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ABSTRACT

Training machine learning models with differential privacy (DP) is commonly
done using first-order methods such as DP-SGD. In the non-private setting,
second-order methods try to mitigate the slow convergence of first-order meth-
ods. The DP methods that use second-order information still provide faster con-
vergence, however the existing methods cannot be easily turned into federated
learning (FL) algorithms without an excessive communication cost required by
the exchange of the Hessian or feature covariance information between the nodes
and the server. In this paper we propose DP-FedNew, a DP method for FL that uses
second-order information and results in per-iteration communication cost similar
to first-order methods such as DP Federated Averaging.

1 INTRODUCTION

The goal of this work is communication efficient DP federated learning applicable to realistic set-
tings. To this end, we focus on methods that use existing secure summation protocols for the imple-
mentation of the DP model training methods. In the context of FL (Kairouz et al., 2021b), combining
secure aggregation with DP (Ullah et al., 2023; Hartmann & Kairouz, 2023; Kairouz et al., 2021a)
reduces the trustworthiness assumptions on a central server. Specifically, when the DP noise in the
model updates is additive and the model updates are sums of user-wise updates, DP perturbations
can be offloaded to clients to obtain the global model under cryptographic guarantees (Truex et al.,
2019) in addition to DP’s usual statistical privacy guarantees.

With the performance gap between private and non-private training shrinking rapidly, communi-
cation costs in FL can easily become a bottleneck in adoption of these protocols. Several works
including (Ullah et al., 2023; Chen et al., 2023b; 2022b; 2023a; 2022a) employ various compres-
sion and sketching tools to design communication efficient DP mechanisms for distributed mean
estimation compatible with secure aggregation.

In this work, we take an optimization perspective and rely on existing DP secure aggregation prim-
itives. In DP non-FL setting, methods that use second-order information have been recently devel-
oped for private convex problems and show impressive improvements in the privacy-utility tradeoffs.
For example, Mehta et al. (2023) consider a method called DP-FC where the DP gradients are pre-
conditioned with a noisy feature covariance matrix. The work by Ganesh et al. (2023) gives a DP
second-order method with rigorous convergence analysis, with utility bounds matching the lower
bounds of private empirical risk minimization Bassily et al. (2014).

Unfortunately, neither of these methods seem to be easily transferrable to the FL setting. For dx
features, the distributed version of (Mehta et al., 2023) requires a one time aggregation of a noisy
covariance matrix of size O(d2x) from users. The O(d2x) term can still dominate in the total commu-
nication cost when dx ≫ T (training length T ). The method by Ganesh et al. (2023) does not seem
to be easily transferrable to the FL setting due to the inverse of a non-private Hessian in the model
update. It is the main goal of this work to fill this gap in the private FL literature.
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1.1 OUR CONTRIBUTIONS

This paper proposes a DP optimization method for convex problems in FL that leverages the benefits
of fast convergence of second-order methods and the communication cost of first-order methods.
In particular, we build upon the work of Elgabli et al. (2022) where the Newton update step is
approximated using one ADMM pass. The major contributions of this work are summarized as
follows.

• To the best of our knowledge, we propose the first DP optimization method in the context
of FL that uses second-order information via Hessians and has a model size communication
cost. We do this by successfully building upon the work of Elgabli et al. (2022) where the
Newton update step is approximated using one ADMM pass.

• We carry out comprehensive experiments for convex problems where we show that our
proposed algorithm copes with various privacy budgets and excels in terms of test accu-
racy, outperforming the baseline methods. To mitigate the excessive compute and memory
requirements for large Hessian matrices, we suggest a variant of DP-FedNew where we
replace the Hessian with a certain approximation that uses the feature covariance matrices.

• We provide an asymptotic convergence analysis for the proposed method.

2 BACKGROUND ON DIFFERENTIAL PRIVACY

An input dataset containing N data points is denoted as D = (x1, . . . , xN ) ∈ D, where D denotes
the set of datasets of all sizes. We say that two datasets D and D′ are neighbors if we get one by
adding or removing one element to/from the other (denoted D ∼ D′). We say that a mechanism
M : D → O is (ε, δ)-DP if the outputs for neighboring datasets are always (ε, δ)-indistinguishable.
Definition 1. Let ε ≥ 0 and δ ∈ [0, 1]. MechanismM : D → O is (ε, δ)-DP if for every pair of
neighboring datasets D,D′, every measurable set E ⊂ O,

P(M(D) ∈ E) ≤ eεP(M(D′) ∈ E) + δ.

We callM tightly (ε, δ)-DP, if there does not exist δ′ < δ such thatM is (ε, δ′)-DP.

We refer to Definition (1) as record-level DP. In case we have n users and xi’s correspond to the
whole local dataset owned by user i, i ∈ [n], we call the corresponding DP definition user-level
DP. (McMahan et al., 2018c;b).

In this work, we provide an accurate (ε, δ)-analysis for our methods using the hockey-stick diver-
gence. When analyzing our DP-FL training methods, we model them as adaptive compositions such
that the adversary has a view on all the intermediate global models. This means that we analyze
mechanisms of the form
M(T )(D) =

(
M1(D),M2(M1(D), D), . . . ,MT (M1(D), . . . ,MT−1(D), D)

)
. (2.1)

In the methods we consider, eachMi, i ∈ [T ], will correspond to a Gaussian mechanism and thus
the analysis is equivalent to that of the Gaussian mechanism.
Lemma 2. Consider an adaptive composition of T Gaussian mechanisms, each with L2-sensitivity
∆ and noise scale parameter σ. The adaptive composition is (ε, δ)-DP for

δ(ε) = Φ

(
− εσ√

T ·∆
+

√
T ·∆
2σ

)
− eεΦ

(
− εσ√

T ·∆
−
√
T ·∆
2σ

)
.

3 FEDNEW

We consider as a starting point the single pass ADMM-method called FedNew as given in (Elgabli
et al., 2022). We simply list here the method, more details are given in Appendix Section C.

Let T denote the total number of training iterations. Denote by θk are the global model parameters
at iteration k, Hk

i = ∇2fi(θ
k) and gki = ∇fi(θk). Also, denote the primal and dual variables of

user i, i ∈ [n], at iteration k, k ∈ [T ], as yki and λk
i , respectively, and the global primal and dual

variables at iteration k as yk and λk. Then, the FedNew algorithm is described by the following
steps.
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1. At user i, at round k, the update of the primal variable is obtained from the local minimiza-
tion problem

yki = argmin
y

[
1
2y

T (Hk
i + αI)y + ⟨λk−1

i , y − yk−1⟩ − yT gki + ρ
2∥y − yk−1∥22

]
for which the solution can be written as

yki = (Hk
i + αI + ρI)−1(gki − λk−1

i + ρyk−1). (3.1)

2. The primal variable update at the server is obtained by solving the problem

yk = argmin
y

[ n∑
i=1

⟨λk−1
i , yki − y⟩+ ρ

2

n∑
i=1

∥y − yki ∥22
]

which gives the solution
yk = 1

n

∑n

i=1
(yki + 1

ρλ
k−1
i ). (3.2)

3. The dual variables are updated locally: λk
i = λk−1

i + ρ(yki − yk).

4. The global model parameters are updated as θk+1 = θk − η · yk, where η > 0 denotes the
learning rate hyperparameter.

Since
∑n

i=1 λ
k
i = 0, the update (3.2) can be written as an average of the primal variables: yk =

1
n

∑n
i=1 y

k
i .

4 DP-FEDNEW

There the global primal variable yk−1 and the dual variable λk−1
i are results of previous iterations

and therefore do not incur additional per-iteration privacy cost. The only data-dependent objects are
the gradients gki = ∇fi(θk) which are functions of data and the previous iterations primal variables
yk−1, yk−2, .... We consider separately the user and record-level DP versions of DP-FedNew. The
User-Level Algorithm is described in Appendix Section E. In both cases, the only modification to
the FedNew algorithm happens in the update (3.1) of local primal variables where we add noise.
In the record level case, instead of only limiting the sensitivity of the gradients ∇fi(θ) by clipping
and adding normally distributed noise as in DP-SGD (Abadi et al., 2016), we need to consider the
potential privacy leakage via the Hessians ∇2fi(θ) which are data-dependent. We use the additive
Gaussian noise, however, remark that our algorithm is compatible with any suitable DP secure ag-
gregation primitive (e.g. (Chen et al., 2022b; Kairouz et al., 2021a)) closed under summation and
other noise distributions could be considered.

4.1 DP-FEDNEW WITH RECORD-LEVEL PRIVACY

In the record-level case, to obtain the DP guarantees, we need to bound the sensitivity of yki w.r.t.
changes of data elements. Suppose the user i has the dataset Di. Then, the data-dependent function
that needs to be randomized is

F (Di, α, ρ, λ
k−1
i , yk−1) = (Hk

i + αI + ρI)−1(gki − λk−1
i + ρyk−1).

