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Abstract

In high-stakes domains such as healthcare and hiring, the role of machine learning
(ML) in decision-making raises significant fairness concerns. This work focuses on
Counterfactual Fairness (CF), which posits that an ML model’s outcome on any in-
dividual should remain unchanged if they had belonged to a different demographic
group. Previous works have proposed methods that guarantee CF. Notwithstanding,
their effects on the model’s predictive performance remain largely unclear. To fill
this gap, we provide a theoretical study on the inherent trade-off between CF and
predictive performance in a model-agnostic manner. We first propose a simple but
effective method to cast an optimal but potentially unfair predictor into a fair one
with minimal performance degradation. By analyzing the excess risk incurred by
perfect CF, we quantify this inherent trade-off. Further analysis on our method’s
performance with access to only incomplete causal knowledge is also conducted.
Built upon this, we propose a practical algorithm that can be applied in such sce-
narios. Experiments on both synthetic and semi-synthetic datasets demonstrate the
validity of our analysis and methods.

1 Introduction

Machine learning (ML) has been widely used in high-stakes domains such as healthcare [Daneshjou
et al., 2021], hiring [Hoffman et al., 2018], criminal justice [Brennan et al., 2009], and loan assessment
[Khandani et al., 2010], bringing with it critical ethical and social considerations. A prominent
example is the bias observed in the COMPAS tool against African Americans in recidivism predictions
[Brackey, 2019]. This issue is particularly alarming in an era where large-scale deep learning models,
commonly trained on noisy data from the internet, are increasingly prevalent. Such models, due to
their extensive reach and impact, amplify the potential for widespread and systemic biases. This
increasing awareness underscores the need for ML practitioners to integrate fairness considerations
into their work, extending their focus beyond merely maximizing prediction accuracy [Bolukbasi
et al., 2016, Calders and Verwer, 2010, Dwork et al., 2012, Grgic-Hlaca et al., 2016, Hardt et al.,
2016]. Various fairness notions have been developed, ranging from group-level measures such as
group parity [Hardt et al., 2016] to individual-level metrics [Dwork et al., 2012]. Recently, there
has been a growing interest in approaches based on causal inference, particularly in understanding
the causal effects of sensitive attributes such as gender and age on decision-making [Chiappa, 2019,
Galhotra et al., 2022, Khademi et al., 2019]. This has led to the proposal of Counterfactual Fairness
(CF), which states that prediction for an individual in hypothetical scenarios where their sensitive
attributes differ should remain unchanged [Kusner et al., 2017]. As an individual-level notion agnostic
to the choice of similarity measure [Kusner et al., 2017, Rosenblatt and Witter, 2023], CF has recently
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(a) Optimal predictor without counterfactual
fairness constraint.

(b) Optimal predictor under perfect counterfactual
fairness constraint.

Figure 1: The optimal (unfair) predictor (a) violates counterfactual fairness in the middle region
because the predictions are different for the factual-counterfactual pairs1 (denoted by line segments
between a = 0 and a = 1). We prove that the optimal fair predictor (b) simply mixes the optimal
unfair predictions at the factual and counterfactual points (i.e., mixes the predictions at both endpoints
of the line). This mixing incurs the inherent excess risk associated with counterfactual fairness.
Colors represent target classes (Y ), and dot styles represent sensitive attributes (A).

gained traction [Anthis and Veitch, 2024, Nilforoshan et al., 2022, Makhlouf et al., 2022, Rosenblatt
and Witter, 2023].

To achieve CF, Kusner et al. [2017] first proposed a naive solution, suggesting that predictions should
only use non-descendants of the sensitive attribute in a causal graph. This approach only requires a
causal topological ordering of variables and achieves perfect CF by construction. However, it limits
the available features for downstream tasks and could be inapplicable in certain cases [Kusner et al.,
2017]. For relaxation, they further proposed an algorithm that leverages latent variables. Extending
this line of work, Zuo et al. [2023] introduced a technique that incorporates additional information by
mixing factual and counterfactual samples. Although perfect CF has been established in their work,
its predictiveness degraded, and whether the predictive power can be improved remains unknown. In
parallel to this, another branch of research employed regularization and augmentation to encourage
CF [Garg et al., 2019, Stefano et al., 2020, Kim et al., 2021]. However, as these methods cannot
guarantee perfect CF, analyzing the optimal predictive performance under CF constraints is highly
challenging.

To theoretically understand the tradeoff between CF and ML performance, we consider a class of
invertible causal models and prove that the optimal solution under perfect Counterfactual Fairness
(CF) has a simple form w.r.t. to the Bayes optimal classifier and explicitly quantify the excess risk
of imposing a perfect CF constraint as has been done for non-causal fairness notions[Zhao and
Gordon, 2022, Xian et al., 2023]. The optimal predictor under the fairness constraint can be achieved
by combining factual and counterfactual predictions using a (potentially unfair) optimal predictor.
Next, we quantify the excess risk between the optimal predictor with and without CF constraints.
This quantity sheds light on the best possible model, in terms of predictive performance, under the
stringent notion of perfect CF. Our results are illustrated in Figure 1. To consider scenarios with
incomplete causal knowledge (e.g. unknown causal graph or model), we further study the CF and
predictive performance degradation caused by imperfect counterfactual estimations. Inspired by
our theoretical findings, we propose a plugin method that leverages a (potentially unfair) pretrained
model to achieve a better tradeoff of fairness and predictive performance than the prior methods.
Furthermore, we propose a method to improve the pretrained model that accounts for counterfactual
estimation errors and can achieve good empirical performance even with limited causal knowledge.
We summarize our contributions as follows:

1. We propose a CF method that is provably optimal in terms of predictive performance under
perfect CF.

2. To the best of our knowledge, we are the first to characterize the inherent trade-off of CF
and ML performance, which applies to all CF methods.

3. We investigate the CF and predictive performance degradation from estimation error resulting
from limited causal knowledge and propose methods to mitigate estimation errors in practice.

4. We empirically demonstrate that our proposed CF methods outperform existing methods in
both full and incomplete causal knowledge settings 2.

1Because of our invertibility assumption, any factual point has a unique counterfactual.
2Code can be found in https://github.com/inouye-lab/pcf
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2 Preliminaries

Notation We use capital letters to represent random variables and lowercase letters to represent
the realizations of random variables. Now we define a few variables that will be considered in this
work. A represents the sensitive attribute of an individual (e.g., gender), Y represents the target
variable to predict, X represents observed features other than A and Y , and U represents unobserved
confounding variables which are not caused by any observed variables while a, y, x, u represent their
realization respectively.

Counterfactual In this work, we use the framework of Structural Causal Models (SCMs) [Pearl,
2009]. A SCM is a tripletM = (U,V,F) where U represents exogenous variables (factors outside
the model), V represents endogenous variables, and F contains a set of functions Fi that map from Ui

and Parent(Vi) to Vi. A counterfactual query asks a question like: what would the value of Y be if
A had taken a different value given certain observations? For example, given that a person is a woman
and given everything we observe about her performance in an interview, what is the probability of her
getting the job if she had been a man? More formally, given a SCM, a counterfactual query can be
written as P (YA=a|W = w). Here W = w is the evidence and A = a in the subscript represents the
intervention on A. For the general procedure to estimate counterfactuals, please refer to Pearl [2009].

A U Y

X

Figure 2: Causal graph.
A represents sensitive at-
tribute, Y represents the
target variable, U repre-
sents latent confounders,
X represents observed
features. Note that the
validity of our theoreti-
cal analysis holds for all
causal models that sat-
isfy the condition given
by Assumption 3.1. It is
not restricted to this spe-
cific graph.

Counterfactual Fairness Built upon the framework above, we focus
on Counterfactual Fairness (CF), which requires the predictors to be fair
among factual and counterfactual samples. More formally, it is defined
as below
Definition 2.1. (Counterfactual Fairness) We say a predictor Ŷ is coun-
terfactually fair if

p(ŶA=a|X = x,A = a) = p(ŶA=a′ |X = x,A = a), ∀(x, a).

This definition states that intervention on A should not affect the distri-
bution of Ŷ . Using the same example above, the probability of a woman
getting the job should be the same as that if she had been a man. For that
goal, we use the following metric to evaluate CF

Definition 2.2. (Total Effect) The Total Effect (TE) of a predictor Ŷ is

TE ≜ E[|ŶA=a − ŶA=a′ |].

Therefore, a predictor is counterfactually fair if and only if TE = 0.
Throughout the paper, we use TE to quantify the violation of counterfac-
tual fairness.

