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ABSTRACT

Federated Learning (FL) is a distributed machine learning architecture where edge
devices collaboratively learn the shared model, while the training data is securely
held at the edge devices. FL promises a way forward to preserving data privacy by
sending model updates in the form of gradients or the weights themselves. How-
ever, these updates still contain the essence of the original training data and can be
reconstructed using gradient-based attacks. To overcome this, we propose a novel
Privacy Preserving Federated Learning algorithm (PPFed) wherein we generate a
condensed dataset from the original training data at each edge device. The client’s
then train their local models on the condensed dataset which is then broadcasted
to the server, followed by regular federated averaging. Our method provides pri-
vacy by being robust against gradient-based attacks, which holds across different
benchmark datasets and CNN based architectures.

1 INTRODUCTION

Federated Learning (FL) introduced by McMahan et al. (2017) is a distributed machine learning
paradigm where a shared Global Model (GM) is collaboratively learned by centrally aggregating
Local Models (LM) which are trained on edge devices using their private data. Sharing the local
training data with a central server can lead to data privacy concerns. To avoid these concerns, this
distributed learning framework was developed where the trained local models are shared instead
of training data. Further, the local models can be of smaller size than the local data, and sending
the client models to server also results in efficient bandwidth utilization. Lastly, edge devices are
becoming more computationally capable to enable local training, with GPU accelerated devices like
Nvidia Jetson being used in self-driving cars Zhang et al. (2021) and urban camera networks .

There are several practical and useful applications of FL such as next keyword prediction in smart
phones without revealing the keywords and phrases typed by users to a central service, Hard et al.
(2018). FL also benefits machine learning in healthcare where local models trained on patient data
that are retained within individual hospitals such as their MRI scans or blood samples, can be aggre-
gated into a more effective global model spanning hospitals for improving diagnostics Rieke et al.
(2020), Li et al. (2020a). Another promising application of FL is in an autonomous vehicle network
Zhang et al. (2021). Here, large data samples collected by the on-board sensors of self-driving ve-
hicles can be used to train local models, which are often smaller in size than the local training data.
These compact local models can then be sent to cloud severs for central aggregation, thus requiring
lesser network bandwidth.

In the FL framework, clients independently train their models and share the gradients or the model
updates as they cannot share their data due to privacy concerns. One way to solve this problem is
FedSGDMcMahan et al. (2017), where the clients update the computed gradients or model updates
after every optimization step to the server, but this causes high communication cost. Federated Aver-
aging (FedAvg) McMahan et al. (2017) overcomes this drawback by allowing multiple local updates
before sending the models to server. FedAvg has faster convergence when the data is iid distributed
across the clients but it has slower convergence when the data is non-iid distributed. Most of the
recent works on FL focus on improving the accuracy of the model under data heterogeneity Karim-
ireddy et al. (2020); Acar et al. (2021); Li et al. (2020b). However, they all require communicating
the gradients or the model parameters with the server.
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A common assumption in FL is that by sharing only the local weights or the gradients privacy can
be preserved. However, recent works Huang et al. (2021); Zhu et al. (2019); Zhao et al. (2020) show
that if the architecture and the gradients of the model are known, then the inputs to the model can
be reconstructed. Thus, as the server has the knowledge of both the models and the gradients, it can
potentially use these gradients and reconstruct the client’s local data.

These findings can pose a threat to the local data privacy that is assumed in FL. To overcome this
limitation, we propose a novel method Privacy Preserving Federated Learning (PPFed) where we
perform federated learning on a small synthetically generated dataset (condensed data (CD)), rather
than the original training dataset. These compact and representative samples are generated locally
at the client using a gradient-matching technique for condensation, and subsequently used to train
the local model. We demonstrate empirically that gradient-based attacks on our proposed method
obtains poor reconstruction performance (based on MSE and perceptually) when compared to the
FedAvg, thus enhancing the privacy of the original local training data. However, the computational
cost/training time of the proposed method is higher than simple FedAvg due to the overheads of
generating the condensed training samples. These claims are validated through experimental results
obtained by training several common Deep Neural Networks (DNN) models using Nvidia Jetson
AGX GPU-accelerated edge clients. We also evaluate our performance across several datasets and
report accuracy, loss, MSE along with the visualization of reconstructed data.