Here α and ρ are pre-defined constant, and λk−1
i and yk−1 are auxiliary variables that are outputs

of previous iterations. Hk
i stands for the Hessian and gki for the gradient of user i. For limiting the

sensitivity of the function F w.r.t. change of a single data element in Di, we have the following
result which justifies our record-level clipping procedure described in Algorithm 1.
Lemma 3. Let D′

i and Di be neighboring datasets such that D′
i = Di∪{x′} for some data-element

x′. Let ∆i be defined as

∆i := F (D′
i, α, ρ, λ

k−1
i , yk−1)− F (Di, α, ρ, λ

k−1
i , yk−1).

Denote γ = ρ+ α. Assume

∥∇2f(x, θk)∥2 ≤ ∆H for all x ∈ Di,

∥∇f(x, θk)∥2 ≤ C1 for all x ∈ Di,

∥gki − λk−1
i + ρyk−1∥ ≤ C2,

(4.1)
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and γ > ∆H

|Di| . Then, we have:

∥∆i∥2 ≤
1

γ · |Di|
· C1 +

∆H

γ2 · |Di| − γ ·∆H
· C2,

where |Di| is the size of the local dataset Di.

Algorithm 1 Record-level DP-FedNew algorithm to compute private yki .

Input: clipping constants C1, C2,∆H > 0, noise parameter σ > 0, regularization parameters α
and ρ.
for iteration k = 1, . . . , T do

for user i = 1, . . . , n do

gki =
1

|Di|
∑

x∈Di

clipC1

(
∇f(x, θk)

)
Hk

i =
1

|Di|
∑

x∈Di

clip∆H

(
∇2f(x, θk)

)
Scale the auxiliary variables with C3: gsum = gki − λk−1

i + ρyk−1.
if ∥gsum∥2 > C2 then
gsum = gki + ξ · (−λk−1

i + ρyk−1), where the scalar ξ is chosen using Lemma 4 such that
∥gki + ξ · (−λk−1

i + ρyk−1)∥2 ≤ C2.
end if
Compute the non-DP update of the primal variable:

ŷki = (Hk
i + γI)−1gsum,

where γ = α+ ρ.
Clip and perturb the primal variable:

ỹki ← ŷki + Ek
i , E

k
i ∼ N (0, C2σ2

n Id),

where C = C1

γ·|Di| +
∆H ·C2

γ2·|Di|−γ·∆H
.

end for
end for

For scaling the auxiliary variables in Algorithm 1, we can use the following analytical formula.
Lemma 4. Let a, b ∈ Rn and C > 0. If we set

ξ =
−2⟨a, b

∥b∥2
⟩+

√
4⟨a, b

∥b∥2
⟩2 + 4(C2 − ∥a∥22)

2∥b∥2
,

we have that ∥a+ ξ · b∥2 = C.

4.2 MEMORY EFFICIENT HESSIAN APPROXIMATION

In our experiments and convergence analysis we focus on generalized linear models such as the
logistic regression. This class of problems has recently turned out an attractive approach for private
fine-tuning of large models pre-trained using public data (see, e.g., De et al., 2022; Mehta et al.,
2023). Therein, a well-justified approximation of the Hessian using the covariance matrix of the
feature vectors can be derived as follows (Mehta et al., 2023). Assume the loss function is of the form
f
(
(x, y), θ) = ℓ(θTx−y) for some twice differentiable function ℓ, where x ∈ dx, y ∈ c, θ ∈ Rdx×c.

Then, for a vectorized d = dx ·c-dimensional model variables, the Hessian is a (dx ·c×dx ·c) matrix.
We simply make the block-diagonal approximation H((x, y), θ) ≈ Ic⊗xxT . When the variables and
gradients are expressed in dx × c matrix form, we can replace the scaled Hessian times the gradient

product with the product
(

1
|Di|XiX

T
i + γI

)−1

gsum, where then gsum ∈ Rdx×c. This reduces
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both the compute and memory requirement considerably. For example, when dx = 512 and output
dimension c = 10, we shrink the memory consumption to 1%. We note that this approximation
affect the privacy nor our convergence analysis and our experiments show that we still outperform
the first order baseline. We call the resulting method DP FedNew Feature Covariance method (DP-
FedNew-FC).

5 CONVERGENCE ANALYSIS

The analysis of FedNew as given in (Elgabli et al., 2022) is an asymptotic analysis such that the
primal variables yki get closer to the optimal primal variables yk,∗i which would be the result of
running the inner loop until convergence. I.e., they show that

lim
k→∞

∥yki − yk,∗∥22 = 0. (5.1)

With yk,∗’s the outer loop corresponds to a single step of Newton’s iteration.

In case of DP-noise perturbed local updates, we cannot have the asymptotic convergence of the
form (5.1). However, under the assumptions of the analysis by Elgabli et al. (2022) and some weak
assumptions related to the DP version of the algorithm, we obtain an asymptotic limit of the form

lim
k→∞

∥yk − yk,∗∥22 = O
(
dσ2

n

)
,

where yk =
∑n

i=1 ỹ
k
i is a sum of the local noisy updates and yk,∗ again corresponds to a Newton up-

date. Asymptotically, we can think of the iteration as a noisy Newton iteration where the additional
noise matches the amount of local noise that one has, e.g., in DP gradient descent.

6 EXPERIMENTAL RESULTS

For a full description of our datasets and experimental setup, please refer to Section J in the Ap-
pendix.

Datasets. As IID datasets, we use CIFAR10 (Krizhevsky & Hinton, 2009), EMNIST (Cohen et al.,
2017b), and FashionMnist (Xiao et al., 2017). We extract features of sizes 64 and 2048 from the
last layer of pretrained resnets mentioned in Table 3. We pick synthetic and Federated EMNIST as
non-IID datasets, which are also used in (Noble et al., 2022). For experiments on non-IID datasets,
we train linear layers from scratch.

Baselines. Noble et al. (2022) proposed a DP variant of the seminal Scaffold Karimireddy et al.
(2020) method designed specifically to tackle data heterogeneity. In each global iteration, DP-
Scaffold requires clients and server to exchange the parameter and control variable information,
making the communication cost 2 × d. We treat a federated version of DP-GD (DP-FedGD) as a
second first-order baseline method (depicted in Algorithms 5 and 6) because it has the same pri-
vacy and communication cost as DP-FedNew. In the centralized case, Mehta et al. (2023) came up
with the DP-FC method which involves pre-multiplying the noisy full batch mean gradients with
the inverse of a noisy feature covariance matrix. We present federated versions of DP-FedFC in
Algorithms 3 and 4. Similar to DP-FedAVG, both DP-FedNew and DP-FedFC can be modified to
perform multiple local client-side updates. However, full exploration of these variations justifies a
separate work.

6.1 EXPERIMENTS OF RECORD-LEVEL DP: IID DATA

We train a linear layer and compare the performance of our algorithm, DP-FedNew with DP-FedGD.
The dimension (dx) of the features extracted from the pre-trained model is 64, and with the number
of classes c = 10. We here tune only the learning rate η for DP-FedGD, and additionally tune the
constants ∆H , α, and ρ for DP-FedNew. Figure 1 shows the mean test accuracy for both models.
We observe that DP-FedNew outperforms DP-FedGD by a large margin on all datasets for all ϵ
levels. The results indicate a behavior observed before for private non-FL methods that use second
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order information Ganesh et al. (2023): our methods benefit from the second-order information such
that they approach the optimal privacy-utility-tradeoff faster than first-order methods. The figures in
Appendix Section J show more results, for both user and record-level DP.
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Figure 1: IID data: Record-level results for DP-FedNew (DP-FN in plots), DP-FedGD (DP-FGD
in plots), and DP-Scaffold. For each ϵ, we plot the test accuracies of the best model obtained after
hyperparameter tuning. The model size is 64× 10.

6.2 EXPERIMENTS OF RECORD-LEVEL DP: NON-IID DATA

Figure 2 compare all three solutions on Federated EMNIST and synthetic datasets for record-level
DP. We can see in Figure 2 that DP-FedNew-FC performs at par with DP-FedGD for low ε-values
and outperforms it for higher ε even when each client has a dataset for a single label.
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Figure 2: Non-IID data: Record-level results for DP-FedNew (DP-FN in plots) and DP-FedGD
(DP-FGD in plots). For each ϵ, we plot the average test accuracies of the best model obtained after
hyperparameter tuning. The model sizes are 100× 47 and 60× 10.

7 CONCLUDING REMARKS

We propose the first DP distributed optimization with model-sized communication overhead that
uses the curvature information via the Hessian matrix of the loss function. Our approach nicely
complements an orthogonal line of research dedicated to the development of resource efficient DP
primitives for secure aggregation.