3 Counterfactual Fairness via Output Combination

3.1 Problem Setup

We assume that all data we have is generated by a causal model [Pearl,
2009], and we consider the representative causal graph shown in Figure 2
that has been widely adopted in the fairness literature [Grari et al., 2023, Kusner et al., 2017, Zuo
et al., 2023]. Our analysis is presented based on binary A ∈ {0, 1} given its pivotal importance in the
literature [Pessach and Shmueli, 2023] and for the sake of presentation clearness, but our analysis and
our method can be naturally extended to multi-class A. We first state the main assumptions needed in
this section.
Assumption 3.1.

1. A and U are independent of each other.

2. The mapping between X and U is invertible given A.

The first assumption is very common in the fairness literature. While the invertibility assumption
might be restrictive in certain scenarios, it simplifies the theoretical analysis and has been adopted in
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recent works on counterfactual estimation [Nasr-Esfahany et al., 2023, Zhou et al., 2024]. We expect
that exact invertibility is not required in practice but rather only strong mutual information between X
and U given A would be sufficient. Further, we empirically validate the effectiveness of our method
after relaxing invertibility in the experiment section. To facilitate our discussion, we first define FX

as the mapping between X and (U,A), i.e., X = FX(U,A). According to our second assumption,
FX(·, a) is an invertible function, i.e., ∃F ∗

X
−1, F ∗

X
−1(x, a) = F ∗

X
−1(F ∗

X(u, a), a) = u,∀(x, a).
This assumption simplifies the counterfactual estimation of X for different values of A into a
deterministic function. In our context, the counterfactual query is specifically p(Xa′ |X = x,A = a),
which simplifies to a Dirac delta at a single value given the invertibility assumption. Thus, we
introduce the concept of a deterministic counterfactual generating mechanism (CGM), denoted as
xa′ = G(x, a, a′). Also, in our case, we will assume A is binary so that a and it’s counterfactual
a′ can be written as 1− a. All proofs can be found in Appendix A. Given this setup, the following
lemma characterizes the perfect CF constraint on ϕ.
Lemma 3.2. Given Assumption 3.1, predictor ϕ on (X,A) is counterfactually fair if and only if the
predictor returns the same value for a sample and its counterfactuals, i.e., TE(ϕ) = 0⇔ ϕ(x, a)

a.s.
=

ϕ(x1−a, 1− a), ∀(x, a).

The proof is straightforward from the definition of TE. Notably, this lemma helps disambiguate the
question of whether counterfactual fairness is a distribution- or individual-level requirements as raised
in Plecko and Bareinboim [2022]. In our setup, they are equivalent due to invertibility between X
and U given A.

3.2 Optimal Counterfactual Fairness and Inherent Trade-off

Given the complete knowledge of the causal model, it is viable to satisfy the perfect CF constraint
[Kusner et al., 2017, Zuo et al., 2023]. However, these methods are known to result in empirical
degradation of ML models’ performance, raising critical concerns about the fairness-utility trade-offs.
Moreover, it is still unknown to what extent the ML model performance has to be affected in order to
achieve perfect CF. In this section we provide a formal study on this to close the gap. Our solution
consists of two steps. First, we propose a simple yet effective method that is provably optimal under
the constraint of perfect CF. Next, we characterize the inherent trade-off between CF and predictive
performance by checking the excess risk compared to a Bayes optimal (unfair) predictor. Our result
shows that the inherent trade-off is dominated by the dependency between Y and A, echoing previous
analysis on non-causal based fairness notions [Chzhen et al., 2020, Xian et al., 2023]. For brevity, we
refer to a Bayes optimal predictor as “optimal”, and a model that satisfies perfect CF as “fair”.

We start with the following theorem instantiating an optimal and fair predictor.
Theorem 3.3. Given Assumption 3.1 3 and loss ℓ (i.e., squared L2 loss for regression tasks, and
cross-entropy loss for classification tasks), an optimal and fair predictor (i.e., the best possible
model(s) under the constraint of perfect CF) is given by the average of the optimal (potentially unfair)
predictions on itself and all possible counterfactuals:

ϕ∗
CF(x, a) ≜ p(A=a)ϕ∗(x, a) + p(A=1−a)ϕ∗(x1−a, 1−a) ∈ argmin

ϕ:TE(ϕ)=0

E[ℓ(ϕ(X,A), Y )] ,

where x1−a = G∗(x, a, 1−a) is the counterfactual of (x, a) when intervening with A = 1−a,
and ϕ∗(x, a) is an unconstrained optimal predictor, i.e., ϕ∗(x, a) ≜ argminϕ E[ℓ(ϕ(X,A), Y )]=
E[Y |X=x,A=a].

This result suggests that, if we have to access to ground truth counterfactuals, a simple algorithm
using a (potentially) unfair model could achieve strong fairness and accuracy. Built upon the above
result, we are ready to characterize the inherent trade-off between CF and model performance by the
following theorem.
Theorem 3.4. The inherent trade-off between CF and predictive performance, characterized by the
excess risk of the Bayes optimal predictor under the CF constraint, is given by

R∗
CF −R∗ = σ2

AEU

[(
EY |U=u,A=a[Y ]− EY |U=u,A=1−a[Y ]

)2]
,

3Note that while the discussion in this paper focuses on the causal model in Figure 2, our theorem is valid for
more general cases that satisfy Assumption 3.1. And for brevity, the following discussion is done under this
assumption unless otherwise stated.
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for regression tasks using squared L2 loss where σ2
A denotes the variance of A; and

R∗
CF −R∗ = I(A;Y | U),

for classification tasks using cross-entropy loss.

Remarkably, the excess risks are completely characterized by the inherent dependency between Y
and A as determined by the underlying causal mechanism, similar to non-causal based group fairness
[Chzhen et al., 2020, Xian et al., 2023]. Moreover, they lower bound the excess risk of all possible
predictors in order to achieve perfect CF.

3.3 Method with Incomplete Causal Knowledge

In this section, we aim to address CF in the scenario where causal knowledge is limited. Inspired by
Theorem 3.3, we first present a simple plugin method as summarized in Algorithm 1. For regression
tasks, µ̂ is the final output, and for classification tasks, µ̂ represents the probability of Y = 1, i.e.,
p(Y = 1|X = x,A = a) = E[Y |X = x,A = a]. It is noteworthy that PCF is agnostic to the
training of predictor ϕ that can be determined by the user freely. In fact, with access to the oracle
CGM G∗, then PCF would achieve perfect CF as proved in the next result.

Algorithm 1 Plug-in Counterfactual Fairness (PCF)

Input: Pretrained probabilistic prediction predictor ϕ : X × A → Y , CGM G, test datapoint
(x, a), prior distribution p of A
Output: Predicted output µ̂
x̂1−a ← G(x, a, 1− a)
µ̂← p(A = a)ϕ(x, a) + p(A = 1− a)ϕ(x̂1−a, 1− a)

Proposition 3.5. Given that G is the ground truth counterfactual generating mechanism, i.e.,
G(x, a, a′) = xa′ ,∀(x, a, a′), Algorithm 1 achieves perfect CF for any pretrained predictor ϕ.

Note that this proposition only requires access to ground truth G∗ and holds valid for any pretrained
predictor ϕ. If ϕ is further accurate, then the corresponding PCF is able to achieve high accuracy as
well, which is empirically validated in the experiments.

3.3.1 Given estimated G

Acquiring counterfactuals in practice can be a challenging task and could lead to estimation errors. In
this section we provide a theoretical analysis on this. Specifically, the theorem below bounds the TE
and excess risk due to the use of estimated counterfactuals.

Theorem 3.6. Given an optimal predictor ϕ∗(x, a), suppose it is L-lipschitz continuous in x, and the
counterfactual estimation error is bounded, i.e.,

max
X,A
∥G∗(xa, a, 1− a)− Ĝ(xa, a, 1− a)∥2 ≤ ε

for some ε ≥ 0, where G∗ and Ĝ represent the ground truth and estimated CGMs respectively. Then,
the total effect (TE) of Algorithm 1 based on Ĝ is bounded by Lε. Moreover, for squared L2 loss,
the excess risk is bounded by σ2

AL
2ε2 + 2σ2

ALεEU [|E[Y | U = u,A = 1]− E[Y | U = u,A = 0]|],
and for cross-entropy loss 4, the excess risk is bounded by Lε.

Note that σA and EU [|E[Y | U = u,A = 1] − E[Y | U = u,A = 0]|] are inherent characteristic
of the underlying mechanism and is independent of the counterfactual estimation. This suggests
that if the counterfactuals are not too far away and ϕ∗ is smooth, then fairness and prediction
performance will not be significantly affected. In practice, CGM in Algorithm 1 can be obtained
using counterfactual estimation methods, as discussed in Section 6.