Our key contributions are as follows.

• We propose a novel FL method PPFed, where we perform federated learning using the
condensed data rather than the original training data.

• We empirically show that with Convolutional Neural Network (CNN) architectures, PPFed
is robust to gradient-based attacks on the server when compared to FedAvg and other algo-
rithms that send the local models trained on the original data.

• We also compare PPFed with an alternative DOSFL+ method where all clients generate
condensed data and send them to the server, which centrally trains a global model over
the aggregated condensed data in a FL single round. We analyze the accuracy vs. privacy
trade-offs of these approaches.

2 RELATED WORK

Dataset condensation is the method to create the synthetic sample set of size much lesser than the
original training data. This is explored in the works of Zhao et al. (2021) and Zhou et al. (2020).

FL in research is very rapidly progressing, we only present the works that are closely related to
our work. For more detailed introduction to FL one can refer Kairouz et al. (2021). Since FL
is introduced by McMahan et al. (2017) most of the FL literature was based on improving the
performance of the global model under data heterogeneity.

This includes regularization based approaches such as Karimireddy et al. (2020), Li et al. (2020b),
Acar et al. (2021) and the data generation approaches such as Zhang et al. (2022). Distillation based
strategies are also used for model aggregation in Lin et al. (2020). In the works of Mishchenko
et al. (2019) Dutta et al. (2020), the communication cost is reduced by compressing the model
parameters/gradients.

Condensed data in the context of FL was first proposed by Zhou et al. (2020) as a means to mini-
mize the communication cost and train the global model in one communication round. The authors
proposed to send the condensed data to the server in one shot as the emphasis is more on improving
communication efficiency.

In Geiping et al. (2020) authors consider for the first time the issue of privacy in FL when sub-
jected to gradient-based attacks such as Zhu et al. (2019). In the work, Huang et al. (2021) authors
propose defenses against the gradient inversion attacks, some of these requiring the use of batch
normalization and dependant on training parameters such as using a larger batch size.
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Figure 1: Architecture of the proposed PPFed method. We first generate the Condensed Data (CD) in each
client using the Dataset Condensation with Gradient Matching (DCGM) algorithm. This happens just once
before Fl round 1 (FLR1). Then, we train a Local Model (LM) in each client over the CD. The LMs are shared
with the server, which aggregates the model parameters to create a Global Model (GM) and broadcasts it back
to the clients. In future rounds, the clients start with the GM and train over their CD to generate a new LM, and
so on.

3 PROPOSED METHOD

We first give a brief overview of the dataset condensation algorithm which is used to distill the orig-
inal training data to generate a compressed version of it in the form of fewer samples. Subsequently,
we discuss its use in our proposed PPFed approach.

3.1 DATASET CONDENSATION

Dataset condensation learns to condense large datasets into a small set of informative synthetic
samples for training DNNs from scratch. The main objective while crafting the condensed data is to
obtain models trained on the condensed data that can yield generalization performance comparable
to the models trained on the true data.

