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ABSTRACT

What is music style? Though often described using text labels such as “swing,”
“classical,” or “emotional,” the real style remains implicit and hidden in concrete
music examples. In this paper, we introduce a cross-modal framework that learns
implicit music styles from raw audio and applies the styles to symbolic music
generation. Inspired by BLIP-2, our model leverages a Querying Transformer (Q-
Former) to extract style representations from a large, pre-trained audio language
model (LM), and further applies them to condition a symbolic LM for generating
piano arrangements. We adopt a two-stage training strategy: contrastive learning
to align auditory style with symbolic expression, followed by generative mod-
elling to perform music arrangement. Our model generates piano performances
jointly conditioned on a lead sheet (content) and a reference audio example (style),
enabling controllable and stylistically faithful arrangement. Experiments demon-
strate the effectiveness of our approach in piano cover generation, style transfer,
and audio-to-MIDI retrieval, achieving substantial improvements in style-aware
alignment and music qualityﬂ

1 INTRODUCTION

Automatic music generation is often controlled by explicit content such as melody, chords, and text
labels (Yang et al.| |2019; Wang et al., 2020b; Lu et al.| 2023} Bhandari et al.| 2025)), but music
concepts can be more nuanced than we often realize. When musicians learn a style, instead of
relying on abstract definitions like “romantic” or “jazz” alone, they absorb patterns from music
examples that share common stylistic traits. The commonality across these examples forms a style,
an implicit one that cannot be fully described with words or labels but only understood through the
music itself. This paper explores how such implicit style can be internalized from music examples
and used to control music generation in a deep learning framework.

Large-scale music language models (music LMs) have shown strong capabilities in learning explicit
music content, as demonstrated by probing studies (Wei et al., 2024; Ma & Xia) 2024} Ma et al.,
2024; \Vasquez et al., [2024; [Castellon et al.l 2021)) and adapter-based designs (Lin et al., |2024aj
Zhang et al., [2024; Lin et al.| 2024b; Wu et al.| 2024). Yet, control over implicit style remains
limited. For example, when using audio to guide symbolic music generation, existing models can
extract melody and chords (Donahue et al., 2022 [Wang et al.}[2022), but capturing stylistic traits like
comping patterns or voicing preferences remains a greater challenge. This requires disentangling
style from music content, which current music LM-based studies have yet to explore.

In this paper, we explore learning implicit music style in a cross-modal setting for symbolic piano
arrangement. Our goal is to generate an arrangement conditioned on two inputs: an audio example
(providing style) and a lead sheet (melody and chords as content). To achieve this, we connect pre-
trained music LMs in the audio and symbolic domains using a Querying Transformer (Q-Former),
a lightweight Transformer originally designed for vision-language alignment (L1 et al., 2023)). As
shown in Figure[I] we extend its role to capture implicit music style, extracting a style representation
from the hidden states of an audio LM. A symbolic LM then conditions on this representation, along
with the content of the lead sheet, to generate an arrangement. The Q-Former enables style transfer
between two large unimodal LMs without re-training them—a process we refer to as bootstrapping.

'"Demo page: |https://anonymous55aht .github.io/
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Figure 1: A Q-Former module bridges the modality gap between a frozen audio LM and a symbolic
music LM. It extracts cross-modal music style from the hidden representations of the audio LM
and, together with a lead sheet providing music content, conditions the symbolic LM for piano
arrangement. The Q-Former is trained in a two-stage process, effectively bootstrapping audio-to-
symbolic arrangement without re-training either LM backbone.

In our design, we treat the Q-Former as a bottleneck to transfer only style-related information and
adopt a two-stage training strategy. The first stage employs contrastive learning, training the Q-
Former to extract auditory representations that are musically relevant, expressible in symbolic piano
composition, and independent of explicit music content. The second stage focuses on generative
modeling, where the Q-Former’s output conditions the symbolic LM to arrange the desired piano
performance. We show that the complete system generates more stylistically accurate cover songs
compared to existing audio-to-symbolic arrangement methods, while also enabling piano style trans-
fer by conditioning on audio examples. In addition, we demonstrate that the Q-Former can also be
applied to audio-to-symbolic retrieval, further highlighting its strength as a general-purpose cross-
modal representation learner.