4Here we assume the logits are L-lipschitz continuous in x.
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3.3.2 Given estimated G and ϕ

In the previous section, we discussed how counterfactual estimation error directly impacts the
performance of PCF in terms of CF and predictive performance. Here, we consider the situation
where ϕ also needs to be estimated. We first note that the degradation in fairness remains the same as
previous result

Remark 3.7. The bound of TE given ϕ̂ and Ĝ follows that in Theorem 3.6.

The proof is straightforward since the original proof in Theorem 3.6 does not use any characteristic of
optimality. To achieve good predictive performance, a natural approach is to train ϕ on the observed
data via Empirical Risk Minimization (ERM), which should fit the predictor well given sufficient
samples and a reasonable predictor class. However, ERM can only approximate Bayes optimality
within the support of the training data. Outside this support, its performance can deteriorate signifi-
cantly, as extensively studied in areas such as Domain Adaptation [Farahani et al., 2021] and Domain
Generalization [Zhou et al., 2022a]. Consequently, when integrated with an approximate G, we may
encounter the issue where p(X̂A=1−a|A = a) ̸= p(X|A = 1 − a), inducing a distribution shift
problem (Note that these would be equal given the graph in Figure 2 and Pearl’s rules) [Kulinski and
Inouye, 2023]. To mitigate this, we suggest improving ϕ on the estimated counterfactual distribution.
More formally we define the following objective called Counterfactual Risk Minimization (CRM):

min
ϕ

EX,A,Y [ℓ(ϕ(X,A), Y ) + ℓ(ϕ(G(X,A, 1−A), A), Y )]

This can be achieved either by augmenting the original training dataset or by fine-tuning with
estimated counterfactual samples. The choice between training from scratch or fine-tuning depends
on the scale of the experiment and computational constraints. It is important to note that the Y
corresponding to the estimated counterfactual should remain the same with that of the factual samples.
While the optimal prediction for the counterfactual may differ from that of the original data, under the
constraint of perfect CF, a predictor is required to predict the same outcome to counterfactual pairs.
Hence, the optimal solution will change. This is exactly what causes the excess risk we characterized
in Theorem 3.4. Furthermore, we can prove that, given the ground truth G, CRM yields the same
optimal solution as PCF. Since this result is dependent on the ground truth G, we provide a more
formal statement in Appendix B to ensure consistency.

In summary, this section discusses how to improve the estimation of ϕ under counterfactual estimation
error. We propose using data augmentation or fine-tuning based on practical scenarios. Additionally, in
domains with abundant off-the-shelf pre-trained models [Bommasani et al., 2021], we can potentially
avoid this issue by using these models as a good proxy for ϕ.

4 Related Works

Fairness Notions Fair Machine Learning has accumulated a vast literature that proposes various
notions to measure fairness issues of machine learning models. Representative fairness notions can
be categorized into three classes. Group fairness, such as demographic parity [Pedreshi et al., 2008]
and equalized odds [Hardt et al., 2016], requires certain group-level statistical independence between
model predictions and individuals’ demographic information. Despite its conceptual simplicity,
group fairness is known for ruling out perfect model performance [Hardt et al., 2016] and may allow
for bias against certain individuals [Corbett-Davies et al., 2023]. Individual fairness [Dwork et al.,
2012], on the other hand, asks a model to treat similar individuals similarly. However, determining
the similarity between different individuals is often highly task-specific and open-ended. Recently,
counterfactual fairness (CF, Kusner et al. [2017]) further takes the causal relationship of data attributes
into consideration when measuring fairness. In words, counterfactual fairness proposes that a model
should treat any individual the same as their counterfactual if the individual had been from another
demographic group. As an individual-level notion agnostic to the choice of similarity measure
[Kusner et al., 2017], CF has recently gained traction [Wu et al., 2019, Nilforoshan et al., 2022,
Makhlouf et al., 2022, Rosenblatt and Witter, 2023]. Motivated by these recent advances, in this
work, we focus on the counterfactual fairness.

Methods for Fairness Given an unfair dataset, attempts to achieve fairness fall into three categories.
Pre-processing cleans the data before running machine learning models on it, typically by resampling
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samples or removing undesired attributes [Kamiran and Calders, 2012]. In-processing intervenes the
model-training process by incorporating fairness constraints [Zafar et al., 2017, Donini et al., 2018,
Lohaus et al., 2020] or penalties [Mohler et al., 2018, Scutari et al., 2021, Liu et al., 2023]. Post-
processing adjusts the raw model outputs to close the bias gap by, e.g., assigning each demographic
group a unique decision threshold [Jang et al., 2022]. Post-processing has been favored as an
efficient and practical solution because it does not require retraining the original model [Petersen
et al., 2021, Xian et al., 2023]. To achieve CF, Kusner et al. [2017] applied pre-processing and
discarded all descendants of the sensitive feature. Chen et al. [2024] pre-processed the data via
orthogonalization and marginal distribution mapping. Garg et al. [2019], Stefano et al. [2020],
Kim et al. [2021] in-processed the model training by penalizing CF violations but their solutions
lack formal CF guarantees and often contain unsatisfactory bias after the intervention [Zuo et al.,
2023]. Recently, Zuo et al. [2023] proposed another in-processing based solution that is capable
of achieving perfect CF and better performance via mixing features. Ma et al. [2023] leveraged
mediators estimated by Generative Adversarial Networks and provided a theoretical guarantee of
CF under well-estimated counterfactuals. However, it is unclear whether their methods are optimal.
Wang et al. [2023] leveraged predictor that satisfies equal counterfactual opportunity criterion to
construct a counterfactually fair predictor. While they provide results on optimality, their findings
assume an ideal setting where non-sensitive features are independent of sensitive features.

Inherent Trade-off between Fairness and Predictiveness Machine learning models are known to
suffer from performance drops after fairness interventions [Hardt et al., 2016, Menon and Williamson,
2018, Chen et al., 2018], which is known as the fairness-utility trade-offs. Recently, inherent
trade-offs towards non-causal based fairness such as demographic parity (DP) has been established
separately for regression [Chzhen et al., 2020] and classification tasks [Xian et al., 2023]. The excess
risks are characterized by certain distribution distance (i.e., Wasserstein-2 barycenter for regression,
and total-variation or Wasserstein-1 barycenter for noiseless or noisy classification) between the
conditional distribution of Y given A. A similar trade-off between CF and predictiveness has also
been empirically observed [Zuo et al., 2023]. Nonetheless, their inherent trade-off remains an open
question. In this work we take the first step towards this goal and provide a quantitative analysis in
both complete and incomplete causal knowledge settings as presented in Section 3. We hope our
work sheds light on future works towards more effective CF.

5 Experiments

In this section, we validate our theorems and the effectiveness of our algorithms through experiments
on synthetic and semi-synthetic datasets. On synthetic datasets, we focus on validating our theorems
in settings where our assumptions hold. On semi-synthetic datasets, we aim to assess the effectiveness
of our methods in more practical scenarios, where limited causal knowledge is available and the
invertibility assumption is relaxed.

Metrics We consider two metrics in this paper: Error and Total Effect (TE). The former eval-
uates whether each method can achieve its goal, irrespective of fairness. This is important be-
cause we can achieve perfect Counterfactual Fairness by always outputting fixed prediction given
whatever input, but that is not useful at all. The latter is a common metric to evaluate Counter-
factual Fairness [Kim et al., 2021, Zuo et al., 2023]. Given a test set Dtest, Error is defined as
Error = 1

|Dtest|
∑

x(i)∈Dtest
ℓ(ŷ(x(i)), y(i)) where y(i) is the ground truth target, ŷ(x(i)) is the predic-

tion of x(i), and ℓ depends on the task. TE is defined as TE = 1
|Dtest|

∑
x(i)∈Dtest

|ŷ(x(i))− ŷ(x
(i)
1−a)|

where x1−a is the ground truth counterfactual corresponding to x(i). Since we only consider bi-
nary sensitive attribute, we further define TE0 = 1

|{i:a(i)=0}|
∑

i:a(i)=0 |ŷ(x(i)) − ŷ(x
(i)
1−a)| and

TE1 = 1
|{i:a(i)=1}|

∑
i:a(i)=1 |ŷ(x(i)) − ŷ(x

(i)
1−a)| to evaluate Counterfactual Fairness for different

group respectively.