If w̃ and w denote the trained model parameters on true and condensed data respectively. The
condensed data generated should satisfy the following:

E(x,y)∈Dl(w̃, (x, y)) = E(x,y)∈Dl(w, (x, y)) (1)

where l(w, (x, y)) denotes the task specific loss function. In this work we consider the classification
task and the loss as cross entropy loss function, where D denotes the data generating distribution.
The above goal is realized by various dataset condensation methods such as Dataset Condensation
with Gradient Matching (DCGM) by Zhao et al. (2021) and dataset distillation by Wang et al. (2018).
We employ DCGM in our design due to its better performance.
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3.2 PRIVACY PRESERVING FEDERATED LEARNING (PPFED)

In federated learning we optimize the following cost function:

F (w) =
1

n

n∑
i=1

fi(w) (2)

where w denotes the model parameters and n denotes the number of clients participating in the FL.
fi(w) is the optimization objective of the client i and is given by Eq. 3:

fi(w) = E
(x,y)∈D̃i

l(w, (x, y)) (3)

where D̃i is the condensed data that is generated from the true data Di, and (x, y) are condensed
training samples where x is the input and y the corresponding class label. Here, l is the loss function,
which can be cross entropy loss function. Models trained on the true data and condensed data should
give the same generalization performance as per Eq. 1. Hence we replace D with D̃ and use Eq. 3
to train client models locally.

Towards this goal, we split our PPFed algorithm into two stages (Figure 1): Stage 1 to generate
Condensed Dataset (CD) using DCGM algorithm Zhao et al. (2021) and Stage 2 to perform multiple
rounds of FedAvg. The two stages of PPFed can be de-coupled from each other, i.e., the generation
of CD is independent of the FedAvg stage. The generated condensed data is reused across multiple
rounds of FL or even for training a different model in future as storing the condensed data is memory
efficient.

Each client i generates the CD (D̃i) using the original training dataset Di only once. Clients then
train the individual local models (LM) on the CD, over multiple FL rounds. The gradients or the
parameters of the trained LM from each client is sent to the server, which then aggregates the local
models into a global model (GM) using FedAvg. While other methods for global aggregation can be
used, we use the FedAvg for its simplicity and it offers a reasonable baseline for comparison. The
GM is sent to all the clients to start the next round of FL. Then, the clients start with GM as their
initial model and train a new LM using the CD generated earlier. The updated LMs are sent by the
client to the server, and this process repeats over multiple rounds till convergence.

The accuracy of the PPFed method depends on the quality of the condensed dataset. If we need
better accuracy we can generate a better or larger set of condensed dataset. This, however, can take
a longer computational time. This induces a training time vs. accuracy trade-off. We analyze this
aspect in detail in the experiments section. Our approach is also shown in detail in the Algorithm 1.

4 EXPERIMENTAL SETUP

4.1 EXTRACTING GRADIENTS IN FL SETUP

Gradient-based attack was first proposed by Zhu et al. (2019), and later extended to FL by Geiping
et al. (2020). We present a brief overview of such an FL attack, which we use to evaluate the privacy
of the FL approaches we consider. For more details refer Geiping et al. (2020).

Gradients-based attacks need information about the model architecture and the gradients of the pa-
rameters, and the input data samples are reconstructed by matching the gradients, as summarized
below:

x∗ = argmin
x

lg(∇fl(w),∇f(w, x)) (4)

where ∇fl(w) denotes the leaked gradients and ∇f(w, x) is the gradient of the model which is
matched with the leaked gradient by optimizing the x.

wi(t+ 1) = w(t)− α ∗
ng∑
k=0

∇fi(w
k
i (t)) (5)

4



Under review as a conference paper at ICLR 2023

Algorithm 1 PPFed
Stage 1:

1: for FL Round t = {0} do
2: Server broadcasts the weights w(t)
3: Each client i ∈ n executes DCGM Zhao et al. (2021) to generate condensed dataset D̃i

using the original training data present locally (Di) in an i.i.d. manner.
4: wi(t) = CLIENTUPDATE(w(t)) ∀i ∈ n
5: Server averages LMs wi(t) generate by the clients to generate GM w(t+1) = 1

n

∑n
i=0 wi(t)

6: end for
Stage 2:

1: for FL Round t = {1, . . . , T − 1} do
2: Server broadcasts the weights w(t)
3: wi(t) = CLIENTUPDATE(w(t)) ∀i ∈ n
4: Server averages LMs wi(t) generate by the clients to generate GM w(t+1) = 1

n

∑n
i=0 wi(t)

