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Abstract

Fine-tuning large language models (LLMs) is in-
tended to improve their reasoning capabilities,
yet we uncover a counterintuitive effect: models
often forget how to solve problems they previ-
ously answered correctly during training. We
term this phenomenon temporal forgetting and
show that it is widespread across model sizes, fine-
tuning methods (both Reinforcement Learning
and Supervised Fine-Tuning), and multiple rea-
soning benchmarks. To address this gap, we intro-
duce Temporal Sampling, a simple decoding strat-
egy that draws outputs from multiple checkpoints
along the training trajectory. This approach recov-
ers forgotten solutions and leads to substantial im-
provements in reasoning performance, gains from
4 to 19 points in Pass@k and consistent gains in
Majority @k across several benchmarks. We fur-
ther extend our method to LoRA-adapted models.
By leveraging the temporal diversity inherent in
training, Temporal Sampling offers a practical,
compute-efficient way to surface hidden reason-
ing ability and rethink how we evaluate LLMs.
Our code is available at: https://github.
com/uw-nsl/Temporal_Forgetting

1. Introduction

Fine-tuning large language models (LLMs) is expected to
improve their reasoning ability (Luo et al., 2025; DeepSeek-
Al et al., 2025; Zeng et al., 2025; Muennighoff et al., 2025;
NovaSky, 2025). Yet, we uncover a surprising phenomenon:
models often forget how to solve problems they previously
solved correctly during fine-tuning. We refer to this system-
atic behavior as temporal forgetting.
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Figure 1. (a) We observed that during RL training process of
Deepseek-R1-1.5B model, 76.7% of AIME problems were solved
correctly at some intermediate checkpoint, yet only 30% remained
correct in the final model. (b) We proposed Temporal Sampling:
This method utilizes training dynamics as a source of answer di-
versity by distributing inference samples across multiple distinct
checkpoints from the training trajectory, rather than relying solely
on the single final checkpoint.

Temporal forgetting is not rare or model-specific. Across
Supervised Fine-Tuning (SFT) and Reinforcement Learn-
ing (RL) fine-tuning (Shao et al., 2024a; DeepSeek-Al
et al., 2025; Zeng et al., 2025) of Qwen2.5 models (1.5B
and 7B) on multiple reasoning benchmarks (AIME, AMC,
OlympiadBench (He et al., 2024), MATH-500 (Hendrycks
et al., 2021a), GPQA (Rein et al., 2024)), we find that up
to 50% of final errors were once solved correctly at an ear-
lier checkpoint. This pattern persists across different model
sizes, architectures, and training approaches.

Standard metrics like Pass@Fk (Chen et al.,, 2021) and
Majority @k (Wang et al., 2023b), computed on the final
model, assume that checkpoint to be the model’s most capa-
ble state. But our findings show that many correct reasoning
paths are transient, making final-checkpoint-only evaluation
a narrow and often misleading lens.

To address this gap between potential and measured perfor-
mance, we introduce Temporal Sampling, a simple decoding
strategy that samples completions across multiple check-
points rather than just the final one. Temporal Sampling
yields substantial improvements across diverse reasoning
tasks. On benchmarks such as AIME24 and AMC, we ob-
serve gains from 4 to 19 points in Pass @k compared to final-
checkpoint-only sampling, and consistent improvements in
Majority@k. To make Temporal Sampling deployment-
friendly, we extend it to LoRA-adapted models (Hu et al.,
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Figure 2. Overall performance score cannot tell everything. Fine-
tuned models like DeepscaleR-1.5B (Luo et al., 2025) outperform
the base model overall but also forget many questions the base
model answered correctly.

2021).

These findings suggest that true model competence may
not reside in a single parameter snapshot, but rather in the
collective dynamics of training itself. Temporal Sampling
offers a practical and powerful way to reclaim lost reasoning
ability, challenging the standard paradigm of using only the
final model checkpoint for evaluation and deployment.

2. Temporal Forgetting: Correct Answers
Emerge and Vanish in Training

2.1. Overall Performance Score cannot Tell Everything

To understand how RL or SFT alters a model’s ability to cor-
rectly answer reasoning problems, we investigate instances
where base models succeeded on questions but failed after
fine-tuning. To quantify this, we introduce the Lost Score:

¢ P oy (Lost Score): The percentage of questions in a
benchmark that were answered correctly by the base
model but incorrectly by the model after fine-tuning.

This score specifically highlights the phenomenon where
a model, despite any overall performance changes after
fine-tuning, loses its correctness on certain problems it pre-
viously solved correctly.

Figure 2 demonstrates that although DeepScaleR-1.5B im-
proves GPQA performance from 35.4 to 36.9, a notable per-
centage of questions (Pr,s; = 15.7) were correctly solved
by the base model but incorrectly by the fine-tuned model.