Methods In general, we consider the following methods: (1) Empirical Risk Minimization
(ERM): Train a classifier on all features without any fairness consideration. Specifically ŷ = ϕ(x, a),
where ϕ represents the predictor. (2) Counterfactual Fairness with U (CFU) [Kusner et al.,
2017]: To achieve Counterfactual Fairness, CFU proposes to use U for prediction. Specifically,
ŷ = ϕ(u). (3) Counterfactual Fairness with fair representation (CFR) [Zuo et al., 2023]: CFR
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proposes to use U and a symmetric version of x, x1−a. Specifically, ŷ = ϕ(x+x1−a

2 , u). (4) Equal
Counterfactual Opportunity (ECOCF)[Wang et al., 2023]: An ECO predictor is adjusted to
become counterfactually fair. Specifically, ŷ = p(a)[p(a)ϕ(x, a) + (1− p(a))ϕ(x, 1− a)] + (1−
p(a))[(1− p(a))ϕ(x1−a, 1− a) + p(a)ϕ(x1−a, a)] (5) PCF5: As introduced in Algorithm 1, PCF
mixes the output of factual and counterfactual prediction. Specifically, ŷ = p(a)ϕ(x, a) + (1 −
p(a))ϕ(x1−a, 1−a). (6) PCF with analytic solution (PCF-Ana): In synthetic experiments, instead
of training via ERM, we can directly acquire bayes optimal ϕ in closed-form. Detailed can be found
in Appendix C.2. (7) PCF with CRM (PCF-CRM): As discussed in Section 3.3, it could be hard to
get the optimal predictor when there is counterfactual estimation error. Here due to the scale of our
experiment, we augment the dataset with estimated counterfactuals rather than finetuning. Specifically,
ϕ is trained via ERM on the dataset Dtrain = {x(i), y(i), a(i)}Ni=1 ∪ {x̂

(i)
1−a, y

(i), 1− a(i)}Ni=1.

5.1 Synthetic Dataset

In this section, we consider two regression synthetic datasets and two classification tasks where all of
our assumptions in Assumption 3.1 are satisfied. The regression tasks are as below

Linear-Reg
A ∼ Bernoulli(pA), U ∼ N (0, 1), ϵY ∼ N (0, 1)

X = wAA+ wUU

Y = wXX + w′
UU + wY ϵY

Cubic-Reg
A ∼ Bernoulli(pA), U ∼ N (0, 1), ϵY ∼ N (0, 1)

X = wAA+ wUU

Y = wXX3 + w′
UU + wY ϵY

The classification tasks take the same form except Y ∼ Bernoulli(σ(wXX + w′
UU + wY ϵY ) and

Y ∼ Bernoulli(σ(wXX3+w′
UU +wY ϵY )) for Linear-Cls and Cubic-Cls respectively. More details

could be found in Appendix C.1. Results are averaged over 5 different runs where the structural
model is kept the same but data is resampled. All results shown in the main paper use KNN based
predictor. Results with other predictors can be found in Appendix D.

Optimality of PCF given true counterfactuals We first test different methods in situations where
all methods have access to ground truth counterfactuals and U as needed. In Figure 3, we observe
that while CFE, CFR and PCF all achieve perfect CF, PCF has lowest predictor error. This validates
Theorem 3.3 regarding the optimality of PCF under the constraint of CF. Furthermore, since here
ERM can get solution close to optimal predictor (this indicates the plugin ϕ used by PCF is also close
to being optimal), we can also observe the inherent fairness-utility trade-off discussed in Theorem 3.4.

(a) Linear-Reg (b) Cubic-Reg (c) Linear-Cls (d) Cubic-Cls

Figure 3: Results on synthetic datasets given ground truth counterfactuals.

Performance under controllable error Here we investigate a more practical scenario where
both counterfactuals and U need to be estimated. To investigate how error and TE changes with
counterfactual estimation error in a more controllable way and investigate , we simulate the estimation
error by adding gaussian noise. Specifically, x̂a′ = xa′ + ϵ and û = u+ ϵ where ϵ ∼ N (β, α). In
Figure 4, we observe that while the fairness and ML performance (especially fairness) of CFE, CFR
and PCF tends to get worse as error gets more significant, PCF remains best for all noise level.

Investigating source of error Here we further investigate what could be source of error in the
previous scenario. As discussed in Section 3.3.2, in practice, two things in Theorem 3.3 break down:

5Essentially PCF with ERM (PCF-ERM). For brevity, we just call it PCF.
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(a) Linear-Reg (b) Cubic-Reg (c) Linear-Cls (d) Cubic-Cls

Figure 4: Results on synthetic datasets under counterfactual estimation error. Different color repre-
sents different α indicating the standard deviation of the error (ϵ ∼ N (0, α)) while shape represents
different algorithms. Results with different β can be found in Appendix D.

(a) Linear-Reg (b) Cubic-Reg (c) Linear-Cls (d) Cubic-Cls

Figure 5: Results on synthetic datasets comparing PCF and PCF-Analytic. Different color represents
different α indicating the standard deviation of the error (ϵ ∼ N (0, α)) while shape represents
different algorithms. Results with different β can be found in Appendix D.

access to Bayes optimal classifier and ground truth counterfactuals. In Figure 5, we observe that
PCF-Analytic tends to be more robust against counterfactual estimation error than PCF. We argue
this is because ϕ used in PCF is not trained well on the estimated counterfactual distribution.

5.2 Semi-synthetic Dataset

In this section, we consider Law School Success dataset [Wightman, 1998] where the sensitive
attribute is gender and the target is first-year grade.. The main goal of this experiment is to validate
the effectiveness of our methods in more practical scenarios where limited causal knowledge is
available and the invertibility assumption is relaxed.

To compute TE, we need access to ground truth counterfactuals. Hence we train a generative
model on real dataset to generate semi-synthetic dataset following the method in Zuo et al. [2023].
We want to emphasize that counterfactuals are hidden from downstream models and used for the
evaluation of TE only. This way, we get access to the ground truth u∗ and can generate ground

Figure 6: Results on Sim-Law with estimated counterfatuals. The predictor is a MLP regressor. We
also test the convex combination of each algorithm and ERM. For example, PCF-CRM with λ means
ŷ = λŷPCF-CRM +(1−λ)ŷERM. This suggests that PCF-CRM can achieve lower Error given the same
TE and lower TE given the same Error.
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truth counterfactuals without any error. In our investigation, exogenous noise, factual data and
counterfactual data are all actually the simulated version of original datasets. However they do follow
a fixed data generating mechanism that is close to the real data. More details could be found in
Appendix C.1. All experiments are repeated 5 times on the same semi-synthetic dataset.

Results In Figure 6, we observe that PCF-CRM achieves better CF and lower Error in comparison to
CFU and CFR. This validates our improvement Section 3.3.2 indeed leads to more practical algorithm.
Results on comparing PCF and PCF-CRM can be found in Appendix D, which further justifies this.
While ERM could achieve lower error, it has worst fairness. This is inevitably determined by the
inherent trade-off discussed in Theorem 3.4. Furthermore, inspired by the trade-off, we test the result
of mixing all predictors with ERM. The curve shows that PCF-CRM remains optimal given fixed CF
and best CF given fixed error. This demonstrates again that PCF-CRM is the best among all methods.

6 Conclusion and Discussion

Conclusion In this work, we conducted a formal investigation of the trade-off between Counterfac-
tual Fairness (CF) and predictive performance. We proved that combining factual and counterfactual
predictions with a potentially unfair, optimal predictor achieves optimal CF. Additionally, we de-
rived the excess risk between predictors with and without CF constraints, quantifying the minimum
performance degradation necessary to ensure perfect CF. To address incomplete causal knowledge,
we analyzed the effects of imperfect counterfactual estimations on CF and predictive performance.
We proposed a plugin approach that leverages pre-trained models for optimal fair prediction and
developed a practical method to mitigate estimation errors.

Despite the theoretical contributions of our method, two limitations may impact practical applicability:
(1) access to ground-truth counterfactuals and (2) access to Bayes optimal predictors. Below, we
delve into these limitations, clarifying how our methods can be practically applied and how they can
benefit from contributions from the broader community. We hope this discussion will also inspire
future research directions.