5: end for
1: function CLIENTUPDATE(w(t))
2: Set wi(t) = w(t)
3: for Epoch e = {0, 1, . . . , E} do
4: for Batch b = {0, 1, . . . , B} do
5: wi(t) = wi(t)− α×∇fi(wi(t)) where (x, y) ∈ D̃i Eq. 2
6: end for
7: end for
8: end function

Eq.5, shows the client model update wi(t+ 1) after ng , the number of gradient updates at the client
i, and w0

i (t) = w(t). w(t) is the global model shared by server, here we are assuming that the client
is using stochastic gradient descent update rule to perform the optimization.

We consider the honest but curious server scenario where server can reconstruct the client data using
the parameters shared as per FL protocol. The server has knowledge of the model architecture being
trained and gradients for the model updates are shared by the clients. Using the model weights that
are shared, the server can subtract the initial model weights (which it broadcasted to all clients)
from the updated client weights that it receives after a round of local training to get the accumulated
gradient. Let gi denote the accumulated gradient of the client i, w(t) represent the global model
at time t, and wi(t + 1) denote the updated model of client i. Then the server can compute the
accumulated gradient up to a scale as follows:

gi ∝ w(t)− wi(t+ 1) (6)

So the FL server can easily compute the accumulated gradients by subtracting the weights up to the
scale of the learning rate. This difference can then be used to reconstruct the images using any of
the gradient inversion methods Zhu et al. (2019); Geiping et al. (2020).

We observe that attacks based on DLG algorithm Zhu et al. (2019) provide better reconstruction
quality and hence use on it. We consider that clients perform the update on a batch of size 4 and do
a single gradient descent update. Even in this scenario, we show PPFed can preserve the privacy of
the model when such attacks are employed by the server.

4.2 HARDWARE AND SOFTWARE PLATFORM

We conduct our experiments by running clients on Nvidia Jetson Xavier AGX, which has a 512-core
Volta GPU, an 8-core ARM CPU and 32GB of LPDDR4x memory shared between CPU and GPU.
The server runs on an Nvidia RTX 3090 GPU workstation. The client and server are connected over
a 1 Gbps Ethernet link. We implement our algorithm using Flower API and PyTorch DL framework.
Each client runs as a process on a separate AGX device and the server process runs on a single 3090
workstation.
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(a) True Images (b) Reconstructed Im-
ages (FedAvg)

(c) CD Images
(DOSFL+)

(d) Reconstructed CD
Images (PPFed)

Figure 2: Images reconstructed using the gradients leaked from FedAvg and PPFed for MNIST dataset.
DOSFL+ shares CD images with server and hence reveals it.

4.3 MODELS AND DATASETS

We train the following DNN models using the FL setup: 1) ConvNet: The specific DNN we use in-
cludes 3 blocks, each with 128 filters, followed by InstanceNorm, ReLU and AvgPooling modules.
A linear classifier follows the last block. 2) LeNet: The layer composition consists of 3 convo-
lutional layers, 2 subsampling layers and 2 fully connected layers. 3) Multi-Layer Perceptron
(MLP): This is a simple neural network containing just an input, a hidden and an output layer. For
more details refer to Zhao et al. (2021). We use the CIFAR10, MNIST and FashionMNIST datasets
along with ConvNet, Lenet and MLP, respectively.

4.4 BASELINE ALGORITHMS

We compare our proposed PPFed method against the FedAvg baeline approach and a variation of
the DOSFL by Zhou et al. (2020). DOSFL is a one shot FL learning scheme where the condensed
data is shared with server to train the global model in a single round. We extend DOSFL by using
the latest DCGM dataset condensation method instead of the one reported in their paper, and refer
to this as DOSFL+.