The experimental results indicate a behavior shown before for private non-FL methods that use sec-
ond order information (Ganesh et al., 2023): our methods benefit from the speed up given by the
second-order information such that they approach the optimal privacy-utility-tradeoff faster than
first-order methods. This shows up as better privacy-utility-tradeoffs in reasonable-length training
runs compared to first-order methods. One interesting line of future work is to consider modifica-
tions where multiple local steps are run and also experimental comparisons against DP-FedAve with
multiple local iterations.
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A COMMUNICATION COSTS OF THE METHODS CONSIDERED

Table 1: Our proposed methods DP-FedNew (Algorithm 1 and 4) and DP-FedNew-FC have both
O(d) communication and use second-order information about the loss functions. Neither of the
baseline methods DP-Scaffold 2, DP-FedGD (Algorithm 5 and 6) and DP-FedFC (Algorithm 3 and
4) do not have both of these properties. Here d, dx denote the dimension of the model and features.
T is the number of training iterations.

method comm. cost uses 2nd order
info.

performs
local

updates

DP-FedNew d× T yes no
DP-FedNew-FC d× T yes no

DP-FedFC d2x + d× T yes no
DP-Scaffold 2d× T no yes
DP-FedGD d× T no no

B MORE DETAILS ON THE PRIVACY ANALYSIS

In this work, we provide an accurate (ε, δ)-analysis for our methods using the hockey-stick diver-
gence. This way, we are able to get optimal privacy parameters for a given sensitivity analysis of
the data-dependent functions and in particular we obtain lower bounds than using, e.g., the Rényi
differential privacy (RDP) (Mironov, 2017) which is a commonly used alternative.

We next shortly describe the mathematical results needed for obtaining accurate (ε, δ)-DP bounds
using the hockey-stick divergence.... The (ε, δ)-DP as defined in 1 can be characterized using the
hockey-stick divergence as follows. For α > 0 the hockey-stick divergence Hα from a distribution
P to a distribution Q is defined as

Hα(P ||Q) =

∫
[P (t)− α ·Q(t)]+ dt,

where for t ∈ R, [t]+ = max{0, t}. Tight (ε, δ)-values for a given mechanism can be obtained
using the hockey-stick-divergence:
Lemma B.1 (Zhu et al. 2022). For a given ε ≥ 0, tight δ(ε) is given by the expression

δ(ε) = max
D∼D′

Heε(M(D)||M(D′)).

Thus, if we can bound the divergence Heε(M(D)||M(D′)) accurately, we also obtain accurate
δ(ε)-bounds. To this end we need to consider so-called dominating pairs of distributions:
Definition B.2 (Zhu et al. 2022). A pair of distributions (P,Q) is a dominating pair of distributions
for mechanismM(D) if for all neighboring datasets D and D′ and for all α > 0,

Hα(M(D)||M(D′)) ≤ Hα(P ||Q).

If the equality holds for all α for some D,D′, then (P,Q) is a tightly dominating pair of distribu-
tions.

When analyzing iterative DP-FL training methods, we model them as adaptive compositions such
that the adversary has a view on the output of all intermediate outputs. This means that we analyze
mechanisms of the form

M(T )(D) =
(
M1(D),M2(M1(D), D), . . . ,MT (M1(D), . . . ,MT−1(D), D)

)
. (B.1)

In the methods we propose, each Mi, i ∈ [T ], will correspond to a Gaussian mechanism with
a given sensitivity and noise scale. We next describe in detail how to obtain accurate bounds for
compositions of Gaussian mechanisms.

We get upper bounds for adaptive compositions using the dominating pairs of distributions as fol-
lows:
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Theorem B.3 (Zhu et al. 2022). If (P,Q) dominates M and (P ′, Q′) dominates M′, then (P ×
P ′, Q×Q′) dominates the adaptive compositionM◦M′.

To convert the hockey-stick divergence from P ×P ′ to Q×Q′ into an efficiently computable form,
we consider so called privacy loss random variables.
Definition B.4. Let P and Q be probability density functions. We define the privacy loss random
variable (PRV) ωP/Q as

ωP/Q = log
P (t)

Q(t)
, t ∼ P (t).

PRVs can be utilized for obtaining accurate privacy guarantees via the following result.
Theorem B.5 (Gopi et al. 2021). The δ(ε)-bounds can be represented using the following represen-
tation that involves the PRV:

Heε(P ||Q) = E
s∼ωP/Q

[
1− eε−s

]
+
. (B.2)

Moreover, if ωP/Q is the PRV for the pair of distributions (P,Q) and ωP ′/Q′ the PRV for the pair
of distributions (P ′, Q′), then the PRV for the pair of distributions (P × P ′, Q × Q′) is given by
ωP/Q + ωP ′/Q′ .

Given a dominating pair of distributions (P,Q) for a mechanism M, B.5 is all that is needed for
obtaining (ε, δ)-bounds for M. In some cases, such as in the case of the Gaussian mechanism,
this expression leads to analytical bounds Balle & Wang (see, e.g., 2018). In the general case, Fast
Fourier Technique-based methods (Koskela et al., 2021; Gopi et al., 2021) can be used to numerically
evaluate the convolutions appearing when summing the PRVs and evaluating the expression B.2.

In this work, the methods we propose are based on additive Gaussian noise and the privacy analysis
is equivalent to that of the Gaussian mechanism.

Hockey-stick divergence between two Gaussians. Let x0, x1 ∈ R, σ ≥ 0, and let P be the density
function ofN (x0, σ

2) and Q the density function ofN (x1, σ
2). Then, the PRV ωP/Q is distributed

as (Lemma 11 by Sommer et al., 2019)

ωP/Q ∼ N
(
(x0 − x1)

2

2σ2
,
(x0 − x1)

2

σ2

)
. (B.3)

Thus, in particular: Hα(P ||Q) = Hα(Q||P ) for all α > 0. Plugging in PLD ωP/Q to the ex-
pression (B.2), we find that for all ε ≥ 0, the hockey-stick divergence Heε(P ||Q) is given by the
expression

δ(ε) = Φ

(
−εσ

∆
+

∆

2σ

)
− eεΦ

(
−εσ

∆
− ∆

2σ

)
, (B.4)

where Φ denotes the CDF of the standard univariate Gaussian distribution and ∆ = |x0 − x1|. This
formula was originally given by Balle & Wang (2018).

If M is of the form M(D) = f(D) + Z, where f : DN → Rd and Z ∼ N (0, σ2Id), and
∆ = maxD≃D′ ∥f(D)− f(D′)∥2 gives the L2-sensitivity, then for x0 = 0, x1 = ∆, (P,Q) of the
above form gives a tightly dominating pair of distributions forM (Zhu et al., 2022). Subsequently,
by Theorem B.5,M is (ε, δ)-DP for δ(ε) given by (B.4).

It also directly follows from Theorem B.5 and the form of the PRV (B.3) that the PRV for the
adaptive composition of T Gaussian mechanisms is given by

ωP/Q ∼ N
(
T ·∆2

2σ2
,
T ·∆2

σ2

)
and we obtain the following expression.
Lemma B.6. Consider an adaptive composition of T Gaussian mechanisms, each with L2-
sensitivity ∆ and noise scale parameter σ. The adaptive composition is (ε, δ)-DP for

δ(ε) = Φ

(
− εσ√

T ·∆
+

√
T ·∆
2σ

)
− eεΦ

(
− εσ√

T ·∆
−
√
T ·∆
2σ

)
.
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C MORE DETAILS OF NON-PRIVATE FEDNEW

We first shortly describe Newton’s method which FedNew approximates with fast communication.
Let n denote the number of users and fi(θ) the empirical loss of user i, i ∈ [n], where θ ∈ Rd

denotes the model parameters. We consider the minimization problem

min
θ∈Rd

f(θ) :=
∑n

i=1
fi(θ).

The Newton iteration which is the basis for most of the second-order methods, is given as

θk+1 = θk −
(∑n

i=1
∇2fi(θ

k)
)−1∑n

i=1
∇fi(θk).

Straightforward FL approaches suffer from a very high communication cost due to the possible
communication of the Hessians. To this end, we consider the FedNew method which has only O(d)
user-wise communication cost per iteration.

The update (
∑n

i=1∇2fi(θ
k))−1

∑n
i=1∇fi(θk) in the Newton iteration is approximated such that

the ADMM algorithm is applied to the augmented Lagrangian

L({yi, λi}ni=1, y) =

n∑
i=1

1

2
yTi (H

k
i + αI)yi − yTi g

k
i +

n∑
i=1

⟨λi, yi − y⟩+ ρ

2

n∑
i=1

∥yi − y∥22,

where yi’s denote the so-called primal variables and λi’s the so-called dual variables, Hk
i =

∇2fi(θ
k), gki = ∇fi(θk) and θk are the global model parameters at iteration k. We refer to (El-

gabli et al., 2022) for more details on the derivation of the FedNew method, and simply list here the
resulting algorithm.

In case of convergence of the local iterations (repeating steps 1 to 3 until convergence), the following
conditions are satisfied by the FedNew iteration for all i ∈ [n] (see Elgabli et al., 2022, and the
references therein):

y∗i (θ
k) = y∗(θk),

(Hk
i + αI)y∗i (θ

k)− gki + λ∗
i (θ

k) = 0,
(C.1)

where y∗i (θ
k) and λ∗

i (θ
k) denote the optimal values of yki and λk

i , respectively, at iteration k, i.e.,
the results of running the ADMM steps until the end at the iteration k.
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D DETAILED DESCRIPTION OF DP-FEDFC AND DP-FEDGD ALGORITHMS

For completeness, we describe here in detail the baseline algorithms.