In summary, the contributions of this paper are threefold:

1. We use the Q-Former to align audio and symbolic modalities through implicit music
style, extending its role beyond content alignment in vision-language tasks.

2. We present a new methodology to disentangle music style from large, pre-trained LMs,
offering a more scalable alternative to traditional latent-variable disentanglement methods.

3. Our model achieves style-aware audio-to-symbolic piano cover arrangement. Experi-
ments demonstrate that it outperforms existing audio-to-symbolic models, including both
disentanglement-based methods and standard LM approaches.

2 RELATED WORKS

We review two areas of key relevance. Section [2.1] discusses recent advances in LMs for music
generation. Section[2.2]focuses on piano cover generation, the primary task addressed in this paper.

2.1 Music LANGUAGE MODELS

Rapid progress in large-scale language models has transformed how we interact with various forms
of media, including text, image, and music (Touvron et al., 2023} |Alayrac et al., 2022; |Li et al.,
2023; Kong et al., 2024} |Yuan et al., 2025). In particular, large music LMs (Agostinelli et al., 2023
Melechovsky et al.l 2024; |Thickstun et al., |2024; Bhandari et al., |2025) have notably influenced
creative practices and user experiences. Models like MusicGen (Copet et al., [2023) can generate
music audio with rich timbres directly from text, while MuseCoco (Lu et al.| 2023) produces sym-
bolic compositions with well-structured textures in varied genres. These advancements are driven
by training large-scale neural networks on extensive data, scaling up to billions of model parameters
to enhance controllability and musicality.

Despite these successes, most existing music LMs operate in an unimodal setting, focusing solely on
either audio or symbolic representations. Although text-to-music generation has been increasingly
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effective (Agostinelli et al., 2023} Melechovsky et al.| 2024} Bhandari et al.|, |2025)), text descriptions
may fall short in expressing nuanced style or performance subtlety. In contrast, our work explores a
cross-modal framework that bridges audio and symbolic modalities. By leveraging the strong per-
ceptual understanding of audio LMs and the expressive composition capabilities of symbolic LMs,
we bootstrap a system for audio-to-symbolic arrangement. This approach enables more intuitive and
fine-grained control over music style beyond what can be conveyed through text alone.

2.2 PIANO COVER GENERATION

Piano cover generation aims to reinterpret an audio recording as a symbolic piano performance.
Unlike traditional music transcription, which primarily analyses note-level content such as pitch and
timing (Kong et al.|, [2021}; |Ou et al., |2022; (Gardner et al., [2022; |Gu et al.| 2024} [Zeng et al.| |2024),
a piano cover often targets higher-level, more structured music elements that shape the feel of a
performance. The goal is to generate symbolic arrangements that not only sound correct but also
feel musically aligned with the original audio.

Existing approaches to piano cover generation often leverage pre-trained transcription models, pri-
marily extracting melodic and harmonic content from the audio (Nakamura & Yoshiil, [2018}; |Tan
et al., 2024bfal [Wang et al., 2022; |(Choi & Lee, 2023). However, such models tend to overlook
stylistic nuances, resulting in outputs accurate in harmony but lacking the expressive character of
the source performance. In this paper, we re-frame piano cover generation through the lens of
content-style disentanglement, acquiring content in the symbolic form (i.e., melody and chord pro-
gression) while learning style from the audio. This approach bridges the audio-symbolic gap more
effectively, capturing not just what is played, but how it is played.

3 METHOD

Our goal is to learn music style representations from the audio and leverage these representations to
arrange symbolic piano performances. To bridge the modality gap from audio to symbolic music,
we adopt the Q-Former (Li et al., 2023) under a two-stage training strategy. As shown in Figure [2]
Stage 1 focuses on audio-symbolic representation learning with a frozen audio LM, while Stage 2
addresses audio-to-symbolic arrangement with a symbolic LM. In Section we first introduce
our audio-symbolic data pairing method that facilitates style learning. We illustrate the Q-Former
architecture in Section[3.2] followed by the two-stage training procedure in Sections [3.3]and [3.4]

3.1 DATA PAIRING FOR STYLE LEARNING

Training an audio-to-symbolic alignment model requires paired audio—MIDI data. In this work,
we use 10-second audio clips paired with 4-bar MIDI segments. Since our goal is to capture style
rather than low-level note transcription, we construct the pairs to be loosely aligned. Specifically,
for each audio clip, we select a MIDI segment near its center with a random temporal shift of up
to £1 second, and we randomly transpose the MIDI into all 12 keys. This design assumes that
musical style is locally consistent, while discouraging the model from memorizing exact note-to-
note correspondences. In the following sections, we show that the two-step training method enables
the model to abstract style features that are shared between the modalities.