4.5 TESTING METHODOLOGY

We report the test accuracy of algorithms for the model and dataset combinations in Table 2. We use
two FL experiment setups: with 2 clients and with 5 clients. In our setting we make the full device
participation in every FL round. The training dataset is partitioned i.i.d fashion across these clients
and we consider the balanced setting where every client gets same quantity of data.

4.6 HYPER-PARAMETERS

We use a learning rate of 0.001 with Stochastic Gradient Descent (SGD) algorithm with a momentum
of 0.9. For generating the condensed dataset, we follow the hyper-parameters as specified in the
DCGM paper by Zhao et al. (2021). We generate 50 images per class by varying the number of
iterations in the DCGM algorithm as {10,30,50,70,100}. The more the number of iterations of
DCGM, the better the quality of the condensed data is supposed to be, but also longer the time taken
to generate the CD. This helps us analyze and compare the time taken (including CD generation and
training time) vs the accuracy achieved. When we compare against FedAvg and DOSFL+ we use
the CD generated from 100 iterations of DCGM. Clients use a batch size of 256 while training their
local models. The local models are trained for single epoch for FedAvg due to its larger dataset size
and for 20 epochs for PPFed due to the smaller number of samples.
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(a) True Images (b) Reconstructed Im-
ages (FedAvg)

(c) CD Images
(DOSFL+)

(d) Reconstructed CD
Images (PPFed)

Figure 3: Images reconstructed using the gradients leaked from FedAvg and PPFed using CIFAR10

(a) True Images (b) Reconstructed Im-
ages (FedAvg)

(c) CD Images
(DOSFL+)

(d) Reconstructed CD
Images (PPFed)

Figure 4: Images reconstructed using the gradients leaked from FedAvg and using FashionMNIST

5 RESULTS AND DISCUSSION

5.1 ACCURACY VS PRIVACY TRADE OFF

In Figure 2 we show the quality of images reconstructed using the Gradient in version attacks.
Figure 2a shows the true inputs on which the gradients are leaked while Figure 2b shows the re-
constructed true images. Similarly Figures 2c and 2d display the condensed images and the recon-
structed condensed images. We can see that the image reconstruction quality is poor for Figure 2d
compared to the true images in Figure 2a when using the gradients of the LeNet model trained on the
condensed data, as PPFed does. The digits are unrecognizable. In contrast, the images in Figure 2b
reconstructed using the gradients of the model trained using the true images, such as FedAvg, are
fairly close to the true images and the digits are recognizable. In methods such as DOSFL+, the
condensed data (Figure 2c) is transmitted to the server, and thereby revealed. We see that the con-
densed data in itself does not provide privacy and adequately mask the original data. This subjective
evaluation demonstrates that PPFed has better privacy when compared to FedAvg and DOSFL+ in
mitigating image reconstructability.

Similar benefits are seen when training ConvNet on CIFAR10 data in Figure 3. However, this
distinction is diminished when training MLP on the Fashion MNIST datasets, reported in Figure 4.
Gradient inversion attacks are able to easily reconstruct the data on the fully connected layers of
MLP Geiping et al. (2020). So on MLP architectures, we conclude that privacy cannot be preserved
even using our PPFed approach, while we achieve good privacy preservation in CNN architectures.

In Figure 5 we compute the histogram of the Mean Squared Error between the reconstructed image
and the closest image belonging to that class. In the Table 1 we present the mean and standard
deviations of the distribution of MSE. In all the three cases we can see that mean value of MSE is
higher for PPFed compared to FedAvg.
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Table 1: Mean and Standard deviation (Std) of the Mean Squared Error (MSE) between the reconstructed image
and the closest true image.