Algorithm 2 Record-level full-batch DP-SCAFFOLD (modification of the user-level algorithm by
Noble et al., 2022)

1: Input: dataset D = {Di}ni=1, noise level σ, clipping constant C, training length T , number of
local steps M , local and global learning rates ηl and ηg , initial c0i .

2: for iteration k = 1, . . . , T do
3: Server: Send (θk−1, ck−1) to all users.
4: for user i = 1, . . . , n do
5: Initialize model: y0i = θk−1.
6: for local step m = 1, . . . ,M do
7: Clients: Add DP noise to local gradients:

g̃mi = 1
|Di|

∑
x∈Di

clipC
(
∇f(x, θm)

)
+ 2C

|Di|N (0, σ2)

8: ymi = ym−1
i − ηl(g̃

m
i − ck−1

i + ck−1)
9: end for

10: Update user control variables:
c̃ki = ck−1

i − ck−1 +
(θk−1−yM

i )
Mηl

11: (∆yki ,∆cki ) = (yMi − θk−1, c̃ki − ck−1
i )

12: Share (∆yki ,∆cki ) with server.
cki = c̃ki

13: end for
14: Server: (∆θk,∆ck) = 1

n

∑n
i=1(∆yki ,∆cki )

15: Server: Global model update, θk = θk−1 + ηg∆θk.
16: Server: Update global control variable, ck = ck−1 +∆ck.
17: end for

Algorithm 3 Record-level DP-FedFC Algorithm (Mehta et al., 2023)

Input: dataset D = {Di}ni=1, noise levels σc, σg , clipping constants Cc, Cg , training length T ,
learning rate η, regularization parameter γ.
for user i = 1, . . . , n do

Clip local user inputs: D̃i =
[
clipCc

(x1) . . . clipCc
(x|Di|)

]
.

Compute local noisy feature covariance matrix: Ci = D̃iD̃
T
i + Ei, Ei ∼ N

(
0,

Id(C
2
cσc)

2

n

)
Share Ci with server.

end for
Server aggregates {Ci}ni=1, computes the global noisy convariance matrix C =

∑n
i Ci

n + γId.
for iteration k = 1, . . . , T do

for user i = 1, . . . , n do
Clip and perturb local gradients:

uk
i =

∑
x∈Di

clipCg

(
∇f(θk, x)

)
+ Ek

i

|Di|
, Ek

i ∼ N
(
0,

Id(Cgσg)
2

n

)
.

Share local update uk
i with server.

end for
Server aggregates {uk

i }ni=1, computes the global noisy update Uk = C−1 ·
(∑n

i=1 uk
i

n

)
.

Update model parameters: θk+1 = θk − η · Uk.
end for
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Algorithm 4 User-level DP-FedFC Algorithm (modification of the user-level algorithm by Mehta
et al., 2023)

Input: dataset D = {Di}ni=1, noise levels σc, σg , clipping constants Cc, Cg , training length T ,
learning rate η, regularization parameter γ.
for user i = 1, . . . , n do

Clip local covariance matrices: C̃i = clipCc
(Di.D

T
i ).

Compute local noisy feature covariance matrix: Ci = C̃i + Ei, Ei ∼ N
(
0, Id(Ccσc)

2

n

)
Share Ci with server.

end for
Server aggregates {Ci}ni=1, computes global noisy convariance matrix C =

∑n
i Ci

n + γId, and
shares it back with clients.
for iteration k = 1, . . . , T do

for user i = 1, . . . , n do
Compute and average local gradients:

gki =

∑
x∈Di

∇f(θk, x)
|Di|

.

Clip and perturb local updates multiplied with a preconditioner:

uk
i = clipCg

(C−1 · gki
)
+ Ek

i , E
k
i ∼ N

(
0,

Id(Cgσg)
2

n

)
.

Share noisy update uk
i with server.

end for
Server aggregates {uk

i }ni=1, and computes global noisy update Uk =
∑n

i=1 uk
i

n .
Update model parameters: θk+1 = θk − η · Uk.

end for

Algorithm 5 Record-level DP-FedGD Algorithm

Input: dataset D = {Di}ni=1, noise levels σg , clipping constants Cg , training length T , learning
rate η.
for iteration k = 1, . . . , T do

for user i = 1, . . . , n do
Clip and perturb the avg. of local gradients:

uk
i =

∑
x∈Di

clipCg

(
∇f(θk, x)

)
+ Ek

i

|Di|
, Ek

i ∼ N
(
0,

Id(Cgσg)
2

n

)
.

Share uk
i with server.

end for
Server aggregates {uk

i }ni=1, computes the global noisy update Uk =
∑n

i=1 uk
i

n .
Update model parameters: θk+1 = θk − η · Uk.

end for
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Algorithm 6 User-level DP-FedGD Algorithm

Input: dataset D = {Di}ni=1, noise levels σg , clipping constants Cg , training length T , learning
rate η.
for iteration k = 1, . . . , T do

for user i = 1, . . . , n do
Compute and average local gradients:

gki =

∑
x∈Di

∇f(θk, x)
|Di|

.

Clip and perturb local updates:

uk
i = clipCg

(gki
)
+ Ek

i , Ek
i ∼ N

(
0,

Id(Cgσg)
2

n

)
.

Share noisy update uk
i with server.

end for
Server aggregates {uk

i }ni=1, and computes global noisy update Uk =
∑n

i=1 uk
i

n .
Update model parameters: θk+1 = θk − η · Uk.

end for

E MORE DETAILS OF PRIVATE FEDNEW

E.1 DP-FEDNEW WITH USER-LEVEL PRIVACY

For user-level privacy, we need to hide users i whole contribution. We can obtain this simply by
clipping the user-wise updates and adding normally distributed noise (similar user-level algorithms
considered, e.g., in McMahan et al., 2018a; Ponomareva et al., 2023). This means that we simply
replace the local update (3.1) in FedNew by the pseudocode of Algorithm 7, where we clip ŷki with
some constant C > 0 and add normally distributed noise with covariance C2σ2Id, σ > 0, to the
resulting clipped update clipC(ŷ

k
i ), where the clipping function is defined for vectors and matrices

as

clipC(ŷ
k
i ) =

{
ŷki , if ∥ŷki ∥2 ≤ C,

C · ŷk
i

∥ŷk
i ∥2

, else.

From the differentially privacy point of view, at each iteration we release only the noisy sum of the
local updates,

M(D) ∼
n∑

i=1

clipC(ŷ
k
i ) +N (0, n · C2σ2Id). (E.1)

Algorithm 7 User-level DP-FedNew algorithm to compute private yki .

Input: clipping constant C > 0, noise parameter σ > 0, number of iterations T , regularization
parameter γ.
for iteration k = 1, . . . , T do

for user i = 1, . . . , n do
Compute the non-DP update of the primal variable:

ŷki = (Hk
i + αI + ρI)−1(gki − λk−1

i + ρyk−1).

Clip and perturb the primal variable:

ỹki ← clipC(ŷ
k
i ) + Ei, Ei ∼ N

(
0,

C2σ2

n
Id

)
.

end for
end for
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F PROOF OF LEMMA 3 (RECORD-LEVEL SENSITIVITY BOUND)

For the proof of Lemma 3 we first need the following auxiliary lemma:

Lemma F.1. Suppose A,B ∈ Rd×d are positive definite, ∥·∥ is a matrix norm and ∥A−B∥∥A−1∥ <
1. Then

∥A−1 −B−1∥ ≤ ∥A−B∥∥A−1∥2

1− ∥A−B∥∥A−1∥
.

Proof. The proof can be found in Section 5.8 of (Horn & Johnson, 2012) (see also Lemma C.4
by Ganesh et al. (2023)).

Lemma F.2. Let ∆i be defined as in (3). Let ∆H be an upper bound for the norm of H , i.e., an
upper bound for the norm of data-sample-wise Hessian. Assume

∥∇2f(x, θk)∥2 ≤ ∆H for all x ∈ Di,

∥∇f(x, θk)∥2 ≤ C1 for all x ∈ Di,

∥gki − λk−1
i + ρyk−1∥ ≤ C2,

(F.1)

and

γ >
∆H

|Di|
. (F.2)

Then, we have:

∥∆i∥2 ≤
1

γ · |Di|
· C1 +

∆H

γ2 · |Di| − γ ·∆H
· C2,

where |Di| is the size of the local dataset Di.

Proof. For ease of notation, consider the function

f(Di, γ, θ) = (Hk
i + γI)−1(gki + θ),

where γ > 0 is a constant and θ stands for auxiliary variables. We need to bound the 2-norm of

∆i = f(D′
i, γ, θ)− f(Di, γ, θ),

where D′
i = Di

⋃
{x′} for some data-element x′. Adding and subtracting (Hk

i +H ′+γI)−1(gki +θ)
to ∆i, we have:

∆i = (Hk
i +H ′ + γI)−1(gki + g′ + θ)− (Hk

i + γI)−1(gki + θ)

= (Hk
i +H ′ + γI)−1(gki + g′ + θ)− (Hk

i +H ′ + γI)−1(gki + θ)

+ (Hk
i +H ′ + γI)−1(gki + θ)− (Hk

i + γI)−1(gki + θ)

= (Hk
i +H ′ + γI)−1g′ +

(
(Hk

i +H ′ + γI)−1 − (Hk
i + γI)−1

)
(gki + θ).