We present a more comprehensive analysis of various SOTA
models in Table 2 in Appendix D. We found that Py,
could range from 6.1 to 16.0 points, with the average of 9.5
points. This implies that there are a considerable number
of questions answered correctly by the base model but in-

correctly after RL or SFT, in spite of the improvement of
overall performance. Please also see Appendix D for the
detailed experiment setup.

2.2. Temporal Forgetting

To investigate how answer correctness evolves during post-
training, we conducted SFT and RL on various base models,
evaluating checkpoints at different training steps. We intro-
duce two metrics to quantify the temporal dynamics: the
Ever Correct Score and the Temporal Forgetting Score:

¢ Prcs (Ever Correct Score): The percentage of ques-
tions in the benchmark that were answered correctly
by at least one checkpoint saved during RL/SFT.

* Prrs (Temporal Forgetting Score): The percent-
age of questions in the benchmark that were answered
correctly by some checkpoint during RL/SFT but were
ultimately answered incorrectly by the final checkpoint.
Mathematically, Prrs = Prcs — Prr, where Ppr
is the performance score of the fine-tuned model.

Experiment Setup. We performed GRPO (Shao et al.,
2024b) on the Qwen2.5-7B, Qwen2.5-1.5B, and Qwen2.5-
Math-7B models (Yang et al., 2024a;b). The training
data consisted of 4k samples randomly selected from the
DeepscaleR-40k dataset (Luo et al., 2025). Throughout the
training of each model, we saved 8 checkpoints. We set the
RL training parameters following (Luo et al., 2025), and
detailed training script parameters can be found in Appendix
E. For SFT, we utilized the same DeepscaleR-4k sampled
data. We then employed QwQ-Preview-32B (Qwen Team,
2024) for rejection sampling to obtain correct responses
(Dong et al., 2023), subsequently fine-tuning each model
on this curated dataset. We evaluated the performance of
various checkpoints from the training process on five bench-
marks: AIME24, AMC, MATH-500, OlympiadBench, and
GPQA-Diamond. To minimize variability caused by random
fluctuations in model performance from diverse sampling,
we employed greedy sampling following (Wei et al., 2022).

Results. In Figure 3 (a), we illustrate the correctness of
answers to different OlympiadBench questions at various
checkpoints during the RL training of Qwen2.5-7B. Figure
3 (a) demonstrates the phenomenon of Forgetting Dynam-
ics: Questions exhibits alternating “Improve” and “Forget”
events frequently during training, which means the model os-
cillates between correct and incorrect answers across check-
points. In Figure 3 (b), we show the percentage of questions
across different benchmarks that experienced the “Forget”
event could achieve up to 32.3% in OlympiadBench and
52.5% in AMC.

Table 1 presents the Ever Correct Score Prcg and Temporal
Forgetting Score Prrg of different models after RL or SFT.
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Table 1. Performance of fine-tuned models (Prr 1), the Ever Correct Score (Prcs 1), and the Temporal Forgetting Score (Prrs J) of
different models after GRPO or SFT. We observed both high Prcs and Prrs, which implies a high percentage of questions (from 6.4%
to 56.1%) are answered correctly at some checkpoint during training but are ultimately incorrect in the final checkpoint. Please see the

base model performance and more benchmark results in Appendix F.

Model OlympiadBench MATH-500 GPQA-Diamond Avg. Pres
Per Pecs  Prrs Pt Pees Prrs Per Pees Pres
Qwen2.5-7B (GRPO) 39.7 587 190 738 89.6 158 338 747 409 25.2
Qwen2.5-7B (SFT) 40.1 558 157 69.8 86.6 168 253 814 56.1 29.5
Qwen2.5-1.5B (GRPO) 188 36.1 173 556 73.0 174 268 723 455 26.7
Qwen2.5-1.5B (SFT) 11.0 260 150 362 660 298 13.1 651 520 323
Qwen2.5-Math-7B (GRPO, 41.0 573 163 79.8 862 64 328 71.7 389 20.5
Qwen2.5-Math-7B (SFT) 439 629 19.0 764 904 142 308 79.8 49.0 27.4
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Figure 3. Forgetting dynamics of Qwen2.5-7B during RL training.
(a) Answer correctness trajectories for OlympiadBench questions
across training checkpoints, illustrating solutions oscillate between
correct and incorrect states. “Forget” implies that an answer was
correct at the previous checkpoint but incorrect at the current one,
while "Improve” implies that an answer that was incorrect at the
previous checkpoint but correct at the current one. (b) Percentage
of questions per benchmark that are ever forgotten or ever correct
at some checkpoint during RL.

We observed that a substantial number of questions were
correctly answered at some checkpoint during the training
process but were answered incorrectly by the final check-
point (measured by a significantly high Prrg). Surprisingly,
we found that Prpg ranges from 6.4% to 56.1%, with aver-
age as high as 25 points. This implies that, on average, up to
25% of the questions in a benchmark were correctly solved
by the model at some checkpoint during training but were
incorrect in the final output. Please see Appendix F for base
model performance and more benchmark results including
AIME24 and AMC.