Access to ground truth counterfactuals While how to better estimate counterfactuals is out of the
scope of this work, it is indeed an unavoidable challenge faced by the community of Counterfactual
Fairness. It not only limits the deployment of CF algorithms, but also leads to difficulty in validating
proposed CF methods. While counterfactual data can be obtained in specific scenarios, such as
through randomized controlled trials, it is challenging to acquire in most applications. There are some
works in the field of causality that aims at estimating counterfactuals. For instance, Nasr-Esfahany
et al. [2023] proves counterfactual identifiability under certain causal graphs. However, in more
general scenarios, such causal knowledge may be lacking and identifying the causal graph itself
can be challenging. These tasks have been well studied in the field of causal discovery [Chickering,
2002, Colombo et al., 2014] and causal representation learning [Schölkopf et al., 2021]. Solutions to
this problem typically rely on strong assumptions, such as the linearity of Structural Causal Models
(SCMs) or additive noise [Shimizu et al., 2006, Hoyer et al., 2008, Peters et al., 2014]. More recently,
Zhou et al. [2024] propose a method of estimating counterfactuals without the need to identify the
causal model or graph. We believe this approach to direct counterfactual estimation could have the
potential to be a good plugin counnterfactual estimator in our algorithm. Additionally, generative
models could also be used to generate samples as if they had come from a different sensitive attribute
[Choi et al., 2018, Zhou et al., 2022b, 2023, Rombach et al., 2022]. These methods often offer the
advantage of higher sample quality, especially in modalities such as images or natural language.
However, they must be applied with considerable care, as they generally lack integration with the
causal model and may introduce significant estimation errors.

Access to Bayes optimal predictors Another crucial plugin estimator of our method is the optimal
predictor. In classical ML settings, achieving a good estimator for the counterfactual distribution often
requires retraining or fine-tuning. However, in this era, with the abundance of pre-trained models,
such as foundation models [Bommasani et al., 2021], it could be much easier to get a predictor that
is close to being optimal. Rather, given that these models are trained on noisy internet data and
have extensive reach and impact, it is of great importance to find effective ways to debias them. We
propose that our plugin algorithm could be a suitable solution due to its post-processing nature, which
avoids incurring significant computational costs.
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A Proofs

A.1 Proof of Lemma 3.2

Proof of Lemma 3.2.

TE(ϕ) = 0⇔ E[|ϕ(X,A)− ϕ(X1−A, 1−A)|] = 0⇔ ϕ(x, a)
a.s.
= ϕ(x1−a, 1− a), ∀(x, a) ,

(1)

where the first equality is by definition and the second equality is because absolute value is always
non-negative for any (x, a). Thus, the predictions must be almost surely equal for all (x, a). Similarly,
if they are all equal on the non-zero metric set, then the expectation must be 0.

A.2 Proof of Theorem 3.3

Before proving the main theorem, we first provide one well-known lemma that reminds the reader of
the well-known result of the optimal predictor, which is denoted by ϕ∗ in the theorem statement.
Lemma A.1 (Optimal Predictor is Conditional Mean). The conditional mean E[Y |X = x] is the
optimal predictor without fairness constraints for classification with cross-entropy loss and for
regression with MSE loss.

Proof. First, let’s establish that the optimal predictor without constraints is in fact E[Y |X = x]. For
squared L2 loss, we have that derivative:

E[ℓ(ϕ(X), Y )]

= EX [EY |X [(Y − ϕ(X))2]]

= EX [EY |X [Y 2]− 2EY |X [Y ϕ(X)] + EY |X [ϕ(X)2]]

= EX [EY |X [Y 2]− 2ϕ(X)EY |X [Y ] + ϕ(X)2EY |X [1]]

= EX [EY [Y
2]− 2ϕ(X)E[Y |X] + ϕ(X)2]

Taking the derivative of the inside expectation w.r.t. ϕ(X) and setting to 0 yields ϕ∗(X) = E[Y |X].

Now let’s look at cross-entropy loss for classification:

E[ℓ(ϕ(X), Y )]

= EX [EY |X [−Y log(ϕ(X))− (1− Y ) log(1− ϕ(X))]]

= EX [− log(ϕ(X))E[Y |X]− log(1− ϕ(X))E[(1− Y )|X]]]

Again, if you take the derivative w.r.t. ϕ(X) and set to 0, we see that ϕ∗(X) = E[Y |X].

Now we seek to prove Theorem 3.3.

Proof. First, we decompose the factual error across the sensitive attribute A given the exogenous
noise U .

EX,A,Y [ℓ(ϕ(X,A), Y )]

= EU,A,Y [ℓ(ϕ(F
∗
X(U,A), A), Y )]

= EU [EA[EY |U,A[ℓ(ϕ(F
∗
X(U,A), A), Y )]]]

= EU [p(A = a)EY |U,A=a[ℓ(ϕ(F
∗
X(U, a), a), Y )] + p(A = 1− a)EY |U,A=1−a[ℓ(ϕ(F

∗
X(U, 1− a), 1− a), Y )]] .

Consider U = u, inside the expectation we have

p(A = a)EY |U=u,A=a[ℓ(ϕ(F
∗
X(u, a), a), Y )] + p(A = 1− a)EY |U=u,A=1−a[ℓ(ϕ(F

∗
X(u, 1− a), 1− a), Y )]

= p(A = a)EY |X=x,A=a[ℓ(ϕ(x, a), Y )] + p(A = 1− a)EY |X=x1−a,A=1−a[ℓ(ϕ(x1−a, 1− a), Y )] ,

where w.l.o.g., x is viewed as the factual and xa′ is viewed as the counterfactual. Because of
invertibility, these two terms are unique for every (u, a) or correspondingly (x, a) combination and
thus the problem decomposes across U . Thus, the factual loss can be viewed as a combination of the
factual loss from one specific a plus the counterfactual loss for a′ for each point x.
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We have the following subproblems indexed by u: The factual loss can be viewed as a combination of
the factual loss from one specific a plus the counterfactual loss for 1− a for each point x. Notice that
the constraint is ϕ(x, a) a.s.

= ϕ(x1−a, 1− a) from Lemma 3.2. We can directly push the constraint
into the optimization problem by optimizing over ϕ0 ≜ ϕ(x, a)

a.s.
= ϕ(x1−a, 1− a):

argmin
ϕ

p(A = a)EY |X=x,A=a[ℓ(ϕ0, Y )] + p(A = 1− a)EY |X=x1−a,A=1−a[ℓ(ϕ0, Y )] (2)

Taking ℓ as squared L2 loss: we have

argmin
ϕ

p(A = a)EY |X=x,A=a[(Y − ϕ0)
2] + p(A = 1− a)EY |X=x1−a,A=1−a[(Y − ϕ0)

2]

= argmin
ϕ

p(A = a){EY |X=x,A=a[Y
2]− 2ϕ0EY |X=x,A=a[Y ] + ϕ2

0}

+ p(A = 1− a){EY |X=x1−a,A=1−a[Y
2]− 2ϕ0EY |X=x1−a,A=1−a[Y ] + ϕ2

0} .
Similarly, if we take ℓ as (binary) cross-entropy loss: we have

argmin
ϕ

p(A = a)EY |X=x,A=a[−(Y log(ϕ) + (1− Y ) log(1− ϕ))]

+ p(A = 1− a)EY |X=x1−a,A=1−a[−(Y log(ϕ) + (1− Y ) log(1− ϕ))]

It is simple to see that both loss functions are convex, thus could obtain a unique solution by taking
the derivative. Thus, for each x, xa′ induced by U = u, we could get the optimal ϕ0:

ϕ0 =
∑

a′∈{0,1}

p(A = a′)ϕ∗(xa′ , a′) ,

where ϕ∗ is the optimal predictor from the lemma above. This result holds for every u and thus gives
the final result.

A.3 Proof of Theorem 3.4

Proof. Let ϕ∗(x, a) and ϕ∗
CF(x, a) be the Bayes optimal predictor under no constraint and CF

constraint respectively. We have shown that ϕ∗(x, a) = EY |X=x,A=a[Y ] and ϕ∗
CF(x, a) = p(A =

a)ϕ∗(x, a) + p(A = 1− a)ϕ∗(x1−a, 1− a).

Noting that ϕ∗ is Bayes optimal, its risk satisfiesR∗ ≤ R∗
CF whereR∗

CF denotes the risk of ϕ∗
CF(x, a).

By definition, the excess risk of ϕ∗
CF(x, a) is

R∗
CF −R∗ =EX,A

[
EY |X=x,A=a[ℓ(ϕ

∗
CF(x, a), Y )− ℓ(ϕ∗(x, a), Y )]

]
.

For regression task and real-valued Y , we take ℓ as squared L2 loss and have

R∗
CF −R∗

=EX,A

[
EY |X=x,A=a[(ϕ

∗
CF(x, a)− Y )2 − (ϕ∗(x, a)− Y )2]

]
=EX,A

[
EY |X=x,A=a[(ϕ

∗
CF(x, a)− ϕ∗(x, a))(ϕ∗

CF(x, a) + ϕ∗(x, a)− 2Y )]
]

=EX,A

[
(ϕ∗

CF(x, a)− ϕ∗(x, a))EY |X=x,A=a[(ϕ
∗
CF(x, a) + ϕ∗(x, a)− 2Y )]

]
=EX,A

[
(ϕ∗

CF(x, a)− ϕ∗(x, a))2
]

=EX,A

[
((p(A = a)ϕ∗(x, a) + p(A = 1− a)ϕ∗(x1−a, 1− a)− ϕ∗(x, a))2

]
=EX,A

[
(1− p(A = a))2(ϕ∗(x, a)− ϕ∗(x1−a, 1− a))2

]
=EX,A

[
p2(A = 1− a)(ϕ∗(x, a)− ϕ∗(x1−a, 1− a))2

]
=EA

[
p2(A = 1− a)EX|A=a[(ϕ

∗(x, a)− ϕ∗(x1−a, 1− a))2]
]
.