(F.3)

For the first term on the right-hand side of (F.3) we use the following fact: if a matrix A is positive
definite with smallest eigenvalue λmin, then ∥A−1∥ = λ−1

min. Clearly, since Hk
i and H ′ are positive

semidefinite, (Hk
i +H ′ + γI)−1 is positive definite with smallest eigenvalue larger than γ, and we

have that
∥(Hk

i +H ′ + γI)−1g′∥2 ≤ ∥(Hk
i +H ′ + γI)−1∥2∥g′∥2

≤ 1

γ
∥g′∥2 ≤

1

γ
· C1

|Di|
.
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By Lemma F.1 and the assumptions (F.1) and (F.2) we have that

∥
(
(Hk

i +H ′ + γI)−1 − (Hk
i + γI)−1

)
(gki + θ)∥2 ≤ ∥(Hk

i +H ′ + γI)−1 − (Hk
i + γI)−1∥2∥gki + θ∥2

≤ ∥H ′∥2∥(Hk
i +H ′ + γI)−2∥2

1− ∥(Hk
i +H ′ + γI)−1∥2∥H ′∥2

· C2

≤ ∥H ′∥2 · γ−2

1− γ−1∥H ′∥2
· C2

≤
∆H

|Di|γ
−2

1− γ−1 ∆H

|Di|
· C2

=
∆H

γ2 · |Di| − γ∆H
· C2.

G PROOF OF LEMMA 4

Lemma G.1. Let a, b ∈ Rn and C > 0. If we set

ξ =
−2⟨a, b

∥b∥2
⟩+

√
4⟨a, b

∥b∥2
⟩2 + 4(C2 − ∥a∥22)

2∥b∥2
,

we have that
∥a+ ξ · b∥2 = C.

Proof. Denote by b̂ a unit vector in the direction of b. Setting the right-hand side of

∥a+ b∥22 = ∥a∥22 + 2∥b∥2⟨a, b̂⟩+ ∥b∥22
equal to C2 and solving the quadratic equation for ∥b∥2, we arrive at the claim.

H ASYMPTOTIC CONVERGENCE ANALYSIS FOR DP-FEDNEW

For the convergence analysis of DP-FedNew, we assume that the clipping constants are chosen such
that no clipping happens during the iteration. This is a natural assumption, e.g., in case the gradients
are Lipschitz, the per-example Hessian is bounded in Frobenius norm (plausible assumption, e.g.,
for generalized linear models) and the auxiliary terms in the local update, i.e., gki − λk−1

i + ρyk−1

stays bounded along the iteration. Then, the noisy update can be written as

ỹki = (Hk
i + αI + ρI)−1(gki − λk−1

i + ρyk−1) + Ek
i , (H.1)

where Ek
i ∼ N (0, C2σ2

n Id) and C is the sensitivity parameter, i.e., either the clipping constant
in case of user level algorithm or then the parameter given by Lemma 3 in case of record-level
algorithm. Without loss of generality of our results, we also assume that C = 1.

The following auxiliary result applies for the noisy update rule (H.1) and is central in our analysis.
Lemma H.1. Consider one iteration of DP-FedNew. Assume the per-example approximations of
the Hessian at user i at iteration k, Hk

i , is positive semidefinite. Denote by λ∗,k and yk,∗ the dual
variables that are the results of running the non-DP FedNew inner iteration until the end (given the
results of the DP iterations from k − 1 iterations). Denote the dual residual sk := ρ(yk − yk−1).
We have:

E⟨λk
i + sk − λk,∗, ỹki − yk,∗⟩ ≤ −αE∥yk,∗ − ỹki ∥2

+ σ2 · Trace(Hk
i ) + σ2 · (α+ ρ) · d,

where the expectation is taken over the randomness of Ek
i , the noise added by the user i at iteration

k.
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In the following result, we define a certain Lyapunov function for the DP-FedNew algorithm, and by
using the auxiliary Lemma H.8, we obtain a stochastic inequality which leads us to the main result.

Lemma H.2. Let the Lyapunov function Vk be defined as

Vk :=
1

ρ

n∑
i=1

∥λk
i − λk,∗∥22 + 2β1

n∑
i=1

∥ỹki − yk,∗∥22

+ ρn∥yk − yk,∗∥22 + 2ρn∥yk − yk−1∥22,
(H.2)

where ỹki denotes the noisy update (H.1) Denote Ṽk = EVk, where the expectation is taken over all
additive noises up to iteration k. Then, Ṽk satisfies

Ṽk ≤ Ṽk−1 − β2E
n∑

i=1

∥ỹki − yk,∗∥2 + σ2 · (α+ ρ) · d

for some constant β2 > 0, where the expectation is taken over the noise added at iteration k.

Our main convergence result is of qualitative nature and states that the DP version inherits the
stability of FedNew in a sense that the added DP noise does not make the solution to diverge from
the non-private iterations. The result follows from Lemma H.2.

Theorem H.3. Let σ > 0. For all k ∈ Z, there exists ℓ > k such that

E∥yℓ − yℓ,∗∥2 ≤ σ2 · (α+ ρ) · d
nβ2

where the expectation is taken over the noise added at iteration ℓ.

H.1 NON-PRIVATE ANALYSIS BY ELGABLI ET AL. (2022)

To make following the DP convergence analysis easier to follow, we review here the main results
of (Elgabli et al., 2022) and depict the main story of their analysis.

Consider the non-private FedNew algorithm, i.e., the variables y and λ are those given by the algo-
rithm described in Section 3.

The convergence analysis of (Elgabli et al., 2022) is starts with the following auxiliary lemma.

Lemma H.4. Consider one iteration of FedNew. Assume the per-example approximations of the
Hessian at user i, Hk

i , is positive semidefinite. Denote the dual residual sk := ρ(yk − yk−1). We
have:

E⟨λk
i + sk − λk,∗, yki − yk,∗⟩ ≤ −αE∥yk,∗ − yki ∥2 + σ2 · Trace(Hk

i ).

Next, the inequality given in Lemma H.4 is reformulated to obtain the inequality of Lemma H.5
below. This reformulation requires, however, two additional assumptions. First, it is assumed that
for the function Qi(θ, y) =

1
2y(∇

2fi(θ) + αI)y − yT∇fi(θ) we have that

∥∇yQi(θ1, y1)−∇yQi(θ2, y2)∥2 ≤ Lq∥y1 − y2∥2 (H.3)

for some constant Lq > 0. We remark that the condition (H.3) this is a fairly strong requirement.
However, one can easily show that this holds for the linear regression, for example, since then
∇2fi(θ) independent of θ for all i ∈ [n]. Another requirement for Lemma H.5 is that the iterates of
FedNew satisfy the inequality

∥yk − yk−1∥2 ≤ ∥yk − yk,∗∥2. (H.4)

As we show in detail below in Section H.2, this inequality is satisfied for large enough values of the
regularization parameter ρ.

With these assumption the following technical result is shown next. This will lead us to formulating
a Lyapunov function for the iteration.
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Lemma H.5. Assume the conditions (H.3) and (H.4) hold true for all k ∈ [T ]. For any β ≤
α− 2.5ρ− 8L2

qn

ρ , the iterates of FedNew satisfy the inequality

1

ρ

n∑
i=1

∥λk
i − λk,∗

i ∥
2
2 + 2β

n∑
i=1

∥yki − yk,∗∥22 + ρn∥yk − yk,∗∥22 + 2ρn∥yk − yk−1∥22

≤ 1

ρ

n∑
i=1

∥λk−1
i − λk−1,∗

i ∥22

+
2L2

q

ρ

n∑
i=1

∥yk−1
i − yk−1,∗∥22 +

4L2
qn

ρ
∥yk−1 − yk−1,∗∥22

+ 2ρn∥yk−1 − yk−2∥22.

From Lemma (H.5) if follows that the Lyapunov function Vk defined as

Vk :=
1

ρ

n∑
i=1

∥λk
i − λk,∗∥22 + 2β1

n∑
i=1

∥yki − yk,∗∥22

+ ρn∥yk − yk,∗∥22 + 2ρn∥yk − yk−1∥22

(H.5)

satisfies the inequality

Vk ≤ Vk−1 − β2

n∑
i=1

∥yki − yk,∗∥2 (H.6)

for some constant β2 > 0.

The main result of (Elgabli et al., 2022) follows from the inequality (H.6). We give an alternative
proof for it, to also motivate the proof of our DP result.

Theorem H.6. As the number of iterations k →∞, the local ADMM iterates approach the Newton
updates, i.e.,

∥yki − yk,∗∥2 → 0.

Proof. From Lemma H.5 it follows that the Luapynov function Vk defined in (H.5) satisfies the
inequality (H.6). Since Vk is non-negative and monotonously decreasing, by the monotone conver-
gence theorem it has a limit as k → ∞. Thus, β2

∑n
i=1 ∥yki − yk,∗∥2 → 0 as k → ∞ from which

the claim follows.

