step-level Error Detection

PRMBENCH
(Song et al., 2025)

Fine-grained Benchmark for Process Re-
ward Models

Multi-dimensional Evaluation Benchmark

Sec. 5.3 Direct Preference Optimization (DPO)
CPO
(Zhang et al., 2024c)

Fine-tuning CoT reasoning with ToT Tree-of-Thoughts framework, Paired pref-
erence fine-tuning

SVPO
(Chen et al., 2024c)

Step-level preferences for reasoning im-
provement

MCTS for step-level preferences, Value
model integration

PPO-MCTS
(Liu et al., 2024b)

Value-guided decoding during inference PPO value network MCTS

Self-Explore
(Hwang et al., 2024b)

Self-guided Learning with Fine-grained Re-
wards

First-pit Identifications

Agent Q
(Putta et al., 2024)

Enhanced Agentic reasoning MCTS with AI feedback, Offline DPO

Table 4: An overview of LLM Training Techniques (Sec. 5).

reasoning with external computational tools, including symbolic solvers and libraries. This approach
harnesses the semantic analysis and planning strengths of natural language while utilizing tools for precise
computation and symbolic manipulation. To overcome the limitations of traditional SFT, which often
restricts the diversity of output trajectories, the authors introduce output space shaping. This technique
supplements imitation learning with a broader set of self-sampled and corrected trajectories, ensuring
flexibility and robustness in reasoning. The result is a suite of models that achieve significant performance
improvements, including a 22% absolute gain over prior state-of-the-art WizardMath-70B on the MATH
dataset. ToRA-Code-34B also surpasses GPT-4’s CoT results and matches GPT-4’s performance on
solving problems with code, achieving an unprecedented accuracy exceeding 50% on the MATH dataset.

AlphaLLM proposed in Tian et al. (2024a), is a self-improving framework that integrates Monte Carlo
Tree Search with LLMs to enhance reasoning capabilities without additional annotations. Leveraging
SFT, AlphaLLM uses its imagination component to synthesize prompts, addressing data scarcity issues
common in reasoning tasks. To optimize the text generation process, the authors introduce ηMCTS,
which formulates text generation as an options-over-Markov Decision Process (MDP) problem, improving
search efficiency by reducing the search depth and employing techniques like state merging and adaptive
branching. Additionally, a trio of critic models guides the search by evaluating expected rewards,
node correctness, and overall trajectory outcomes. These critics dynamically utilize tools for tasks like
arithmetic and code execution, ensuring accurate feedback during the search. AlphaLLM constructs
high-reward trajectories using ηMCTS and integrates them into training data, forming a self-improving
loop through iterative fine-tuning. Experimental results demonstrate substantial performance gains on
mathematical reasoning tasks, with improvements from 57.8 to 92.0 on GSM8K and from 20.7 to 51.0 on
MATH when starting from LLaMA-2-70B and WizardMath-70B-V1.0.

MARIO is a pipeline for fine-tuning LLMs on mathematical reasoning tasks using a novel dataset that
integrates both text analysis and code execution (Liao et al. (2024a)). The authors address limitations in
traditional fine-tuning approaches by enhancing data quality through a combination of GPT-4 annotations,
human review, and self-training, correcting errors in datasets such as GSM8K and MATH. As demonstrated
in Figure The proposed pipeline leverages SFT to optimize all model parameters using this curated
dataset, focusing on generating precise reasoning steps alongside correct solutions. To further enhance
performance, MARIO incorporates multi-task fine-tuning with LoRA, which allows the model to evaluate
the validity of generated solutions through a lightweight binary classification layer while maintaining
generative capabilities. This dual-role approach reduces computational costs and simplifies deployment
by enabling a single model to both generate and evaluate solutions. Experimental results demonstrate
significant improvements, with a 7B-parameter MARIO model achieving state-of-the-art accuracy on
GSM8K and MATH datasets.

5.2 Reinforcement Learning with Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF) has emerged as a critical paradigm for aligning
large language models with human preferences, enabling improved reasoning and alignment capabilities.
By incorporating iterative feedback and leveraging reinforcement learning techniques, RLHF enhances the
models’ ability to evaluate, refine, and generate outputs aligned with human expectations. Recent works
have advanced this approach by introducing innovative frameworks for training reward models, integrating
guided decoding, and enabling self-improvement without reliance on extensive human annotations.

5.2.1 Methodological Innovations in RLHF
Building on the foundational principles of supervised fine-tuning, RLHF takes reasoning enhancement
a step further by introducing dynamic, iterative learning processes. Unlike static fine-tuning methods,
RLHF relies on human or model-generated feedback to refine intermediate outputs, ensuring that models
not only produce accurate results but also align with desired human preferences. This transition from fixed
data-driven optimization to interactive, feedback-based refinement has enabled significant advancements
in reasoning tasks. In this subsection, we delve into innovative RLHF frameworks that address challenges
such as error propagation, long-horizon planning, and the integration of preference-aligned training
objectives.

Self-Critiquing (Cobbe et al. (2021a)) is one of the foundational works by OpenAI, introducing verifiers
to evaluate the correctness of model-generated solutions. This approach addresses a core limitation of
LLMs: errors in multi-step reasoning that propagate and lead to irrecoverable mistakes. By training
verifiers to rank candidate solutions during inference, the method ensures that the most accurate output
is selected, achieving performance improvements equivalent to a 30-time increase in model size. The
introduction of GSM8K, a dataset of 8.5K diverse grade-school math problems, has since become a
standard benchmark for evaluating reasoning capabilities in mathematical challenges. Building upon
previous work that introduced verifiers to assess model-generated solutions, OpenAI’s subsequent research

Figure 21: Left: traditional greedy decoding from a PPO policy does not satisfy the task constraint. Right:
PPO+MCTS with the same PPO policy and additional value model satisfies the task constraint, where V and Q are
derived from the output of the PPO value model. The figure is borrowed from (Liu et al., 2024b).

delved deeper into enhancing human evaluators’ capabilities through self-critiquing models. In their
2022 study, Saunders et al. (2022a) fine-tune large language models to produce natural language critiques
of their own outputs, particularly focusing on topic-based summarization tasks. This work represents
a foundational step in incorporating human feedback into AI systems at scale, addressing the inherent
challenges of evaluating complex outputs in tasks such as summarization. The authors fine-tune large
language models (LLMs) to generate natural language critiques, which help evaluators detect flaws in
topic-based summaries, uncovering up to 50% more errors compared to unaided human evaluations. These
critiques are effective for both naturally occurring flaws in model-generated content and intentionally
misleading summaries. The study reveals that larger models excel at generating critiques, demonstrating
an ability to self-assess and refine their own outputs. By integrating critiques as feedback, these models
achieve significant improvements in summarization quality, highlighting the potential for self-improvement
through internal feedback mechanisms. This approach scales favorably with model size, with larger
models maintaining their critique capabilities despite producing more complex, harder-to-assess outputs.
The authors also introduce the Generator-Discriminator-Critique (GDC) framework to evaluate gaps
between a model’s ability to generate, discriminate, and critique outputs. Findings indicate that even
state-of-the-art models possess latent knowledge that they fail to articulate effectively as critiques, pointing
to opportunities for further development in critique generation.

OVM (Yu et al. (2023)) proposes Outcome-supervised Value Models, expanding on the use of human
feedback, which improves reasoning by evaluating incomplete reasoning paths rather than step-level
correctness. Unlike traditional approaches that assess step-level correctness, OVM emphasizes evaluating
the potential of incomplete reasoning paths, aiming to guide models toward accurate final answers. This
methodology aligns with value-based evaluation in reinforcement learning, where the future-oriented
perspective enhances decision-making for long-horizon tasks. The OVM framework eliminates the need
for step-level correctness annotations, leveraging outcome supervision to train a value model that predicts
the overall correctness of a reasoning path. Experiments on multi-step mathematical reasoning datasets,
such as GSM8K and Game of 24, demonstrate the efficacy of OVM. Notably, the OVM-7B model
achieves state-of-the-art performance with 84.7% accuracy on GSM8K and 78.7% success on Game of 24,
surpassing models up to 13B parameters without relying on GPT-4, external datasets, or code execution.

PPO-MCTS is a novel value-guided decoding algorithm that enhances text generation by combining
Proximal Policy Optimization (PPO)-trained policies with Monte Carlo Tree Search (Liu et al. (2024b)).
As demonstrated in Figure 21, unlike traditional PPO approaches, where the value model is discarded
after training, PPO-MCTS retains and utilizes the value network to evaluate partial output sequences
during inference. This approach aligns the training and test-time evaluation mechanisms, reducing
mismatches and improving the preferability of generated text. The authors introduce critical modifications
to MCTS, such as initializing child action values from parent node values , to ensure efficient exploration.
Experiments across four text generation tasks, including sentiment steering, toxicity reduction, knowledge
introspection, and chatbot generation, demonstrate the efficacy of PPO-MCTS. For instance, on sentiment
steering tasks, PPO-MCTS improves success rates by 30% absolute over direct PPO sampling, while
human evaluations consistently favor PPO-MCTS outputs. The algorithm also reduces toxicity by 34%
relative and generates more useful responses in QA tasks. These results highlight the underutilized
potential of PPO value models in inference and establish guided decoding via MCTS as a powerful
technique to improve reasoning and alignment in RLHF-trained LLMs.

Qwen-2.5-math proposes enhancements to Process Reward Models (PRMs) for mathematical reasoning
by addressing limitations in Monte Carlo estimation and Best-of-N (BoN) evaluation (Zhang et al.
(2025)). The authors argue that past MC estimation for generating noisy data undermines step-wise
error verification, and identify biases in BoN evaluation, which prioritize outcome-based metrics over
process-level correctness. To mitigate these issues, they introduce a consensus filtering mechanism
that integrates MC estimation with LLM-as-a-judge for efficient data synthesis and propose combining
BoN with step-wise benchmarks like PROCESSBENCH for comprehensive evaluation. Their approach
significantly improves error identification and model generalization, setting new benchmarks for process
supervision in reasoning tasks.

MATH-SHEPHERD proposed by Wang et al. (2024b), is a process reward model for mathematical
reasoning that eliminates the need for human annotations by automatically constructing step-wise supervi-
sion data using MCTS. Unlike prior PRM approaches, MATH-SHEPHERD evaluates the correctness of
each step based on its potential to deduce the correct final answer, enabling scalable training. It is applied
in two scenarios: verification, where it reranks outputs to improve accuracy, and reinforcement learning,
where it refines LLMs via step-by-step Proximal Policy Optimization. Experiments on GSM8K and
MATH demonstrate substantial gains for open-source LLMs, with Mistral-7B achieving 84.1% accuracy
on GSM8K and 33.0% on MATH with PPO, further improving to 89.1% and 43.5% with verification.
These results highlight the potential of automated process supervision for advancing reasoning capabilities
in LLMs without reliance on manual annotations.

Roadmap to o1 (Zeng et al. (2024)) proposes a comprehensive framework for reproducing the reasoning
capabilities of OpenAI’s o1 model through reinforcement learning, focusing on policy initialization,
reward design, search, and learning. Building on prior work like (Saunders et al., 2022a) and leveraging
techniques including as Monte Carlo Tree Search and policy gradient methods, this work outlines how
these components collectively enable human-like reasoning, iterative self-correction, and exploration of
complex solution spaces. Policy initialization equips models with systematic reasoning behaviors, while
reward design provides dense signals to guide learning and search. Search generates high-quality training
data during both training and testing phases, and learning integrates these insights to refine policies
without the need for costly human annotations. With these techniques, the paper charts a path toward
achieving strong reasoning abilities akin to o1, providing a blueprint for future open-source and advanced
LLM projects.

5.2.2 Evaluation and Benchmarking for RLHF
As RLHF techniques grow more sophisticated, robust evaluation mechanisms are crucial to measure their
effectiveness and identify areas for improvement. This section examines efforts to evaluate RLHF through
comprehensive benchmarks and datasets designed to assess models’ ability to detect errors, align with
human preferences, and generalize to complex reasoning tasks.

PRM800K is an early work conducted by OpenAI (Lightman et al. (2023)), which investigates pro-
cess supervision versus outcome supervision in training reward models for multi-step reasoning tasks,
emphasizing the significance of fine-grained feedback in RLHF. Using the challenging MATH dataset, the
authors demonstrate that process supervision, which provides feedback for each reasoning step, signif-
icantly outperforms outcome supervision, achieving a 78.2% problem-solving rate on a representative
test subset. They further introduce , a large-scale dataset containing 800,000 step-level human feedback
labels, enabling detailed evaluation and training of process reward models (PRMs). The study highlights
that PRMs trained with process supervision are more reliable, better aligned with human reasoning, and
less prone to using flawed intermediate steps to arrive at correct final answers.

ProcessBench (Zheng et al. (2024)) is a benchmark targeting the identification of erroneous steps in
mathematical reasoning, particularly in challenging problems like competition-level math. With 3,400 test
cases and human-annotated step-level error labels, PROCESSBENCH ensures robust evaluation through
its emphasis on problem diversity, large-scale expert annotations, and a straightforward protocol for
detecting the first incorrect step. The authors assess two model types: process reward models (PRMs) and
critic models, revealing that current PRMs underperform on challenging problems compared to general
language models like GPT-4o and QwQ-32B-Preview. ProcessBench highlights the limitations of existing
PRMs and demonstrates the potential of general models in automated reasoning assessment, fostering
advancements in scalable oversight.

PRMBench (Song et al. (2025)) is a comprehensive benchmark designed to evaluate PRMs in fine-
grained error detection across reasoning tasks. Featuring 6,216 problems and 83,456 step-level labels,
PRMBench assesses PRM performance across three primary domains—simplicity, soundness, and sensi-
tivity—further divided into nine sub-categories, such as redundancy detection and deception resistance.
The dataset emphasizes diverse error types, ensuring robust evaluations. Experiments involving 15 models,
including PRMs and state-of-the-art general-purpose LLMs, reveal critical limitations in current PRMs,
with even the strongest models marginally outperforming random baselines. This highlights substantial
room for improvement, particularly in nuanced error detection and multi-solution consistency. By offering
a toolkit for automated evaluation and data generation, PRMBench paves the way for advancing reliable
process-level evaluation frameworks, especially in reasoning-intensive RLHF scenarios.

5.3 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) (Rafailov et al., 2024; Xiao et al., 2024; Amini et al., 2024) is an
emerging training paradigm designed as a simpler alternative to RLHF. Unlike RLHF, which relies on
reward modeling and reinforcement learning algorithms like Proximal Policy Optimization (PPO), DPO
directly optimizes a language model’s outputs to align with human preferences by fine-tuning the model
on comparison data. This approach eliminates the complexity of learning a reward function and instead
leverages pairwise preference data to improve the quality and alignment of generated outputs, offering an
efficient and scalable solution for enhancing reasoning capabilities in LLMs.

CPO proposed by Zhang et al. (2024c), is a novel fine-tuning method that enhances CoT reasoning
in LLMs by leveraging preference information from the Tree-of-Thought (ToT) framework. While ToT
improves reasoning quality by exploring multiple reasoning paths through tree search, it incurs high
inference costs. CPO addresses this limitation by extracting and utilizing the inherent preference data
generated during ToT’s search process. As demonstrated in Figure 22, At each reasoning step, thoughts
included in the best-discovered paths are marked as preferred, while alternative thoughts are labeled as
dispreferred. These paired preference data are used to fine-tune LLMs with DPO, aligning CoT reasoning
with ToT’s strategic depth without increasing inference complexity. Experiments on seven reasoning
datasets, including question answering, fact verification, and arithmetic tasks, show that CPO significantly
enhances LLM reasoning capabilities, achieving performance comparable to or better than ToT while
being over 50 times faster at inference. This work highlights the potential of integrating DPO with CoT to
achieve efficient and effective reasoning in LLMs.

Figure 22: Comparison between the reasoning process of CoT, ToT, and Chain-of-Preference Optimization (CPO).
In CoT, the model generates a single reasoning path sequentially, while ToT explores multiple paths at each step,
retaining only the top-ranked nodes and pruning the rest. CPO builds on ToT by using its search tree to generate
preference data, with preferred nodes marked by trophies. The figure is borrowed from (Zhang et al., 2024c).

SVPO proposed by (Chen et al., 2024c) offers a fine-grained approach to preference learning by focusing
on step-level preferences rather than solution-level annotations through Step-level Value Preference
Optimization. Unlike existing methods that rely heavily on costly, coarse-grained annotations from models
like GPT-4, SVPO employs MCTS to autonomously identify step-level preferences during the reasoning
process. By analyzing Q-values at each step, SVPO highlights specific reasoning errors and provides
tailored signals for improvement. Additionally, SVPO integrates a value model alongside DPO, where the
value model aids in navigating effective reasoning paths and refines the learning process. This dual focus
on step-level granularity and value integration allows SVPO to bypass labor-intensive annotations while
achieving superior mathematical reasoning capabilities, outperforming state-of-the-art models and even
rivaling GPT-4 performance on 7B LLMs. The framework demonstrates that step-level preferences provide
deeper insights into model reasoning errors and substantially enhance decision-making in multi-step tasks.

PPO-MCTS is a novel approach that enhances Proximal Policy Optimization (PPO) by integrating
Monte Carlo Tree Search for value-guided decoding (Liu et al. (2024b)). While previous works like Chain
of Preference Optimization leverage preference data during training, PPO+MCTS extends this concept
to inference by utilizing the PPO-trained value network to evaluate and guide partial reasoning paths,
aligning outputs more closely with human preferences. This method reduces mismatches between training
and inference and improves text generation across tasks such as sentiment steering, toxicity reduction, and
knowledge introspection. For instance, PPO+MCTS achieves a 30% absolute success rate improvement
in sentiment steering and reduces toxicity by 34% relative, significantly outperforming standard PPO. By
retaining and utilizing value models during inference, PPO+MCTS demonstrates how preference-driven
optimization can further enhance alignment and controllability in RLHF-trained models.

Self-Explore , proposed by Hwang et al. (2024b), is a novel approach to enhance the mathematical
reasoning capabilities and overcome the issues of relying on external annotations, especially manual
annotation. This approach uses fine-grained rewards derived from self-generated rationales, without
relying on external annotations or proprietary models. The method focuses on identifying the "first
pit", or the initial incorrect step in a reasoning path, and uses this information to construct granular
step-level preference datasets for DPO. By training the model to reduce the likelihood of generating
these flawed steps while favoring correct reasoning paths, Self-Explore aligns model outputs with step-
by-step improvement. The framework employs the LLM itself as a self-guided explorer to identify pits
through iterative sampling and refines its predictions by applying a step-level preference learning objective.
Experiments on GSM8K and MATH benchmarks demonstrate significant improvements, with accuracy
gains of up to 13.19% on GSM8K and 3.54% on MATH compared to supervised fine-tuning.

Figure 23: Self-Explore framework overview. Starting from a pairwise dataset built via outcome supervision, the
target model generates multiple completions at each step. If no completion reaches the correct answer, the step is
identified as the first pit. The dataset is then reorganized into a granular preference dataset enhancing training with
finer-grained learning signals. The figure is borrowed from (Hwang et al., 2024b).

AgentQ (Putta et al. (2024)) introduces a novel framework that enhances autonomous AI agents by
combining agentic reasoning with DPO to improve performance in dynamic, multi-step environments.
The framework addresses challenges such as compounding errors, sparse rewards, and limited exploration
inherent in traditional supervised fine-tuning approaches. Agent Q employs Monte Carlo Tree Search to
guide exploration, leveraging an LLM as a base model for generating rationales and actions. The novelty
of this search process is that it is augmented with AI feedback, which provides process-level rewards
to refine decision-making and address credit assignment issues. To further improve, Agent Q utilizes
the traces from successful and unsuccessful trajectories to construct preference pairs for offline DPO,
enabling the model to learn from both positive and negative outcomes. Experiments on the WebShop
benchmark and real-world booking environments demonstrate significant gains: the model’s success rate
improves from 18.6% to 81.7% in zero-shot booking tasks, further increasing to 95.4% with online search
capabilities, even outperforming GPT-4. This work establishes a powerful combination of search and
learning, marking a substantial advance in developing reliable, reasoning-capable autonomous agents for
real-world tasks.

5.4 Discussion on how training techniques relate to reasoning

Bridging the Pre-training vs. User Objective Gap. Fine-tuning exposes the model to datasets with
structured tasks, step-by-step solutions, and explicit rationales (Wang et al., 2022). During fine-tuning, the
model learns to produce well-organized, human-like reasoning steps rather than just continuing text. The
fine-tuned model more consistently engages in processes that approximate human thought patterns such
as identifying salient information, extracting symbolic structures, or performing multi-step inferences.

Integration of Domain-Specific Knowledge and Reasoning. Another advantage of fine-tuning is its
capacity for domain adaptation (Peng et al., 2023; Zhou et al., 2023). Supervised fine-tuning allows one to
incorporate specialized knowledge into the model’s representations (Yang et al., 2023; Sun et al., 2023b).
This partial re-optimization ensures that the model retains its broad language proficiency while follows
domain constraints, interpret specialized terminology, and handle domain-specific reasoning.

Instruction-based Fine-tuning for Structured Reasoning. Instruction-based fine-tuning could improve
chain-of-thought capabilities (Xu et al., 2023). By training on instructions that embody exemplar
reasoning processes, LLMs can internalize structured logical flows and reflect them back in their own
outputs (Honovich et al., 2022; Kung and Peng, 2023). This mechanism could be useful for tackling
complex, multi-step tasks like math derivations, scientific question answering, or code generation, where
a “reasoning trace” is central to correctness (?Li et al., 2023).

Policy, Rewards, and Iterative Fine-Tuning. From an RL perspective, an LLM’s behavior is captured
by its policy, which is iteratively updated to produce more desirable outputs. In contrast to supervised
approaches, which penalize deviations from a single reference answer, RL-based methods focus on
rewards: scalar feedback signals indicative of the quality of generated text (Schulman et al., 2017; Ouyang
et al., 2022). These rewards can be derived from human annotations (e.g., Reinforcement Learning from
Human Feedback, RLHF) or automated signals (e.g., Reinforcement Learning from AI Feedback, RLAIF).
In either case, the reward model provides an assessment of how relevant, correct, or helpful the LLM’s
outputs appear. Policy optimization algorithms such as Proximal Policy Optimization (PPO) then adapt
the LLM parameters to maximize these rewards. By selectively rewarding coherent reasoning steps or
well-articulated justifications, RL enhances the chain-of-thought reasoning of LLMs (Wei et al., 2023;
Saeidi et al., 2024).

Strengthening Reasoning Through Exploration and Uncertainty. A key advantage of RL for large
language models lies in its inherent exploration capabilities (Lee et al., 2023). Instead of forcing an LLM
to converge prematurely to a single output, RL-based methods encourage the model to sample multiple
plausible solutions and assess their respective merits. By doing so, the model does not merely reproduce the
highest-likelihood sequence according to its pre-training distribution; it is guided to probe less obvious or
novel reasoning pathways that might yield more insightful, accurate, or creative responses. Over multiple
training cycles, the model refines its judgment of how to balance exploration and exploitation: it becomes
adept at venturing beyond typical patterns when beneficial, while still capitalizing on well-understood
reasoning heuristics (Rafailov et al., 2024).

Addressing Multi-Objective Constraints and Alignment. Reasoning tasks often require LLMs to
navigate conflicting objectives: they must be helpful while remaining harmless, or accurate yet concise.
RL provides a natural way to incorporate multi-objective constraints through carefully designed reward
functions that capture multiple dimensions of quality, such as factual correctness, style, safety, and user
satisfaction. By decomposing these objectives and assigning corresponding reward signals, an LLM
can learn to weigh them appropriately. When combining these multi-faceted objectives, advanced RL
strategies (e.g., Safe RLHF or Conditional Online RLHF) help mitigate the risk of “reward hacking,”
wherein a model might overfit to a single objective at the expense of others (Amodei et al., 2016).