Let’s define

∆a ≜ EX|A=a

[(
EY |X=x,A=a[Y ]− EY |X=x1−a,A=1−a[Y ]

)2]
(a)
= EU |A=a

[(
EY |U=u,A=a[Y ]− EY |U=u,A=1−a[Y ]

)2]
(b)
= EU

[(
EY |U=u,A=a[Y ]− EY |U=u,A=1−a[Y ]

)2]
= ∆1−a,
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where (a) holds from the invertibility between X and U given A, and (b) holds from the fact that
U and A are independent. For simplicity, we denote ∆ = ∆a = ∆1−a. Notably, ∆ measures the
expected change of Y due to the change of A over all possible U , and is in fact a measure of their
dependency. Furthermore, we have

EA

[
p2(A = 1− a)EX|A=a[(ϕ

∗(x, a)− ϕ∗(x1−a, 1− a))2]
]

=EA

[
p2(A = 1− a)∆a

]
=
∑
a

p(A = a)p2(A = 1− a)∆a

=p(A = 0)p2(A = 1)∆0 + p(A = 1)p2(A = 0)∆1

=p(A = 0)p(A = 1)∆

=σ2
A∆.

Next, for classification task and binary Y using cross-entropy loss, then

R∗
CF −R∗

=EX,A

[
EY |X=x,A=a [−Y log ϕ∗

CF(x, a)− (1− Y ) log(1− ϕ∗
CF(x, a))] +

EY |X=x,A=a [Y log ϕ∗(x, a) + (1− Y ) log(1− ϕ∗(x, a))]
]

=EX,A [−ϕ∗ log ϕ∗
CF − (1− ϕ∗) log(1− ϕ∗

CF) + ϕ∗ log ϕ∗ + (1− ϕ∗) log(1− ϕ∗)]

=EX,A

[
ϕ∗ log

ϕ∗

ϕ∗
CF

+ (1− ϕ∗) log
1− ϕ∗

1− ϕ∗
CF

]
(a)
=EX,A [DKL[p(Y | X,A)∥EA[p(Y | XA, A)]]

(b)
=EU,A [DKL[p(Y | U,A)∥EA[p(Y | U,A)]]
=EU,A [DKL[p(Y | U,A)∥p(Y | U)]

=EUEA [DKL[p(Y | U,A)∥p(Y | U)]

=I(A;Y | U),

where (a) holds from noting that ϕ∗(x, a) = p(Y = 1 | X = x,A = a) and ϕ∗
CF = EA[p(Y = 1 |

X = xA, A)], and (b) again holds from the invertibility between X and U given A.

A.4 Proof of Proposition 3.5

Proof.

E[Ŷ |X = x,A = a] = µ̂(x, a)

= p(A = a)ϕ(xa, a) + p(A = 1− a)ϕ(G(x, a, 1− a), 1− a)

= p(A = a)ϕ(G(x1−a, 1− a, a), a) + p(A = 1− a)ϕ(x1−a, 1− a)

= µ̂(x1−a, 1− a)

= E[Ŷ |X = x1−a, A = 1− a] ,

where the middle qualities are by the properties of the invertible and ground truth CGM. Because the
factual output for the algorithm is the same as the counterfactual output, then the TE must be 0 by
Lemma 3.2.

A.5 Proof of Theorem 3.6

Proof. We first bound TE.
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Let xa→1−a ≜ G∗(xa, a, 1− a), we have

TE =EX,A [|ϕPCF(xa, a)− ϕPCF(xa→1−a, 1− a)|]
=EX,A [|p(A = a)ϕ(xa, a) + p(A = 1− a)ϕ(x̂a→1−a, 1− a)

−p(A = a)ϕ(x̂1−a→a, a)− p(A = 1− a)ϕ(xa→1−a, 1− a)|]

=EX,A

[
|p(A = a)ϕ(xa, a) + p(A = 1− a)ϕ(Ĝ(xa, a, 1− a), 1− a)

−p(A = a)ϕ(Ĝ(G∗(xa, a, 1− a), 1− a, a)− p(A = 1− a)ϕ(G∗(xa, a, 1− a), 1− a)|
]

(a)

≤EX,A

[
p(A = a)|ϕ(xa, a)− ϕ(Ĝ(G∗(xa, a, 1− a), 1− a, a), a)|

+p(A = 1− a)|ϕ(Ĝ(xa, a, 1− a), 1− a)− ϕ(G∗(xa, a, 1− a), 1− a)|
]

=EX,A

[
p(A = a)|ϕ(G∗(G∗(xa, a, 1− a), 1− a, a), a)− ϕ(Ĝ(G∗(xa, a, 1− a), 1− a, a), a)|

+p(A = 1− a)|ϕ(Ĝ(xa, a, 1− a), 1− a)− ϕ(G∗(xa, a, 1− a), 1− a)|
]

(b)

≤EX,A

[
p(A = a)L|G∗(G∗(xa, a, 1− a), 1− a, a)− Ĝ(G∗(xa, a, 1− a), 1− a, a)|

+p(A = 1− a)L|Ĝ(xa, a, 1− a)−G∗(xa, a, 1− a)|
]

(c)

≤EX,A [p(A = a)Lε+ p(A = 1− a)Lε]

=Lε.

Here (a) holds by the convexity of absolute value, (b) is from the L-lipschitz property of ϕ, and (c)
is by the bound of counterfactual estimation error.

Now we prove the bound for the error. Taking ℓ as squared L2 loss, we have

R = EX,AEY |X=x,A=a

[
(ϕPCF(x, a)− y)2

]
= EX,AEY |X=x,A=a

[
(ϕPCF(x, a)− ϕ∗

CF(x, a) + ϕ∗
CF(x, a)− y)2

]
,

Taking the inner expectation and omit subscript for brevity, we have

E
[
(ϕPCF(x, a)− ϕ∗

CF(x, a) + ϕ∗
CF(x, a)− y)2

]
=E

[
(ϕPCF(x, a)− ϕ∗

CF(x, a))
2
]
+ 2E [(ϕPCF(x, a)− ϕ∗

CF(x, a))(ϕ
∗
CF(x, a)− y)] + C

=p(A = 1− a)2(ϕ∗(x̂1−a, 1− a)− ϕ∗(x1−a, 1− a))2

+ 2p(A = 1− a)(ϕ∗(x̂1−a, 1− a)− ϕ∗(x1−a, 1− a))(ϕ∗
CF(x, a)− ϕ∗(x, a)) + C

≤p(A = 1− a)2(ϕ∗(x̂1−a, 1− a)− ϕ∗(x1−a, 1− a))2

+ 2p(A = 1− a)|ϕ∗(x̂1−a, 1− a)− ϕ∗(x1−a, 1− a)(ϕ∗
CF(x, a)− ϕ∗(x, a)|+ C

(a)

≤p(A = 1− a)2L2ε2 + 2p(A = 1− a)Lε|ϕ∗
CF(x, a)− ϕ∗(x, a)|+ C,

where C denotes the remaining term that only depends on ϕ∗
CF. Here (a) holds from the fact that the

counterfactual estimation error is bounded by ε and the assumption that ϕ∗ is L-lipschitz.

Next, take the outer expectation,

R ≤ EA[p(A = 1− a)2]L2ε2 + 2LεEX,A[p(A = 1− a)|ϕ∗
CF(x, a)− ϕ∗(x, a)|] +R∗

CF

= σ2
AL

2ε2 + 2LεEX,A[p(A = 1− a)2|ϕ∗(x1−a, 1− a)− ϕ∗(x, a)|] +R∗
CF.
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Note that taking expectation of C with respect to the joint distribution of X,A is in fact the optimal
riskR∗

CF. Reorganization gives us
R−R∗

CF

≤σ2
AL

2ε2 + 2LεEX,A[p(A = 1− a)2|ϕ∗(x1−a, 1− a)− ϕ∗(x, a)|]
=σ2

AL
2ε2 + 2LεEX,A[p(A = 1− a)2|E[Y | X = x1−a, A = 1− a]− E[Y | X = x,A = a]|]

=σ2
AL

2ε2 + 2LεEU,A[p(A = 1− a)2|E[Y | U = u,A = 1− a]− E[Y | U = u,A = a]|]
=σ2

AL
2ε2 + 2LεEU [p(A = 1)p(A = 0)2|E[Y | U = u,A = 0]− E[Y | U = u,A = 1]|

+ p(A = 0)p(A = 1)2|E[Y | U = u,A = 1]− E[Y | U = u,A = 0]|]
=σ2

AL
2ε2 + 2σ2

ALεEU [|E[Y | U = u,A = 1]− E[Y | U = u,A = 0]|].