H.2 ASSUMPTION USED IN THM. H.12

In the proof of Theorem H.12 we need to assume that the iterates of the non-private FedNew algo-
rithm satisfy

∥yk − yk−1∥2 ≤ ∥yk − yk,∗∥2. (H.7)

for all k ∈ [T ]. As the following result shows, this in a reasonable assumption for a large enough ρ.

Lemma H.7. There exists ρ0 > 0 such that for all ρ ≥ ρ0, the assumption (H.7) holds true.

Proof. Recall that

yk =
1

n

n∑
i=1

yki

=
1

n

n∑
i=1

(Hk
i + αI + ρI)−1(gki − λk−1

i + ρ · yk−1).
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Therefore

yk − yk−1 =
1

n

n∑
i=1

[
(Hk

i + αI + ρI)−1
(
gki − λk−1

i + ρ · yk−1

− (Hk
i + αI + ρI)yk−1

)]
=

1

n

n∑
i=1

(Hk
i + αI + ρI)−1

(
gki − λk−1

i − (Hk
i + αI)yk−1

)
which shows that ∥yk − yk−1∥2 → 0 as ρ→∞. On the other hand,

yk − yk,∗ =
1

n

n∑
i=1

[
(Hk

i + αI + ρI)−1
(
gki − λk−1

i + ρ · yk−1
)

− (Hk
i + αI)

(
gki − λ∗

i (θ
k)
))]

=
1

n

n∑
i=1

[
yk−1 + (Hk

i + αI + ρI)−1
(
gki − λk−1

i − (Hk
i + αI)yk−1

)
− (Hk

i + αI)
(
gki − λ∗

i (θ
k)
))]

.

(H.8)

since
yk,∗i = (Hk

i + αI)−1
(
gki − λ∗

i (θ
k)
)
.

We see from (H.8) that

yk − yk,∗ → 1

n

n∑
i=1

[
yk−1 − (Hk

i + αI)
(
gki − λ∗

i (θ
k)
))]

as ρ→∞. Thus,

H.3 FIRST STEP OF THE DP CONVERGENCE ANALYSIS: PROOF OF LEMMA H.8

The following result is a stochastic version of (Lemma 1, Elgabli et al., 2022) and applies for the
noisy update rule (H.1).
Lemma H.8. Consider one iteration of DP-FedNew. Assume the per-example approximations of
the Hessian at user i at iteration k, Hk

i , is positive semidefinite. Denote the dual residual sk :=
ρ(yk − yk−1). Assume in the added noise C = 1. We have:

E⟨λk
i + sk − λk,∗, ỹki − yk,∗⟩ ≤ −αE∥yk,∗ − ỹki ∥2

+ C2 · σ2 · Trace(Hk
i ) + σ2 · (α+ ρ) · d,

where the expectation is taken over the randomness of Ek
i , the noise added by the user i at iteration

k.

Proof. It follows from the noisy update rule (H.1) that

(Hk
i + αI)(ỹki − Ek

i )− gki + λk−1
i + ρ(ỹki − yk−1)− ρEk

i = 0. (H.9)

Substituting the update of the dual variable

λk−1
i = λk

i − ρ(ỹki − yk)

to Eq. (H.9) gives

(Hk
i + αI)(ỹki − Ek

i )− gki + λk
i + ρ(yk − yk−1)− ρEk

i = 0.

Recall the dual residual sk = ρ(yk − yk−1). We get

λk
i + sk = gki − (Hk

i + αI)(ỹki − Ek
i ) + ρEk

i . (H.10)
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Recall that for the optimal values of the primal and dual variables of the non-DP dual iteration at the
global iteration k for user i, y∗ k

i and λ∗ k
i , respectively, we have that

λ∗ k
i = gki − (Hk

i + αI)y∗ k
i

= gki − (Hk
i + αI)y∗ k,

since y∗ k
i = y∗ k. Subtracting λ∗ k

i from both sides of Eq. (H.10), we get

λk
i + sk − λ∗ k = (Hk

i + αI)(Ek
i − ỹki ) + (Hk

i + αI)y∗ k + ρEk
i

= (Hk
i + αI)(y∗ k − ỹki + Ek

i ) + ρEk
i .

(H.11)

where y∗ k is the converged result of the non-DP dual iteration at global iteration k with Hessian
evaluated at θk. Taking inner product of between both sides of Eq. (H.11) and the vector ỹki − y∗ k,
we get

⟨λk
i + sk − λ∗ k, ỹki − y∗ k⟩

= ⟨(Hk
i + αI)(y∗ k − ỹki + Ek

i ), ỹ
k
i − y∗ k⟩+ ρ⟨Ek

i , ỹ
k
i − y∗ k⟩

= −⟨(Hk
i + αI)(ỹki − y∗ k), ỹki − y∗ k⟩+ ⟨(Hk

i + αI)Ek
i , ỹ

k
i − y∗ k⟩

+ ρ⟨Ek
i , ỹ

k
i − y∗ k⟩

≤ −α∥y∗ k − ỹki ∥2 + ⟨(Hk
i + αI)Ek

i , ỹ
k
i − y∗ k⟩+ ρ⟨Ek

i , ỹ
k
i − y∗ k⟩

(H.12)

since Hk
i is positive semidefinite. Recall:

ỹki = ŷki + Ek
i ,

where ŷki denotes the non-perturbed update, i.e.

ŷki = (Hk
i + αI + ρI)−1(gki − λk−1

i + ρyk−1).

Thus, we can write (H.12) as

⟨λk
i + sk − λ∗ k, ỹki − y∗ k⟩ ≤ −α∥y∗ k − ỹki ∥2 + ⟨(Hk

i + αI)Ek
i , ŷ

k
i

+ Ek
i − y∗ k⟩+ ρ⟨Ek

i , y
∗ k − ỹki ⟩.

(H.13)

Since Ex∼N (0,Id)x
TAx = Trace(A) for any square matrix A and since Ek

i ∼ N (0, σ2Id), we have

E⟨λk
i + sk − λ∗ k, ỹki − y∗ k⟩

≤ −αE∥y∗ k − ỹki ∥2 + E⟨(Hk
i + αI)Ek

i , E
k
i ⟩+ E⟨(Hk

i + αI)Ek
i , ŷ

k
i − y∗ k⟩

+ ρE⟨Ek
i , ỹ

k
i − y∗ k⟩

= −αE∥y∗ k − ỹki ∥2 + E⟨(Hk
i + αI)Ek

i , E
k
i ⟩+ ρE⟨Ek

i , ŷ
k
i + Ek

i − y∗ k⟩
= −αE∥y∗ k − ỹki ∥2 + σ2 · Trace(Hk

i + αI) + ρ · d
= −α∥y∗ k − ỹki ∥2 + σ2 · Trace(Hk

i ) + σ2 · (α+ ρ) · d,

where the expectation is taken over the randomness of Ek
i .

In case f is β-smooth, we have the following corollary.

Corollary H.9. If the loss function f is β-smooth, then

E⟨λk
i + sk − λ∗ k, ỹki − y∗ k⟩ ≤ −Eα∥y∗ k − ỹki ∥2 + σ2 · (α+ ρ+ β) · d,

where the expectation is taken over the randomness of the local additive noise Ek
i .

Proof. If f is β-smooth, since it is twice differentiable, we have that ∥Hk
i ∥2 ≤ β. Since the trace

of a square matrix equals the sum of its singular values, Trace(Hk
i ) ≤ d · β and the claim follows

from Lemma H.8.
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H.4 ADDITIONAL AUXILIARY RESULTS

In addition to the conditions (H.3), we need the assumption that the iterates of DP-FedNew satisfy
the inequality

E∥yk − yk−1∥22 ≤ E∥yk − yk,∗∥22 (H.14)
for all k ∈ [T ], where the expectation is taken over the additive normally distributed noises at
iteration k. This condition is true in case the (H.3) for the non-private FedNew is true, since EX∥Y +
X∥22 = ∥Y ∥22 + E∥X∥22 for all random variables X with EX = 0.
Lemma H.10. Assume the conditions (H.3) and (H.14) are satisfied for all k ∈ [T ]. For any

β ≤ α− 2.5ρ− 8L2
qn

ρ , the iterates of FedNew satisfy the inequality

1

ρ
E

n∑
i=1

∥λk
i − λk,∗

i ∥
2
2 + 2βE

n∑
i=1

∥ỹki − yk,∗∥22 + ρnE∥yk − yk,∗∥22

+ 2ρnE∥yk − yk−1∥22

≤ 1

ρ

n∑
i=1

∥λk−1
i − λk−1,∗

i ∥22 +
2L2

q

ρ

n∑
i=1

∥yk−1
i − yk−1,∗∥22

+
4L2

qn

ρ
∥yk−1 − yk−1,∗∥22 + 2ρn∥yk−1 − yk−2∥22 + σ2 · (α+ ρ) · d,

where the expectation is taken over the additive normally distributed noises at iteration k.