6 Inference

Multi-step reasoning tasks are prone to errors at any step, as small mistakes can cascade into incorrect
final answers. To address this, reasoning LLMs often generate multiple reasoning paths for a given
input question during the inference stage and choose the answer that aligns best with the most logically
consistent and broadly supported reasoning steps.

In this section covers the following three widely used techniques in reasoning LLMs, which we think
are crucial in building o1-like reasoning models:

1 Tree of Thoughts, which represents the reasoning process as a tree structure and explores various
branches to determine the most effective path.

2 Automated Reasoning Critic, which employs a trained critic model to evaluate and validate the
reasoning steps generated by the LLMs.

3 Self-Correction, where the LLM mimics human critical thinking by iteratively reviewing, identifying
errors, and refining its reasoning steps to enhance accuracy and logical consistency.

In addition to these three inference techniques, we will also explore "Inference Scaling Laws", which
provide insights into how reasoning performance improves as inference time increases, enabling us to
balance the trade-off between computational efficiency and reasoning accuracy. An overview of this
section is provided in Table 5.

Paper Key Innovation Main Techniques

Sec. 6.1 Tree of Thoughts
Tree of Thoughts
(Yao et al., 2024)

1st tree-structured reasoning framework BFS/DFS search, Self-evaluation, Back-
tracking

EURUS
(Yuan et al., 2024)

Tree-structured alignment dataset ULTRAINTERACT dataset, Preference
learning

TS-LLM
(Feng et al., 2023)

AlphaZero-inspired framework Markov Decision Process (MDP) formula-
tion, Deep search (64 depth)

MCTSr
(Zhang et al., 2024b)

Enhanced MCTS for math Self-reflection, Dynamic pruning, Upper
Confidence Bound (UCB)

ALPHALLM
(Tian et al., 2024b)

Self-improvement framework Option-level MCTS, Adaptive branching,
State merging

MCTS-DPO
(Xie et al., 2024)

Step-level preference learning w/ MCTS MCTS guided exploration, DPO updates,
Step-level signals

AlphaMath
(Chen et al., 2024b)

Self-supervised MCTS reasoning Step-level value model, Beam search, Self-
improvement

ReST-MCTS*
(Zhang et al., 2024a)

Process-reward enhanced MCTS Per-step rewards, Dual optimization, Dy-
namic exploration

Sec. 6.2 Automated Reasoning Critic
CriticGPT
(McAleese et al., 2024)

LLM-based code critique Tampered data generation, RLHF, Bugs
identifying

AutoMathCritique
(Xi et al., 2024)

Two-player math reasoning Dynamic supervision, Error generation

LLM-ARC
(Kalyanpur et al., 2024)

Neuro-symbolic reasoning LLM + reasoning engine integration, An-
swer Set Programming (ASP) solver

Sec. 6.3 Self-Correction
SCoRe
(Kumar et al.)

Multi-turn RL framework Self-generated data, Two-stage training,
Reward shaping

CoSC
(Gao et al., 2024)

Embedded self-correction Program generation, execution, and verifi-
cation, Two-phase fine-tuning

DotaMath
(Li et al., 2024)

Integrated mathematical reasoning Multi-round correction, Python executor,
Task decomposition

Sec. 6.4 Inference Scaling Laws
Scale-Compute
(Snell et al., 2024)

Test-time compute analysis Compute-optimal strategy, Process-based
Reward Models (PRMs) search

REBASE
(Wu et al., 2024)

Reward balanced search Dynamic tree optimization, Pruning with a
reward model

LLMonkeys
(Brown et al., 2024)

Sampling analysis Repeated sampling, Exponentiated power
law, Cost optimization

STILL-2
(Min et al., 2024)

Three-phase training Imitation, Exploration, Self-improvement,
Long-form Thought Dataset

MindStar
(Kang et al., 2024)

No-tuning enhancement PRM-guided search, Dynamic exploration,
Levin tree search

Table 5: An overview of LLM Inference Techniques (Sec. 6).

GĮŔũƜ

jũƜŔũƜ

GĮŔũƜ

jũƜŔũƜ

ʱÊʲˤGj ʱæʲˤ�ĵÉ

GĮŔũƜ

ˤjũƜŔũƜ

ʱçʲˤ�ĵÉˁ��

ʟʟ ʟʟ

aÊĠĵŗƓŤƆˤſĵŤò

GĮŔũƜ

ˤjũƜŔũƜ

ʱíʲˤÉĵÉˤʱĵũŗŝʲ

ʟʟ

ʟʟ

ʟʟ

ˤˤʝˤƛĎĵũĈĎƜ

)L[�FRORU��E\�<XTLDQ�

0DUN�GLIIHUHQFH�E\�FRORU

GĮŔũƜ

jũƜŔũƜ

GĮŔũƜ

jũƜŔũƜ

GĮŔũƜ

ˤjũƜŔũƜ

ʱçʲˤ�òĦƙˤ�ĵĮŝƓŝŤòĮçƆˤ
ƀƓƜĎˤ�ĵÉˤʱ�ĵÉˁ��ʲ

aÊĠĵŗƓŤƆˤſĵŤò

GĮŔũƜ

ˤjũƜŔũƜ

ʱíʲˤÉŗòòˤĵƙˤ�ĎĵũĈĎŤŝˤʱÉĵÉʲ

ʟʟ

ʟʟ

ʟʟ ʟʟ ʟʟ

ˤˤƛĎĵũĈĎƜ

ʱçʲˤ�ĎÊđĮˤĵƙˤ�ĎĵũĈĎƜˤ
�ŗĵĭŔƜđĮĈˤʱ�ĵÉʲ

ʱÊʲˤGĮŔũƜˁjũƜŔũƜˤ
�ŗĵĭŔƜđĮĈˤʱGjʲ

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.

choices instead of just picking one, and (2) evaluates its current status and actively looks ahead or
backtracks to make more global decisions.

To design such a planning process, we return to the origins of artificial intelligence (and cognitive
science), drawing inspiration from the planning processes explored by Newell, Shaw, and Simon
starting in the 1950s [21, 22]. Newell and colleagues characterized problem solving [21] as search
through a combinatorial problem space, represented as a tree. We thus propose the Tree of Thoughts
(ToT) framework for general problem solving with language models. As Figure 1 illustrates, while
existing methods (detailed below) sample continuous language sequences for problem solving, ToT
actively maintains a tree of thoughts, where each thought is a coherent language sequence that serves
as an intermediate step toward problem solving (Table 1). Such a high-level semantic unit allows the
LM to self-evaluate the progress different intermediate thoughts make towards solving the problem
through a deliberate reasoning process that is also instantiated in language (Figures 2,4,6). This
implementation of search heuristics via LM self-evaluation and deliberation is novel, as previous
search heuristics are either programmed or learned. Finally, we combine this language-based
capability to generate and evaluate diverse thoughts with search algorithms, such as breadth-first
search (BFS) or depth-first search (DFS), which allow systematic exploration of the tree of thoughts
with lookahead and backtracking.

Empirically, we propose three new problems that challenge existing LM inference methods even with
the state-of-the-art language model, GPT-4 [23]: Game of 24, Creative Writing, and Crosswords
(Table 1). These tasks require deductive, mathematical, commonsense, lexical reasoning abilities,
and a way to incorporate systematic planning or search. We show ToT obtains superior results on
all three tasks by being general and flexible enough to support different levels of thoughts, different
ways to generate and evaluate thoughts, and different search algorithms that adapt to the nature of
different problems. We also analyze how such choices affect model performances via systematic
ablations and discuss future directions to better train and use LMs.

2 Background

We first formalize some existing methods that use large language models for problem-solving,
which our approach is inspired by and later compared with. We use pθ to denote a pre-trained LM
with parameters θ, and lowercase letters x, y, z, s, · · · to denote a language sequence, i.e.x =
(x[1], · · · , x[n]) where each x[i] is a token, so that pθ(x) =

∏n
i=1 pθ(x[i]|x[1...i]). We use uppercase

letters S, · · · to denote a collection of language sequences.

Input-output (IO) prompting is the most common way to turn a problem input x into output
y with LM: y ∼ pθ(y|promptIO(x)), where promptIO(x) wraps input x with task instructions
and/or few-shot input-output examples. For simplicity, let us denote pprompt

θ (output | input) =
pθ(output | prompt(input)), so that IO prompting can be formulated as y ∼ pIOθ (y|x).

2

Figure 24: The framework introduced in Tree-of-Thought (ToT) (Yao et al., 2024) conceptualizes problem-solving
as a structured tree of intermediate steps. Each “thought” represents a coherent intermediate reasoning step, with
ToT distinctively utilizing tree-structured exploration and evaluation. The figure is adapted from (Yao et al., 2024).

6.1 Tree of Thoughts

In complex reasoning tasks, systematically exploring multiple paths of thought is crucial for finding
optimal solutions. Tree of Thoughts represents the reasoning process as a tree structure, enabling models
to systematically explore and evaluate different solution branches. This approach not only helps models
find optimal solutions but also prevents them from getting stuck in local optima. The framework employs
various tree search strategies, starting from fundamental methods like Breadth-first and Depth-first Search
(Sec. 6.1.1), and advancing to more sophisticated approaches such as Monte Carlo Tree Search (Sec. 6.1.2).

6.1.1 Breadth-first Search & Depth-first Search
Tree of Thoughts (Yao et al., 2024) is introduced to enhance LLMs via enabling deliberate problem-
solving through a tree-based reasoning structure. As show in Figure 24, unlike traditional sequential
generation, ToT models problem-solving as a search through a tree of potential solutions, allowing
exploration of multiple reasoning paths, self-evaluation, and backtracking to achieve globally optimal
decisions. By integrating classical heuristic search methods, such as Breadth-first Search (BFS) and
Depth-first Search (DFS), with LLMs’ generative capabilities, ToT significantly improves performance on
tasks requiring complex planning, such as Game of 24 (74% success vs. 4% with CoT), creative writing,
and mini crosswords. This modular, general framework does not require additional training, supports
various search algorithms, and offers substantial advantages for challenging tasks, though it incurs higher
computational costs.

EURUS (Yuan et al., 2024) is a suite of LLMs designed to advance reasoning capabilities through a
novel tree-structured alignment dataset called ULTRAINTERACT. While ToT models problem-solving
as a search tree of reasoning steps to explore and evaluate multiple paths dynamically, EURUS uses a
predefined preference tree for training and evaluation, focusing on leveraging high-quality alignment data
for systematic reasoning. EURUS achieves state-of-the-art performance among open-source models on
tasks like mathematics, logical reasoning, and code generation, surpassing GPT-3.5 Turbo on several
benchmarks. The ULTRAINTERACT dataset underpins this success by providing diverse instructions,
preference trees for multi-turn interactions, and paired correct/incorrect reasoning paths, enabling both
supervised fine-tuning and preference learning.

TS-LLM (Feng et al., 2023) short for Tree-Search-enhanced LLMs is a framework inspired by Alp-
haZero (Silver et al., 2017), that integrates tree-search algorithms with learned value functions to enhance
both the decoding and training of LLMs. TS-LLM formulates language generation as a Markov Decision
Process (MDP) and employs tree-search methods to guide reasoning and decision-making. Tree search
methods include BFS, DFS, and Monte Carlo Tree Search, which will be introduced in the following

Monte Carlo Tree Search (MCTS) Breadth-First Search (BFS) Depth-First Search (DFS)

Purpose Optimize decisions by balancing ex-
ploration and exploitation

Systematically find shortest paths or
explore levels.

Explore deeply for exhaustive search
or solution finding

Exploration Strategy Probabilistic, uses random sampling
and simulations

Deterministic, level-by-level traver-
sal

Deterministic, explores one branch
deeply before backtracking

Tree Growth Dynamic, focuses on promising ar-
eas based on simulations

Exhaustive, explores all nodes at
each level

Exhaustive, explores all nodes in one
path before others

Use Case Decision-making in large, uncertain
spaces (e.g., games like Go, chess)

Shortest path, level-order traversal
(e.g., social network analysis)

Exhaustive search, backtracking
tasks (e.g., mazes, puzzles)

Table 6: Comparison of MCTS, BFS, and DFS.

Repeated N times

Selection Expansion Evaluation

 or

Backpropagation

 or

Figure 2: An overview of the four key operations in MCTS

nodes according to a variant of the PUCT algorithm [30]. This selection process is mathematically
represented as:

at = argmax
a∈Tk

[
Q̂(st,a) + cpuctπθk(a|st)

√
Nparent(a)

1 +N(st,a)

]
(3)

where the state-action value Q̂(s,a) and its visiting count N(s,a) are stored in the tree and will be
updated as the search progresses. Nparent(a) represents the visiting count of the parent node of a.
The action selection iterates until it encounters a leaf node of the current search tree. In our case, the
prior π(a|st) is defined as the exponential of averaged log-probability of all tokens in the step a, i.e.,
exp

(
1
|a|

∑
log π(aj |a<j , st)

)
.

Expansion Back-tracing from the selected leaf node to the root forms a partial solution, serving as a
prompt for further node expansions. In our case, given that the LLM can theoretically generate an
unlimited number of potential actions (token sequence), we employ sampling generation with higher
temperature to ensure diversity.

Evaluation Evaluation of the leaf node or partial solution st, identified after the selection phase, is
conducted by weighted sum as introduced in [32, 33].

V̂ (st)
(i) = (1− λ) · Vϕk

(st) + λ · r
(
a
(i)
t′≥t, s

(i)
t′>t|st

)
(4)

The intermediate value estimation V̂ in MCTS differs from the training signal Ṽ defined in preliminary
section 2. The parameter λ serves to balance the contribution of the value model’s estimation with
the empirical reward obtained during the rollout.

In our case, we follow a trade-off rollout strategy between AlphaGo [32] and AlphaGo Zero [33].
Because our tree depth is much shallower than Go games (e.g., a maximum depth of 8) and expansions
can easily reach a terminal node, we set an indicator function λ = Iterminal(st). If the expanded node
is terminal, the reward is returned; otherwise, the value is predicted by the model Vϕk

.

Backup We did not make any modifications to the backup. At the end of the i-th simulation, each
edge (s,a) along the path from the leaf node st to the root undergoes a backward pass update. The
updates to their state-action values and visiting counts are executed according to the following rules:
N(s,a)← N(s,a) + 1 and Q̂(s,a)← 1

N(s,a)

∑i
j=1 Is,a→st V̂ (st)

(j).

Value Estimation After running N simulations with the MCTS algorithm, we obtain the final tree Tk,
which stores the expanded nodes and their corresponding state-action values Q(s,a). Considering that
the transition function is deterministic, and assuming that Q(st,at) = r(st,at)+V (st+1) = V (st+1)
for non-terminal nodes3, we can employ the Q values as training signals. This implies that we can
directly fit the state-action value of non-terminal nodes as,

Ṽ (st+1) = Q̂(st,at) (5)

3Reward is 0 for non-terminal node, and reward is determined by the final answer in terminal node.

4

Figure 25: The overview of four key steps of MCTS: selection, expansion, evaluation, and backpropgation. The
figure is copied from (Chen et al., 2024b).

part. The TS-LLM framework supports deep searches (up to depth 64) and iterative improvements
through a policy-value distillation loop. It is validated on tasks like reasoning, planning, alignment, and
decision-making.

6.1.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a decision-making algorithm in environments where the action space
is large, and the state space is complex, as in games like Go, Chess, or various planning problems. The
core of MCTS lies in building a search tree incrementally by performing simulations (or "rollouts") to
estimate the expected outcomes of different actions. The search process involves four key steps: Selection,
Expansion, Simulation, and Backpropagation, as shown in Figure 25. Different from that BFS and DFS
are deterministic and exhaustive, focusing on systematic exploration, MCTS is adaptive and probabilistic,
optimizing for rewards in complex decision-making. More comparison details between BFS, DFS and
MCTS can be found in Table 6. Here, we focus on how MCTS can be adapted in the tree-of-thoughts
framework.

MCTSr short for Monte Carlo Tree Self-refine algorithm (Zhang et al., 2024b) integrates MCTS
with LLMs to tackle complex mathematical reasoning tasks, including Olympiad-level problems. The
algorithm incorporates key MCTS processes, while adapting them to the stochastic nature of LLM
outputs. It leverages self-reflection and self-evaluation mechanisms, where answers are iteratively
refined and scored using model-driven reward sampling. A dynamic pruning strategy, combined with an
improved Upper Confidence Bound (UCB) formula, balances exploration and exploitation for optimal
decision-making. Experiments on datasets like GSM8K, MATH, AIME, and OlympiadBench demonstrate
significant improvements, with MCTSr outperforming baseline methods and achieving state-of-the-art
results on open-source LLMs. This research highlights the algorithm’s potential for advancing LLM
applications in complex reasoning and decision-making tasks.

ALPHALLM (Tian et al., 2024b) is a framework designed for the self-improvement of LLMs across
various complex reasoning and planning tasks, extending beyond the domain of mathematics. It introduces

a flexible option-level MCTS, where nodes represent sequences or collections of tokens, effectively
reducing search depth in language tasks. The framework further enhances search efficiency and quality
through adaptive branching, state merging, and the use of critic models, including a value function, a
process reward model, and an outcome reward model. From a data utilization perspective, ALPHALLM
actively generates new prompts through its "Imagination" component to mitigate data scarcity, creating a
continuously evolving dataset for training and fine-tuning the LLM. By leveraging high-quality trajecto-
ries obtained from MCTS-guided searches, ALPHALLM iteratively refines the LLM’s policy, driving
consistent performance improvements.

MCTS-DPO (Xie et al., 2024) leverages MCTS for step-level preference data collection, and transforms
instance-level supervision into granular stepwise signals. MCTS utilizes its look-ahead capability and
self-evaluation feedback to refine reasoning paths, balancing exploration and exploitation. Using Direct
Preference Optimization (DPO), the model policy is iteratively updated, forming a self-improvement loop.
Theoretical analysis demonstrates the advantages of online preference learning, and experiments show
significant performance improvements on tasks like GSM8K, MATH, and ARC-C, highlighting MCTS’s
role as a policy improvement operator in aligning LLMs with human-like reasoning. While option-level
MCTS helps select the best among several options, offering mid-level granularity for decision-making,
step-level MCTS evaluates and refines the reasoning process step by step, providing detailed and precise
feedback for complex reasoning tasks.

AlphaMath (Chen et al., 2024b) employs MCTS to enhance mathematical reasoning in LLMs with-
out relying on process-supervised annotations. By combining MCTS with a step-level value model,
AlphaMath autonomously generates high-quality reasoning paths and evaluates intermediate steps, facili-
tating iterative self-improvement. To reduce the computational cost of MCTS inference, the framework
introduces a step-level beam search strategy that effectively balances efficiency and reasoning quality.
Experimental results on datasets such as GSM8K and MATH verify that AlphaMath achieves superior
performance, even without human or GPT-4 annotated solutions. This framework underscores the po-
tential of MCTS as a policy optimization strategy for advancing LLM reasoning ability and extends its
applicability beyond mathematics to tasks requiring stepwise reasoning and validation.

ReST-MCTS* (Zhang et al., 2024a) integrates per-step process rewards, enabling more granular
evaluation and guidance during the reasoning process. These inferred rewards play a dual role: refining
the process reward model to improve its evaluation accuracy and identifying high-quality reasoning traces
to enhance the policy model through iterative self-training. Compared to AlphaMath, which focuses on
self-supervised learning through beam search and prioritizes generating complete reasoning paths from
question-answer pairs, ReST-MCTS* adopts a more dynamic and collaborative approach. It employs
MCTS* to iteratively explore, evaluate, and refine reasoning steps with the aid of a process reward
model. This allows ReST-MCTS* to balance global exploration and local exploitation more effectively,
leading to better reasoning paths. Additionally, ReST-MCTS* emphasizes the mutual enhancement of
both the policy and reward models, whereas AlphaMath primarily targets policy model improvement.
Experimental results on benchmarks such as GSM8K, MATH, and SciBench highlight ReST-MCTS*’s
superior accuracy over AlphaMath, especially in tasks involving complex multi-step reasoning.

6.2 Automated Reasoning Critic
In the reasoning process of LLMs, the ability to identify and correct faulty reasoning steps is essential.
Automated Reasoning Critic (Barto et al., 1983; Saunders et al., 2022b) introduces dedicated critic models
to evaluate the correctness and logical consistency of reasoning steps, thereby improving the reliability of
the reasoning process. This approach mirrors how humans validate their thinking process when solving
complex problems, providing a systematic way to assess and improve the quality of generated reasoning.

CriticGPT (McAleese et al., 2024) is a novel approach to scalable oversight by leveraging LLM-based
critics to assist humans in evaluating outputs generated by LLMs, with a focus on code review tasks. This
work is motivated by a critical limitation of reinforcement learning from human feedback (RLHF): as
LLMs become more capable, even experts struggle to reliably assess the correctness of their outputs.

Function to make list of n lists in python

def n_lists(n):
 return [[] for _ in range(n)]

def reverse_list(input_list):
 return input_list[:-1:]

Bug Insertion

def n_lists(n):
 return [[]] * n

[[]] * n

This creates multiple references to the same list.
If you edit any element, all lists will be mutated.

Critique Comparison

[[]] * n

The use ...

A B

Is this critique:
 - comprehensive?
 - claiming ≥1 NITPICK?
 - claiming ≥1 FAKE PROBLEM?
 ...

Consider this issue

This creates multiple references ...

D>B

Did this critique point out the particular issue
described just above?

CA > >

Overall ranking

Critique bug inclusion [CBI]

1 | 2 | 3 | 4 | 5 | 6 | 7

Critque rating

def n_lists(n):

The function name n_lists is not very descriptive.

Generate critique with ChatGPT/CriticGPT

Spots the inserted bug → introduce trickier bug
Does not spot the bug → submit

Task selection
Sample task and solution from ChatGPT data

Edit code fragment to intoduce a bug

Write a critique pointing out the inserted bug

Generate N critiques

[[]] * n

1 | 2 | 3 | 4 | 5 | 6 | 7

1 | 2 | 3 | 4 | 5 | 6 | 7

1 | 2 | 3 | 4 | 5 | 6 | 7

C D

[[]] * n

This ...

def ..

Name ...

return

Function ...

Figure 3: Illustration of data collection. Contractors modify ChatGPT responses to insert subtle bugs. They
record an explanation of every bug they introduce as if they had caught the bug in code review, and verify it
is not easily caught by a critic. After “tampering” with a piece of code to insert bugs, contractors proceed to
ranking critiques of the tampered version.

2.1.2 Critique Comparisons & Elo Scores

Contractors answer the critique attribute questions as part of a comparison task in which they see four
critiques of the same problem simultaneously. They are always blind to the source of the critique.
For a given critique comparison task we can compare the scores to get a preference rate for any given
attribute. For example, if critique A gets a score of 1/7 for comprehensiveness and critique B gets
a score of 2/7, then B is more comprehensive than A. Because human ratings are more consistent
within a comparison than globally this gives us a less noisy estimate of how the models perform
relative to each other [29].

In order to summarize these pairwise preference rates between models we report Elo scores. Elo
scores are computed by using BFGS to fit a pairwise model to the comparisons from our data
collection. The probability of a contractor preferring a response produced by a model with Elo RA

over a response from model with Elo RB is estimated as 1
1+10(RB−RA)/400 . This is the estimated

win-rate of model A over model B. Ties are included as half a win and half a loss. Confidence
intervals are reported from a nonparametric bootstrap.

2.1.3 Human Critiques & LLM Assistance

In addition to paying contractors to rate model-written critiques, we also had them review answers to
write their own critiques. Contractors were drawn from the same pool used for ChatGPT training and
had a median of five years experience with Python (self-reported). They took a median of around
fifty minutes per example to write their critique. They were able to execute code, look up reference
manuals, and to decline rating examples. Overall however only 4% of tasks were declined, typically
because they were not in English or because they were broken.