When ℓ is cross-entropy loss, the excess risk is
R−R∗

CF

=EX,AEY |X=x,A=a

[
−Y log

ϕPCF

ϕ∗
CF
− (1− Y ) log

1− ϕPCF

1− ϕ∗
CF

]
Here we assume the logit (i.e., the inverse function of sigmoid) is L-lipschitz continuous in x, i.e.,

|f∗(x, a)− f∗(x̂, a)| ≤ L∥x− x̂∥,∀x, x̂, a

where ϕ∗ ≜ σ ◦ f∗ and f∗(x, a) = log ϕ∗(x,a)
1−ϕ∗(x,a) . Now we check the excess risk. The first term can

be upper bounded by

Y log
ϕ∗

CF

ϕPCF
= Y log

p(A = a)ϕ∗(x, a) + p(A = 1− a)ϕ∗(x1−a, 1− a)

p(A = a)ϕ∗(x, a) + p(A = 1− a)ϕ∗(x̂1−a, 1− a)

≤ Y (ϕ∗
CF)

−1

(
p(A = a)ϕ∗(x, a) log

p(A = a)ϕ∗(x, a)

p(A = a)ϕ∗(x, a)

+ p(A = 1− a)ϕ∗(x1−a, 1− a) log
p(A = 1− a)ϕ∗(x1−a, 1− a)

p(A = 1− a)ϕ∗(x̂1−a, 1− a)

)
= Y

p(A = 1− a)ϕ∗(x1−a, 1− a)

ϕ∗
CF

log
ϕ∗(x1−a, 1− a)

ϕ∗(x̂1−a, 1− a)

= Y C1 log
ϕ∗(x1−a, 1− a)

ϕ∗(x̂1−a, 1− a)
,

where the inequality holds by applying log sum inequality. For the inequality, it is derived from

ϕ∗
CF log

ϕ∗
CF

ϕPCF
≤p(A = a)ϕ∗(x, a) log

p(A = a)ϕ∗(x, a)

p(A = a)ϕ∗(x, a)

+ p(A = 1− a)ϕ∗(x1−a, 1− a) log
p(A = 1− a)ϕ∗(x1−a, 1− a)

p(A = 1− a)ϕ∗(x̂1−a, 1− a)

And C1 is defined as below

C1 =
p(A = 1− a)ϕ∗(x1−a, 1− a)

P (A = a)ϕ∗(x, a) + P (A = 1− a)ϕ∗(x1−a, 1− a)

Similarly,

(1− Y ) log
1− ϕ∗

CF

1− ϕPCF
= (1− Y ) log

p(A = a)− p(A = a)ϕ∗(x, a) + p(A = 1− a)− p(A = 1− a)ϕ∗(x1−a, 1− a)

p(A = a)− p(A = a)ϕ∗(x, a) + p(A = 1− a)− p(A = 1− a)ϕ∗(x̂1−a, 1− a)

≤ (1− Y )
p(A = 1− a)(1− ϕ∗(x1−a, 1− a))

1− ϕ∗
CF

log
1− ϕ∗(x1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)

= (1− Y )C2 log
1− ϕ∗(x1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)
.
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where

C2 =
p(A = 1− a)(1− ϕ∗(x1−a, 1− a))

1− ϕ∗
CF

=
p(A = 1− a)(1− ϕ∗(x1−a, 1− a))

1− P (A = a)ϕ∗(x, a)− P (A = 1− a)ϕ∗(x1−a, 1− a)

=
p(A = 1− a)(1− ϕ∗(x1−a, 1− a))

p(A = a)− P (A = a)ϕ∗(x, a) + p(A = 1− a)(1− ϕ∗(x1−a, 1− a))

Put together

Y log
ϕ∗

CF

ϕPCF
+ (1− Y ) log

1− ϕ∗
CF

1− ϕPCF

≤Y C1 log
ϕ∗(x1−a, 1− a)

ϕ∗(x̂1−a, 1− a)
+ (1− Y )C2 log

1− ϕ∗(x1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)

≤
∣∣∣∣Y C1 log

ϕ∗(x1−a, 1− a)

ϕ∗(x̂1−a, 1− a)
+ (1− Y )C2 log

1− ϕ∗(x1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)

∣∣∣∣
(a)

≤
∣∣∣∣Y C1 log

ϕ∗(x1−a, 1− a)

ϕ∗(x̂1−a, 1− a)
− (1− Y )C2 log

1− ϕ∗(x1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)

∣∣∣∣
(b)

≤ max {Y C1, (1− Y )C2}
∣∣∣∣log ϕ∗(x1−a, 1− a)

ϕ∗(x̂1−a, 1− a)
− log

1− ϕ∗(x1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)

∣∣∣∣
≤
∣∣∣∣log ϕ∗(x1−a, 1− a)

ϕ∗(x̂1−a, 1− a)
− log

1− ϕ∗(x1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)

∣∣∣∣
=

∣∣∣∣log ϕ∗(x1−a, 1− a)

1− ϕ∗(x1−a, 1− a)
− log

ϕ∗(x̂1−a, 1− a)

1− ϕ∗(x̂1−a, 1− a)

∣∣∣∣ ≤ L∥x1−a − x̂1−a∥.

Step (a) holds from the observation that the two log terms must have different signs: unless
ϕ∗(x1−a, 1− a) = ϕ∗(x̂1−a, 1− a) = 0.5, otherwise it is impossible to have both

ϕ∗(x1−a, 1− a) ≥ ϕ∗(x̂1−a, 1− a)

1− ϕ∗(x1−a, 1− a) ≥ 1− ϕ∗(x̂1−a, 1− a),

hold simultaneously. Step (b) holds from the fact that the two terms now have the same sign so we
can safely upper bound them, and this maximum is upper bounded by 1. Finally, the excess risk

EX,AEY |X=x,A=a

[
Y log

ϕ∗
cf

ϕpcf
+ (1− Y ) log

1− ϕ∗
cf

1− ϕpcf

]
≤ EX,AEY |X=x,A=a [L∥x1−a − x̂1−a∥] ≤ Lε,

so long as ∥x1−a − x̂1−a∥ ≤ ε. This completes the proof.

B Counterfactual Risk Minimization

Theorem B.1. Given that G is the ground truth counterfactual generating mechanism, CRM and
PCF will have the same optimal solution under the constraint of perfect Counterfactual Fairness, i.e.,

argmin
ϕ:TE(ϕ)=0

EX,A,Y [ℓ(ϕ(X,A), Y )] = argmin
ϕ:TE(ϕ)=0

EX,A,Y [ℓ(ϕ(X,A), Y )+ℓ(ϕ(G(X,A, 1−A), A), Y )]
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Proof.
EX,A,Y [ℓ(ϕ(X,A), Y ) + ℓ(ϕ(G(X,A, 1−A), 1−A), Y )]

=EU,A,Y [ℓ(ϕ(F
∗
X(U,A), A), Y ) + ℓ(ϕ(G(F ∗

X(U,A), A, 1−A), 1−A), Y )]

=EU,A,Y [ℓ(ϕ(F
∗
X(U,A), A), Y ) + ℓ(ϕ(F ∗

X(U, 1−A), 1−A), Y )]

=EU [p(A = a)EY |U=u,A=a[ℓ(ϕ(F
∗
X(u, a), a), Y )] + p(A = 1− a)EY |U=u,A=1−a[ℓ(ϕ(F

∗
X(u, 1− a), 1− a), Y )]

+ p(A = a)EY |U=u,A=a[ℓ(ϕ(F
∗
X(u, 1− a), 1− a), Y )] + p(A = 1− a)EY |U=u,A=1−a[ℓ(ϕ(F

∗
X(u, a), a), Y )]]

=EX [p(A = a)EY |X=x,A=a[ℓ(ϕ(x, a), Y )] + p(A = 1− a)EY |X=x1−a,A=1−a[ℓ(ϕ(x1−a, 1− a), Y )]

+ p(A = a)EY |X=x,A=a[ℓ(ϕ(x1−a, 1− a), Y )] + p(A = 1− a)EY |X=x1−a,A=1−a[ℓ(ϕ(x, a), Y )]]

Enforcing the constraint of CF, we define ϕ0 ≜ ϕ(x, a) = ϕ(x1−a, 1 − a), then the optimization
problem of the inner expectation becomes

argmin
ϕ0

p(A = a)EY |X=x,A=a[ℓ(ϕ0, Y )] + p(A = 1− a)EY |X=x1−a,A=1−a[ℓ(ϕ0, Y )]

+ p(A = a)EY |X=x,A=a[ℓ(ϕ0, Y )] + p(A = 1− a)EY |X=x1−a,A=1−a[ℓ(ϕ0, Y )]

= argmin
ϕ0

2p(A = a)EY |X=x,A=a[ℓ(ϕ0, Y )] + 2p(A = 1− a)EY |X=x1−a,A=1−a[ℓ(ϕ0, Y )]

where the objective is just a scaled version of that in the proof of Theorem 3.3. Hence, we get the
same minimizer.