In contrast to Catastrophic Forgetting (Luo et al., 2023)
where overall performance drops markedly, our observed
Temporal Forgetting focuses on changes in correctness
at the individual question level, rather than on a collective
measure, thus cannot be directly captured by the overall
performance score. Temporal Forgetting emphasizes more
fine-grained changes in the answer correctness shift during
training dynamics, in spite of the improvement of overall
performance.

sity for answer generation at inference time. Specifically,
instead of relying solely on the final checkpoint, k samples
are generated by allocating the sampling budget across ¢ dis-
tinct training checkpoints according to a chosen distribution
strategy.

Temporal Sampling typically selects the ¢ most recent avail-
able checkpoints, which are then ordered from latest (e.g.,
the final checkpoint) to the ¢-th latest. While various meth-
ods can be employed to distribute the k£ sampling attempts
among these checkpoints, this paper primarily focuses on
a round-robin allocation. In this approach, sampling com-
mences with the latest checkpoint for the first sample, the
next latest for the second, and so on, cycling through the
ordered sequence. This procedure defaults to sampling only
from the final checkpoint when t = 1.

3.2. Metric PassQk|t

To better measure the performance of Temporal Sampling,
we introduce a new metric, Pass@k|t. This metric is de-
fined as the probability of obtaining at least one correct
answer when k samples are drawn from ¢ checkpoints. Al-
though samples may be drawn in various ways, in what
follows we adopt a round-robin manner: we first give the
formal definition of Pass@Fk|t under this distribution way
and then derive the unbiased estimator.

Definition. Let r; ; denote the Pass@]1 rate (i.e., the prob-
ability of correctness with a single sample) for the j-th
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Figure 4. PassQk for different numbers of checkpoints ¢ on the
AIME2024, AMC, and AIME2025 benchmarks when using Tem-
poral Sampling. The case t = 1 represents the baseline of standard
Pass@Fk sampling on the final checkpoint. Our proposed Tempo-
ral Sampling with ¢ = 8 outperforms the baseline by more than 19,
13, and 4 percentage points on AIME2024, AMC, and AIME2025,
respectively, when sampling 64 responses.

checkpoint on the ¢-th problem. We define

t
PassQklt = {1 — H(l — 1)

j=1

where 3 k; = k and {k;} is the Balanced Integer Parti-
tion of k on t (Andrews & Eriksson, 2004):

kj:{tk/tj+1 if j < (k

if j > (k

(mod )

Lk/t] (mod t))
Note that if t = 1, this reduces to the standard definition of
Pass@Fk (Chen et al., 2021).

Unbiased Estimation. We provide an unbiased estimator of
the proposed Pass@@f|t. Please see Appendix C for more
details.

3.3. Experiment Setup

We utilized GRPO to fine-tune the Qwen-7B-Base model on
the DeepScaleR-4k dataset, following the training settings in
(Luo et al., 2025). We saved 8 checkpoints during RL, which
constituted the checkpoint pool for our Temporal Sampling.
As baselines, we considered the standard Pass@k (Chen
et al., 2021) and Maj@¥k (self-consistency, also known as
majority voting) (Wang et al., 2023a). For Maj@Fk, we fol-
lowed the Majority Voting (Wang et al., 2023a) by generat-
ing k samples and selecting the most frequent answer as the
final model output. We denote our Temporal Sampling vari-
ants as PassQk|t and MajQk|t. When t = 1, PassQk|t
and MajQFk|t are equivalent to the baseline settings that
samples only on the final checkpoint.

3.4. Temporal Sampling Achieves Higher Sampling
Performance

Figure 4 demonstrates that Temporal Sampling achieves
higher sampling performance compared to the baseline of
sampling only on the final checkpoint, under identical com-
putational budgets. These advantages are consistently ob-

20 40 60 20 40 60 20 40 60
Sampling Number k Sampling Number k Sampling Number k

Figure 5. Maj@Fk (Majority voting) for different numbers of check-
points ¢ on the AIME2024, AMC, and AIME2025 benchmarks
using Temporal Sampling. The case ¢ = 1 represents the base-
line of standard majority voting sampling on the final checkpoint.
Our proposed Temporal Sampling with ¢ = 8 checkpoints outper-
forms the baseline by more than 8, 7, and 7 percentage points on
AIME2024, AMC, and AIME2025, respectively, when sampling
64 responses.

served across the AIME2024, AIME2025, and AMC bench-
marks. For instance Pass@k|8 results in a pass rate that is
over 19 percentage points higher than that of sampling only
on the final checkpoint on AIME24 when k = 64. Please
see Appendix G.1 for more experiment results on different
models.