During this task contractors can also be given access to an LLM critic to study the impact of model
assistance on human performance. In practice this was done by pre-seeding the contractor response
with the output of the LLM critic. Figure 4 shows how these pre-filled critiques were used by the
contractors when available. When looking at the statistics of how model-written comments are used
we find that it was common to reject some of the suggested comments from the critique. Adding
additional comments was rarer but also occurred.

4

Figure 26: The data generation process proposed in CriticGPT (McAleese et al., 2024) involves contractors
introducing subtle bugs into ChatGPT-generated code, documenting the issues, and generating critiques using
ChatGPT or CriticGPT. Critiques are evaluated for accuracy and relevance, refining critique quality. The figure is
adapted from (McAleese et al., 2024).

CriticGPT is trained using RLHF to generate detailed critiques, identifying flaws in LLM-written code. As
shown in Figure 26, a tampering-based data generation approach is proposed to create high-quality training
datasets for CriticGPT. Human contractors modify LLM-generated code by deliberately introducing subtle,
realistic bugs, ensuring these errors are challenging to detect. Each inserted bug is accompanied by a
detailed description, serving as a gold standard for evaluating critiques. The tampered code ensures a
diverse range of errors, including logic flaws and unsafe practices, simulating real-world scenarios. The
results show that CriticGPT outperforms human reviewers in identifying bugs, with critiques preferred
over human-written ones in 63% of cases. CriticGPT also highlights numerous errors (previously labeled
as "flawless") in the training data of ChatGPT, demonstrating its efficacy even on tasks outside its training
distribution. The paper also introduces Force Sampling Beam Search, an innovative inference-time strategy
designed to balance comprehensiveness and hallucination rates in critiques.

AutoMathCritique is (Xi et al., 2024) a two-player framework, where a critique model supervises an
actor model to enhance LLM reasoning performance, particularly for complex tasks like mathematical
problem-solving. In the reasoning phase, AutoMathCritique leverages Automated Reasoning Critic (ARC)
by integrating critique models to dynamically supervise and enhance the actor model’s reasoning process.
As shown in Figure 27, the actor model first generates a reasoning path and a solution, while the critique
model analyzes each step, detecting errors and providing detailed feedback in natural language. The actor
then refines its reasoning path based on this feedback, iteratively improving the solution. This process
continues until no significant errors remain or the desired accuracy is achieved. By identifying logical
inconsistencies or calculation errors, it enables the actor to perform precise corrections and achieve better
exploration efficiency. This dynamic interaction significantly boosts reasoning performance, particularly
for complex queries, as demonstrated on GSM8K and MATH datasets, where the inclusion of critique
models led to notable accuracy improvements.

LLM-ARC (Kalyanpur et al., 2024) is a neuro-symbolic framework designed to enhance the logical
reasoning capabilities of LLMs by integrating an ARC. It excels at converting complex natural language

+ Reference Answer

Step1: Correct Explanation: …

Step2: Correct Explanation: …

…

Final Answer: Wrong

+ Reference Answer

+ Location Info: Step3

Step3: Wrong

Explanation: …

+ Reference Answer

+ Location Info: Step2
Step2: Wrong

Explanation: …

…Calculation Error
+ Mistake Type:

Calculation Error
Insert

RG1: Sampling from Scratch

RG2: Generating Error-location-aware Response

RG3: Adding Detailed Mistakes

Stage1: Flawed Reasoning
Paths Construction

Stage2: Critique Generation Stage3: Data Filtering

Question Flawed
Reasoning

Critique

Sampling Refinement

Filtering Critiques

Wrong
Answer

Correct
Answer

Correct
Answer

Correct
Answer

Correct
Answer

Wrong
Answer

Annotator

Model

Save

Discard

Specific Error!

Repeated

Sampling

Temperature Rise!

Step-level Critiques

Figure 3: The overview of AutoMathCritique framework. It has three main steps: flawed reasoning
path construction, critique generation, and data filtering.

RG1: sampling from scratch. In this approach, the actor is provided with a query and tasked
with generating a response. Given that the actor we used has already achieved high accuracy on the
GSM8K and MATH training sets, we use repeated sampling to obtain flawed responses. However,
this method has the limitation of not offering detailed information about the location or content of
the mistakes, which means that the subsequent critique labeling heavily depends on the expertise of
annotators.

RG2: generating error-location-aware response. In this approach, given a query, we first sample
a correct response from the actor model. Then, starting from a specific step of the response, we
modify the model’s hyperparameters for flawed response sampling, such as increasing the temperature
of the final softmax function. This ensures that the steps preceding the selected step remain consistent
with the original correct response, while the subsequent steps are more likely to contain errors. If
the sampled response remains correct, we select a different step and further increase the randomness
of the generation process. This method strikes a balance between generating flawed responses and
maintaining the coherence of the reasoning process. The correct responses we sample are later
used to construct critiques, while for the flawed responses, we collect information about the error
locations (e.g., identifying from which step the errors originate), thereby facilitating the annotation of
high-quality critiques.

RG3: adding detailed mistakes. In this approach, given a query, the actor model is instructed
to sample a correct reasoning path first. We then instruct the model to introduce mistakes into the
correct response. Inspired by previous work [37; 38], we enumerate various common reasoning
errors in the instructions and include few-shot examples in the prompt. Each example consists of five
components: the query, the correct reference response, the step where the error is introduced, the
type of error, and the generated flawed response. After the error is inserted, we direct the model to
continue reasoning from the erroneous step until it reaches a final answer. If a flawed response is not
generated, we repeat the sampling process up to a maximum of 16 attempts. As in RG2, the correct
answers obtained during this process can also be used to construct critiques. This approach allows us
to easily capture information about the location of the first mistake and its specific details, thereby
significantly reducing the complexity of subsequent critique construction.

3.2 Generation of Critiques

Step-level critique generation. When generating critique data, we enhance quality by checking
each step to identify the first error in the solution, which in turn facilitates the refinement process.

5

Figure 27: The overview of AutoMathCritique (Xi et al., 2024). The framework has three stages: (1) Flawed
Reasoning Path Construction, generating erroneous reasoning paths via sampling or error insertion (RG1 ∼
RG3); (2) Critique Generation, producing step-by-step critiques using an annotator model; and (3) Data Filtering,
refining critiques through sampling and retaining only high-quality ones. This ensures accurate step-level critiques
for reasoning tasks. RG means Response Generation. The figure is borrowed from (Xi et al., 2024).

descriptions, such as legal clauses or scientific rules, into logic rules that machines can directly understand
and verify. The framework combines an LLM with an automated reasoning engine, like an Answer
Set Programming (ASP) solver, to form a "self-correcting team". The LLM generates logic code from
natural language inputs while simultaneously creating test cases to validate the code’s correctness. The
reasoning engine then executes the code and tests, providing detailed feedback on any errors or semantic
inconsistencies. Through an iterative refinement loop, the two components collaboratively enhance the
logic program until it meets all test conditions. This approach enables LLM-ARC to tackle complex
logical reasoning tasks, leveraging the reasoning capabilities of engines like ASP to ensure both semantic
precision and reliability. On the FOLIO benchmark, LLM-ARC attains a state-of-the-art accuracy of
88.32%, surpassing prior methods by 10%.

6.3 Self-Correction

Errors in reasoning often accumulate progressively, where small mistakes can lead to significant deviations
in final results. The Self-Correction mechanism (Huang et al., 2023; Madaan et al., 2024) enables large
language models to engage in self-reflection and correction, similar to human critical thinking. Through
iteratively reviewing, identifying errors, and refining reasoning steps, this approach improves the accuracy
of final answers. This methodology is particularly effective for tasks requiring multi-step reasoning.

SCoRe short for Self-Correction via Reinforcement Learning algorithm (Kumar et al.) is a multi-turn
reinforcement learning framework that significantly enhances the intrinsic self-correction capabilities of
LLMs using self-generated data. Unlike traditional methods that rely on supervised fine-tuning (SFT),
prompt engineering, or external supervision, SCoRe addresses key challenges such as distribution shift
and behavior collapse. As shown in Figure 28, SCoRe adopts a two-stage approach: the first stage
mitigates behavior collapse by initializing training with constrained first-turn responses, while the second
stage employs reward shaping to encourage progressive self-correction rather than solely optimizing final
correctness. Demonstrating a 15.6% gain in self-correction on mathematical reasoning tasks (MATH)
and a 9.1% improvement in coding tasks (HumanEval), SCoRe sets a new benchmark in training LLMs

Training Language Models to Self-Correct via Reinforcement Learning

Foundation model Foundation model trained with ScoRe

prompt (x)

response (y) first attempt (y1)
Improved

response (y2)

prompt (x) Optional external
input (p)

Standard training Training via SCoRe (Ours) Loss
Loss

Figure 3 ∣ The problem setting of self-correction. SCoRe trains a model to not just produce the best possible response, but
instead aims to train the model to produce the best final response in the final attempt. In the second turn, extra input in the
form of an instruction asking the model to correct itself or model-generated may be provided.

We aim to find an LLM policy 𝜋(□∣◦) mapping input tokens ◦ to output tokens □ that maximizes the
correctness reward obtained from the verifier at the end of 𝑙 + 1 turns (𝑙 = 1). Formally:

max
𝜋𝜃

ℰ𝒙,𝒚∗∼𝒟, �̂� 𝑙+1∼𝜋𝜃(⋅∣[𝒙, �̂�1∶𝑙 ,𝑝1∶𝑙]) [𝑙+1∑
𝑖=1

𝑟 (�̂� 𝑖, 𝒚∗)] . (1)

Crucially, note that unlike standard SFT or prevalent RL fine-tuning workflows, which train the policy
𝜋 to directly produce 𝒚∗ (or any other 𝒚 wih 𝑟(𝒚, 𝒚∗) = 1), Equation 1 trains 𝜋 over multiple attempts
simultaneously, where intermediate turns are supervised indirectly to maximize the sum.
Base RL fine-tuning approach we use. We use a REINFORCE policy gradient training approach with
a KL-divergence penalty against a fixed model (Ahmadian et al., 2024), which is widely used in RL
fine-tuning of LLMs, primarily in the setting of single-turn RLHF. Formally, these methods train the policy
𝜋𝜃(⋅∣𝒙) to optimize the following, where 𝜋ref is a reference policy.

max
𝜃

E𝒙𝑡 ,𝒚𝑡∼𝜋𝜃(⋅∣𝒙𝑡) [𝑟(𝒚𝑡, 𝒚∗) − 𝛽1𝐷𝐾𝐿(𝜋𝜃(⋅∣𝒙𝑡)∣∣𝜋ref(⋅∣𝒙𝑡))] , (2)

Metrics. To measure self-correction performance (we consider 𝑙 = 2 in this paper), we report and analyze
the following metrics: (1) Accuracy@t1: the model’s accuracy at the first attempt; (2) Accuracy@t2:
the model’s accuracy at the second attempt, (3) Δ(t1, t2): the net improvement in model accuracy
between the first and second attempts, which measures the efficacy of self-correction, (4) Δi→c(t1, t2):
the fraction of problems that are incorrect in the first attempt but become correct at the second attempt,
which measures how many new problems can self-correction solve; and (5) Δc→i(t1, t2): the fraction of
problems that are correct in the first attempt but become incorrect at the second attempt, which measures
how well the model understands what makes a response correct.

4. SFT on Self-Generated Data is Insufficient for Self-Correction
A natural approach for training self-correction is to utilize some form of supervised fine-tuning on data
collected from a base model. Variants of this approach have been shown to scale well on single-turn
reasoning problems (Singh et al., 2023; Zelikman et al., 2022). In this section, we assess the empirical

5

Figure 28: While standard training solely optimizes the final response, SCoRe (Kumar et al.) first trains the model to
generate constrained initial responses (y1) to mitigate behavior collapse. Then, refines responses (y2) with optional
feedback (p) using reward shaping to encourage progressive improvement. The figure is adapted from (Kumar
et al.).

Question Program Output

Python Interpreter

(a) CoSC Foundational Learning

(b) CoSC Self Enhancement

the subsequent stage of self-correction

Finetuning

Program Output

Conclusion Answer

Seeding data generation

CoSC prompt

GPT-4

Verification

Seeding data

Seed Model

Self generated data generation CoSC-Code-34B
Seed Model Python Interpreter

Finetuning

Seeding data and
Self generated data

CoSC Model

ConclusionVerification AnswerQuestion

(From MATH
and GSM8K

training data)

(From MATH, GSM8K
 and MetaMATH

training data)

Figure 2: The training of Chain of Self-Correction (CoSC) consists of two phases. The first phase, (a)
CoSC Foundational Learning, trains LLMs with seeding data generated from proprietary models,
equipping them with a baseline proficiency in the CoSC methodology. In particular, we prompt
GPT-4 with training questions from MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021)
datasets to generate mathematical reasoning trajectories that adhere to the CoSC protocol. The second
phase, (b) CoSC Self Enhancement, further adapts the seed model obtained from the previous phase
with self-generated trajectories. These trajectories are produced by the seed model trained in the
foundational phase, thereby enabling the generation of a substantial volume of data without the need
for additional GPT-4 intervention. In both phases, we only retain trajectories whose answers match
the ground-truth label.

Unlike existing methods that either base their reasoning on incorrect intermediate content or halt
reasoning upon encountering an error, the CoSC mechanism introduces a self-correction rationale
during the reasoning process. After the generation of program p and its output o, the CoSC model
analyzes them and generates a verification v. This verification includes suggestions for improvements
to ensure the consistency of the program p and its output o with the mathematical question q,
respectively. Following this, the CoSC mechanism draws a conclusion c based on these suggestions,
which is used to either refine the program p or generate the final answer. This process is repeated
until a conclusive answer is reached, which can be summarized as answer = povcpovc · · · povc.
By employing this reasoning method, we can annotate public mathematical datasets and use the
annotated multi-round, self-correction data to fine-tune LLMs.

3.2 TRAINING

To enable the CoSC mechanism, we propose a two-phase finetuning method. (1) CoSC foundational
learning with seeding data generated from proprietary models. (2) CoSC self enhancement with
self-generated data using the seed model obtained in the first training phase. A summary for training
our CoSC is shown in Fig. 2.

3.2.1 COSC FOUNDATIONAL LEARNING

Existing mathematical reasoning datasets, such as chain-of-thoughts (CoT) (Wei et al., 2022) and
program-of-thoughts (PoT) (Chen et al., 2023a), primarily contain single-round annotations without
multi-round, self-correction solutions for the reasoning process. This makes it challenging to fine-tune
models to inherently possess self-correction capabilities. To address this issue, we utilize GPT-4
(G) and a few-shot approach to annotate questions from publicly available mathematical datasets,
including MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021), to generate seeding data
with our Chain of Self-Correction (CoSC) mechanism. Table 1 compares our seeding data of CoSC
with recently proposed mathematical reasoning datasets. Detailed instructions and example cases of
our CoSC can be found in Appendix A and Appendix B.

5

Figure 29: The two-phase training approach proposed in CoSC (Gao et al., 2024). In Foundational Learning, a
seed model is fine-tuned using GPT-4-generated data from MATH and GSM8K, combining program generation,
execution, and verification to establish baseline reasoning proficiency. In Self-Enhancement, the seed model
generates its own reasoning trajectories from extended datasets (e.g., MetaMATH), enabling large-scale data
generation without further GPT-4 intervention. Only correct trajectories are retained to fine-tune the final CoSC
model. The figure is adapted from (Gao et al., 2024).

to autonomously refine their outputs without external guidance. Notably, SCoRe modifies the training
strategy to enhance the inference ability.

CoSC short for Chain of Self-Correction algorithm (Gao et al., 2024) embeds self-correction as an
inherent capability in LLMs to enhance their mathematical reasoning abilities. CoSC operates through
iterative stages of self-correction, including generating programs, executing code, and verifying outputs
to refine reasoning steps progressively. As shown in Figure 29, CoSC employs a two-phase fine-tuning
approach during the training stage: foundational learning using seed data generated by GPT-4 and self-
enhancement through self-generated data. By modeling mathematical reasoning as a multi-round process,
CoSC instills the ability to identify and rectify errors iteratively. During the inference stage, CoSC
leverages this training to enable zero-shot self-correction, mimicking human-like "slow thinking" by
systematically verifying and refining its outputs. Experiments on mathematical datasets (e.g., MATH
and GSM8K) demonstrate that CoSC significantly outperforms state-of-the-art open-source and some
proprietary models like GPT-4. This framework establishes a new benchmark for mathematical reasoning
tasks and highlights the potential for embedding self-correction as a foundational capability in LLMs.

Find the radius of the circle with equation 𝑥! + 8𝑥 + 𝑦! − 6𝑦 = 0.

1. Complete the square for both 𝑥 and 𝑦 terms to rewrite the equation in the standard form of a circle's equation, (𝑥 − ℎ)!+(𝑦 − 𝑘)!= 𝑟!.
2. Extract the value of 𝑟! from the standard.
3. Compute the radius.

from sympy import symbols, Eq, solve, sqrt
x, y = symbols('x y’)
circle_eq = x**2 + 8*x + y**2 - 6*y
x_term = (x + 4)**2 – 4**2, y_term = (y - 3)**2 – 3**2
standard_form = x_term + y_term
standard_form_eq = Eq(standard_form, 0)
r_squared = simplify(-standard_form_eq.rhs)
radius = simplify(r_squared**0.5)
print(f"Standard form of the circle: (x + 4)^2 + (y - 3)^2 = {r_squared}.")
print(f”Squared radius is {r_squared}.")
print(f"Radius of the circle is {radius}.")

Step 1: Standard form of the circle: (x + 4)^2 + (y - 3)^2 = 0.
Step 2: Squared radius is 0.
Step 3: Radius of the circle is 0.

The error lies in the incorrect simplification of the equation after completing the square, leading to an incorrect radius calculation.
1. Complete the square for both 𝑥 and 𝑦 terms to rewrite the equation in the standard form of a circle's equation, (𝑥 − ℎ)!+(𝑦 − 𝑘)!= 𝑟!
2. Extract the value of 𝑟! from the standard form and then compute the radius.
3. Calculate the radius of the circle.

…
Move constants to the right side
r_squared = 4**2 + 3**2
nprint(f"Extract the value of r^2 = {r_squared}\")
r= sqrt(r_squared)

Step 1: Complete the square for x and y terms, after completing the square: Eq((x + 4)**2 + (y - 3)**2 - 25, 0).
Step 2: Extract the value of r^2 = 25.
Step3: The radius of the circle is 5.

The radius of the circle is directly obtained from the code as 5. Therefore, the final answer is \boxed{5}.Answer 𝑎

Problem 𝑞

Decomposition1
𝑑! = 𝑑!!⊕𝑑!"⊕𝑑!#

Decomposition2 𝑑"

Result2 𝑟"

Result1
𝑟! = 𝑟!!⊕ 𝑟!"⊕ 𝑟!#

Code2 𝑐"

Error Reason 𝑒!

Code1 𝑐!

Figure 1: An example shows how the DotaMath use decomposition and self-correction to solve a probem form
MATH test set. For problem p, the model initially decomposes it into three subtasks and subsequently writes
corresponding code. The Python interpreter then executes this code, producing three subresults. Upon identifying
that the results are incorrect, the model elucidates the error’s cause and undertakes a revised decomposition.
Following this, new code is crafted and executed by the Python interpreter, leading to the correct resolution of the
problem and presentation of the final solution.

mathematical data to train specialized base models
tailored specifically for mathematical tasks (Azer-
bayev et al., 2024; Paster et al., 2023; Wang et al.,
2023b; Ying et al., 2024; Shao et al., 2024). Other
studies generate synthetic mathematical question-
answer pairs by querying advanced large language
models, such as GPTs (Sun et al., 2023), Qwen (Al-
ibaba, 2023), and Mixtral (Jiang et al., 2024), to
create Supervised Fine-Tuning (SFT) datasets (Luo
et al., 2023a; Yu et al., 2023; Li et al., 2023a;
Yue et al., 2024b). In this paper, we presents
a synthetic dataset aligned with the DotaMath
paradigm, named DotaMathQA, which includes
both single-turn-dialog form and multi-turn-dialog
form that incorporate a self-correction process. We
demonstrate the effectiveness and generalizability
of DotaMathQA across various backbone models
and benchmarks.

3 Method

In this section, we first introduce how DotaMath
performs mathematical reasoning through inter-
action with Python interpreter (§3.1 & Fig. 1).

Next, we introduce the pipline of using GPT-4 for
data annotation to synthesize the instruction-tuning
dataset, DotaMathQA.1 (§3.2 & Fig. 2). Finally,
we discuss the process of supervised fine-tuning a
range of foundational LLMs on the DotaMathQA
dataset (§3.3).

3.1 Inference Procedure

Motivated by a series of efforts that integrate the
Python interpreter’s output as supervision (Le et al.,
2022; Chen et al., 2023; Qiao et al., 2023; Dong
et al., 2024), DotaMath solves mathematical prob-
lems through several operations, including task
decomposition, writing Python programs, invok-
ing the Python interpreter and self-correction (Fig-
ure 1). For a given problem q and system prompt p
in Appendix D, DotaMath(M) initially decompose
it into some sub-tasks, yielding d1 = d11⊕ d21⊕ d31,
where ⊕ means concatenation.

d1 ∼ PM(· | p⊕ q), (1)

1In this paper, all data generated by GPT-4 are derived
from the gpt-4-turbo-2024-04-09 api.

Figure 30: An example of DotaMath (Li et al., 2024) in action: it decomposes problems into subtasks, generates
and executes Python code, and iteratively refines the decomposition and code if results are incorrect. This process
repeats until a correct solution is achieved or iterations are exhausted. The figure is adapted from (Li et al., 2024).

Figure 31: DeepSeek-R1-Lite-Preview (DeepSeek-R1-Lite-Preview, 2024) shows consistent score improvements
on AIME as the length of reasoning increases. The figure is adapted from (DeepSeek-R1-Lite-Preview, 2024).

DotaMath (Li et al., 2024) is a novel framework for enhancing mathematical reasoning in LLMs by
integrating decomposition of thought, code assistance, and self-correction. The self-correction process in
DotaMath is a multi-round iterative procedure. As shown in Figure 30, for a given problem, DotaMath
first decomposes it into sub-tasks and generates Python code to solve them. The code is executed using
a Python interpreter, producing intermediate results. If the results are incorrect, the model identifies
potential errors by verifying the alignment between the problem, code, and outputs. It then refines the
task decomposition, adjusts the code, and re-executes the process. This cycle continues until the model
either reaches a correct solution or exhausts a preset maximum number of iterations. To support this
mechanism, the authors constructed DotaMathQA, a dataset with 574K samples, including single-turn

Figure 32: Different approaches used in (Snell et al., 2024) for scaling test-time compute. The figure is adapted
from (Snell et al., 2024).