The proof of Lemma H.5 is obtained by carrying out a lengthy refactorization to the inequality of
Lemma H.4 and can be found in (Elgabli et al., 2022). The proof of Lemma H.10 is given by exactly
the same refactorization applied to the inequality given by H.8.

As a result of Lemma H.10 we define a Lyapunov function for the stochastic DP-FedNew iteration
and show the following inequality for it.
Lemma H.11. Let the Lyapunov function Vk be defined as

Vk :=
1

ρ

n∑
i=1

∥λk
i − λk,∗∥22 + 2β1

n∑
i=1

∥ỹki − yk,∗∥22

+ ρn∥yk − yk,∗∥22 + 2ρn∥yk − yk−1∥22,
(H.15)

where ỹki denotes the noisy update (H.1) Denote Ṽk = EVk, where the expectation is taken over all
additive noises up to iteration k. Then, Ṽk satisfies

Ṽk ≤ Ṽk−1 − β2E
n∑

i=1

∥ỹki − yk,∗∥2 + σ2 · (α+ ρ) · d (H.16)

for some constant β2 > 0, where the expectation is taken over the noise added at iteration k.

H.5 OUR MAIN THEOREM

Theorem H.12. For all k ∈ Z, there exists ℓ > k such that

∥yℓ − yℓ,∗∥2 ≤ σ2 · (α+ ρ) · d
nβ2

. (H.17)

Proof. At a given iteration k, either

β2

n∑
i=1

∥ỹki − yk,∗∥2 ≤ σ2 · (α+ ρ) · d (H.18)

which implies the inequality (H.17) for ℓ = k (combining with the inequality
∑n

i=1 ∥ỹki − yk,∗∥2 ≥
n∥yk − yk,∗∥2), or then

β2

n∑
i=1

∥ỹki − yk,∗∥2 > σ2 · (α+ ρ) · d,
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which by the Lemma H.11 implies that either Ṽk converges from which case the claim follows, or
then there is an ℓ > k such that (H.18) holds from which case the claim follows.

I TABLES OF HYPERPARAMETER GRIDS USED IN THE EXPERIMENTS

Table 2: Dataset and model description.

datasets CIFAR10 FashionMNIST EMNIST synthetic Federated EMNIST

classes 10 10 10 10 47
N 50k 60k 240k 50k 90240
test

dataset size 10k 10k 10k 10k 22560

distribution IID IID IID non-IID non-IID

Table 3: Method for extracting IID features.

Linear
layer size 64× 10 2048× 10

Pretraining
architecture ResNet44 ResNet50

Pretraining
weights CIFAR100 Imagenet

Table 4: Hyperparameter grids.

method Hyperparameter alternatives privacy level grid size
DP-FedGD η {0.001, 0.01, 0.1, 1, 10} user/record 10

Cg {0.1,1} user/record
DP-FedNew / α {0.01, 0.1, 1} user/record 90

DP-FedNew-FC ρ {0.01, 0.1, 1} user/record
η {0.001, 0.01, 0.1, 1, 10} user/record

C,∆H {0.1,1} user/record
C1, C2 1 record

DP-FedFC η {0.001, 0.01, 0.1, 1, 10} user/record 20
Cc {0.1,1} user/record
Cg {0.1,1} user/record
γ 0.001 user/record

24



Published as a workshop paper at ICLR 2024

I.1 FULL EXPERIMENTAL SETTING

Baselines. Noble et al. (2022) proposed a DP variant of the seminal Scaffold Karimireddy
et al. (2020) method designed specifically to tackle data heterogeneity. Similar to popular Fe-
dAVG (McMahan et al., 2017), each client running Scaffold performs multiple local updates before
releasing their parameter to the server. Each user and server maintains a control variable for drift
correction. During each local step, subtraction of the local and global control variates is added to the
perturbed gradients to counter local models drifting away from the global due to heterogeneity in
their data distributions. Algorithm 2 outlines record-level DP-Scaffold. Experiments in Noble et al.
(2022) show that DP-Scaffold performs no worse than DP-FedAVG even on IID datasets. Moreover,
we can recover DP-FedAVG by removing the control variables. Therefore, we use it as our main
baseline (proxy for DP-FedAVG) in our evaluations on both IID and non-IID datasets. We use the
warm start variant of DP-Scaffold in which the local control variates {c0i }ni=1 are initialized to the
perturbed gradients in the first step. In each global iteration, DP-Scaffold requires clients and server
to exchange the parameter and control variable information, making the communication cost 2× d.
Additionally, it only uses the first-order information for model update.

In the centralized case, Mehta et al. (2023) came up with the DP-FC method which involves pre-
multiplying the noisy full batch mean gradients with the inverse of a noisy feature covariance ma-
trix. We present federated versions of DP-FedFC in Algorithms 3 and 4. DP-FedFC is a really
strong baseline because it requires server aggregating the global noisy feature covariance matrix
from clients 1. On the other hand, clients running DP-FedNew compute primal variables only with
their local Hessians. Finally, we treat a federated version of DP-GD (DP-FedGD) as another first-
order baseline method (depicted in Algorithms 5 and 6) because it has the same privacy and com-
munication cost as DP-FedNew.

Differences from DP-Scaffold setting. Since DP-Scaffold is also applicable to non-convex prob-
lems, (Noble et al., 2022) train a 2-layer neural network from scratch for relevant classification
experiments. On the other hand, we train a single linear layer due to our focus on convex problems.
We extract IID datasets from public pretrained models. For a fair comparison with DP-FedNew, we
consider full batch variants for all baselines with all clients participating. This means no method
benefits from privacy amplification due to client and record sampling. Moreover, our learning rate
grids could be different. Similar to DP-Scaffold, both DP-FedNew and DP-FedFC can be modified
to perform multiple local client-side updates with client/record sampling. However, full exploration
of these variations justifies a separate work.

IID Datasets. We use CIFAR10 (Krizhevsky & Hinton, 2009), EMNIST (Cohen et al., 2017b), and
FashionMnist (Xiao et al., 2017). We extract features of sizes 64 and 2048 from the last layer of
pretrained resnets mentioned in Table 3.

Non-IID Datasets. We pick two classification datasets used in (Noble et al., 2022) and train linear
layers from scratch. The first synthetic dataset with dx = 60 is drawn from a generative model
proposed in (Li et al., 2020) which allows us to adjust heterogeneity between local distributions
with hyperparameters α ≥ 0 and β ≥ 0. Higher values of α, β indicate more heterogeneity and
vice versa. Same as DP-Scaffold, we fix α = 5 and β = 5 which specifies their most heterogeneous
setting. The second dataset is balanced version of EMNIST (Cohen et al., 2017a), which 47 classes
(digits and letters). We consider the extreme scenario in which the training dataset is divided among
47 clients, with each client holding all records of exactly one class. Following (Noble et al., 2022),
we call this dataset Federated EMNIST. With principal component analysis, we reduce the original
dimensionality to 100.

For experiments in Section 6.1 and 6.2, training data is divided among 500 clients such that each
client has roughly an equal sized dataset. The dataset sizes are mentioned in Table 2.

1Global noisy feature covariance matrix aggregation costs one or more communication rounds. In the user-
level DP variant, server needs the second round to share the aggregated noisy covariance matrix back with the
clients, making the cost 2d2x + d · T . However, in record-level DP version, this second round can be saved by
pushing the preconditioning to server.
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Tasks. In experiments on IID data, we train linear layers of size 64 × 10 and 2048 × 10. For
reasons of space, all figures for layers of size 2048 × 10 are moved to the Appendix. We minimize
the cross-entropy loss. Extensive hyperparameter tuning is necessary to avoid drawing misleading
conclusions. Therefore, in each plot, we show the average test performance of the model selected
after performing the hyperparameter search for each method. Test accuracies are averaged across
5 independent runs. The results for other suboptimal hyperparameter candidates are excluded. The
best hyperparameters are selected based on the average test accuracy of the last 20 epochs. The
hyperparameter grids are specified in Table 4.

Implementation. We generate the non-IID datasets using the code released with the DP-Scaffold
paper. The extreme distribution for the Federated EMNIST dataset can be obtained by setting the
similarity hyperparameter to 0 in their script. We implement our training simulations with PyTorch
2.0 and rely on vmap calls for speeding up our per-example gradient and Hessian computations. For
scalability, we tune the hyperparameter with Ray Tune (Liaw et al., 2018) on a dedicated multi-GPU
cluster. Ray tune maintains a job queue, and the number of models trained parallelly depends on
the gpu count. Each model in our set up is trained on 1 gpu, and each gpu has enough memory to
accommodate one model. Models finish their entire training on the same gpu that was allocated to
them at the start of their training.

Privacy Accounting. For each ε, we obtain the lowest σ through a binary search on the expression
given by Lemma B.6 in the Appendix. Due to M number of local updates, we account for T ·M
steps for DP-Scaffold instead of T steps. Unlike (Koskela & Kulkarni, 2023), we do not consider the
privacy cost of tuning towards the final DP guarantee for simplicity. We fix δ to 1

N in all experiments.

J ADDITIONAL EXPERIMENTAL RESULTS

J.1 IMPACT OF VARYING THE LOCAL DATASET SIZE.