3.5. Temporal Sampling Enhances Performance of
Inference-Time Scaling

Figure 5 demonstrates that Temporal Sampling markedly
enhances the performance of majority voting (measured by
Maj@k|t). Across the AIME2024, AIME2025, and AMC
benchmarks, employing a greater number of checkpoints (%)
within the Temporal Sampling framework leads to improved
accuracy compared to the baseline Maj@k only sampling on
the final checkpoint under identical computational budgets.
Specifically, at k = 64, Maj@Qk|8 achieves an accuracy
exceeding 21, substantially outperforming the 13% accuracy
of the baseline.

We present further experiments regarding Best-of-N sam-
pling in Appendix G.2.

3.6. Temporal Sampling with LoRA Fine-tuning

To save the storage cost associated with multiple model
checkpoints, we investigated the use of Low-Rank Adapta-
tion (LoRA) for Fine-Tuning, where checkpoints generated
only store the low-rank adapter weights, smaller than full
parameter fine-tuning. We demonstrate that LoRA-based
Temporal Sampling improves both Pass @k and Majority @&
than sampling only on the final checkpoint. Please see more
details in Appendix G.3.

4. Conclusion

In this paper, we observed the phenomenon of Temporal
Forgetting: models often forget how to solve problems they
previously solved correctly during fine-tuning. Our analysis
of training trajectories revealed that many correct solutions
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emerge transiently during training but are absent in the final
model. Inspired by the training dynamics, we propose Tem-
poral Sampling, a simple inference-time method that sam-
ples from multiple training checkpoints to recover forgotten
solutions. This approach consistently improves reasoning
performance by 4-19 points in Pass@k across benchmarks
and can be efficiently implemented using LoRA. These find-
ings suggest that true model competence may not reside
in a single parameter snapshot, but rather in the collective
dynamics of training itself. Temporal Sampling offers a
practical and powerful way to reclaim lost reasoning ability,
challenging the standard paradigm of using only the final
model checkpoint for evaluation and deployment.
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A. Related Work

Reinforcement learning for LLM. Reinforcement Learning (RL) has rapidly become a cornerstone for extending the
capabilities of LLMs across various applications. Although it was first employed to align model behavior with human
preferences through approaches like Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), its
role now encompasses reasoning on complex tasks (Kimi Team, 2025; DeepSeek-Al, 2025; Lambert et al., 2024). For
example, DeepSeek-R1 applied RL directly to a base “zero” LLM (DeepSeek-Al, 2025), and Kimi K1.5 augmented this
framework with multimodal reasoning and verbosity control (Kimi Team, 2025). In particular, Reinforcement Learning has
gained traction in areas such as mathematics and programming, where reward signals can be defined by clear, rule-based
criteria like answer matching (Lambert et al., 2024; Shao et al., 2024b; Chen et al., 2021; DeepSeek-Al, 2025; Feng et al.,
2023; Snell et al., 2024; Xie et al., 2023; Wan et al., 2024). Advances in optimization, such as specialized PPO variants
(e.g., VinePPO (Feng et al., 2023)) and stabilized GRPO algorithms (e.g., DAPO (Yu et al., 2025)), have simplified reward
design, making RL more practical. Our work shifts focus from static performance gains of RL to the evolution of answer
correctness over the procedure of RL training. We harness these temporal fluctuations as the diversity source to increase
inference-time performance.

Inference Time Scaling. Expanding the computational budget available during inference has become a powerful lever for
squeezing extra performance out of large language models, giving rise to an ever-growing family of test-time scaling (TTS)
techniques (OpenAl, 2024). The field has seen a variety of approaches to leverage this. Established techniques include
sampling-driven methods like majority voting (Wang et al., 2023b) or best-of-N (Sardana et al., 2024), which generate many
candidate answers and select the most persuasive one. More intricate are search-based algorithms such as Tree-of-Thoughts
(ToT) explorations (Yao et al., 2023) and Monte-Carlo tree search (MCTS) (Xie et al., 2023; Khanov et al., 2024; Wan et al.,
2024). Such approaches often build upon the development of sophisticated verifiers and may integrate process-based reward
signals directly into search methods (Kang et al., 2024; Wu et al., 2024; Snell et al., 2024). To further enhance efficiency
and adaptiveness, other techniques include self-evaluation mechanisms for judicious compute allocation (Manvi et al., 2024)
and diversity-aware search tactics, sometimes referred to as Test-Time Scaling (TTS) with diversity, to reduce redundant
sampling and explore a wider solution space (Beeching et al., 2024).

Learning Dynamics. Learning dynamics analyze model behavior during training, such as explaining “aha moments”
(DeepSeek-Al, 2025), and challenges in fine-tuning generalization (e.g., (Kumar et al., 2022; Ren et al., 2023)). These works
focus on the training process itself and offer novel perspectives on how models learn and develop capabilities. Other research
analyzes the step-wise decomposition of how influence accumulates among different potential responses for both instruction
and preference tuning in LLMs (Ren & Sutherland, 2025). This detailed analytical framework, offering hypothetical
explanations for why specific types of hallucination are strengthened post-finetuning. From the data perspective, Training
Data Attribution (TDA) (Bae et al., 2024) identifies influential training examples to explain model predictions. Orthogonal
to these works, we empirically investigate the dynamic fluctuations in answer correctness across diverse reasoning tasks,
and harness the learning dynamics as a source of answer diversity to widen the sampling space and performance.