21 23 25 27

Generation Budget

20

25

30

35

40

45

M
AT

H
 A

cc
ur

ac
y

(%
)

Compute Optimal Revisions

Majority
Best-of-N Weighted
Compute Optimal
Parallel

<<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens

40

30

20

10

0

10

20

30

R
el

at
iv

e
Im

pr
ov

em
en

t i
n

A
cc

ur
ac

y
Fr

om
 T

es
t-t

im
e

C
om

pu
te

 (%
)

+21.6%

+16.7%

+5.4%

+27.8%

+3.5%

-24.3%

+11.8%

-11.9%

-37.2%

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

Easy Questions
Medium Questions
Hard Questions

Iteratively Revising Answers at Test-time

2
1

2
3

2
5

2
7

2
9

Generation Budget

10

15

20

25

30

35

40

45

M
AT

H
 A

cc
ur

ac
y

(%
)

Compute Optimal Search

Majority
ORM Best-of-N Weighted
PRM Best-of-N Weighted
PRM Compute Optimal

<<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens

50

40

30

20

10

0

10

20

R
el

at
iv

e
Im

pr
ov

em
en

t i
n

A
cc

ur
ac

y
Fr

om
 T

es
t-t

im
e

C
om

pu
te

 (%
)

+19.1%

+2.2% +2.0%

-5.6%

-35.6%

-30.6%

0.0%

-35.3%

-52.9%

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

Easy Questions
Medium Questions
Hard Questions

Test-time Search Against a PRM Verifier

Figure 1 ∣ Summary of our main results. Left: Compute-optimal scaling for iterative self-refinement (i.e., revisions) and search. On
the left, we compare the compute-optimal scaling policy for our PaLM 2-S* revision model against baselines in the revision setting (top) and the
PRM search setting (bottom). We see that in the revisions case, the gap between standard best-of-N (e.g. “parallel”) and compute-optimal
scaling gradually widens, enabling compute-optimal scaling to outperform best-of-N with 4× less test-time compute. Similarly, in the PRM
search setting, we observe significant early improvements over best-of-N from compute-optimal scaling, nearly outperforming best-of-N with 4×
less compute at points. See Sections 5 and 6 for details. Right: Comparing test-time compute and model parameter scaling. We compare
the performance of compute-optimal test-time scaling with PaLM 2-S* against the performance of a ∼ 14× larger pretrained model without
additional test-time compute (e.g. greedy sampling). We consider the setting where we expect 𝑋 tokens of pretraining for both models and 𝑌
tokens of inference. By training a larger model, we effectively multiply the FLOPs requirement for both of these terms. If we were to apply
additional test-time compute with the smaller model, so as to match this larger model’s FLOPs requirement, how would it compare in terms
of accuracy? We see that for the revisions (top) when 𝑌 << 𝑋 , test-time compute is often preferable to additional pretraining. However, as
the inference to pretraining token ratio increases, test-time compute remains preferable on easy questions. Whereas on harder questions,
pretraining is preferable in these settings. We also see a similar trend with PRM search (bottom). See Section 7 for more details.

We are interested in understanding the benefits of scaling up test-time compute. Arguably the simplest
and most well-studied approach for scaling test-time computation is best-of-N sampling: sampling N
outputs in “parallel” from a base LLM and selecting the one that scores the highest per a learned verifier
or a reward model [7, 22]. However, this approach is not the only way to use test-time compute to
improve LLMs. By modifying either the proposal distribution from which responses are obtained (for
instance, by asking the base model to revise its original responses “sequentially” [28]) or by altering how
the verifier is used (e.g. by training a process-based dense verifier [22, 45] and searching against this
verifier), the ability scale test-time compute could be greatly improved, as we show in the paper.
To understand the benefits of scaling up test-time computation, we carry out experiments on the
challenging MATH [13] benchmark using PaLM-2 [3] models specifically fine-tuned1 to either revise
1Capability-specific finetuning is necessary to induce revision and verification capabilities into the base model on MATH

2

Figure 33: Left: A compute-optimal strategy improves test-time computational efficiency. Right: For easier
questions, augmenting a smaller model with additional test-time computation outperforms using a much larger
model. However, for harder questions, training a larger model remains more effective. The figure is adapted from
(Snell et al., 2024).

QA (tasks solved in one iteration) and multi-turn QA (tasks requiring iterative self-correction). The
dataset includes both automatically generated data and rule-based self-correction data, enabling the model
to learn error detection and iterative refinement. Experiments demonstrate that DotaMath significantly
outperforms state-of-the-art open-source models across in-domain (e.g., MATH, GSM8K) and out-of-
domain benchmarks. By embedding multi-turn self-correction as a core capability, DotaMath enables
models to dynamically adapt to complex problem-solving scenarios, setting a new standard for addressing
challenging mathematical tasks.

6.4 Inference Scaling Laws

Inference Scaling Laws examine the relationships between inference time, computational resource
allocation, and reasoning performance. Research on inference-time compute scaling suggests that
spending more computational resources during inference can significantly enhance model performance, a
principle applied in o1 models. Very recently, DeepSeek models (DeepSeek-R1-Lite-Preview, 2024) also
demonstrate the inference scaling law, as shown in Figure 31. This sub-section explores how understanding

INFERENCE SCALING LAWS:
AN EMPIRICAL ANALYSIS OF COMPUTE-OPTIMAL
INFERENCE FOR LLM PROBLEM-SOLVING

Yangzhen Wu1∗, Zhiqing Sun2, Shanda Li2, Sean Welleck2, Yiming Yang2

1Institute for Interdisciplinary Information Sciences, Tsinghua University
2School of Computer Science, Carnegie Mellon University
wuyangch21@mails.tsinghua.edu.cn
{zhiqings, shandal, swelleck, yiming}@cs.cmu.edu
https://thu-wyz.github.io/inference-scaling/

ABSTRACT

While the scaling laws of large language models (LLMs) training have been exten-
sively studied, optimal inference configurations of LLMs remain underexplored.
We study inference scaling laws and compute-optimal inference, focusing on the
trade-offs between model sizes and generating additional tokens with different in-
ference strategies. As a first step towards understanding and designing compute-
optimal inference methods, we studied cost-performance trade-offs for inference
strategies such as greedy search, majority voting, best-of-n, weighted voting, and
two different tree search algorithms, using different model sizes and compute bud-
gets. Our findings indicate smaller models (e.g., Llemma-7B) can outperform
larger models given the same computation budgets, and that smaller models paired
with advanced inference algorithms yield Pareto-optimal cost-performance trade-
offs. For instance, the Llemma-7B model, equipped with our novel tree search
algorithm, consistently outperforms Llemma-34B with standard majority voting
on the MATH benchmark across all FLOPs budgets. We hope these findings con-
tribute to a broader understanding of inference scaling laws for LLMs.

2 8 32 128 512 2048
Inference FLOPs per question (×1011)

30

40

50

60
70

Te
st

 e
rro

r o
n

GS
M

8K

Inference scaling (Weighted Majority)
410M
1.4B
2.8B
6.9B
12B

0.5 1 2 4 8 16
Model size (B)

30

40

50

60
70

Te
st

 e
rro

r o
n

GS
M

8K

Inference scaling (Weighted Majority)

11.5

12.0

12.5

13.0

13.5

14.0

14.5

lo
g(

FL
OP

s)

Figure 1: Inference scaling laws exhibited for Pythia (Biderman et al., 2023) models and GSM8K
test error. We evaluate the error rate (lower is better) of models using various sizes and numbers of
sampled solutions for weighted majority voting. Left: the error rate for each model size decreases
steadily as inference-compute increases, and converges at the end. Right: the optimal model size
(shown as stars for 241, 244, and 247 FLOPs) varies based on the inference-time compute budget.
For instance, smaller models are compute-optimal at 241 and 244 FLOPs. Both axes are log scale.

∗Work done during the visit at Carnegie Mellon University

1

ar
X

iv
:2

40
8.

00
72

4v
2

 [
cs

.A
I]

 1
4

O
ct

 2
02

4

Figure 34: Inference Scaling Laws on GSM8K with Pythia (Biderman et al., 2023) models (Weighted Majority
Voting). Left: Test error decreases as inference FLOPs increase, demonstrating performance improvements until
convergence across various model sizes. Right: The optimal model size varies with the compute budget. Smaller
models perform better at lower FLOPs (241, 244), while larger models excel at higher FLOPs (247). Both axes are
log-scaled. The figure is adapted from (Wu et al., 2024).

these laws can guide the optimal configuration of computational resources, providing theoretical insights
for maximizing reasoning capabilities while maintaining efficiency.

Scale-Compute (Snell et al., 2024) provides the first systematic analysis of different approaches (see
Figure 32) for scaling test-time compute. Specifically, they investigate how LLMs can enhance their
performance by optimizing test-time computation allocation, focusing on efficiency and adaptability.
A "compute-optimal" strategy is proposed to dynamically allocate inference resources based on task
difficulty. Two primary mechanisms are explored: (1) leveraging Process-based Reward Models (PRMs)
for iterative search, where PRMs evaluate the correctness of intermediate steps in the reasoning process
and guide optimization through tree-based search methods like beam search or lookahead search; and (2)
adaptively modifying the output distribution by enabling models to iteratively refine their responses. PRMs
are integral to this framework as they enable a more granular evaluation of reasoning steps, improving the
ability to explore high-quality solution paths for complex tasks. As shown in Figure 33, experiments show
that this compute-optimal strategy significantly outperforms best-of-N baselines, achieving comparable
or better results with up to 4× less computation. Moreover, the study explores the trade-off between
scaling pretraining versus test-time computation. It finds that additional test-time compute, enhanced by
PRM-based verification, can often outperform pretraining on simpler tasks or low inference workloads,
while harder tasks benefit more from pretraining larger models.

REBASE short for REward BAlanced SEarch is proposed by Wu et al. (2024), who focus on how
model size, inference strategies, and compute budgets interact to optimize problem-solving performance
in LLMs. They find that performance improves with increased inference compute across model sizes until
saturation (Figure 34). Smaller models initially outperform larger ones under low compute budgets, but
larger models excel once smaller models’ performance saturates. Moreover, sampling and voting-based
inference methods face limitations: 1) as accuracy saturates to a fixed upper bound determined by model
probabilities, with diminishing returns despite exponential convergence. 2) Without an oracle verifier,
simple sampling cannot achieve perfect accuracy. 3) Additionally, MCTS struggles with weighted voting,
often producing incomplete solutions that reduce voting effectiveness. To address this, they propose an
advanced inference algorithms Reward Balanced Search (REBASE). As shown in Figure 35, REBASE
combines reward models with dynamic tree search to optimize intermediate node expansions, achieving
Pareto-optimal performance across various compute budgets, outperforming widely-used strategies like
MCTS and weighted majority voting.

Large Language Monkeys (Brown et al., 2024) explore the use of repeated sampling (see Figure 36)
to scale inference compute, revealing its potential to significantly improve task performance by increasing
coverage. As shown in Figure 37, across diverse tasks such as mathematical reasoning, coding challenges,
and software debugging, the study demonstrates that coverage scales log-linearly with the number of

Figure 3: Illustration of one iteration of REward BAlanced SEarch (REBASE).

Recent work in MCTS or its variants (e.g., Tree of Thoughts (Yao et al., 2023)) mainly focus on
improving the performance (e.g., accuracy) on the studied tasks. However, generic comparisons
of MCTS with conventional methods like best-of-n and majority voting in terms of computational
budget, measured in generated tokens or processing time are scarce or indicate potentially unfavor-
able cost-performance tradeoffs. For example, MCTS consumes substantially more resources, often
requiring dozens of times more generated tokens than simpler methods. Specifically, a significant
portion of the paths in the search tree are used to estimate and select nodes, and these paths do not
necessarily become a part of the final candidate solution, although MCTS ensures that the sampled
solutions comprise high-quality intermediate steps. In contrast, sampling methods generate multiple
solutions in parallel and independently, and all the generated sequences are included in the candi-
date solutions. However, the intermediate steps in these sequences are not guaranteed to be of high
quality, as there is no mechanism for pruning poor steps or exploiting promising ones.

This highlights the need for a new tree search method that can achieve a comparable (or better) per-
formance as MCTS, and that is computationally less costly, with a cost similar to weighted majority
voting and best-of-n. This motivates our new method, Reward Balanced SEarch (REBASE).

3.1.2 REWARD BALANCED SEARCH (REBASE)

The REBASE tree search method, illustrated in Fig. 3, inherits the exploitation and pruning prop-
erties of tree search, while using a reward model alone to estimate quality of intermediate nodes.
This saves on computation compared to methods such as MCTS, since it does not involve estimate
node quality with explicit rollouts. In short, the underlying idea is to use a process reward model to
determine how much each node should be expanded at each depth. Namely, REBASE expands nodes
at a given depth according to their softmax-normalized reward scores, subject to a total expansion
budget. We describe this procedure in more detail below.

Notations. We view the fine-tuned LLM as a policy πθ which generates the solution step by step.
Given a question x and the first k steps of a solution r1 · · · rk, the (k + 1)-th step is sampled from
πθ(·|xr1 · · · rk). REBASE generates a solution tree during inference, in which the root node is the
question x, and other nodes corresponds to solution steps. When generating solution trees, we
generate children of rk by sampling from πθ(·|xr1 · · · rk). We use the corresponding solution step
to denote a node. The reward of a node rk is generated by the PRM: R(rk) := R(qr1 · · · rk).

6

Figure 35: Illustration of Reward Balanced Search (REBASE) (Wu et al., 2024). REBASE integrates tree search’s
exploitation and pruning with a reward model to estimate the quality of intermediate nodes, eliminating the need
for costly rollouts like in MCTS. Nodes are expanded based on softmax-normalized reward scores within a fixed
budget, efficiently directing the search depth. The figure is adapted from (Wu et al., 2024).

x = int(input()) …
Problem: Input
a number from

stdin and …

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

Problem 1 (coverage): Can we generate a correct
solution?

Problem 2 (precision): Can we identify a correct
solution from the generated samples?

Verifier
(e.g. unit tests, proof

checkers, majority voting)

data = {} …

import requests …

LLM

x = int(input()) …

Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many independent candidate
solutions for a given problem by sampling from an LLM with a positive temperature. 2) We use a domain-specific
verifier (ex. unit tests for code) to select a final answer from the generated samples.

In this work, we explore repeated sampling (Figure 1) as a simple approach to scaling inference
compute in order to improve reasoning performance. Existing work provides encouraging examples
that repeated sampling can be beneficial in math, coding, and puzzle-solving settings [60, 48,
23]. Notably, AlphaCode [41], a state-of-the-art system for competitive programming, finds that
performance continues to improve with a million samples per problem. Our goal is to systematically
characterize these benefits across a range of tasks, models, and sample budgets.

The effectiveness of repeated sampling is determined by two key properties:

1. Coverage: As the number of samples increases, what fraction of problems can we solve using
any sample that was generated?

2. Precision: How often can we identify correct samples from our collection of generations?

Both properties are needed for achieving strong real-world performance. With unlimited samples,
any model that assigns a non-zero probability to every sequence will achieve perfect coverage.
However, repeated sampling is only practical if we can improve coverage with a feasible budget.
Similarly, generating large sample collections is only useful if the correct samples in a collection can
be identified. The difficulty of the precision problem can vary by task. In some settings, existing
tools like proof checkers and unit tests can automatically verify every sample. In other cases, like
when solving word problems, other methods for verification are needed.

Exploring coverage first, we find that sampling up to 10,000 times per problem can significantly
boost coverage on math and coding tasks (Section 2). When solving CodeContests [41] programming
problems using Gemma-2B [52], we increase coverage by over 300x, from 0.02% with one sample to
7.1% with 10,000 samples. Interestingly, the relationship between log(coverage) and the number of
samples often follows an approximate power law (Section 3). With Llama-3 [3] and Gemma models,
this leads to coverage growing nearly log-linearly with the number of samples over several orders of
magnitude.

In settings with automatic verification tools, increases in coverage translate directly into improved
task performance. When applying repeated sampling to competitive programming and writing
Lean proofs, models like Llama-3-8B-Instruct can exceed the single-sample performance of much
stronger ones like GPT-4o [2]. This ability to amplify weaker models extends to the challenging
SWE-bench Lite dataset of real-life GitHub issues [32], where the current single-sample state-of-the-
art (SOTA), achieved by a mixture of GPT-4o and Claude 3.5 Sonnet, is 43% [1]. When restricted to
a single sample, DeepSeek-Coder-V2-Instruct [20] solves only 15.9% of issues. By simply increasing
the number of samples to 250, we increase the fraction of solved issues to 56%, exceeding the
state-of-the-art by 13%.

In addition to improving model quality, repeated sampling provides a new mechanism for
minimizing LLM inference costs (Section 2.3). When holding the total number of inference FLOPs

2

Figure 36: Illustration of a repeated sampling process (Brown et al., 2024): An LLM generates diverse candidate
solutions, and a verifier, such as unit tests or majority voting, selects the correct one. This approach tackles
challenges in generating and identifying accurate solutions. The figure is adapted from (Brown et al., 2024).

samples, adhering to an exponential power law that defines an inference scaling law. Repeated sampling
proves particularly effective in amplifying weaker models, enabling them to outperform stronger models’
single-attempt performance while optimizing cost. However, the study also highlights limitations in
verification methods like majority voting and reward models, which fail to fully utilize the increased
coverage beyond a certain sample threshold. This work deepens the understanding of inference scaling
laws, focusing on sample count as a key axis for inference optimization, and provides practical guidelines
for balancing computational costs and performance in real-world deployments.

STILL-2 (Min et al., 2024) is a framework for reproducing slow-thinking reasoning systems like
OpenAI’s o1, using a three-phase training strategy: Imitate, Explore, and Self-Improve. As shown
in Figure 38, in the imitate phase, the model is fine-tuned with a small dataset of long-form thought
demonstrations, collected from open o1-like systems, to generate both detailed reasoning steps and final
solutions in a single response. In the explore phase, the model tackles challenging tasks by generating
multiple candidate solutions (rollouts) and identifying correct trajectories that lead to the ground truth,
thereby expanding its reasoning capacity. In the Self-Improve phase, the model uses these high-quality
trajectories to iteratively refine its reasoning abilities, leveraging supervised fine-tuning (SFT) and
direct preference optimization (DPO). The experiments, conducted on MATH-OAI, AIME, and GPQA
benchmarks, show that STILL-2 approaches the performance of industry-level systems with just 3,900
demonstration examples or 1,100 examples plus exploration. The study emphasizes the significance of
long-form thought data, especially for challenging tasks, and demonstrates that reasoning with slow-

1 101 102

Number of Samples (k)
0

0.5

1

Co
ve

ra
ge

 (
pa

ss
@

k)

56%

43%

24.67%

SWE-bench Lite
DeepSeek-Coder-V2-Instruct + Moatless Tools
Single-Attempt SOTA (CodeStory Aide + Mixed Models)
Single-Attempt GPT-4o + Moatless Tools

1 102 1040

0.5

1

Co
ve

ra
ge

 (
pa

ss
@

k)

MiniF2F-MATH (Formal Proofs)

1 102 1040

0.5

1
CodeContests

1 102 104
Number of Samples (k)

0

0.5

1

Co
ve

ra
ge

 (
pa

ss
@

k)

MATH (Oracle Verifier)

1 102 104
Number of Samples (k)

0

0.5

1 GSM8K (Oracle Verifier)

Llama-3-8B-Instruct Llama-3-70B-Instruct
Single-Attempt GPT-4o

Figure 2: Across five tasks, we find that coverage (the fraction of problems solved by at least one generated sample)
increases as we scale the number of samples. Notably, using repeated sampling, we are able to increase the solve rate
of an open-source method from 15.9% to 56% on SWE-bench Lite.

our LLM with a software framework that provides the model with tools for navigating through
and editing codebases. In our work, we use the open-source Moatless Tools library [67]. Note that
solving a SWE-bench issue involves a back-and-forth exchange between the LLM and Moatless Tools.
One sample/attempt for this benchmark refers to one entire multi-turn trajectory. To minimize
costs, we restrict the number of attempts per issue to 250, with all attempts made independently of
one another.

We report our results in Figure 2. We also include the single-attempt performance of GPT-4o on
each task, as well the single-attempt state-of-the-art for SWE-bench Lite (CodeStory Aide [1] which
uses a combination of GPT-4o and Claude 3.5 Sonnet). Across all five tasks, we find that coverage
smoothly improves as the sample budget increases. When all LLMs are given a single attempt,
GPT-4o outperforms the Llama and DeepSeek models at every task. However, as the number of
samples increases, all three of the weaker models exceed GPT-4o’s single-attempt performance. In
the case of SWE-bench Lite, we solve 56% of problems, exceeding the single-attempt SOTA of 43%.

2.2 Repeated Sampling is Effective Across Model Sizes and Families

The results from Section 2.1 indicate that repeated sampling improves coverage. However, we only
show this trend for three recent, instruction-tuned models with 8B or more parameters. We now
show that these trends hold across other model sizes, families, and levels of post-training. We
expand our evaluation to include a broader set of models:

• Llama 3: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B-Instruct.

• Gemma: Gemma-2B, Gemma-7B [52].

• Pythia: Pythia-70M through Pythia-12B (eight models in total) [9].

We restrict evaluation to the MATH and CodeContests datasets to minimize inference costs,
reporting results in Figure 3. Coverage increases across almost every model we test, with smaller
models showing some of the sharpest increases in coverage when repeated sampling is applied. On
CodeContests, the coverage of Gemma-2B increases by over 300x, from a pass@1 of 0.02% to a

5

Figure 37: The coverage, defined as the fraction of problems solved by at least one generated sample, increases as
the number of samples grows. The figure is adapted from (Brown et al., 2024).

employ these responses as demonstration data to fine-tune our base model. We find that this simple
strategy effectively elicits the slow-thinking capacities of LLMs and aligns with the desired output
format of both thought and solution. We carefully study how to construct the demonstration dataset
by mixing solutions from different domains or with varying levels of difficulty. Additionally, we
focus on tackling difficult problems for exploration. We employ simple search strategies to obtain
correct trajectories (i.e., those responses that lead to the ground-truth answers), which are difficult for
the fine-tuned model to obtain in a single rollout. Furthermore, we implement different strategies to
achieve self-improvements by either supervised fine-tuning and direct preference optimization. We
observe considerable improvements through such a refinement training method.

To compare our system with industry counterparts, we conduct evaluations on several benchmarks,
including MATH-OAI [19], AIME 5, and GPQA [20]. Experimental results show that when scaling
the demonstration instances to 3,900, our variant using distillation-based training even approaches
the performance of some industry-level systems. Furthermore, our exploration and self-improvement
approach also shows very promising results using only 1,100 distilled demonstration instances as
seed data.

2 Method

In this section, we provide a detailed introduction of our technical approach to implement o1-like
reasoning systems6. We denote the implemented system by STILL-2.

Data

Mixture

Imitation Learning for Slow-Thinking Reasoning

Exploration and Self-Improvement

SFT

Science

Data Mixture

CodeMath

Puzzle

Thought:
Wait a minute, let me think for a while ...

Solution：
Step 1: Calculate the length of AC ...

Prompt & Question

Long-form Thought Dataset

Update

Science

Sampling

Gold

Label Add

{𝑞𝑖 , 𝑡𝑖
+ 𝑠𝑖

+} SFT

DPO{𝑞𝑖 , 𝑡𝑖
−, 𝑠𝑖

−}

{𝑞𝑖 , 𝑡𝑖
+, 𝑠𝑖

+}

Instance Pool

Prompt & Question

Thought
Solution

Iterative Refinement

Figure 1: An illustrative overview of our training pipeline for STILL-2.

2.1 Overview

In this work, we propose a three-phase training approach—imitate, explore, and self-improve—to
develop reasoning systems similar to o1. After training, the inference phase is also completed by a
single-pass text generation process, akin to prior prompt-based methods, with the key distinction that
the generated response includes both the reasoning process and the solution. Next, we detail each
phase below.

• Imitate: The core idea is that both the internal thought process and the final solution should
be generated in a single response. To achieve this, specific formatting tokens can be used
to guide the model in producing such outputs [21, 22]. We argue that a well-established
model, even with a small amount of long-form thought data, can easily adhere to o1-like
output formats. This process is fundamentally about following a prescribed format. The
key rationale is that, although the entire thought process may be complex, LLMs can

5https://huggingface.co/datasets/AI-MO/aimo-validation-amc
6Because the exact development of OpenAI’s o1 systems is not publicly known, in this paper, “o1-like” refers

to the reasoning systems that first conducts extensive reasoning process before producing the final solution.

3

Figure 38: The training pipeline of STILL-2 consists of three phases. In the imitate phase, the model is fine-tuned
on a small dataset of long-form reasoning demonstrations, enabling it to generate detailed steps and final solutions
in a single response. During the explore phase, the model tackles complex tasks by generating multiple candidate
solutions and identifying correct paths to the ground truth, enhancing its reasoning capabilities. Finally, in the
self-improve phase, the model iteratively refines its reasoning using high-quality trajectories through supervised
fine-tuning (SFT) and direct preference optimization (DPO). The figure is adapted from (Min et al., 2024).

thinking processes can generalize across domains. This aligns with inference scaling laws by showing how
high-quality data and iterative training enhance model performance even with limited initial resources.