Model + Dataset Mean (PPFed) Mean (FedAvg) Std (PPFed) Std (FedAvg)
ConvNet+ CIFAR10 106 873.8 8× 105 1021.8
LeNet+MNIST 1.65 0.77 0.32 0.29
MLP + FMNIST 0.54 0.006 0.014 0.099
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(a) ConvNet + CIFAR10
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(b) LeNet + MNIST
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(c) MLP+FMNIST

Figure 5: Histogram of MSE of the reconstructed images from the gradients of FedAvg and PPFed

The privacy benefit of PPFed does comes with the accuracy downsides, as can be seen from the
Figures 6, which show the convergence plots of PPFed, FedAvg and DOSFL+ algorithms. It is clear
that FedAvg performs best in terms of accuracy, while DOSFL+ and PPFed are close to each other
at the end of convergence. DOSFL+ has constant performance since it only performs one FL round
of communication to attain convergence while FedAvg and PPFed improve with the rounds.

The Table 2 compares the accuracy of the PPFed, FedAvg and DOSFL+ algorithms. It can be
seen that PPFed performs identical to the DOSFL+ in all the cases at the same time it also offers
robustness against the gradient inversion attacks. DOSFL+ cannot offer privacy as the condensed
images are directly sent to server, In the case of MNIST we can see that the condensed images carry
the natural image prior. Both the DOSFL+ and PPFed under-performs compared to FedAvg for
CIFAR-10 as the quality of the DCGM is not good enough to attain the desired accuracy Zhao et al.
(2021). For the case of LeNet+MNIST just by compromising the accuracy of 4.5 % we can attain a
better privacy.
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Figure 6: Comparison of methods across different datasets with 5 clients

5.2 ACCURACY VS TIME TRADE OFF

In Figure 7 we analyze the Accuracy vs Time trade-off for PPFed. Hollow markers indicate the
accuracy of a freshly initialised model trained for 300 epochs, on CD generated using the value
of K indicated by the shape of the marker; and the time taken for generation of CD, at the end
of Stage 1 of PPFed. Furthemore, each solid marker represents the accuracy of an model trained
for 20 local epochs on CD generated using K value indicated by the marker during an FL Round,
and the training + aggregation time taken for that FL Round in Stage 2 of PPFed. The black line
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Table 2: Top 1% Accuracy comparison for 5 clients across datasets and models

Model+Dataset FedAvg (Accuracy %) DOSFL+ (Accuracy %) PPFed (Accuracy %)
ConvNet+CIFAR10 70.2 50.1 50.3
LeNet+MNIST 96.5 93.0 92.0
MLP+FMNIST 85.2 80.6 81.0

joining solid markers in these plots indicates the Pareto frontier which is the set of Pareto-efficient
configurations with respect to accuracy and training time.

In order to find the right configuration (K is the number of DCGM iterations) for generating CD,
such that 80% accuracy is reached in the least time, one need not explore all the possible configura-
tions to get to that value. Instead, one could follow the configurations on the Pareto frontier (black
line) and move along it until 80% accuracy is reached - the marker near that accuracy gives us the
needed configuration, which in this case is K = 30, and which results in the least end-to-end time of
720s for reaching that accuracy. In a similar manner, if we were given a time budget of say 1200s,
then a maximum accuracy of about 90% can be attained by using the K = 50 configurations.
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Figure 7: LeNet+MNIST | i.i.d. | 5 clients | Accuracy vs Time

6 CONCLUSION AND FUTURE WORK

In this work we propose a novel FL scheme PPFed were the models are trained on the condensed
data. We empirically show that PPFed is robust to gradient based attacks than FedAvg for the CNN-
based model architectures, and achieves better privacy. We consider only iid data here and in future,
plan to evaluate the robustness of gradient based attacks on non-iid data. Our proposed approach
is generic by design. One can include any dataset condensation method, and any state-of-the-art
aggregation methods such as FedDyn Acar et al. (2021) and Scaffold Karimireddy et al. (2020) to
further enhance the accuracy of the model. We leave these aspects for the future investigation. We
also observe that MLP architectures are vulnerable to gradient based attacks, preserving the privacy
in such cases will be an interesting future direction.
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