B. Limitations and Broader Impacts

Our investigation into the Temporal Forgetting phenomenon has primarily concentrated on mathematical reasoning tasks.
We have not yet extended our analysis to other potentially relevant domains where similar patterns might emerge, such as
automated theorem proving (Xin et al., 2024), healthcare applications (Lai et al., 2025), or code generation (Wei et al., 2025).
The experimental foundation of our work focuses on GRPO (Shao et al., 2024b) and SFT frameworks. While we believe our
findings can generalize to other training methodologies, including on-policy approaches like PPO (Schulman et al., 2017),
RLOO (Huang & Ahmadian, 2024), and DAPO (Yu et al., 2025), as well as off-policy techniques such as DPO (Rafailov
et al., 2024), RAFT (Dong et al., 2023), and Reinforce-Rej (Xiong et al., 2025) that rely on rejection sampling. we have not
empirically validated this hypothesis.

When implementing Temporal Sampling, we focus on round-robin allocation strategies for distributing the k& sampling
attempts across ¢ checkpoints. Alternative distribution approaches represent a promising avenue that we reserve for
subsequent research.

Broader Impacts. Through our research, we have uncovered the temporal forgetting phenomenon and developed temporal
sampling as an effective method to enhance inference-time sampling performance in mathematical reasoning. We have not
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identified negative societal implications associated with this work.

C. Unbiased Estimation of Pass@F |t

We provide an unbiased estimator for Pass@k|t and show the proof of the unbiased nature in this section.

The Pass@Fk|t metric measures the probability of obtaining at least one correct answer when samples are drawn from
multiple checkpoints. The following theorem establishes the statistical validity of our evaluation framework, ensuring that
our empirical measurements accurately reflect the true performance of Temporal Sampling across different checkpoints.

Theorem 1. Denote r; ; as the Pass@ 1 rate for the j-th checkpoint on problem i, C; j as the number of correct samples
among N candidates for problem i from checkpoint j. Let

t
Pi =1- H(l — ’/‘i,j)kj
j=1

denote the probability of obtaining at least one correct answer when k samples are drawn from t checkpoints for problem 1,
(i.e., Pass@Fk|t), where k; is determined by the balanced integer partition of k on t:

o J LR+ i< (K (mod 1))
TUlk/ iG> (k (mod 1))

We have

is an unbiased estimator of P, i.e., E[PZ] =P,

Proof. For a single checkpoint j on problem i, we consider the probability of obtaining no correct solutions when sampling
k; solutions without replacement from [V total samples. Given that C; ; of these N samples are correct, this probability
follows the hypergeometric distribution:
(")
P(Xi;=0)=—%
(i)

For Pass @k |t, we succeed if at least one sample across all checkpoints is correct. The probability of failure (no correct
solutions from any checkpoint) is:

(")

P(failure) = [ P(Xi,; =0) = [ (kT)
j=1 k;

J=1
Thus, our estimator for the success probability is:
<5
_ kj
i =1- H (N )
Jj=1 kj

>

To prove this estimator is unbiased, we need to show that E[P;] = P;. We first prove that:

Since C; ; follows a binomial distribution B(NN,7; ;), we have:

(N‘;f.’“)] N (%) /N N
—n | T A i (1 =mrig) ¢ (1)
R L
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We can simplify the coefficient:
N—c
k(N —c—kj)! Ny (N —¢)!

_ (N —k
( . ) 3

k

@

—~
—~
F‘ZS?‘
S~—

~
N
s 3
N——

Substituting this back:

kj c=0
N—k;
(N —k;
= (1 =riy)" ( ’)rfj(lm,j)N’W 5)
c ;
c=0
The summation represents the binomial expansion of (r; ; + (1 — r; ;))V % = 1¥=ki = 1, yielding:
(")
: lzx? = (1=riy)h (©)
;)
Since the samples from different checkpoints are independent, we have:
N I s L G I
EN[l—w—| =118 |—~ ]H(lm,j)’“f ™
j=1 (k}]) Jj=1 (kj) j=1
Therefore:
- C ) :
EP)=1-E|[[ —5—|=1-J]a-r))¥ =P ()
Jj=1 (kj) Jj=1
This proves that P; is an unbiased estimator for Pass@Fk|t. O

D. Overall Performance Score cannot Tell Everything

To understand how RL or SFT alters a model’s ability to correctly answer reasoning problems, we investigate instances
where base models succeeded on questions but failed after fine-tuning. To quantify this, we introduce the Lost Score:

e P ot (Lost Score): The percentage of questions in a benchmark that were answered correctly by the base model but
incorrectly by the model after fine-tuning.