MindStar (M*) (Kang et al., 2024) is a framework that enhances the reasoning abilities of LLMs
at inference time without fine-tuning. By treating reasoning tasks as search problems, M* employs a
Process-supervised Reward Model (PRM) to evaluate reasoning steps and integrates tree-based search
algorithms, such as Beam Search and Levin Tree Search (LevinTS), for structured exploration and
backtracking. Aligning with inference scaling laws, M* shifts computational resources from training
to inference, enabling smaller models like Llama-2-13B to achieve GPT-3.5-level performance with
200× lower computational costs. It improves reasoning performance by dynamically scaling the search
space, refining intermediate steps, and prioritizing promising paths. Experiments on GSM8K and MATH
datasets demonstrate that M* achieves significant accuracy gains by leveraging additional inference-time
computation, providing a resource-efficient approach for enhancing complex reasoning capabilities.

7 Evaluation

The o1-like model demonstrates strong reasoning capabilities in many benchmarks. Currently, evaluations
tend to focus on math or coding tasks, particularly those involving competitive-level problems due to their
high difficulty, as well as some PhD-level questions in the fields of science and engineering. In the future,
a set of evaluation metrics specifically designed to assess reasoning abilities may be introduced.

GPQA. The GPQA (Rein et al., 2023) dataset provides a challenging benchmark for evaluating reasoning
abilities, particularly in scientific domains such as physics, chemistry, and biology. It consists of graduate-
level multiple-choice questions carefully crafted by domain experts to test the limits of human and AI
performance. What makes GPQA unique is its difficulty: even experts with PhDs or those pursuing
advanced degrees in relevant fields achieve only 65% accuracy, which increases to 74% when accounting
for errors identified retrospectively. Highly skilled non-experts, despite having unrestricted access to the
internet, achieve a mere 34% accuracy. The dataset is also notably difficult for state-of-the-art AI systems
like GPT-4, which achieves only 39% accuracy, significantly above random chance (25%). This makes
GPQA an ideal testbed for evaluating large reasoning models. As the AI community continues to explore
advanced reasoning capabilities, datasets like GPQA will be crucial in assessing whether AI models can
handle tasks that are inherently difficult for both human experts and AI systems alike.

OlympiadBench. OlympiadBench (He et al., 2024a) offers a comprehensive and rigorous benchmark
for evaluating reasoning abilities, particularly in mathematics and physics, through a bilingual multi-
modal dataset. Comprising 8,476 challenging problems sourced from international Olympiads, Chinese
Olympiads, and the Chinese College Entrance Exam (GaoKao), OlympiadBench pushes the boundaries of
current AI models. Each problem is annotated with expert-level step-by-step reasoning, ensuring that the
dataset captures the full depth of problem-solving processes. Additionally, OlympiadBench addresses
a critical gap in existing benchmarks by incorporating multimodal reasoning, as many scientific tasks
require not just textual analysis but also an understanding of visual or geometric information. With its
rigorous design, OlympiadBench serves as an essential tool for assessing the true reasoning capabilities of
state-of-the-art AI models, helping to guide future advancements in artificial general intelligence.

Minerva. Minerva (Lewkowycz et al., 2022) introduces a benchmark specifically focused on testing
large language models in quantitative reasoning across various scientific domains, including mathematics,
physics, chemistry, and biology. The dataset contains over 200 undergraduate-level problems drawn from
MIT’s OpenCourseWare (OCW) and other technical sources, providing a broad spectrum of challenges
that require step-by-step reasoning and solution generation. Minerva pushes the boundaries of model
performance by testing the ability to solve complex, real-world scientific problems without relying on
external tools or solvers. The problems in Minerva involve not only natural language processing but
also the integration of formal mathematical language, such as equations and diagrams, to model accurate
problem-solving procedures. Minerva’s diverse and robust set of problems offers a comprehensive
platform for assessing how well AI systems can handle multi-step, quantitative reasoning tasks, providing
a critical measure for the development of future AI assistants in scientific and engineering fields.

GSM8K. GSM8K (Cobbe et al., 2021a) is a benchmark designed to evaluate the ability of language
models to perform multi-step mathematical reasoning at the grade school level. It consists of 8.5K high-
quality, linguistically diverse math word problems that cover a wide range of topics. Despite the simplicity
of the underlying math concepts, the dataset poses significant challenges due to its high linguistic diversity,
requiring models to demonstrate strong reasoning abilities in both interpreting natural language and
solving mathematical problems. GSM8K provides a valuable resource for advancing the development of
models capable of tackling elementary yet challenging quantitative reasoning tasks, serving as a key tool
for testing the reasoning and problem-solving abilities of AI systems.

MATH. The MATH dataset (Hendrycks et al., 2021) presents a challenging benchmark specifically
designed to evaluate the mathematical problem-solving abilities of machine learning models. Comprising
12,500 competition-level math problems from high school math competitions, MATH covers a broad range

of topics including algebra, geometry, combinatorics, and number theory. Each problem is accompanied
by a full step-by-step solution, enabling models to learn both the correct final answer and the reasoning
process behind it. The dataset is particularly valuable for testing models’ abilities to perform multi-step
reasoning and generate coherent explanations. MATH’s complexity, even for human experts, combined
with its large scale and focus on structured problem-solving, makes it an essential benchmark for pushing
the boundaries of AI’s reasoning capabilities, particularly in the realm of mathematics.

AIME. The American Invitational Mathematics Examination (AIME) (AI-MO, 2025) serves as a
prestigious benchmark for evaluating mathematical reasoning abilities, particularly for high school-level
problem-solving. It is originally a selective 15-question, 3-hour exam that is open to students who perform
in the top 5% of the AMC 12 exam (or top 2.5% of the AMC 10). The problems tested in the AIME
primarily focus on algebra, geometry, trigonometry, number theory, probability, and combinatorics, and
often require advanced problem-solving techniques not typically covered in standard high school curricula.
For large models, the AIME dataset serves as an important benchmark for evaluating their capabilities in
multi-step mathematical reasoning.

Codeforces. Codeforces (Mirzayanov, 2025) is a platform hosts regular programming contests, known
as "Codeforces Rounds," which challenge participants to solve algorithmic problems under time pressure.
The problems typically span a variety of topics in computer science, including graph theory, dynamic
programming, data structures, and number theory, requiring strong analytical and computational reasoning
skills. The Codeforces rating system, similar to the Elo system, evaluates contestants based on their
performance across these contests. With divisions for different skill levels (Div. 1, Div. 2, Div. 3, and
Div. 4), Codeforces offers a wide range of problems suitable for evaluating AI systems at various levels
of difficulty. This makes Codeforces an excellent resource for assessing the ability of large models to
solve algorithmic and coding problems, particularly those requiring multi-step, logical reasoning and
optimization strategies.

8 Analysis of Reasoning LLMs

This section analyzes the reasoning capabilities of large language models (LLMs) through a review of
recent studies that investigate this topic from multiple perspectives. It examines factors such as token
biases, reasoning step length, and the faithfulness of chain-of-thought (CoT) explanations, providing a
comprehensive evaluation of how reasoning impacts model alignment, safety, and generalization.

8.1 Reasoning Enables Safer Language Models

Guan et al. (2024) introduce deliberative alignment, a novel training paradigm that leverages LLMs’
reasoning capabilities to improve their safety. This approach trains models to explicitly recall and reason
through safety specifications before generating responses. When applied to OpenAI’s o-series models,
deliberative alignment enables the use of CoT reasoning to analyze user prompts, reference relevant policy
guidelines, and produce safer outputs. Experimental results demonstrate that o-series models aligned
through deliberative alignment achieve precise compliance with OpenAI’s safety policies without relying
on human-authored chain-of-thoughts or answers. Additionally, deliberative alignment advances the
Pareto frontier by strengthening resistance to jailbreak attempts, lowering overrefusal rates, and enhancing
generalization to out-of-distribution contexts. These outcomes underscore that reasoning over clearly
defined policies fosters more scalable, reliable, and transparent model alignment.

8.2 Run-Time Strategies for Enhancing o1

Nori et al. (2024) explore the efficacy of various classic run-time prompt strategies applied to OpenAI’s
o1, the reasoning-native model. Their study focuses on medical challenge problem benchmarks and
incorporates MedPrompt (Nori et al., 2023), a structured, multi-step prompting framework designed to
enhance the performance of LLMs on these benchmarks. Through systematic experiments, the authors
assess the o1-preview model across multiple medical benchmarks, both with and without the use of
MedPrompt. The findings are as follows. First, o1-preview significantly outperforms the GPT-4 series

with MedPrompt, even in the absence of advanced prompting techniques. Second, few-shot prompting
adversely impacts o1’s performance, suggesting that in-context learning may no longer be a viable
approach for reasoning-native models. Third, ensembling remains a feasible strategy but imposes high
resource demands, underscoring the need for careful cost-performance optimization. Finally, their
analysis identifies a Pareto frontier for run-time strategies: GPT-4o offers a cost-effective solution,
while o1-preview achieves state-of-the-art performance at a higher cost. Despite o1-preview’s superior
performance, GPT-4o retains its value in specific scenarios, especially when combined with strategies like
MedPrompt. These findings offer critical guidance for optimizing run-time strategies for reasoning models
in medical applications, emphasizing the trade-offs between performance, cost, and resource utilization.

8.3 CoT’s Primary Benefits in Mathematics and Symbolic Reasoning
Sprague et al. (2024) investigate the types of tasks where prompt-based CoT reasoning is most effective.
Through a quantitative meta-analysis of existing literature and their own experiments across various
models, datasets, and prompts, they find that CoT yields significant performance benefits primarily in tasks
involving math or logic, with only marginal improvements in other task types (see Figure 39). To further
understand CoT’s behavior, the authors decouple planning from execution and compare its performance
with that of tool-augmented LLMs. Their findings suggest that much of CoT’s advantage arises from
enhancing symbolic execution, yet it still falls short when compared to dedicated symbolic solvers. These
results highlight CoT as a powerful technique, but they also suggest that broader improvements in NLP
tasks will require moving beyond prompt-based CoT. Future research directions may include exploring
paradigms such as search-based approaches, interacting agent systems, or more effectively fine-tuned
models.

Preprint

TO COT OR NOT TO COT? CHAIN-OF-THOUGHT HELPS
MAINLY ON MATH AND SYMBOLIC REASONING

Zayne Sprague→, Fangcong Yin→, Juan Diego Rodriguez→, Dongwei Jiang↑,
Manya Wadhwa→, Prasann Singhal→, Xinyu Zhao→,
Xi Ye↓, Kyle Mahowald→, Greg Durrett→

→The University of Texas at Austin, ↑Johns Hopkins University, ↓Princeton University
zaynesprague@utexas.edu

ABSTRACT

Chain-of-thought (CoT) via prompting is the de facto method for eliciting reason-
ing capabilities from large language models (LLMs). But for what kinds of tasks
is this extra “thinking” really helpful? To analyze this, we conducted a quantitative
meta-analysis covering over 100 papers using CoT and ran our own evaluations of
20 datasets across 14 models. Our results show that CoT gives strong performance
benefits primarily on tasks involving math or logic, with much smaller gains on
other types of tasks. On MMLU, directly generating the answer without CoT leads
to almost identical accuracy as CoT unless the question or model’s response con-
tains an equals sign, indicating symbolic operations and reasoning. Following this
finding, we analyze the behavior of CoT on these problems by separating plan-
ning and execution and comparing against tool-augmented LLMs. Much of CoT’s
gain comes from improving symbolic execution, but it underperforms relative to
using a symbolic solver. Our results indicate that CoT can be applied selectively,
maintaining performance while saving inference costs. Furthermore, they suggest
a need to move beyond prompt-based CoT to new paradigms that better leverage
intermediate computation across the whole range of LLM applications1.

Figure 1: Left: meta-analysis of CoT literature; each point is a reported delta of CoT over direct
answering for some (LLM, task) pair. Right: average performance of using zero-shot CoT v.s. di-
rect answer prompts across five general reasoning categories, covering 20 datasets with 14 LLMs
evaluated on each. In both sets of results, math and other kinds of symbolic reasoning are the do-
mains that consistently see substantial improvements from CoT (red dotted line indicates the mean
improvement from CoT across experiments).

1Our code can be found at https://github.com/Zayne-sprague/To-CoT-or-not-to-CoT.

1

ar
X

iv
:2

40
9.

12
18

3v
2

 [c
s.C

L]
 2

9
O

ct
 2

02
4

Figure 39: Main results of Sprague et al. (2024). Left: A meta-analysis of Chain-of-Thought (CoT) literature
shows the reported performance improvement (delta) of CoT over direct answering for various (LLM, task) pairs.
Right: Average performance comparison between zero-shot CoT and direct answer prompts across five reasoning
categories, covering 20 datasets and 14 LLMs. Results indicate that math and symbolic reasoning consistently
benefit the most from CoT, with the red dotted line representing the average improvement across experiments. The
figure is adapted from Sprague et al. (2024).

8.4 Unveiling Token Bias: The Limits of Reasoning in LLMs
Jiang et al. (2024) introduce the concept of token bias: an LLM exhibits token bias in a reasoning task if
changes to some or all tokens in the task description (while maintaining the underlying logic) predictably
alter the model’s output (see Figure 40). To determine whether LLMs are capable of genuine reasoning
or if their performance is primarily driven by token biases, the authors propose a hypothesis-testing
framework. This framework outlines a set of hypotheses where token biases are readily identifiable,
with all null hypotheses assuming the genuine reasoning capabilities of LLMs. The authors conduct

experiments with a variety of commercial and open-sourced LLMs, and their statistical analysis suggests
that, while LLMs may perform well on classic problems, their success is largely driven by recognizing
superficial patterns influenced by strong token bias. This raises concerns about their true reasoning
and generalization capabilities. These findings suggest that chain-of-thought prompting and in-context
learning may not invoke genuine reasoning in LLMs. Instead, they may lead to semantic shortcuts
that superficially mimic the desired behavior. This highlights the need for further investigation into the
underlying mechanisms and limitations of LLMs, particularly with respect to their reasoning abilities.

A Peek into Token Bias: Large Language Models Are Not Yet
Genuine Reasoners

Bowen Jiang1, 2, Yangxinyu Xie1, 2, Zhuoqun Hao1, Xiaomeng Wang1,
Tanwi Mallick2, Weijie J. Su1, Camillo J. Taylor1, Dan Roth1

University of Pennsylvania1 Argonne National Laboratory2

Philadelphia, PA, 19104, USA Lemont, IL, 60439, USA
{bwjiang@seas, xinyux@wharton, zhuoqunh@sas, xwang1@wharton}.upenn.edu,
tmallick@anl.gov, {suw@wharton, cjtaylor@seas, danroth@seas}.upenn.edu

Abstract

This study introduces a hypothesis-testing
framework to assess whether large language
models (LLMs) possess genuine reasoning
abilities or primarily depend on token bias.
We go beyond evaluating LLMs on accuracy;
rather, we aim to investigate their token bias
in solving logical reasoning tasks. Specifi-
cally, we develop carefully controlled synthetic
datasets, featuring conjunction fallacy and syl-
logistic problems. Our framework outlines a
list of hypotheses where token biases are read-
ily identifiable, with all null hypotheses assum-
ing genuine reasoning capabilities of LLMs.
The findings in this study suggest, with sta-
tistical guarantee, that most LLMs still strug-
gle with logical reasoning. While they may
perform well on classic problems, their suc-
cess largely depends on recognizing superfi-
cial patterns with strong token bias, thereby
raising concerns about their actual reasoning
and generalization abilities. Codes and data
are open-sourced at https://github.com/bowen-
upenn/llm_token_bias.

1 Introduction

Large language models (LLMs) have achieved re-
markable progress in understanding and generating
human-like text, triggering growing interest in the
LLMs’ theory of minds (Kosinski, 2023; Jamali
et al., 2023; Bubeck et al., 2023) and decision-
making abilities (Lyu et al., 2023; Prasad et al.,
2023; Jiang et al., 2024a,b; Xie et al., 2024). How-
ever, there is ongoing debate about whether LLMs
possess genuine reasoning capabilities, as evidence
suggests that the performance of LLMs on reason-
ing tasks is correlated with how much the input’s se-
mantic content supports a correct logical inference
(Dasgupta et al., 2022; Li et al., 2023). Should valid
reasoning be applied, such a correlation would not
exist, since a genuine reasoner should be able to de-
rive the correct inference regardless of the context.

Figure 1: We illustrate token bias using the classic
"twenty-five horses" problem in graph theory. The top
two sub-figures, generated by GPT-4o for illustration
purposes only1, demonstrate the concept by altering
the name "horses" to "bunnies", irrelevant to the prob-
lem’s underlying logic. The bottom two sub-figures
show experimental results in GPT-4 and Claude, where
performance significantly drops due to perturbations in
animal names and numbers. In these plots, "Original"
refers to the unaltered "twenty-five horses" problem,
"random_animals" alters only the animal names, and
"random" alters both names and numbers. We observe
n12 > n21 with statistical significance, meaning that
there are more instances where the original problem is
solved correctly while the perturbed problem is solved
incorrectly, compared to the reverse. As a result, our
hypothesis testing confirms token bias in this scenario.

In this paper, we formalize this observation and
say that an LLM is subject to token bias in a reason-
ing task if systematic changes to some or all tokens
in the task descriptions - while keeping the under-
lying logic intact - allow us to predict the direction
of the shift in the model’s output. A strong token
bias suggests that the model is relying on su-
perficial patterns in the input rather than truly
understanding the underlying reasoning task.
This could lead to brittle performance that fails to
generalize well to novel examples and phrasings
encountered in the wild, which could differ from
the spurious patterns the model may have overfitted
to during training.

1

ar
X

iv
:2

40
6.

11
05

0v
2

 [c
s.C

L]
 4

 O
ct

 2
02

4

Figure 40: Examples of the concept of token bias proposed in Jiang et al. (2024). The concept of token bias is
illustrated using the classic “twenty-five horses” problem in graph theory. The top sub-figures, generated by GPT-4o
for illustrative purposes, modify the term “horses” to “bunnies” to demonstrate that such changes do not impact the
problem’s underlying logic. The bottom sub-figures present experimental results from GPT-4 and Claude, revealing
a significant drop in performance when animal names or numbers are altered. “Original” refers to the unmodified
problem, while “random_animals” alters only the animal names, and “random” modifies both names and numbers.
Statistical analysis shows that n12 > n21, meaning there are more cases where the original problem is solved
correctly while the perturbed version is solved incorrectly, compared to the reverse. These findings confirm the
presence of token bias in this scenario. The figure is adapted from Jiang et al. (2024).

8.5 Latent Multi-Hop Reasoning in LLMs

Yang et al. (2024b) study the latent multi-hop reasoning abilities of LLMs using complex prompts such as
"The mother of the singer of ‘Superstition’ is." Latent multi-hop reasoning refers to an LLM’s ability to
implicitly connect multiple pieces of information across reasoning steps. For example, the model might
(1) internally identify a bridge entity (e.g., recognizing "the singer of ‘Superstition’" as Stevie Wonder)
and (2) leverage related knowledge (e.g., about Stevie Wonder’s mother) to complete the task, without
explicitly breaking down these intermediate steps. The authors analyze latent multi-hop reasoning by
testing two hops: (1) whether modifying the prompt to indirectly mention the bridge entity improves the
LLM’s recall of it, and (2) whether increased recall enhances the LLM’s ability to utilize knowledge about
the bridge entity. Their experiments with LLaMA-2 (Touvron et al., 2023) 7B, 13B, and 70B models
reveal compelling evidence of latent multi-hop reasoning for certain relation types, with the reasoning
pathway utilized in more than 80% of relevant prompts. However, the effectiveness varies by context.
Substantial evidence is found for the first hop, but the second hop and full multi-hop traversal show
moderate results. Additionally, larger models demonstrate improved performance on the first hop, but not
the second. These findings emphasize the need for further research to enhance latent multi-hop reasoning,
which is crucial for improving parameter efficiency, generalization, and controllability in LLMs.

8.6 The Impact of Reasoning Step Length
Jin et al. (2024) explore the correlation between the effectiveness of CoT and the length of reasoning
steps in prompts. The authors design several empirical experiments that manipulate the length of rationale
reasoning steps within CoT demonstrations, either expanding or compressing them, while keeping all
other factors constant (see Figure 41). They experiment with models such as GPT-3, GPT-3.5, and GPT-4,
and present the following key insights. First, lengthening reasoning steps in CoT prompts, even without
adding new information, improves LLM reasoning, while shortening them leads to reduced performance.
Second, even incorrect rationales can enhance outcomes if they maintain a sufficient inference length.
This suggests that the length of the reasoning chain is more crucial than its factual accuracy for effective
problem-solving. Third, the benefits of longer reasoning steps depend on task complexity, with more
complex tasks benefiting more from extended inference. These results offer actionable guidance for
optimizing CoT strategies, underscoring the importance of reasoning step length in tackling intricate NLP
challenges.

Think of word Read the question again Repeat State Self-Verification Make Equation

Q: A coin is heads up. Jeff does not flip the coin. Jen flips the coin. Giselle flips the coin. Noel does not flip the coin. Is the
coin still heads up? Note that ?flip? here means ?reverse?.

Based on this question,
the stem of the sentence
is coin, heads up, flip.
Think coin: The coin is
a ... Answer: Yes

The question is: Given
that a coin is initially
heads up and only Jen
and Giselle flip it, is the
coin ... Answer: Yes

The state of the coin
from the beginning is
heads up. Rachel does
not flip the coin, this
means ... Answer: Yes

The coin is a double
sides coin. So the
answer can only be
''yes'' or ''no'' ... Answer:
Yes

Let's represent Heads
up = 1. Tails up = -1.
We start with the coin
as heads up, so we start
with 1 ... Answer: 1

Reasoning Steps Expansion of CoT Rationales

Reasoning Steps Compression of CoT Rationales

Think coin: The coin is
a ... Answer: Yes

Coin is initially heads
up ... Answer: Yes

The state of the coin
from the ... Answer: No

The answer are ''yes'' or
''no'' ... Answer: Yes

Heads up = 1. Tails up
= -1 ... Answer: -1

Figure 2: Increase the length of the thinking chain through the method in the figure, and compress the thinking
chain without losing information as much as possible.

This change was implemented because, unlike the
Few-shot CoT context, we cannot introduce addi-
tional reasoning steps in the example. By alter-
ing the initial prompt, we guide the LLM to en-
gage in more extensive thinking. This approach is
crucial as it enhances the model’s accuracy with-
out the need for incremental training or additional
example-driven adjustments typical in few-shot
CoT scenarios. This refined strategy ensures a
more comprehensive and detailed reasoning pro-
cess, thereby significantly improving the model’s
performance in zero-shot settings.

3.3 Analyzing Few-shot CoT

In this section, we aim to modify the reasoning
chains within CoT rationales, either by adding or
compressing reasoning steps. The goal is to exam-
ine how changes in reasoning structure influence
LLM decision-making. During rationale expansion,
we will avoid introducing any new task-relevant in-
formation. This isolates reasoning steps as the only
variable under study.

To this end, we plan to investigate the following
strategies to expand the reasoning steps for dif-
ferent LLM applications. There are usually fixed
patterns in the way people think about a problem,
for example, by repeating the question over and

over again to gain a deeper understanding, by cre-
ating mathematical equations to reduce the burden
on memory, by analyzing the meaning of words
in the question to help understand the topic, by
summarizing the current state to simplify the de-
scription of the topic. Based on the inspiration of
Zero-Shot-CoT and Auto-CoT, we expected the
process of CoT to become a standardized pattern,
and lead to the right result by restriction on the di-
rection of CoT thinking in the prompt section. The
core of our approach is to simulate the process of
human thinking and reshape the chain of thought.
We give five general prompt strategies in Table 6
in the Appendix.