C Experiment Details

We included the codes to reproduce our results. All GPU related experiments are run on RTX A5000.

C.1 Dataset

Synthetic Dataset In this section, we consider the two regression synthetic datasets and two
classification tasks where all of our assumptions in Assumption 3.1 are satisfied.

Linear-Reg
A ∼ Bernoulli(pA), U ∼ N (0, 1), ϵY ∼ N (0, 1)

X = wAA+ wUU

Y = wXX + w′
UU + wY ϵY

Cubic-Reg
A ∼ Bernoulli(pA), U ∼ N (0, 1), ϵY ∼ N (0, 1)

X = wAA+ wUU

Y = wXX3 + w′
UU + wY ϵY

where in our experiments the parameters are chosen as wA = 1, wX = 1, wY = 1, wU = 1, w′
U = 1.

We also consider the following two classification tasks
Linear-Cls

A ∼ Bernoulli(pA), U ∼ N (0, 1), ϵY ∼ N (0, 1)

X = wAA+ wUU

Y ∼ Bernoulli(σ(wXX + w′
UU + wY ϵY ))

Cubic-Cls
A ∼ Bernoulli(pA), U ∼ N (0, 1), ϵY ∼ N (0, 1)

X = wAA+ wUU

Y ∼ Bernoulli(σ(wXX3 + w′
UU + wY ϵY ))

where in our experiments the parameters are chosen as wA = 2, wX = 1, wY = 1, wU = 1, w′
U = 1.

Semi-synthetic Dataset We consider Law School Success [Wightman, 1998]. The sensitive
attribute is gender and the target is first-year grade. Other features contain race, LSAT and GPA.
However, since we need to evaluate TE of each method which requires access to ground truth, we
use the simulated version of those datasets. Following a similar setup in [Zuo et al., 2023], we train
a generative model to get semi-synthetic datasets. Specifically, we train a VAE with the following
structure u ∼ Enc(x, a), x ∼ Dec1(u, a), y ∼ Dec2(u, x). The training objective includes a normal
VAE objective to reconstruct x via Enc and Dec1, and a supervised objective to generate y via Dec2.
After training, we first sample a prior u ∼ N (0, I) and a ∼ Bernoulli(p) (where p is acquired
based on empirical frequency in real data), then we get the semi-synthetic x, y using Dec1 and Dec2.
We want to emphasize that counterfactuals, regardless of train or test set, are hidden from downstream
models and used for evaluation only. This way, we get access to the ground truth u∗ and can generate
ground truth counterfactuals without any error. In our investigation, exogenous noise, factual data
and counterfactual data are all actually the simulated version of original datasets. However they do
follow a fixed data generating mechanism that is close to the real data.
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C.2 Analytic Solution on Synthetic Datasets

We know the analytic solution of Bayes optimal predictor in our synthetic data experiments. More
specifically, for Linear-Reg, we have

ϕ∗(x, a) = E[Y |X = x,A = a] = wXx+
w′

U

wU
(x− wAa)

For Cubic-Reg, we have

ϕ∗(x, a) = E[Y |X = x,A = a] = wXx3 +
w′

U

wU
(x− wAa)

For Linear-Cls, we have

ϕ∗(x, a) = E[Y |X = x,A = a] = σ(wXx+
w′

U

wU
(x− wAa))

For Cubic-Cls, we have

ϕ∗(x, a) = E[Y |X = x,A = a] = σ(wXx3 +
w′

U

wU
(x− wAa))

C.3 Prediction Models

In our synthetic experiments, we mainly use KNN based predictors. We use the default parameters in
scikit-learn. All MLP methods uses a structure with hidden layer (20, 20) and Tanh activation.

In semi-synthetic experiments, we use MLP methods uses a structure with hidden layer (5, 5) and
Tanh activation as this is closer to the ground truth SCM.

D Additional Results

D.1 Additional results on synthetic datasets

In Figure 7, we test how how all algorithms perform when using ground truth counterfactuals and U
on additional type of predictors. We observe that PCF achieves lower error than CFU and CFR, which
is similar to what we observe in Figure 3. This further validates our theory regarding optimality of
PCF.

In Figure 8, following the investigation in Figure 4, we test with adding gaussian noise with different
mean. We observe that when it is a fixed bias, CFU and CFR achieves better fairness than PCF.
Though PCF still achieves best predictive performance. Furthermore, as we increase variance of the
noise, PCF outperform these two methods in terms of both fairness and ML performance. In Figure 9,
similar to Figure 5, we observe PCF-Analytic significantly improves over PCF. Notably, it is not
affected by bias as PCF.

D.2 Additional results on semi-synthetic datasets

In Figure 10, we included the expanded version of Figure 6 with TE0 and TE1. We observe that they
show a very similar trend. In Figure 11, we directly compare PCF (with ERM) and PCF-CRM. The
results validate the necessity of CRM as a plugin estimator ϕ in the case of limited causal knowledge.

D.3 Additional experiments

To evaluate the performance of our method across a broader range of data generating mechanisms,
counterfactual estimation models, and datasets, we conducted experiments using the Disentangled
Causal Effect Variational Autoencoder (DCEVAE) on the Adult dataset [Asuncion et al., 2007].
Similarly, we trained one DCEVAE to simulate the Sim-Adult dataset and another DCEVAE to
estimate counterfactuals. Here we followed the data preprocessing, model setup, and hyperparameter
choices specified in Zuo et al. [2023]. A key difference between the setup used here and our setup
on the Law School dataset is that, in this case, the encoder of the ground truth DCEVAE takes y
as an input. This modification introduces an inconsistency between the ground truth CGM and the
estimated CGM. In Figure 12, we observe a trend similar to that in Figure 6, which indicates the
effectiveness of PCF-CRM.
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(a) Linear-Reg (b) Cubic-Reg (c) Linear-Cls (d) Cubic-Cls

Figure 7: Results on synthetic datasets given ground truth counterfactuals with MLP predictors.

(a) Linear-Reg (b) Cubic-Reg (c) Linear-Cls (d) Cubic-Cls

Figure 8: Results on synthetic datasets under counterfactual estimation error with KNN predictors.
Different color represents different α indicating the standard deviation of the error (ϵ ∼ N (0.001, α))
while shape represents different algorithms.

(a) Linear-Reg (b) Cubic-Reg (c) Linear-Cls (d) Cubic-Cls

Figure 9: Results on synthetic datasets comparing PCF and PCF-Analytic with KNN predictors.
Different color represents different α indicating the standard deviation of the error (ϵ ∼ N (0.001, α))
while shape represents different algorithms.
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(a) TE

(b) TE0

(c) TE1

Figure 10: Results on Sim-Law with estimated counterfatuals. The predictor is a MLP regressor. We
also test the convex combination of each algorithm and ERM. For example, PCFAug with λ means
ŷ = λŷPCFAug + (1− λ)ŷERM. This suggests that PCFAug can achieve lower Error given the same
TE and lower TE given the same Error.

Figure 11: Comparison between PCF and PCF-CRM on Sim-Law with estimated counterfatuals. The
predictor is a MLP regressor.
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Figure 12: Results on Sim-Adult with estimated counterfatuals. The predictor is a MLP classifier.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction reflect the contributions and scope of the
work presented in this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: It is discussed in both Section 3 and Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Section 2 and Section 3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: It would be too messy to include error bars in the current plot.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge we do not violate any portion of the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper aims to enhance Counterfactual Fairness in practical scenarios, but
it’s important to note that our method’s validation is currently limited to semi-simulated
datasets with known counterfactuals. Therefore, further auditing and verification are essential
before applying this method in real-world fairness scenarios.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe our work has a risk of misuse

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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