This score specifically highlights the phenomenon where a model, despite any overall performance changes after fine-tuning,
loses its correctness on certain problems it previously solved correctly. Note that overall performance scores cannot capture
the statistical pattern reflected by Prs:.

Experiment Setup. We consider various existing SOTA model such as DeepScaleR-1.5B (Luo et al., 2025), OpenR1-7B
(Face, 2025) and S1-32B (Muennighoff et al., 2025). We calculate the overall performance of various SOTA models after
fine-tuning (denoted Frr), the performance of their corresponding base model (denoted Fggs), and our proposed Lost Score
(PLost)- These evaluations were conducted on the OlympiadBench (He et al., 2024), MATH-500 (Hendrycks et al., 2021b),
and GPQA (Rein et al., 2024) benchmarks. We excluded AIME2024 and AMC2023 from this particular analysis because
the number of questions available in these datasets was insufficient for a meaningful comparison. To minimize variability
arising from different sampling methods during evaluation, we employ greedy sampling following (Wei et al., 2022).
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Table 2. Performance of the base model (Pgase 1), the fine-tuned model (Per 1) and the Lost Score (Pros: J) for different SOTA models.
We observed that in spite of the improvement of overall performance, the average Pr,,s+ ranges from 6.1 to 16.0, which implies a high
percentage of questions answered correctly by the base model is answered incorrectly after RL or SFT.

OlympiadBench MATH-500 GPQA-Diamond
PBase PFT PLost PBase PFT PLost PBase PFT PLost
DeepScaleR-1.5B (Luo et al., 2025) 483 535 64 820 89.8 24 354 369 157 8.2

Model AVg- Is Lost

Still-1.5B (Team, 2025b) 483 484 8.6 820 838 50 354 348 172 10.3
S1.1-1.5B (Muennighoff et al., 2025)  18.7 11.7 11.1 462 37.6 192 232 162 17.7 16.0
II-thought-1.5B (Internet, 2025) 483 584 53 820 88.0 34 354 343 16.7 8.5
S1.1-3B (Muennighoff et al., 2025) 29.8 247 124 650 64.8 10.2 32.8 30.3 18.7 13.8
SmallThinker-3B 29.8 382 6.2 650 692 98 328 283 21.7 12.6
S1.1-7B (Muennighoff et al., 2025) 404 422 105 76.0 76.8 7.8 328 414 152 11.2
OpenR1-Qwen-7B (Face, 2025) 425 566 92 83.0 898 3.8 298 419 121 8.4
OpenThinker-7B (Team, 2025a) 404 487 81 76.0 850 42 328 439 13.6 8.6

S1-32B (Muennighoff et al., 2025) 498 60.1 43 81.6 89.6 32 439 551 13.1 6.9
Sky-T1-32B-Preview (NovaSky, 2025) 49.8 584 4.6 81.6 882 3.0 439 530 I11.1 6.2

Bespoke-Stratos-32B 498 542 7.1 81.6 8.2 3.0 439 576 8.1 6.1
OpenThinker-32B (Team, 2025a) 498 612 80 816 914 28 439 59.1 11.1 7.3
80 OlympiadBench
BN Pass@1 Pgase Pass@8 Pgase
B Pass@1 Per Pass@8 Pgr
. Pass@1 Piost Pass@8 Piost
70
65.7
62.3
:\560 58.7 59.2
> - 55.8 2
2 53 53
s
250
44.5
40
30

DeepScaleR-1.5B Still-3-1.5B

Models

Figure 6. Performance of the base model (Pgase 1), the fine-tuned model (Pgr 1) and the Lost Score (Prost |) for Pass@1 sampling and
Pass@8 sampling. Fine-tuned models like DeepscaleR-1.5B (Luo et al., 2025) and Still-3-1.5B (Face, 2025) outperform the base model
overall but also forget many questions the base model answered correctly.

Results. In Table 2, we present a comprehensive analysis of various SOTA models. We found that Py, could range from
6.1 to 16.0 points, with the average of 9.5 points. This implies that there are a considerable number of questions answered
correctly by the base model but incorrectly after RL or SFT, in spite of the improvement of overall performance.

Figure 6 illustrates the performance comparison between base models and fine-tuned models using both Pass@1 and
Pass@8 sampling on the OlympiadBench dataset. The figure shows that while fine-tuned models like DeepscaleR-1.5B
and Still-3-1.5B achieve higher overall performance than their base models (Prr > Pgase), they also exhibit the temporal
forgetting phenomenon with substantial Lost Scores (Pr,,s;) for both Pass@ 1 sampling and Pass@8 sampling.
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E. Experiment Setup of Temporal Forgetting
E.1. GRPO

We follow (Luo et al., 2025) and use the following hyper-parameters detailed in Table 3 for Zero RL training. We perform
experiments on eight A100 GPUs. The model is trained using VERL (Sheng et al., 2024).

Table 3. This table shows the hyper-parameters for zero RL training.