• Think About The Word: This strategy is to ask
the model to interpret the word and rebuild the
knowledge base. Typically a word has multiple
different meanings, and the effect of this is to get
the model to think outside the box and reinterpret
the words in the problem based on the generated
interpretations. This process does not introduce
new information. In the prompt, we give exam-
ples of the words that the model is thinking about,
and the model automatically picks words for this
process based on the new question.

• Read the question again: Read the questions
repeatedly to reduce the interference of other

Figure 41: Different methods used to extend or compress the reasoning length in Jin et al. (2024). Use the approach
shown in the figure to extend the reasoning chain, and compress it to the greatest extent possible while retaining all
information. The figure is adapted from Jin et al. (2024).

8.7 Faithfulness of CoT Reasoning
Lanham et al. (2023) examine whether the reasoning presented in CoT explanations accurately reflects
the actual reasoning processes of LLMs. First, they evaluate post-hoc reasoning, where reasoning is
generated after the conclusion has already been determined, by truncating or introducing errors into
the CoT before the final answer. Their findings reveal significant variation in LLMs’ reliance on CoT
across tasks: some tasks exhibit no dependence on CoT, while others rely on it heavily. Interestingly,
post-hoc reasoning tends to worsen with more capable models, indicating that smaller models may be
more reliable for tasks requiring faithful reasoning. Second, they investigate whether CoT’s performance
gains stem from increased test-time computation. By replacing CoT with uninformative filler text, they
find no accuracy improvements, suggesting that test-time computation alone does not account for CoT’s
effectiveness. Third, they explore whether CoT encodes task-relevant information in ways inaccessible
to human interpretation. By substituting CoT with paraphrased versions, they observe no performance
degradation, indicating that the specific phrasing of CoT is not crucial to its success. In summary, these
findings highlight key challenges in CoT faithfulness and offer valuable methodologies for improving CoT
explanations, contributing to the development of systems with more transparent and reliable reasoning

processes.

Jordan is a hockey goalie. in the first period
of a garne, he blocked four shots. in the
second period, he blocked twice as many
shots. in the third peried, he blocked three
fewer than in the second period. When the
game ended after the fourth period, he had
blocked 21 sh ots in all. How man y did
J ord a n b l oc k i n t h e fo u r t h p e r io d ?

Question (𝑞)
Verbosity Identification

𝒗𝒆𝒓𝒃𝒐𝒔𝒊𝒕𝒚 𝒚𝒈 ≥ 𝟎

VARR

𝒗𝒆𝒓𝒃𝒐𝒔𝒊𝒕𝒚 𝒚𝒈 > 𝒗𝒆𝒓𝒃𝒐𝒔𝒊𝒕𝒚(𝒚𝒘)

VARR+

step 1. Candidate Sentence Selection step 2. Verbosity Evaluation

step 4. Supervised Fine-tuning w/o Redundant Reasoning Sentence

step 3. Delete Redundant Reasoning Sentence

Reasoning(𝑅)

Let F be the number of shots Jordan blocked in
the fourth period.

In the second period, he blocked 2 * 4 = 8<<24-
8>>8 shots.
In the third period, he blocked 8 - 3=<<8-
3=5>>5 shots.
In the whole game, he blocked 4 * 8 + 5 + F =
17 + F = 21 shots.
…

Candidate Redundant

Reasoning removed (𝑅′)

Reasoning(𝑅)

Let F be the number of shots Jordan blocked in
the fourth period.

In the second period, he blocked 2 * 4 = 8<<24-
8>>8 shots.
In the third period, he blocked 8 - 3=<<8-
3=5>>5 shots.
In the whole game, he blocked 4 * 8 + 5 + F =
17 + F = 21 shots.
…

Candidate Redundant

Reasoning removed (𝑅′)

Jordan is a hockey goalie. in the first period
of a garne, he blocked four shots. in the
second period, he blocked twice as many
shots. in the third peried, he blocked three
fewer than in the second period. When the
game ended after the fourth period, he had
blocked 21 sh ots in all. How man y did
J ord a n b l oc k i n t h e fo u r t h p e r io d ?

Question (𝑞)

24
Incorrect answer(𝒚𝒘)

4
Correct answer(𝒚𝒈)

4
Correct answer(𝒚𝒈)

𝒗𝒆𝒓𝒃𝒐𝒔𝒊𝒕𝒚 𝒚 = 𝐥𝐨𝐠
𝒑𝜽 𝒚 𝑹′, 𝒒)
𝒑𝜽 𝒚 𝑹, 𝒒)

Figure 2: Overview of our VARR/VARR+ framework. Initially, we select a candidate sentence from the beginning
of the rationale (Section 3). After removing the candidate sentence, we evaluate verbosity(yg) and verbosity(yw)
using Equations (5) and (9). If the candidate sentence meets the verbosity evaluation criteria, it is excluded in
subsequent training steps. The model then proceeds with training, where the redundant sentence is excluded from
the rationale.

tifying redundant reasoning sentences. Section 4.2
describes the integration of verbosity in the reduc-
tion process during CoT training. Subsequently,
Section 4.3 presents additional verbosity term by
incorporating the wrong answer to improve robust-
ness. Finally, Section 4.4 illustrates the overall
VARR framework.

4.1 Verbosity

To quantify the redundancy of the sentences for
removal, we first introduce a foundational concept
‘verbosity’. Given an input x, full rationale R, and
a reduced rationale R→ = {rj}j↑I\{i}, we measure
the verbosity of a sentence ri on y by measuring
the difference in Kullback–Leibler divergence (KL-
divergence) as follows:

verbosity(y) = DKL(q(y|x) → pω(y|R, x))

↑DKL(q(y|x) → pω(y|R→, x)),

(2)

where q(y|x) is the ground truth distribution. The
verbosity(y) highlights the informational contribu-
tion or redundancy of a rationale sentence ri on
answer y. Since q(y|x) is the form of the one-hot
vector (i.e., Dirac delta function), the verbosity(y)
can be computed as the log-likelihood ratio be-
tween R and R→ as follows:

verbosity(yg) = [Hq(pω(y|R, x))↑H(q(y|x))]

↑
[
Hq(pω(y|R→, x))↑H(q(y|x))

]

= Eq[↑ log P (y|R, x)]

+ Eq[log P (y|R→, x)]

= log

(
P (yg|R→, x)

P (yg|R, x)

)
,

(3)

where yg is the ground truth answer (i.e., q(yg|x) =
1). Hq(·) and H(·) denote the cross-entropy and
the entropy, respectively. Intuitvely, a higher value
of verbosity(yg) implies that the likelihood of the
model generating the ground truth answer increases
after removing ri, indicating that its removal is
beneficial.

4.2 Verbosity Identification in CoT Training
Given an input sequence, the CoT training (Nye
et al., 2021) aims to train LLMs to generate full
rationale, followed by the ground truth answer with
the following loss:

↑ log pω(yg, R|x). (4)

In each training step t, each sentence ri within R
is assessed with the following the equation:

verbosity(yg) ↓ 0. (5)

4

Figure 42: Overview of the VARR/VARR+ framework proposed in Jang et al. (2024). Initially, a candidate sentence
is selected from the beginning of the rationale. After removing the candidate sentence, verbosity is evaluated
for both verbosity(yg) and verbosity(yw). If the candidate sentence meets the verbosity evaluation criteria, it is
excluded from subsequent training steps. The model then continues training with the redundant sentence removed
from the rationale. The figure is adapted from Jang et al. (2024).

8.8 Controlling Reasoning Length in LLMs

Recent studies have highlighted the need for controlling reasoning length in LLMs, as issues like
overthinking, redundant computations, and excessive token usage contribute to inefficient resource
allocation and increased costs.

Chen et al. (2024d) tackle the problem of overthinking in reasoning-focused LLMs, where excessive
computational resources are allocated to simple tasks without proportional benefits. To address this,
the authors introduce efficiency metrics that assess resource usage from both outcome and process
perspectives. By leveraging a self-training framework (Zelikman et al., 2022; Ho et al., 2022), where
the model generates its own training data, they propose strategies such as length preference optimization
and response simplification to optimize reasoning processes. These strategies successfully balance
computational demands with performance, demonstrating significant reductions in computational overhead
while maintaining accuracy across various benchmarks, including GSM8K, MATH500, GPQA, and AIME.
This work offers promising solutions for intelligent resource scaling in reasoning tasks.

Jang et al. (2024) focus on reducing inference costs in LLM reasoning by eliminating redundant
intermediate reasoning sentences. The authors propose VARR, a sentence-level rationale reduction
framework based on a principled verbosity criterion (see Figure 42). VARR utilizes a likelihood-based
approach to identify and remove unnecessary reasoning sentences during training, retaining only essential
steps. This framework maintains reasoning integrity while minimizing the likelihood of generating
incorrect answers, effectively balancing efficiency and accuracy. In contrast to token-level methods,
VARR significantly reduces generation costs while preserving reasoning quality. Experimental results
show a substantial average cost reduction of 17.15% without sacrificing performance, highlighting the
importance of sentence-level rationale reduction for efficient reasoning.

Han et al. (2024) address inefficiencies in CoT reasoning caused by excessive token usage, which
increases computational costs. They propose TALE, a token-budget-aware reasoning framework that dy-
namically estimates token budgets based on task complexity. This approach guides the reasoning process,
effectively compressing unnecessary reasoning length while preserving performance. Experimental results
demonstrate that TALE reduces token redundancy by an average of 68.9%, with only a 5% reduction in
accuracy, offering a better balance between efficiency and performance across a range of LLMs.

9 Multi-modal Reasoning LLMs

Model or Framework Base Model Input Modality Pretraining
Data Scale

Fine-tuning
Data Scale Open-source

Insight-V (Dong et al., 2024) Qwen-2.5-7B Text/Image 558K 4M images ✓1

LLaVA-CoT-11B (Xu et al., 2024) Llama-3.2-11B-Vision-Instruct Text/Image - 99K ✓2

Sketchpad (Hu et al., 2024) GPT-4o Text/Image - - ✓3

ChartPaLI-5B (Carbune et al., 2024) PaLI-3 Text/Image(chart) 2.37M 544.9K ✗

SpatialVLM (Chen et al., 2024a) PaLM 2-E Text/Image(3d) - - ✓4

Chain-of-Table (Wang et al., 2024f) PaLM 2-S, Llama-2-17B-chat Text(table) - - ✓5

QVQ-72B-Preview (Team, 2024a) Qwen2-VL-72B Text/Image - - ✓6

1 https://github.com/dongyh20/Insight-V
2 https://github.com/PKU-YuanGroup/LLaVA-CoT
3 https://github.com/Yushi-Hu/VisualSketchpad

4 https://github.com/remyxai/VQASynth
5 https://github.com/google-research/chain-of-table
6 https://huggingface.co/Qwen/QVQ-72B-Preview

Table 7: An overview of emerging LLMs designed for multi-modal reasoning.

While current O1 models do not yet support multi-modal functions, future iterations hold significant
potential for integrating them. Therefore, in this section, we explore the emerging class of LLMs designed
for multi-modal reasoning, which can process and integrate information from various data modalities,
such as text, images, and audio. These models extend the capabilities of traditional LLMs by bridging the
gap between language understanding and sensory perception, enabling more advanced reasoning across
different forms of data. By incorporating the ability to process sensory inputs like images and audio
alongside text, these models could greatly enhance holistic reasoning, offering users a richer and more
comprehensive experience. An overview of these models is shown in Table 7.

(a) The data generation pipeline of Insight-V (Dong et al.,
2024). The reasoning data is created progressively using a
reasoning generator and is subsequently evaluated by a multi-
level assessment system to guarantee high-quality reasoning
data. The figure is borrowed from Dong et al. (2024).

(b) The multi-agent system of Insight-V (Dong et al., 2024).
The multi-agent system is based on the same underlying
model. Through task decomposition and personalized train-
ing, the reasoning process becomes better and the answers
become more rational. The figure is borrowed from Dong
et al. (2024).

Figure 43: The data generation pipeline and multi-agent system of Insight-V (Dong et al., 2024).

9.1 Insight-V

Insight-V (Dong et al., 2024) is a framework designed to enhance the multi-step visual reasoning
capabilities of MLLMs by constructing reliable multi-step reasoning data and developing a refined
training process. The authors propose the following techniques: (1) a flexible strategy for generating multi-
step reasoning data for complex multi-modal tasks, (2) a multi-agent system that divides task handling
processes into reasoning and summarization parts to enhance response quality, and (3) a two-stage training
process to better cultivate agents’ abilities. As shown in Figure 43a, the data generation pipeline utilizes
a progressive method to create formatted multi-step reasoning data with various reasoning paths and a
multi-level assessment system to evaluate the quality of the generated reasoning data and divide them

https://github.com/dongyh20/Insight-V
https://github.com/PKU-YuanGroup/LLaVA-CoT
https://github.com/Yushi-Hu/VisualSketchpad
https://github.com/remyxai/VQASynth
https://github.com/google-research/chain-of-table
https://huggingface.co/Qwen/QVQ-72B-Preview

into different datasets. As illustrated in Figure 43b, the multi-agent system employs a reasoning agent to
generate detailed reasoning steps and a summarization agent to extract core logic and generate concise
response. The two-stage training pipeline involves SFT of a base MLLM to develop the reasoning and
summarization agents, followed by iterative DPO to align the reasoning agent with human preferences.
The proposed techniques lead to significantly improved performance on complex multi-modal visual
reasoning benchmarks and effortlessly retains or elevates its performance on multi-modal perception
tasks.

Figure 44: The optimized inference process of LLaVA-CoT (Xu et al., 2024). The base model Llama-3.2-11B-
Vision-Instruct produces multiple errors during inference. In contrast, LLaVA-CoT ensures a strong logical chain
through a clearly defined, progressive inference process. The figure and caption are borrowed from Xu et al. (2024).

9.2 LLaVA-CoT-11B

LLaVA-CoT-11B (Xu et al., 2024) is a visual language model (VLM) designed for rigorous and accurate
visual reasoning. This work addresses the reasoning challenges faced by current VLMs, particularly
when dealing with complex visual question-answering tasks. The authors enhance progressive reasoning
in the model through SFT, enabling the generation of four distinct reasoning stages: summarization,
interpretation, reasoning, and conclusion. This enables VLMs to significantly improve precision in
tasks requiring rigorous reasoning. As shown in Figure 44, each stage is tagged (e.g., <SUMMARY>)
to ensure clarity and structure, promoting organized thinking as opposed to traditional freeform CoT
reasoning. The authors construct the LLaVA-CoT-100k dataset, which includes visual question-answering
data from various sources, with structured inference tags. Furthermore, they introduce inference-time
stage-level beam search, as shown in Figure 45. This method optimizes reasoning quality and scalability
by selecting the best candidate at each stage, facilitating efficient time scaling during inference. It is
noteworthy that with only 100k training samples and a straightforward but powerful method for inference
scaling, LLaVA-CoT-11B achieves a 7.4% performance improvement over its base model across a range
of multi-modal reasoning benchmarks. It also outperforms larger models, including closed-source ones
like Gemini-1.5-pro (Team et al., 2024a), and Llama-3.2-90B-Vision-Instruct (Grattafiori et al., 2024).

9.3 Sketchpad

Sketchpad (Hu et al., 2024) is a framework designed to enhance the multi-step multi-modality reasoning
process by inserting image processing behaviors in the inference phase. The authors introduce this
technique to remedy the shortcomings of current CoT and tool-use paradigms, which rely solely on
text during intermediate reasoning stages. Unlike prior works where language models (LMs) generate

Figure 45: Stage-level beam search method in LLaVA-CoT (Xu et al., 2024). The Best-of-N search is applied
at the response level, while the Sentence-level Beam Search operates at the sentence level. The newly proposed
Stage-level Beam Search is executed at each reasoning phase, such as summary and reasoning, choosing a more
rational granularity and achieving the best performance. The figure is borrowed from Xu et al. (2024).

Figure 46: Example of applying Sketchpad (Hu et al., 2024). The agent generates a sketching plan based on a
multi-modal query (Thought), and then activates a program to generate intermediate sketches (Action). Through the
analysis of the sketches (Observation), the model crafts a comprehensive and final response to the query. The figure
is borrowed from Hu et al. (2024).

images via text-to-image models, the authors equip LMs with the ability to draw lines, boxes, marks,
etc., mimicking human sketching and thus improving the reasoning process. An example of applying
Sketchpad is shown in Figure 46. Additionally, to improve visual perception and reasoning, Sketchpad
leverages specialized vision models to optimize its sketching process (e.g., using object detection models
to draw bounding boxes and segmentation models to create masks). Evaluation experiments for this work
were conducted on several kinds of benchmark datasets, covering topics such as geometry, functions,
graphs, chess, and challenging visual reasoning tasks. Compared to powerful baseline models without
applying proposed technique, Sketchpad significantly boosts performance across all tasks. Specifically, it
improves average performance on math tasks by 12.7% and visual tasks by 8.6%. Using the proposed
technique, GPT-4o achieves the best performance across all benchmarks, such as V*Bench (Wu and Xie,
2023) with a score of 80.3%, and visual correspondence at 80.8%.

9.4 ChartPaLI-5B

ChartPaLI-5B (Carbune et al., 2024) is a MLLM based on PaLI3-5B (Chen et al., 2023b) designed to
improve the chart-related reasoning abilities of VLMs. To narrow the reasoning ability gap between
smaller VLMs and LLMs, the authors propose a method to transfer knowledge from LLMs. First, they
adopt the improved chart-to-table conversion (Liu et al., 2023) and use this refined chart representation to
undergo pre-training. Then, they construct a dataset that is 20 times larger than the original training set.
Following that, the authors design reasoning steps with table representations of charts to strengthen both
reasoning and numerical capabilities. Finally, they fine-tune the model using a multitask loss (Hsieh et al.,
2023) on the constructed datasets. These datasets contains reasoning steps generated by more powerful

LLMs, enabling the transfer of reasoning abilities. ChartPaLI-5B achieves state-of-the-art performance on
ChartQA and significantly improves performance on PlotQA and FigureQA. Moreover, even without an
upstream OCR system, ChartPaLI-5B surpasses much larger models like PaLIX-55B while maintaining
similar inference times as its base model PaLI3-5B. Additionally, by adopting a straightforward program-
of-thought prompt (Chen et al., 2023a) to refine the logic chain, ChartPaLI-5B even outperforms the
recently released Gemini Ultra and GPT-4V.

Figure 47: The data synthesis pipeline in SpatialVLM (Chen et al., 2024a). The authors leverage CLIP (Radford
et al., 2021) to eliminate irrelevant images, keeping only scene-level photos. Pre-trained expert models are applied
to large-scale internet images for object-centric segmentation, depth estimation, and caption generation. They
convert 2D images into 3D point clouds, enabling the extraction of properties like 3D bounding boxes through
shape analysis. To reduce ambiguity, object captions are clustered based on CLIP similarity scores. Finally, millions
of spatial queries and their corresponding answers are generated by combining object descriptions with extracted
spatial attributes. The figure is borrowed from Chen et al. (2024a).

9.5 SpatialVLM

SpatialVLM (Chen et al., 2024a) is a framework designed to enhance the spatial understanding and
reasoning capabilities of VLMs by leveraging out-of-the-box vision models to generate spatial annotations
on the training data. This work tackles the difficulties encountered by VLMs in spatial comprehension and
reasoning, particularly in tasks involving the interpretation of numerical relationships between physical
entities, such as variations in size and spatial distance. The authors suggest that this limitation arises from
the lack of annotation of spatial information in the training data. The proposed solution is to enhance
VLMs by training them on a large-scale spatial reasoning dataset. First, they develop an automated
framework for generating visual question answering (VQA) data with rich spatial information annotations.
As shown in Figure 47, by integrating techniques such as region captioning and segmentation, this
framework annotates real-world data at scale and formats it for training VLMs on diverse tasks. With
this framework and 10 million real-world images, they finally gain 2 billion VQA examples. Next, they
explore several key factors in the training process, such as model architecture and data quality, trying
to develop an optimized training mechanism. The natural language interface of a powerful VLM using
SpatialVLM can support complex spatial reasoning by facilitating a CoT process, making it efficient
for tackling sophisticated spatial problems. It also enables the model to serve as an open-vocabulary
reward annotator for tasks involving rearrangement. Training a VLM on the dataset created using the
proposed techniques improves the model’s qualitative and quantitative spatial understanding and reasoning
capabilities, enabling it to achieve significant performance improvements on related tasks. VLMs applying
this technique can further carry out more complex spatial perception applications , thanks to their abilities
to make quantitative estimations.

Figure 48: Overview of Chain-of-Table (Wang et al., 2024f). When faced with a complex table where a cyclist’s
name and nationality share a single cell, (a) fails to provide the correct answer due to complexity, while (b) uses
programmatic approaches like SQL queries but struggles to accurately parse the information. In contrast, (c)
employs a step-by-step process to transform the table into a simplified, question-specific format, enabling the LLM
to deduce the correct answer effectively. The figure is borrowed from Wang et al. (2024f).

9.6 Chain-of-Table

Chain-of-Table (Wang et al., 2024f) is a framework designed to improve the reasoning abilities of LLMs
when working with table-based data. While CoT and similar methods integrate reasoning processes
as textual context, effectively incorporating tabular data into this reasoning chain remains a challenge.
Table-based reasoning involves extracting semantics from unstructured questions and partially structured
tabular information, which differs from conventional reasoning tasks. The authors propose a method that
directly utilizes tabular data in the intermediate steps of the reasoning chain, carrying out progressive
reasoning through tabular operations, thereby forming a chain of intermediate tables. Figure 48 illustrates
the difference between Chain-of-Table and traditional reasoning methods. The authors employ in-context
learning to teach the model to use table operations (e.g., adding columns, filtering rows, or grouping) step
by step to refine or simplify the table. This enables LLMs to dynamically plan each subsequent action
based on the intermediary tables in the operation history. Such a process better utilizes the semantics
of the table that is continuously optimized during reasoning. Chain-of-Table sets a new benchmark in
performance on the WikiTQ (Pasupat and Liang, 2015), FeTaQA (Nan et al., 2022), and TabFact (Chen
et al., 2020) datasets.

9.7 QVQ-72B-Preview

QVQ-72B-Preview (Team, 2024a) is a MLLM built upon Qwen2-VL-72B (Wang et al., 2024c), designed
to enhance visual reasoning capabilities through step-by-step reasoning. It aims to improve LLMs’
cognitive abilities by incorporating visual understanding. However, few technical details are currently
available. The team mainly presents evaluation results and discusses the model’s limitations. QVQ-72B-
Preview has achieved impressive results across several benchmarks, including an outstanding 70.3% on the
MMMU benchmark, demonstrating QVQ’s strong ability in multi-domain reasoning and comprehension.
The model’s substantial improvements on MathVision (Wang et al., 2024a) highlight its advancements
in mathematical problem-solving. OlympiadBench (He et al., 2024b) further showcases its enhanced

capability to address complex challenges. Despite these achievements, the model has several limitations.
For instance, it may mix languages or enter recursive reasoning loops, affecting response clarity and
conciseness. Although it has made advancements in visual reasoning, it struggles with multi-step
reasoning, occasionally hallucinating or losing focus, and does not outperform Qwen2-VL-72B in basic
recognition tasks. Additionally, the model is limited to single-round dialogues and image outputs, with no
support for video inputs.

10 Conclusion

In this survey, we presented a view of reasoning LLMs by focusing on dataset construction, supervised
fine-tuning, reinforcement learning, and advanced inference strategies (chain-of-thought and automated
critiques) through the lens of OpenAI’s o1 model. Despite the progress, several challenges exist. Formal
verification and robust error detection are necessary to improve the interpretability and trustworthiness
of reasoning trace. Reliance on purely text-based logic necessitates neuro-symbolic frameworks that
combine continuous embeddings with external symbolic manipulators for advanced mathematics, proofs,
or legal argumentation. Beyond the targeted fine-tuning in math or coding, real-world applications demand
broader domain adaptation and multi-modal reasoning, integrating signals from text, vision, audio, and
beyond. The transition of LLMs from mere next-token predictors to structured reasoners is under way,
and while o1 showcases the promise of today’s solutions, forging robust, trustworthy, and multi-modal
reasoning engines necessitates substantial future works.