We have fixed |Di| = 500 in previous experiments. We would like to check the performance
consistency of all methods across the client dataset sizes.

Table 5 compares the mean accuracy at epoch 70 for the best model obtained after hyperparameter
tuning for several ε-values and different number of clients for IID FashionMNIST dataset and non-
IID Federated EMNIST. For Federated EMNIST, each client holds data of atmost 2 classes. We tune
the learning rate η and two clipping constants Cc, Cg for DP-FedFC.

For DP-FedNew, DP-FedNew-FC, DP-FedFC, and DP-Scaffold, we observe the expected accuracy
reduction as we increase n for ε < 1. DP-FedGD remains relatively unaffected by the variations in
the dataset sizes, possibly because client’s job is to only share the perturbed gradients with server,
and the number of gradient evaluations stay the same. However, accuracies for DP-SCAFFOLD are
still much worse than both DP-FedNew and DP-FedNew-FC even at ε = 10. The main conclusion
for FashionMNIST is that DP-FedNew or DP-FedNew-FC generally are the most accurate methods
for ε < 1, but get outperformed by DP-FedFC for ε ≥ 1. For non-IID Federated EMNIST on
the other hand, DP-FedNew-FC excels even for larger ε’s. DP-FedFC’s inferior run on non-IID
data can be explained by the fact that heterogeneity induced in the data division or data generation
process also changes the shape of the local covariance matrices. The sum of (noisy) local feature
covariance matrices aggregated at server could differ a lot from the actual global covariance matrix.
We compare user-level DP-FedNew and DP-FedFC in Figure 7. The summary is that DP-FedNew
is overall the most accurate method for user-level DP.

DP-FedFC’s higher accuracy for record-level DP comes at increased communication cost (under
secure aggregation), which is d2x + d · T for T training steps. At this communication cost, DP-
FedNew (and DP-FedNew-FC) can perform dx×dx

d = dx×dx

dx×c = ⌈dx

c ⌉ additional steps if required.
The factor ⌈dx

c ⌉ can be large when dx >> c. We remind that DP-FedNewton-FC only uses the local
covariance matrices for primal variable computations.
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Table 5: Effect of varying the local dataset size. The numbers in the ε columns report the mean
test accuracy after the final 70th epoch for the best model trained on IID FashionMNIST (top) and
non-IID Federated EMNIST (bottom) dataset obtained after tuning the hyperparameters mentioned
in Table 4. The layer sizes are 64× 10 and 100× 47. Note that DP-FedFC achieves higher accuracy
at the cost of higher communication.

ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.7 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 8 ϵ = 10
n |Di| method

20 3000 DP-FedNew 0.638 0.676 0.683 0.684 0.686 0.690 0.692 0.710 0.713
DP-FedNew-FC 0.643 0.678 0.676 0.683 0.683 0.687 0.683 0.685 0.688
DP-Scaffold 0.497 0.519 0.471 0.541 0.592 0.531 0.527 0.515 0.510
DP-FedFC 0.645 0.672 0.675 0.704 0.715 0.724 0.724 0.736 0.739
DP-FedGD 0.555 0.565 0.569 0.575 0.568 0.563 0.567 0.566 0.568

50 1200 DP-FedNew 0.643 0.679 0.683 0.687 0.689 0.689 0.690 0.708 0.714
DP-FedNew-FC 0.642 0.670 0.684 0.684 0.682 0.686 0.685 0.685 0.685
DP-Scaffold 0.427 0.543 0.570 0.586 0.601 0.603 0.611 0.611 0.611
DP-FedFC 0.635 0.668 0.671 0.704 0.717 0.724 0.725 0.739 0.739
DP-FedGD 0.561 0.571 0.572 0.571 0.572 0.575 0.571 0.569 0.568

100 600 DP-FedNew 0.608 0.675 0.686 0.686 0.687 0.691 0.691 0.710 0.713
DP-FedNew-FC 0.604 0.673 0.678 0.684 0.687 0.681 0.684 0.683 0.687
DP-Scaffold 0.346 0.494 0.549 0.575 0.595 0.605 0.607 0.615 0.615
DP-FedFC 0.638 0.667 0.672 0.704 0.716 0.723 0.725 0.739 0.738
DP-FedGD 0.561 0.569 0.574 0.578 0.578 0.569 0.577 0.572 0.569

250 240 DP-FedNew 0.601 0.679 0.683 0.687 0.687 0.690 0.691 0.708 0.716
DP-FedNew-FC 0.583 0.678 0.681 0.681 0.686 0.682 0.684 0.684 0.685
DP-Scaffold 0.340 0.452 0.451 0.511 0.483 0.493 0.482 0.513 0.492
DP-FedFC 0.641 0.667 0.675 0.705 0.717 0.723 0.725 0.735 0.739
DP-FedGD 0.574 0.568 0.577 0.575 0.576 0.572 0.568 0.569 0.569

500 120 DP-FedNew 0.575 0.654 0.682 0.688 0.688 0.690 0.691 0.708 0.713
DP-FedNew-FC 0.574 0.651 0.681 0.687 0.687 0.686 0.687 0.683 0.688
DP-Scaffold 0.331 0.418 0.464 0.470 0.531 0.585 0.597 0.607 0.606
DP-FedFC 0.634 0.667 0.672 0.705 0.716 0.723 0.725 0.739 0.740
DP-FedGD 0.560 0.571 0.572 0.569 0.568 0.578 0.579 0.574 0.575

ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.7 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 8 ϵ = 10
n |Di| method

47 1920 DP-FedNew-FC 0.390 0.489 0.527 0.556 0.582 0.613 0.622 0.628 0.629
DP-Scaffold 0.135 0.270 0.329 0.375 0.416 0.483 0.512 0.552 0.558
DP-FedFC 0.390 0.489 0.527 0.550 0.569 0.545 0.567 0.574 0.595
DP-FedGD 0.389 0.488 0.524 0.545 0.533 0.565 0.564 0.576 0.569

100 893 DP-FedNew-FC 0.383 0.481 0.548 0.552 0.584 0.610 0.619 0.626 0.627
DP-Scaffold 0.085 0.217 0.281 0.322 0.361 0.439 0.469 0.493 0.492
DP-FedFC 0.382 0.491 0.521 0.548 0.565 0.560 0.559 0.585 0.580
DP-FedGD 0.383 0.482 0.519 0.541 0.558 0.562 0.562 0.574 0.564

250 359 DP-FedNew-FC 0.376 0.491 0.533 0.557 0.582 0.614 0.621 0.628 0.631
DP-Scaffold 0.067 0.148 0.207 0.256 0.293 0.347 0.365 0.372 0.370
DP-FedFC 0.384 0.481 0.526 0.555 0.566 0.577 0.560 0.550 0.587
DP-FedGD 0.385 0.484 0.525 0.545 0.553 0.557 0.550 0.548 0.544

500 179 DP-FedNew-FC 0.384 0.462 0.539 0.568 0.593 0.620 0.631 0.639 0.649
DP-Scaffold 0.053 0.122 0.157 0.192 0.205 0.234 0.243 0.253 0.249
DP-FedFC 0.401 0.495 0.539 0.561 0.575 0.584 0.587 0.550 0.669
DP-FedGD 0.391 0.498 0.534 0.547 0.555 0.573 0.558 0.609 0.558
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J.2 RECORD-LEVEL DP RESULTS FOR LAYER SIZE 2048× 10.
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Figure 3: IID data: Record-level results for DP-FedNew-FC (DP-FN-FC in plots), DP-FedGD (DP-
FGD in plots), and DP-Scaffold. For each ϵ, we plot the test accuracies of the best model obtained
after hyperparameter tuning. The model size is 2048 × 10. Check Figure 6 for comparison with
DP-FedFC.
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J.3 USER-LEVEL DP EXPERIMENTS
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Figure 4: IID data: User-level results for DP-FedNew (DP-FN in plots), DP-Scaffold, and DP-
FedGD (DP-FGD in plots). For each ϵ, we plot the test accuracies of the best model obtained after
hyperparameter tuning. The model size is 64× 10. Check Figure 7 for comparison with DP-FedFC
on a layer size 2048× 10.
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Figure 5: Non-IID data: User-level results for DP-FedNew (DP-FN in plots) and DP-FedGD (DP-
FGD in plots). For each ϵ, we plot the test accuracies of the best model obtained after hyperparameter
tuning. The model sizes are 100× 47 and 60× 10.

30



Published as a workshop paper at ICLR 2024

J.4 COMPARISON WITH DP-FEDFC.
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Figure 6: IID data: Record-level results for DP-FedNew-FC (DP-FN-FC in plots), DP-FedFC (DP-
FFC in plots). For each ϵ, we plot the test accuracies of the best model obtained after hyperparameter
tuning. The model size is 2048× 10.
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Figure 7: IID data: User-level results for DP-FedNew-FC (DP-FN-FC in plots), DP-FedFC (DP-FFC
in plots). For each ϵ, we plot the test accuracies of the best model obtained after hyperparameter
tuning. The model size is 2048× 10.
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