Hyper-parameter Value

Learning Rate 1x107°
Number of Epochs 9

Number of Devices 8

Rollout Batch Size 128

PPO Mini Batch Size 64

Max Prompt Length 1024

Max Response Length 3072 (QWEN2.5-MATH-7B), 8192 (OTHERS)
KL Coefficient 0.001

Rollout Engine VLLM (v0.8.2)
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Ratio 0.1

E.2. Supervised Fine-tuning

Our model SFT is conducted using LLaMA-Factory (Zheng et al., 2024), on a server with four NVIDIA A100-SXM4-80GB
GPUs. We follow (NovaSky, 2025) for the training parameters. Table 4 lists hyper-parameters for full parameter supervised
fine-tuning.

Table 4. This table shows the hyper-parameters for full parameter supervised fine-tuning.

Hyper-parameter Value
Learning Rate 1x10°°
Number of Epochs 3
Number of Devices 4
Per-device Batch Size 1
Optimizer Adamw
Learning Rate Scheduler cosine
Max Sequence Length 16384

E.3. LoRA Fine-tuning Setup

Our model LoRA fine-tuning (Hu et al., 2021) is conducted using LLaMA-Factory (Zheng et al., 2024), on a server with four
NVIDIA A100-SXM4-80GB GPUs. We follow (NovaSky, 2025) for the training parameters. Table 5 lists hyper-parameters
for LoRA fine-tuning.

F. More Results of Temporal Forgetting

Table F presents detailed performance metrics for different fine-tuned models evaluated specifically on AIME24 and AMC
benchmarks. The table shows the base model performance (Fp,s. ), fine-tuned model performance (FPgr), Ever Correct Score
(Pgcs), and Temporal Forgetting Score (Prrg) across various models with both GRPO and SFT training methods. Notably,
models exhibit significant temporal forgetting, with Prprg values ranging from 6.7% to 30%, which implies that many
questions solved correctly at some point during training were ultimately answered incorrectly in the final checkpoint.

Table F complements Table 1 by providing a more comprehensive view of base model (Pgase) and fine-tuned model (FPgr)
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Table 5. This table shows the hyper-parameters for LORA fine-tuning.

Hyper-parameter Value
Learning Rate 1x107*
Number of Epochs 3
Number of Devices 4
Per-device Batch Size 1

LoRA Target full
Learning Rate Scheduler cosine
Warmup Ratio 0.03

Max Sequence Length 16384

AMC AIME24
Model
Pgase Pt FPees  Pres Pase Pt Pees  Prrs
Qwen2.5-7B (GRPO) 325 475 775 300 6.7 6.7 234  16.7
Qwen2.5-7B (SFT) 32.5 525 75.0 225 6.7 10.0  20.0 10.0
Qwen2.5-1.5B (GRPO) 0.0 30.0 450 150 0.0 33 10.0 6.7
Qwen2.5-1.5B (SFT) 0.0 15,0 35.0 20.0 0.0 0.0 6.7 6.7

Qwen2.5-Math-7B (GRPO) 325 725 825 100 133 167 400 233
Qwen2.5-Math-7B (SFT) 325 500 750 250 133 200 400 200

Table 6. Performance of fine-tuned models (Prr 1), the Ever Correct Score (Prcs 1), and the Temporal Forgetting Score (Prrs J) of
different fine-tuned models evaluated on AIME24 and AMC. We observed both high Pecs and Prrg in spite of the improving overall
performance, which implies a high percentage of questions (from 6.7% to 30%) are answered correctly at some checkpoint during training
but are ultimately incorrect in the final checkpoint.

performance across all five mathematical benchmar.

G. More results of Temporal Sampling
G.1. More Results of Temporal Sampling for Different Models

Figure 7 presents a comprehensive evaluation of Temporal Sampling across different models (Qwen2.5-7B, Qwen2.5-1.5B,
and Qwen2.5-Math-7B) and benchmarks. The results consistently show that Temporal Sampling with multiple checkpoints
(t = 2,t =4, t = 8) outperforms the baseline (¢ = 1) across different model sizes and benchmarks.

G.2. Temporal Sampling for Best-of-N

Figure 8 demonstrates the effectiveness of Temporal Sampling when combined with Best-of-N (BoN) decoding on the
AIME2024, AMC, and AIME2025 benchmarks. Using Qwen2.5-Math-PRM-72B (Zhang et al., 2025) as the process reward
model, answers with the highest reward were selected as the final output. The results clearly show that Temporal Sampling
with ¢ = 8 checkpoints significantly outperforms the baseline (¢ = 1), achieving improvements of more than 7, 8, and 1
percentage points across the three benchmarks when sampling & = 64 responses. Figure 9 presents additional evidence for
the effectiveness of Temporal Sampling with Best-of-N decoding when using the smaller Qwen2.5-Math-PRM-7B (Zhang
et al., 2025) as the process reward model. This highlights the value of leveraging multiple training checkpoints for enhancing
reward-based selection methods.