References
Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért Weisz. 2019.

Politex: Regret bounds for policy iteration using expert prediction. In International Conference on Machine
Learning, pages 3692–3702. PMLR.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. 2024. Large language models for
mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157.

AI-MO. 2025. Aimo validation dataset. Accessed: 2025-01-12.

Afra Amini, Tim Vieira, and Ryan Cotterell. 2024. Direct preference optimization with an offset.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. 2016. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang,
et al. 2023. Qwen technical report. arXiv preprint arXiv:2309.16609.

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q. Tran, and Mehran Kazemi. 2024. Smaller, weaker, yet
better: Training llm reasoners via compute-optimal sampling.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. 1983. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5):834–846.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. 2023. Pythia: A suite for
analyzing large language models across training and scaling. In International Conference on Machine Learning,
pages 2397–2430. PMLR.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling inference compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Victor Carbune, Hassan Mansoor, Fangyu Liu, Rahul Aralikatte, Gilles Baechler, Jindong Chen, and Abhanshu
Sharma. 2024. Chart-based reasoning: Transferring capabilities from llms to vlms.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang
Wang, Yidong Wang, et al. 2024. A survey on evaluation of large language models. ACM Transactions on
Intelligent Systems and Technology, 15(3):1–45.

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
http://arxiv.org/abs/2402.10571
http://arxiv.org/abs/2408.16737
http://arxiv.org/abs/2408.16737
http://arxiv.org/abs/2403.12596

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia. 2024a. Spa-
tialvlm: Endowing vision-language models with spatial reasoning capabilities. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 14455–14465.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. 2024b. Alphamath almost zero: process supervision without
process. arXiv preprint arXiv:2405.03553.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. 2024c. Step-level value preference optimization for
mathematical reasoning.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2023a. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact : A large-scale dataset for table-based fact verification. In International
Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil Mustafa, Sebastian
Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, Daniel Salz, Xi Xiong, Daniel Vlasic, Filip Pavetic, Keran
Rong, Tianli Yu, Daniel Keysers, Xiaohua Zhai, and Radu Soricut. 2023b. Pali-3 vision language models:
Smaller, faster, stronger.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou,
Zhuosheng Zhang, et al. 2024d. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. arXiv
preprint arXiv:2412.21187.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021a. Training verifiers
to solve math word problems.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. 2021b. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao,
Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin,
Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang,
Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang,
Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang,
Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou,
Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang,
Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan
Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng
Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren,
Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang
Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang,
Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei
Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu,
Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,

http://arxiv.org/abs/2406.10858
http://arxiv.org/abs/2406.10858
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2310.09199
http://arxiv.org/abs/2310.09199
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948

Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang
Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu
Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan
Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang,
Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang,
Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu,
Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang
Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan,
Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. 2024. Deepseek-v3 technical report.

DeepSeek-R1-Lite-Preview. 2024. Deepseek-r1-lite-preview.

Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei Liu. 2024.
Insight-v: Exploring long-chain visual reasoning with multimodal large language models. arXiv preprint
arXiv:2411.14432.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2023. Alphazero-like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han,
Hang Xu, Zhenguo Li, and Lingpeng Kong. 2023. G-llava: Solving geometric problem with multi-modal large
language model.

Kuofeng Gao, Huanqia Cai, Qingyao Shuai, Dihong Gong, and Zhifeng Li. 2024. Embedding self-correction as an
inherent ability in large language models for enhanced mathematical reasoning. arXiv preprint arXiv:2410.10735.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao,
Hanyu Lai, et al. 2024. Chatglm: A family of large language models from glm-130b to glm-4 all tools. arXiv
preprint arXiv:2406.12793.

Google AI. Thinking Mode - Gemini API Documentation. https://ai.google.dev/gemini-api/docs/
thinking-mode. Accessed: 2025-01-16.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu Chen.
2024. Tora: A tool-integrated reasoning agent for mathematical problem solving.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang,
Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle
Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell,
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann,
Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay
Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca,
Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu,

http://arxiv.org/abs/2412.19437
https://api-docs.deepseek.com/news/news1120
http://arxiv.org/abs/2312.11370
http://arxiv.org/abs/2312.11370
https://ai.google.dev/gemini-api/docs/thinking-mode
https://ai.google.dev/gemini-api/docs/thinking-mode
http://arxiv.org/abs/2309.17452

Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan,
Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli,
Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning
Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng,
Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu,
Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross
Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou,
Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan
Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg,
Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres
Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani,
Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin
Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang,
Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti,
Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia,
Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal,
Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins,
David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood,
Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian,
Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez,
Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor
Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy
Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard,
Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay
Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran
Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav
Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo,
Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning
Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh,
Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant
Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto,
Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir
Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith
Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,
Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy
Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang,
Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito,
Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd of models.

http://arxiv.org/abs/2407.21783

Melody Y Guan, Manas Joglekar, Eric Wallace, Saachi Jain, Boaz Barak, Alec Heylar, Rachel Dias, Andrea Vallone,
Hongyu Ren, Jason Wei, et al. 2024. Deliberative alignment: Reasoning enables safer language models. arXiv
preprint arXiv:2412.16339.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. 2025. rstar-math:
Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint arXiv:2501.04519.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing Ma, Zhenyu Chen, and Zhenting Wang. 2024. Token-budget-
aware llm reasoning. arXiv preprint arXiv:2412.18547.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie
Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. 2024a. Olympiadbench: A challenging
benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie
Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. 2024b. Olympiadbench: A challenging
benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. 2021. Measuring mathematical problem solving with the math dataset.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022. Large language models are reasoning teachers. arXiv
preprint arXiv:2212.10071.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. 2022. Unnatural instructions: Tuning language
models with (almost) no human labor. arXiv preprint arXiv:2212.09689.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Distilling step-by-step! outperforming larger language models
with less training data and smaller model sizes.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and Ranjay Krishna.
2024. Visual sketchpad: Sketching as a visual chain of thought for multimodal language models. arXiv preprint
arXiv:2406.09403.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou.
2023. Large language models cannot self-correct reasoning yet. arXiv preprint arXiv:2310.01798.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. 2024a. Self-explore:
Enhancing mathematical reasoning in language models with fine-grained rewards.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. 2024b. Self-explore:
Enhancing mathematical reasoning in language models with fine-grained rewards.

Joonwon Jang, Jaehee Kim, Wonbin Kweon, and Hwanjo Yu. 2024. Verbosity-aware rationale reduction: Effective
reduction of redundant rationale via principled criteria. arXiv preprint arXiv:2412.21006.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7b. arXiv
preprint arXiv:2310.06825.

Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng Wang, Tanwi Mallick, Weijie J Su, Camillo J Taylor, and
Dan Roth. 2024. A peek into token bias: Large language models are not yet genuine reasoners. arXiv preprint
arXiv:2406.11050.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and Mengnan Du.
2024. The impact of reasoning step length on large language models. arXiv preprint arXiv:2401.04925.

Aditya Kalyanpur, Kailash Karthik Saravanakumar, Victor Barres, Jennifer Chu-Carroll, David Melville, and David
Ferrucci. 2024. Llm-arc: Enhancing llms with an automated reasoning critic. arXiv preprint arXiv:2406.17663.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Qianyi Sun, Boxing Chen, Dong Li, Xu He, Quan He, Feng
Wen, et al. 2024. Mindstar: Enhancing math reasoning in pre-trained llms at inference time. arXiv preprint
arXiv:2405.16265.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli, Shariq Iqbal,
Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via reinforcement learning,
2024. URL https://arxiv. org/abs/2409.12917.

http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2404.10346
http://arxiv.org/abs/2404.10346
http://arxiv.org/abs/2404.10346
http://arxiv.org/abs/2404.10346

Po-Nien Kung and Nanyun Peng. 2023. Do models really learn to follow instructions? an empirical study of
instruction tuning. ArXiv, abs/2305.11383.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez, Dustin
Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. 2023. Measuring faithfulness in chain-of-thought
reasoning. arXiv preprint arXiv:2307.13702.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor Carbune, and
Abhinav Rastogi. 2023. Rlaif: Scaling reinforcement learning from human feedback with ai feedback. arXiv
preprint arXiv:2309.00267.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant
Misra. 2022. Solving quantitative reasoning problems with language models.

Chengpeng Li, Guanting Dong, Mingfeng Xue, Ru Peng, Xiang Wang, and Dayiheng Liu. 2024. Dotamath:
Decomposition of thought with code assistance and self-correction for mathematical reasoning. arXiv preprint
arXiv:2407.04078.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023. Textbooks
are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463.

Minpeng Liao, Chengxi Li, Wei Luo, Wu Jing, and Kai Fan. 2024a. MARIO: MAth reasoning with code interpreter
output - a reproducible pipeline. In Findings of the Association for Computational Linguistics: ACL 2024, pages
905–924, Bangkok, Thailand. Association for Computational Linguistics.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and Kai Fan. 2024b. Mario: Math reasoning with code interpreter
output – a reproducible pipeline.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman,
Ilya Sutskever, and Karl Cobbe. 2023. Let’s verify step by step.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan, Damai
Dai, Daya Guo, et al. 2024a. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model. arXiv preprint arXiv:2405.04434.

Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar
Joshi, Wenhu Chen, Nigel Collier, and Yasemin Altun. 2023. Deplot: One-shot visual language reasoning by
plot-to-table translation.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli Celikyilmaz. 2024b.
Don’t throw away your value model! generating more preferable text with value-guided monte-carlo tree search
decoding.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. 2024c. Large language models as
evolutionary optimizers. pages 1–8.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and Hongsheng Li. 2024.
Mathgenie: Generating synthetic data with question back-translation for enhancing mathematical reasoning of
llms.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, et al. 2024. Self-refine: Iterative refinement with self-feedback. Advances in
Neural Information Processing Systems, 36.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Trebacz, and Jan
Leike. 2024. Llm critics help catch llm bugs. arXiv preprint arXiv:2407.00215.

Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and Martin Müller. 2019. On principled entropy
exploration in policy optimization. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 3130–3136.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Xiaoxue
Cheng, Huatong Song, et al. 2024. Imitate, explore, and self-improve: A reproduction report on slow-thinking
reasoning systems. arXiv preprint arXiv:2412.09413.

Mike Mirzayanov. 2025. Codeforces. Accessed: 2025-01-12.

http://arxiv.org/abs/2206.14858
https://doi.org/10.18653/v1/2024.findings-acl.53
https://doi.org/10.18653/v1/2024.findings-acl.53
http://arxiv.org/abs/2401.08190
http://arxiv.org/abs/2401.08190
http://arxiv.org/abs/2305.20050
http://arxiv.org/abs/2212.10505
http://arxiv.org/abs/2212.10505
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2402.16352
http://arxiv.org/abs/2402.16352
https://codeforces.com/

Mistral AI. 2024. Mixtral-8x22b-v0.1. https://huggingface.co/mistralai/Mixtral-8x22B-v0.1.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech Kryściński, Hailey
Schoelkopf, Riley Kong, Xiangru Tang, Mutethia Mutuma, Ben Rosand, Isabel Trindade, Renusree Bandaru,
Jacob Cunningham, Caiming Xiong, and Dragomir Radev. 2022. Fetaqa: Free-form table question answering.
Transactions of the Association for Computational Linguistics, 10:35–49.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King, Jonathan
Larson, Yuanzhi Li, Weishung Liu, et al. 2023. Can generalist foundation models outcompete special-purpose
tuning? case study in medicine. arXiv preprint arXiv:2311.16452.

Harsha Nori, Naoto Usuyama, Nicholas King, Scott Mayer McKinney, Xavier Fernandes, Sheng Zhang, and Eric
Horvitz. 2024. From medprompt to o1: Exploration of run-time strategies for medical challenge problems and
beyond. arXiv preprint arXiv:2411.03590.

Open Source O1. 2025. Open-o1. Accessed: 2025-01-17.

OpenAI o1 Contributors. 2024. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/.

Skywork o1 Team. 2024. Skywork-o1 open series. https://huggingface.co/Skywork.

OpenAI. 2023. Gpt-4 technical report.

OpenAI. 2024a. Hello, GPT-4o. https://openai.com/index/hello-gpt-4o/.

OpenAI. 2024b. O-1: Optimization for language models with continuous integration. https://openai.com/o1/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human
feedback. Advances in neural information processing systems, 35:27730–27744.

Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on semi-structured tables. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1470–1480, Beijing, China.
Association for Computational Linguistics.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023. Instruction tuning with gpt-4.
arXiv preprint arXiv:2304.03277.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael Rafailov.
2024. Agent q: Advanced reasoning and learning for autonomous ai agents.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector Liu,
Yuanzhi Li, and Pengfei Liu. 2024. O1 replication journey: A strategic progress report – part 1.

QwenLM, QVQ. QVQ-72B Preview - QwenLM Blog. https://qwenlm.github.io/blog/qvq-72b-preview.
Accessed: 2025-01-16.

QwenLM, QwQ. QWQ-32B Preview - QwenLM Blog. https://qwenlm.github.io/blog/qwq-32b-preview.
Accessed: 2025-01-16.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning transferable
visual models from natural language supervision.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. 2024.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R. Bowman. 2023. Gpqa: A graduate-level google-proof q&a benchmark.

Amir Saeidi, Shivanshu Verma, and Chitta Baral. 2024. Insights into alignment: Evaluating dpo and its variants
across multiple tasks, 2024. https://api.semanticscholar.org/CorpusID269303161.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan Leike. 2022a.
Self-critiquing models for assisting human evaluators.

https://github.com/Open-Source-O1/Open-O1
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://doi.org/10.3115/v1/P15-1142
http://arxiv.org/abs/2408.07199
http://arxiv.org/abs/2410.18982
https://qwenlm.github.io/blog/qvq-72b-preview
https://qwenlm.github.io/blog/qwq-32b-preview
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2311.12022
http://arxiv.org/abs/2206.05802

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan Leike. 2022b.
Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347.

Paulo Shakarian, Abhinav Koyyalamudi, Noel Ngu, and Lakshmivihari Mareedu. 2023. An independent evaluation
of chatgpt on mathematical word problems (mwp). arXiv preprint arXiv:2302.13814.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
Y. K. Li, Y. Wu, and Daya Guo. 2024a. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. 2024b. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael Schärli, and Denny
Zhou. 2023. Large language models can be easily distracted by irrelevant context. In International Conference
on Machine Learning, pages 31210–31227. PMLR.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. 2017. Mastering chess and shogi by self-play with a
general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. 2025. Prmbench: A fine-grained and
challenging benchmark for process-level reward models.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu
Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. 2024. To cot or not to cot? chain-of-thought helps mainly on
math and symbolic reasoning. arXiv preprint arXiv:2409.12183.

Hao Sun, Alihan Hüyük, and Mihaela van der Schaar. 2023a. Query-dependent prompt evaluation and optimization
with offline inverse rl.

Xiaofei Sun, Linfeng Dong, Xiaoya Li, Zhen Wan, Shuhe Wang, Tianwei Zhang, Jiwei Li, Fei Cheng, Lingjuan
Lyu, Fei Wu, and Guoyin Wang. 2023b. Pushing the limits of chatgpt on nlp tasks.

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei Guo, Tianwei Zhang, and Guoyin Wang. 2023c. Text
classification via large language models. arXiv preprint arXiv:2305.08377.

Xiaofei Sun, Xiaoya Li, Shengyu Zhang, Shuhe Wang, Fei Wu, Jiwei Li, Tianwei Zhang, and Guoyin Wang. 2023d.
Sentiment analysis through llm negotiations. arXiv preprint arXiv:2311.01876.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. 2024. A minimaximalist
approach to reinforcement learning from human feedback. arXiv preprint arXiv:2401.04056.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. 2024. Mathscale: Scaling instruction tuning for
mathematical reasoning.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
Andrew M Dai, Anja Hauth, Katie Millican, et al. 2023. Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred Alcober, Roy
Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea Tacchetti, Colin Gaffney,
Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love, Paul Voigtlaender, Rohan Jain, Gabriela Surita,
Kareem Mohamed, Rory Blevins, Junwhan Ahn, Tao Zhu, Kornraphop Kawintiranon, Orhan Firat, Yiming
Gu, Yujing Zhang, Matthew Rahtz, Manaal Faruqui, Natalie Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev,
Rui Zhu, Nobuyuki Morioka, Kevin Hui, Krishna Haridasan, Victor Campos, Mahdis Mahdieh, Mandy Guo,
Samer Hassan, Kevin Kilgour, Arpi Vezer, Heng-Tze Cheng, Raoul de Liedekerke, Siddharth Goyal, Paul
Barham, DJ Strouse, Seb Noury, Jonas Adler, Mukund Sundararajan, Sharad Vikram, Dmitry Lepikhin, Michela
Paganini, Xavier Garcia, Fan Yang, Dasha Valter, Maja Trebacz, Kiran Vodrahalli, Chulayuth Asawaroengchai,

http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2501.03124
http://arxiv.org/abs/2501.03124
http://arxiv.org/abs/2403.02884
http://arxiv.org/abs/2403.02884

Roman Ring, Norbert Kalb, Livio Baldini Soares, Siddhartha Brahma, David Steiner, Tianhe Yu, Fabian
Mentzer, Antoine He, Lucas Gonzalez, Bibo Xu, Raphael Lopez Kaufman, Laurent El Shafey, Junhyuk Oh,
Tom Hennigan, George van den Driessche, Seth Odoom, Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe,
Betty Chan, Santiago Ontanon, Luheng He, Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis
Ho, Sebastian Riedel, Karel Lenc, Chih-Kuan Yeh, Aakanksha Chowdhery, Yang Xu, Mehran Kazemi, Ehsan
Amid, Anastasia Petrushkina, Kevin Swersky, Ali Khodaei, Gowoon Chen, Chris Larkin, Mario Pinto, Geng Yan,
Adria Puigdomenech Badia, Piyush Patil, Steven Hansen, Dave Orr, Sebastien M. R. Arnold, Jordan Grimstad,
Andrew Dai, Sholto Douglas, Rishika Sinha, Vikas Yadav, Xi Chen, Elena Gribovskaya, Jacob Austin, Jeffrey
Zhao, Kaushal Patel, Paul Komarek, Sophia Austin, Sebastian Borgeaud, Linda Friso, Abhimanyu Goyal, Ben
Caine, Kris Cao, Da-Woon Chung, Matthew Lamm, Gabe Barth-Maron, Thais Kagohara, Kate Olszewska, Mia
Chen, Kaushik Shivakumar, Rishabh Agarwal, Harshal Godhia, Ravi Rajwar, Javier Snaider, Xerxes Dotiwalla,
Yuan Liu, Aditya Barua, Victor Ungureanu, Yuan Zhang, Bat-Orgil Batsaikhan, Mateo Wirth, James Qin, Ivo
Danihelka, Tulsee Doshi, Martin Chadwick, Jilin Chen, Sanil Jain, Quoc Le, Arjun Kar, Madhu Gurumurthy,
Cheng Li, Ruoxin Sang, Fangyu Liu, Lampros Lamprou, Rich Munoz, Nathan Lintz, Harsh Mehta, Heidi
Howard, Malcolm Reynolds, Lora Aroyo, Quan Wang, Lorenzo Blanco, Albin Cassirer, Jordan Griffith, Dipanjan
Das, Stephan Lee, Jakub Sygnowski, Zach Fisher, James Besley, Richard Powell, Zafarali Ahmed, Dominik
Paulus, David Reitter, Zalan Borsos, Rishabh Joshi, Aedan Pope, Steven Hand, Vittorio Selo, Vihan Jain, Nikhil
Sethi, Megha Goel, Takaki Makino, Rhys May, Zhen Yang, Johan Schalkwyk, Christina Butterfield, Anja
Hauth, Alex Goldin, Will Hawkins, Evan Senter, Sergey Brin, Oliver Woodman, Marvin Ritter, Eric Noland,
Minh Giang, Vijay Bolina, Lisa Lee, Tim Blyth, Ian Mackinnon, Machel Reid, Obaid Sarvana, David Silver,
Alexander Chen, Lily Wang, Loren Maggiore, Oscar Chang, Nithya Attaluri, Gregory Thornton, Chung-Cheng
Chiu, Oskar Bunyan, Nir Levine, Timothy Chung, Evgenii Eltyshev, Xiance Si, Timothy Lillicrap, Demetra
Brady, Vaibhav Aggarwal, Boxi Wu, Yuanzhong Xu, Ross McIlroy, Kartikeya Badola, Paramjit Sandhu, Erica
Moreira, Wojciech Stokowiec, Ross Hemsley, Dong Li, Alex Tudor, Pranav Shyam, Elahe Rahimtoroghi, Salem
Haykal, Pablo Sprechmann, Xiang Zhou, Diana Mincu, Yujia Li, Ravi Addanki, Kalpesh Krishna, Xiao Wu,
Alexandre Frechette, Matan Eyal, Allan Dafoe, Dave Lacey, Jay Whang, Thi Avrahami, Ye Zhang, Emanuel
Taropa, Hanzhao Lin, Daniel Toyama, Eliza Rutherford, Motoki Sano, HyunJeong Choe, Alex Tomala, Chalence
Safranek-Shrader, Nora Kassner, Mantas Pajarskas, Matt Harvey, Sean Sechrist, Meire Fortunato, Christina Lyu,
Gamaleldin Elsayed, Chenkai Kuang, James Lottes, Eric Chu, Chao Jia, Chih-Wei Chen, Peter Humphreys,
Kate Baumli, Connie Tao, Rajkumar Samuel, Cicero Nogueira dos Santos, Anders Andreassen, Nemanja
Rakićević, Dominik Grewe, Aviral Kumar, Stephanie Winkler, Jonathan Caton, Andrew Brock, Sid Dalmia,
Hannah Sheahan, Iain Barr, Yingjie Miao, Paul Natsev, Jacob Devlin, Feryal Behbahani, Flavien Prost, Yanhua
Sun, Artiom Myaskovsky, Thanumalayan Sankaranarayana Pillai, Dan Hurt, Angeliki Lazaridou, Xi Xiong,
Ce Zheng, Fabio Pardo, Xiaowei Li, Dan Horgan, Joe Stanton, Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu
Wang, Basil Mustafa, Albert Webson, Hyo Lee, Rohan Anil, Martin Wicke, Timothy Dozat, Abhishek Sinha,
Enrique Piqueras, Elahe Dabir, Shyam Upadhyay, Anudhyan Boral, Lisa Anne Hendricks, Corey Fry, Josip
Djolonga, Yi Su, Jake Walker, Jane Labanowski, Ronny Huang, Vedant Misra, Jeremy Chen, RJ Skerry-Ryan,
Avi Singh, Shruti Rijhwani, Dian Yu, Alex Castro-Ros, Beer Changpinyo, Romina Datta, Sumit Bagri, Arnar Mar
Hrafnkelsson, Marcello Maggioni, Daniel Zheng, Yury Sulsky, Shaobo Hou, Tom Le Paine, Antoine Yang, Jason
Riesa, Dominika Rogozinska, Dror Marcus, Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen Miller, Jeremy
Greer, Lars Lowe Sjos, Azade Nova, Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu Jiang, Charlie Chen,
Ruibo Liu, Tara Sainath, Maxim Krikun, Alex Polozov, Jean-Baptiste Lespiau, Josh Newlan, Zeyncep Cankara,
Soo Kwak, Yunhan Xu, Phil Chen, Andy Coenen, Clemens Meyer, Katerina Tsihlas, Ada Ma, Juraj Gottweis,
Jinwei Xing, Chenjie Gu, Jin Miao, Christian Frank, Zeynep Cankara, Sanjay Ganapathy, Ishita Dasgupta, Steph
Hughes-Fitt, Heng Chen, David Reid, Keran Rong, Hongmin Fan, Joost van Amersfoort, Vincent Zhuang, Aaron
Cohen, Shixiang Shane Gu, Anhad Mohananey, Anastasija Ilic, Taylor Tobin, John Wieting, Anna Bortsova,
Phoebe Thacker, Emma Wang, Emily Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli, Steven Baker,
Katie Millican, Mohamed Elhawaty, Kostas Aisopos, Carl Lebsack, Nathan Byrd, Hanjun Dai, Wenhao Jia,
Matthew Wiethoff, Elnaz Davoodi, Albert Weston, Lakshman Yagati, Arun Ahuja, Isabel Gao, Golan Pundak,
Susan Zhang, Michael Azzam, Khe Chai Sim, Sergi Caelles, James Keeling, Abhanshu Sharma, Andy Swing,
YaGuang Li, Chenxi Liu, Carrie Grimes Bostock, Yamini Bansal, Zachary Nado, Ankesh Anand, Josh Lipschultz,
Abhijit Karmarkar, Lev Proleev, Abe Ittycheriah, Soheil Hassas Yeganeh, George Polovets, Aleksandra Faust,
Jiao Sun, Alban Rrustemi, Pen Li, Rakesh Shivanna, Jeremiah Liu, Chris Welty, Federico Lebron, Anirudh
Baddepudi, Sebastian Krause, Emilio Parisotto, Radu Soricut, Zheng Xu, Dawn Bloxwich, Melvin Johnson,
Behnam Neyshabur, Justin Mao-Jones, Renshen Wang, Vinay Ramasesh, Zaheer Abbas, Arthur Guez, Constant
Segal, Duc Dung Nguyen, James Svensson, Le Hou, Sarah York, Kieran Milan, Sophie Bridgers, Wiktor Gworek,
Marco Tagliasacchi, James Lee-Thorp, Michael Chang, Alexey Guseynov, Ale Jakse Hartman, Michael Kwong,
Ruizhe Zhao, Sheleem Kashem, Elizabeth Cole, Antoine Miech, Richard Tanburn, Mary Phuong, Filip Pavetic,
Sebastien Cevey, Ramona Comanescu, Richard Ives, Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang, Mariko
Iinuma, Clara Huiyi Hu, Aurko Roy, Shaan Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel Saputro, Anita
Gergely, Steven Zheng, Dawei Jia, Ioannis Antonoglou, Adam Sadovsky, Shane Gu, Yingying Bi, Alek Andreev,
Sina Samangooei, Mina Khan, Tomas Kocisky, Angelos Filos, Chintu Kumar, Colton Bishop, Adams Yu, Sarah
Hodkinson, Sid Mittal, Premal Shah, Alexandre Moufarek, Yong Cheng, Adam Bloniarz, Jaehoon Lee, Pedram
Pejman, Paul Michel, Stephen Spencer, Vladimir Feinberg, Xuehan Xiong, Nikolay Savinov, Charlotte Smith,

Siamak Shakeri, Dustin Tran, Mary Chesus, Bernd Bohnet, George Tucker, Tamara von Glehn, Carrie Muir,
Yiran Mao, Hideto Kazawa, Ambrose Slone, Kedar Soparkar, Disha Shrivastava, James Cobon-Kerr, Michael
Sharman, Jay Pavagadhi, Carlos Araya, Karolis Misiunas, Nimesh Ghelani, Michael Laskin, David Barker,
Qiujia Li, Anton Briukhov, Neil Houlsby, Mia Glaese, Balaji Lakshminarayanan, Nathan Schucher, Yunhao Tang,
Eli Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria Recasens, Guangda Lai, Alberto Magni, Nicola De Cao,
Aditya Siddhant, Zoe Ashwood, Jordi Orbay, Mostafa Dehghani, Jenny Brennan, Yifan He, Kelvin Xu, Yang Gao,
Carl Saroufim, James Molloy, Xinyi Wu, Seb Arnold, Solomon Chang, Julian Schrittwieser, Elena Buchatskaya,
Soroush Radpour, Martin Polacek, Skye Giordano, Ankur Bapna, Simon Tokumine, Vincent Hellendoorn,
Thibault Sottiaux, Sarah Cogan, Aliaksei Severyn, Mohammad Saleh, Shantanu Thakoor, Laurent Shefey, Siyuan
Qiao, Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao Zhang, Benjamin Lee, Paul Kishan Rubenstein,
Gan Song, Tom Kwiatkowski, Anna Koop, Ajay Kannan, David Kao, Parker Schuh, Axel Stjerngren, Golnaz
Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Felipe Tiengo Ferreira, Aishwarya Kamath, Ted Klimenko, Ken
Franko, Kefan Xiao, Indro Bhattacharya, Miteyan Patel, Rui Wang, Alex Morris, Robin Strudel, Vivek Sharma,
Peter Choy, Sayed Hadi Hashemi, Jessica Landon, Mara Finkelstein, Priya Jhakra, Justin Frye, Megan Barnes,
Matthew Mauger, Dennis Daun, Khuslen Baatarsukh, Matthew Tung, Wael Farhan, Henryk Michalewski, Fabio
Viola, Felix de Chaumont Quitry, Charline Le Lan, Tom Hudson, Qingze Wang, Felix Fischer, Ivy Zheng, Elspeth
White, Anca Dragan, Jean baptiste Alayrac, Eric Ni, Alexander Pritzel, Adam Iwanicki, Michael Isard, Anna
Bulanova, Lukas Zilka, Ethan Dyer, Devendra Sachan, Srivatsan Srinivasan, Hannah Muckenhirn, Honglong Cai,
Amol Mandhane, Mukarram Tariq, Jack W. Rae, Gary Wang, Kareem Ayoub, Nicholas FitzGerald, Yao Zhao,
Woohyun Han, Chris Alberti, Dan Garrette, Kashyap Krishnakumar, Mai Gimenez, Anselm Levskaya, Daniel
Sohn, Josip Matak, Inaki Iturrate, Michael B. Chang, Jackie Xiang, Yuan Cao, Nishant Ranka, Geoff Brown,
Adrian Hutter, Vahab Mirrokni, Nanxin Chen, Kaisheng Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty,
Praveen Kallakuri, Evan Palmer, Sanjay Ghemawat, Jasmine Liu, David Tao, Chloe Thornton, Tim Green, Mimi
Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan Tan, Noah Fiedel, Hongkun Yu, Ed Chi, Alexander Neitz, Jens
Heitkaemper, Anu Sinha, Denny Zhou, Yi Sun, Charbel Kaed, Brice Hulse, Swaroop Mishra, Maria Georgaki,
Sneha Kudugunta, Clement Farabet, Izhak Shafran, Daniel Vlasic, Anton Tsitsulin, Rajagopal Ananthanarayanan,
Alen Carin, Guolong Su, Pei Sun, Shashank V, Gabriel Carvajal, Josef Broder, Iulia Comsa, Alena Repina,
William Wong, Warren Weilun Chen, Peter Hawkins, Egor Filonov, Lucia Loher, Christoph Hirnschall, Weiyi
Wang, Jingchen Ye, Andrea Burns, Hardie Cate, Diana Gage Wright, Federico Piccinini, Lei Zhang, Chu-Cheng
Lin, Ionel Gog, Yana Kulizhskaya, Ashwin Sreevatsa, Shuang Song, Luis C. Cobo, Anand Iyer, Chetan Tekur,
Guillermo Garrido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven Zheng, Hui Li, Ananth Agarwal, Christel Ngani,
Kati Goshvadi, Rebeca Santamaria-Fernandez, Wojciech Fica, Xinyun Chen, Chris Gorgolewski, Sean Sun,
Roopal Garg, Xinyu Ye, S. M. Ali Eslami, Nan Hua, Jon Simon, Pratik Joshi, Yelin Kim, Ian Tenney, Sahitya
Potluri, Lam Nguyen Thiet, Quan Yuan, Florian Luisier, Alexandra Chronopoulou, Salvatore Scellato, Praveen
Srinivasan, Minmin Chen, Vinod Koverkathu, Valentin Dalibard, Yaming Xu, Brennan Saeta, Keith Anderson,
Thibault Sellam, Nick Fernando, Fantine Huot, Junehyuk Jung, Mani Varadarajan, Michael Quinn, Amit Raul,
Maigo Le, Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha Bullard, Achintya Singhal, Thang Luong, Boyu
Wang, Sujeevan Rajayogam, Julian Eisenschlos, Johnson Jia, Daniel Finchelstein, Alex Yakubovich, Daniel Balle,
Michael Fink, Sameer Agarwal, Jing Li, Dj Dvijotham, Shalini Pal, Kai Kang, Jaclyn Konzelmann, Jennifer
Beattie, Olivier Dousse, Diane Wu, Remi Crocker, Chen Elkind, Siddhartha Reddy Jonnalagadda, Jong Lee,
Dan Holtmann-Rice, Krystal Kallarackal, Rosanne Liu, Denis Vnukov, Neera Vats, Luca Invernizzi, Mohsen
Jafari, Huanjie Zhou, Lilly Taylor, Jennifer Prendki, Marcus Wu, Tom Eccles, Tianqi Liu, Kavya Kopparapu,
Francoise Beaufays, Christof Angermueller, Andreea Marzoca, Shourya Sarcar, Hilal Dib, Jeff Stanway, Frank
Perbet, Nejc Trdin, Rachel Sterneck, Andrey Khorlin, Dinghua Li, Xihui Wu, Sonam Goenka, David Madras,
Sasha Goldshtein, Willi Gierke, Tong Zhou, Yaxin Liu, Yannie Liang, Anais White, Yunjie Li, Shreya Singh,
Sanaz Bahargam, Mark Epstein, Sujoy Basu, Li Lao, Adnan Ozturel, Carl Crous, Alex Zhai, Han Lu, Zora Tung,
Neeraj Gaur, Alanna Walton, Lucas Dixon, Ming Zhang, Amir Globerson, Grant Uy, Andrew Bolt, Olivia Wiles,
Milad Nasr, Ilia Shumailov, Marco Selvi, Francesco Piccinno, Ricardo Aguilar, Sara McCarthy, Misha Khalman,
Mrinal Shukla, Vlado Galic, John Carpenter, Kevin Villela, Haibin Zhang, Harry Richardson, James Martens,
Matko Bosnjak, Shreyas Rammohan Belle, Jeff Seibert, Mahmoud Alnahlawi, Brian McWilliams, Sankalp Singh,
Annie Louis, Wen Ding, Dan Popovici, Lenin Simicich, Laura Knight, Pulkit Mehta, Nishesh Gupta, Chongyang
Shi, Saaber Fatehi, Jovana Mitrovic, Alex Grills, Joseph Pagadora, Tsendsuren Munkhdalai, Dessie Petrova,
Danielle Eisenbud, Zhishuai Zhang, Damion Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yannis Assael, Thomas
Brovelli, Prateek Jain, Mihajlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolfgang Macherey, Ravin Kumar, Jun
Xu, Haroon Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhitao Gong, Anton Ruddock, Matthias Bauer, Nick
Felt, Anirudh GP, Anurag Arnab, Dustin Zelle, Jonas Rothfuss, Bill Rosgen, Ashish Shenoy, Bryan Seybold,
Xinjian Li, Jayaram Mudigonda, Goker Erdogan, Jiawei Xia, Jiri Simsa, Andrea Michi, Yi Yao, Christopher
Yew, Steven Kan, Isaac Caswell, Carey Radebaugh, Andre Elisseeff, Pedro Valenzuela, Kay McKinney, Kim
Paterson, Albert Cui, Eri Latorre-Chimoto, Solomon Kim, William Zeng, Ken Durden, Priya Ponnapalli, Tiberiu
Sosea, Christopher A. Choquette-Choo, James Manyika, Brona Robenek, Harsha Vashisht, Sebastien Pereira,
Hoi Lam, Marko Velic, Denese Owusu-Afriyie, Katherine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu,
Jane Park, Balaji Venkatraman, Alice Talbert, Lambert Rosique, Yuchung Cheng, Andrei Sozanschi, Adam
Paszke, Praveen Kumar, Jessica Austin, Lu Li, Khalid Salama, Bartek Perz, Wooyeol Kim, Nandita Dukkipati,
Anthony Baryshnikov, Christos Kaplanis, XiangHai Sheng, Yuri Chervonyi, Caglar Unlu, Diego de Las Casas,

Harry Askham, Kathryn Tunyasuvunakool, Felix Gimeno, Siim Poder, Chester Kwak, Matt Miecnikowski,
Vahab Mirrokni, Alek Dimitriev, Aaron Parisi, Dangyi Liu, Tomy Tsai, Toby Shevlane, Christina Kouridi, Drew
Garmon, Adrian Goedeckemeyer, Adam R. Brown, Anitha Vijayakumar, Ali Elqursh, Sadegh Jazayeri, Jin
Huang, Sara Mc Carthy, Jay Hoover, Lucy Kim, Sandeep Kumar, Wei Chen, Courtney Biles, Garrett Bingham,
Evan Rosen, Lisa Wang, Qijun Tan, David Engel, Francesco Pongetti, Dario de Cesare, Dongseong Hwang, Lily
Yu, Jennifer Pullman, Srini Narayanan, Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aharoni, Trieu Trinh,
Jessica Lo, Norman Casagrande, Roopali Vij, Loic Matthey, Bramandia Ramadhana, Austin Matthews, CJ Carey,
Matthew Johnson, Kremena Goranova, Rohin Shah, Shereen Ashraf, Kingshuk Dasgupta, Rasmus Larsen,
Yicheng Wang, Manish Reddy Vuyyuru, Chong Jiang, Joana Ijazi, Kazuki Osawa, Celine Smith, Ramya Sree
Boppana, Taylan Bilal, Yuma Koizumi, Ying Xu, Yasemin Altun, Nir Shabat, Ben Bariach, Alex Korchemniy,
Kiam Choo, Olaf Ronneberger, Chimezie Iwuanyanwu, Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene
Cai, Shariq Iqbal, Martin Sundermeyer, Zhe Chen, Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy, Prakash
Shroff, Inderjit Dhillon, Tejasi Latkar, Chris Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Nikolaev, Somer
Greene, Marin Georgiev, Pidong Wang, Nina Martin, Hanie Sedghi, John Zhang, Praseem Banzal, Doug Fritz,
Vikram Rao, Xuezhi Wang, Jiageng Zhang, Viorica Patraucean, Dayou Du, Igor Mordatch, Ivan Jurin, Lewis
Liu, Ayush Dubey, Abhi Mohan, Janek Nowakowski, Vlad-Doru Ion, Nan Wei, Reiko Tojo, Maria Abi Raad,
Drew A. Hudson, Vaishakh Keshava, Shubham Agrawal, Kevin Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu,
Madhavi Sewak, Bryce Petrini, DongHyun Choi, Ivan Philips, Ziyue Wang, Ioana Bica, Ankush Garg, Jarek
Wilkiewicz, Priyanka Agrawal, Xiaowei Li, Danhao Guo, Emily Xue, Naseer Shaik, Andrew Leach, Sadh MNM
Khan, Julia Wiesinger, Sammy Jerome, Abhishek Chakladar, Alek Wenjiao Wang, Tina Ornduff, Folake Abu,
Alireza Ghaffarkhah, Marcus Wainwright, Mario Cortes, Frederick Liu, Joshua Maynez, Andreas Terzis, Pouya
Samangouei, Riham Mansour, Tomasz Kępa, François-Xavier Aubet, Anton Algymr, Dan Banica, Agoston
Weisz, Andras Orban, Alexandre Senges, Ewa Andrejczuk, Mark Geller, Niccolo Dal Santo, Valentin Anklin,
Majd Al Merey, Martin Baeuml, Trevor Strohman, Junwen Bai, Slav Petrov, Yonghui Wu, Demis Hassabis,
Koray Kavukcuoglu, Jeff Dean, and Oriol Vinyals. 2024a. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. 2024b. Gemma 2: Improving open
language models at a practical size. arXiv preprint arXiv:2408.00118.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chen-
zhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming Yuan, Enzhe Lu, Fengxiang
Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao
Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan
Yuan, Jia Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan
Wu, Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong,
Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu,
Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie
Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou,
Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang,
Ziyao Xu, and Zonghan Yang. 2025. Kimi k1.5: Scaling reinforcement learning with llms.

Qwen Team. 2024a. Qvq: To see the world with wisdom.

Qwen Team. 2024b. Qwq: Reflect deeply on the boundaries of the unknown.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. 2024a. Toward self-improvement
of llms via imagination, searching, and criticizing.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. 2024b. Toward self-improvement
of llms via imagination, searching, and criticizing. arXiv preprint arXiv:2404.12253.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. 2020. Mirror descent policy optimiza-
tion. arXiv preprint arXiv:2005.09814.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,

http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qvq-72b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
http://arxiv.org/abs/2404.12253
http://arxiv.org/abs/2404.12253

Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023.
Llama 2: Open foundation and fine-tuned chat models.

Alan Wake, Albert Wang, Bei Chen, CX Lv, Chao Li, Chengen Huang, Chenglin Cai, Chujie Zheng, Daniel Cooper,
Ethan Dai, et al. 2024. Yi-lightning technical report. arXiv preprint arXiv:2412.01253.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu, Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023. Gpt-re:
In-context learning for relation extraction using large language models. arXiv preprint arXiv:2305.02105.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie Zhan, and Hongsheng Li. 2024a. Measuring multimodal
mathematical reasoning with math-vision dataset.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. 2024b.
Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9426–9439,
Bangkok, Thailand. Association for Computational Linguistics.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren
Zhou, and Junyang Lin. 2024c. Qwen2-vl: Enhancing vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. 2024d. Rethinking the bounds of llm
reasoning: Are multi-agent discussions the key? arXiv preprint arXiv:2402.18272.

Shuhe Wang, Beiming Cao, Shengyu Zhang, Xiaoya Li, Jiwei Li, Fei Wu, Guoyin Wang, and Eduard Hovy. 2023a.
Sim-gpt: Text similarity via gpt annotated data. arXiv preprint arXiv:2312.05603.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023b. Gpt-ner: Named entity recognition via large language models. arXiv preprint arXiv:2304.10428.

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu, Guoyin Wang,
and Eduard Hovy. 2024e. Reinforcement learning enhanced llms: A survey. arXiv preprint arXiv:2412.10400.

Tianduo Wang and Wei Lu. 2023. Learning multi-step reasoning by solving arithmetic tasks. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
1229–1238.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2022. Self-instruct: Aligning language models with self-generated instructions. arXiv preprint
arXiv:2212.10560.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Miculicich,
Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. 2024f. Chain-of-table: Evolving tables in the
reasoning chain for table understanding. ICLR.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten
Bosma, Denny Zhou, Donald Metzler, et al. 2022. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny
Zhou. 2023. Chain-of-thought prompting elicits reasoning in large language models.

Penghao Wu and Saining Xie. 2023. V*: Guided visual search as a core mechanism in multimodal llms. arXiv
preprint arXiv:2312.14135.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. 2024. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang, Guanyu Li, Yiwen Ding, Wei He, Boyang Hong, Shihan
Do, Wenyu Zhan, et al. 2024. Enhancing llm reasoning via critique models with test-time and training-time
supervision. arXiv preprint arXiv:2411.16579.

Wenyi Xiao, Zechuan Wang, Leilei Gan, Shuai Zhao, Wanggui He, Luu Anh Tuan, Long Chen, Hao Jiang, Zhou
Zhao, and Fei Wu. 2024. A comprehensive survey of direct preference optimization: Datasets, theories, variants,
and applications.

http://arxiv.org/abs/2402.14804
http://arxiv.org/abs/2402.14804
https://doi.org/10.18653/v1/2024.acl-long.510
http://arxiv.org/abs/2410.15595
http://arxiv.org/abs/2410.15595

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and Michael
Shieh. 2024. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv preprint
arXiv:2405.00451.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin Jiang. 2023.
Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint arXiv:2304.12244.

Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. 2024. Llava-cot: Let vision language models
reason step-by-step.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng
Liu, Fei Huang, et al. 2024a. Qwen2 technical report. arXiv preprint arXiv:2407.10671.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia
Hu. 2023. Harnessing the power of llms in practice: A survey on chatgpt and beyond. arXiv preprint
arXiv:2304.13712.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. 2024b. Do large language models
latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 2024. Tree
of thoughts: Deliberate problem solving with large language models. Advances in Neural Information Processing
Systems, 36.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023. Outcome-supervised verifiers for planning in mathematical
reasoning. arXiv preprint arXiv:2311.09724.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen, Ruobing
Xie, Yankai Lin, et al. 2024. Advancing llm reasoning generalists with preference trees. arXiv preprint
arXiv:2404.02078.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. 2022. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo, Xuanjing Huang,
and Xipeng Qiu. 2024. Scaling of search and learning: A roadmap to reproduce o1 from reinforcement learning
perspective.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. 2024b. Accessing gpt-4 level mathe-
matical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint arXiv:2406.07394.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. 2024c. Chain of preference optimization:
Improving chain-of-thought reasoning in llms.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang. 2024d. o1-coder:
an o1 replication for coding. arXiv preprint arXiv:2412.00154.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou,
and Junyang Lin. 2025. The lessons of developing process reward models in mathematical reasoning.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua Luo, and
Kaifu Zhang. 2024a. Marco-o1: Towards open reasoning models for open-ended solutions. arXiv preprint
arXiv:2411.14405.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua Luo, and Kaifu
Zhang. 2024b. Marco-o1: Towards open reasoning models for open-ended solutions.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren Zhou, and
Junyang Lin. 2024. Processbench: Identifying process errors in mathematical reasoning.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, L. Yu,
Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less is more for
alignment. ArXiv, abs/2305.11206.

http://arxiv.org/abs/2411.10440
http://arxiv.org/abs/2411.10440
http://arxiv.org/abs/2412.14135
http://arxiv.org/abs/2412.14135
http://arxiv.org/abs/2406.09136
http://arxiv.org/abs/2406.09136
http://arxiv.org/abs/2501.07301
http://arxiv.org/abs/2411.14405
http://arxiv.org/abs/2412.06559

	Introduction
	Overview of OpenAI o1
	Different Versions of o1
	Key Feature: Thinking before Response Generation
	Performances on Benchmarks
	Speculated Techniques in o1
	Constructing Reasoning Formatted Datasets
	Training LLMs on Reasoning Formatted Dataset
	Inference with Advanced Thinking Strategies

	Recent Efforts in Reproducing OpenAI o1
	Marco-o1
	o1-Coder
	rStar-Math
	Kimi-k1.5
	DeepSeek-R1

	Datasets
	PRM800K
	O1-Journey
	Self-Explore
	MARIO
	MathGenie
	DeepSeekMath
	Compute-Optimal Sampling
	MathScale
	Geo170K

	Training
	Supervised Fine-tuning
	Reinforcement Learning with Human Feedback (RLHF)
	Methodological Innovations in RLHF
	Evaluation and Benchmarking for RLHF

	Direct Preference Optimization (DPO)
	Discussion on how training techniques relate to reasoning

	Inference
	Tree of Thoughts
	Breadth-first Search & Depth-first Search
	Monte Carlo Tree Search

	Automated Reasoning Critic
	Self-Correction
	Inference Scaling Laws

	Evaluation
	Analysis of Reasoning LLMs
	Reasoning Enables Safer Language Models
	Run-Time Strategies for Enhancing o1
	CoT’s Primary Benefits in Mathematics and Symbolic Reasoning
	Unveiling Token Bias: The Limits of Reasoning in LLMs
	Latent Multi-Hop Reasoning in LLMs
	The Impact of Reasoning Step Length
	Faithfulness of CoT Reasoning
	Controlling Reasoning Length in LLMs

	Multi-modal Reasoning LLMs
	Insight-V
	LLaVA-CoT-11B
	Sketchpad
	ChartPaLI-5B
	SpatialVLM
	Chain-of-Table
	QVQ-72B-Preview

	Conclusion