G.3. Temporal Sampling with LoRA Fine-tuning

A key consideration for the practical application of Temporal Sampling is the storage cost associated with saving multiple
model checkpoints. To address this, we investigated the use of Low-Rank Adaptation (LoRA) for Fine-Tuning, where
checkpoints generated only store the low-rank adapter weights, smaller than full parameter fine-tuning. In our experiments,
we use LoRA SFT Qwen2.5-7B model on the DeepscaleR-4k dataset used in Section 2.2. Please see Appendix E.3 for
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. Olympiad ~ MATH-500 GPQA AMC AIME
PBase PFT PBase PFT PBase PFT PBase PFT PBuse PFT
Qwen2.5-7B (GRPO) 221 397 532 738 298 338 325 475 6.7 6.7
Qwen2.5-7B (SFT) 22.1  40.1 532 698 298 253 325 525 6.7 10.0
Qwen2.5-1.5B (GRPO) 0.6 188 06 556 30 268 00 300 00 33
Qwen2.5-1.5B (SFT) 0.6 110 06 362 30 13.1 0.0 150 00 0.0

Qwen2.5-Math-7B (GRPO) 193 41.0 602 79.8 303 328 325 725 133 16.7
Qwen2.5-Math-7B (SFT) 193 439 602 764 303 308 325 500 133 200

Table 7. Detailed performance score of base models (Pgqse) and fine-tuned models (Pr1) across five mathematical benchmarks, served
as complementary of Table 1.

the details of the training parameters. We saved 8 LoRA checkpoints during the SFT process. We then evaluated the
performance of Temporal Sampling using LoRA checkpoints, comparing its performance against a baseline that sampled
only from the final checkpoint. The comparison was based on the Pass@k and Maj@Fk metrics on the AIME benchmark.

Our findings, illustrated in Figure 10, reveal that Temporal Sampling implemented with LoRA checkpoints outperforms
sampling only from the final checkpoint for both Pass@k and Maj@k. This demonstrates that the enhanced sampling
performance of Temporal Sampling could be achieved with the considerably reduced storage footprint afforded by LoRA.
This makes Temporal Sampling with LoRA a more resource-efficient approach for leveraging checkpoint diversity.

G.4. Comparison of Mixture of Models

In this section, we evaluate our proposed Temporal Sampling against the Mixture of Models, which combines outputs from
different foundation models to answer each question collaboratively. To compare sampling efficiencies, we construct a
model pool containing three models: our RL-trained final checkpoint (Qwen2.5-7B-Base), Llama 3.1-8B, and DeepSeek-
Math-7B-Instruct. We apply Temporal Sampling (with ¢ = 3) and the mixture strategy by sampling in a round-robin manner
over the pool, then measure the majority voting performance Maj@k. As shown in Figure 11, Temporal Sampling achieves
higher sampling performance than the mixture of models under the same computational budget. At Maj@64, Temporal
Sampling outperforms the mixture approach by over 4, 9, and 9 points on the AIME24, AMC, and AIME25 benchmarks,
respectively.
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Figure 7. Pass rate of different models with their RL training checkpoints on the AIME2024, AMC, and AIME2025 benchmarks when
using Temporal Sampling. The case ¢ = 1 represents the baseline of standard Pass@k sampling on the final checkpoint. Our proposed
Temporal Sampling outperforms the baseline by more on AIME2024, AMC, and AIME2025.
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Figure 8. BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. Qwen2.5-Math-
PRM-72B is used as the process reward model. We choose the answer with the highest reward as the final answer. The case t = 1
represents the baseline of standard BoN on the final checkpoint. Our proposed Temporal Sampling with ¢ = 8 checkpoints outperforms
the baseline by more than 7, 8, and 1 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.
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Figure 9. BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. Qwen2.5-Math-
PRM-7B is used as the process reward model. We choose the answer with the highest reward as the final answer. The case ¢ = 1 represents
the baseline of standard BoN on the final checkpoint. Our proposed Temporal Sampling with ¢ = 8 checkpoints outperforms the baseline
by more than 10, 2, and 5 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.
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Figure 10. Performance of Temporal Sampling using 8 checkpoints from LoRA SFT of Qwen2.5-7B. Results on the AIME24 and AMC
demonstrate that Temporal Sampling with LoRA checkpoints surpasses the baseline (sampling only from the final checkpoint) for both

PassQk and Maj@k.
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Figure 11. Maj@k comparison between Temporal Sampling (¢ = 3) and a Mixture of Models (MoM) approach on the AIME2024, AMC,
and AIME2025 benchmarks. For MoM, the model pool included the Qwen2.5-7B-Base final RL checkpoint, Deepseek-Math-7B-Instruct,
and Llama-3.1-8B-Instruct. Temporal Sampling outperforms the MoM approach by more than 4, 9, and 9 percentage points on AIME2024,

AMC, and AIME2025, respectively, when sampling 64 responses.
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