We represent music audio as raw waveforms sampled at 32kHz. MIDI is tokenized into note event
sequences quantized at 1/12-beat resolution. We include various symbolic features including time
signature (quadruple and triple meters), tempo curve, note pitch, duration, and velocity.

3.2 Q-FORMER ARCHITECTURE

The Q-Former is a Transformer encoder with two parallel, modality-specific streams that share the
self-attention layers. As shown in Figure[2a] it accepts audio and symbolic inputs and learns a cross-
modal music style representation. The left stream interacts with the audio LM to extract auditory
music features. The right stream encodes symbolic music tokens. A set of querying embeddings
(queries), randomly initialized, is fed to the left stream and serves as the bridge between the two
modalities. At test time, the left stream is retained to extract cross-modal style directly from audio.
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(a) Stage 1: Cross-modal learning with Q-Former. (b) Stage 2: Audio-to-symbolic arrangement.

Figure 2: Overview of the two-stage framework. (Left) Stage 1: The Q-Former is a Transformer
encoder with two parallel, modality-specific streams (audio and symbolic). Both streams are used
during training for cross-modal alignment, while only the audio stream is retained at test time. It
extracts a cross-modal music style representation Z via cross-attention to an audio LM. (Right)
Stage 2: A symbolic music LM further generates piano arrangements conditioned on (i) the style
embedding Z obtained from the Q-Former and (ii) a lead sheet providing music content.

We initialise the Q-Former weights using the pre-trained MusicBERT-Base model (Zeng et al.,
2021). The added cross-attention layers are randomly initialised. Following Blip-2 (Li et al.l[2023),
we use 32 queries with dimension 768. Symbolic notes are embedded in the OctMIDI format (Zeng
et al.,[2021)), which learns a joint note-wise embedding by summing up the embeddings of individual
note attributes. Overall, the Q-Former comprises 186M parameters, including the learnable queries
and symbolic note embeddings.

3.3 STAGE 1: AUDIO-SYMBOLIC REPRESENTATION LEARNING

We integrate the Q-Former into MusicGen (Copet et al.|(2023)), one of the leading audio LMs avail-
able today. The queries interact with audio hidden states through cross-attention while remaining
connected to the symbolic stream via shared self-attention layers. However, relying solely on loosely
aligned data is insufficient for learning robust style representations, since no direct content-level
correspondence exists between the audio and symbolic streams (see Section [3.1]). To prevent repre-
sentation collapse and encourage meaningful style abstraction, we introduce three complementary
training losses, each paired with a tailored self-attention mask that regulates cross-modal interac-
tions. These objectives are illustrated in Figure [2a]and detailed below.

The primary objective is Audio-Symbolic Contrastive Learning, which enforces a higher audio-
symbolic similarity for positive pairs (i.e., originally aligned pairs) compared to negative ones (i.e.,
randomly paired audio and MIDI clips). Let Z € R32*7%% be the query outputs from the audio
stream of Q-Former, and t € R!*768 be the output embedding of the start token (<s>) from the sym-
bolic stream. We define the audio-symbolic similarity as maxy(cos(Zg,t)) for k = 1,2,---,32,
where cos(+, -) denotes the cosine similarity. The contrastive loss pulls closer aligned audio and
symbolic clips in the representation space, while pushing apart unrelated pairs. To prevent informa-
tion leakage, we employ a unimodal self-attention mask, ensuring queries and symbolic notes do not
attend to each other. For detailed mask design, we refer readers to BLIP-2 (L1 et al., [2023).

The second objective is Audio-Symbolic Matching. It is formulated as a binary classification task,
where the model predicts whether a given audio-symbolic pair corresponds to each other. On top
of contrastive loss, the matching loss aims to capture a finer cross-modal correspondence. In this
case, we apply no masking, allowing the queries to attend across modalities. Each query output Z;
is fed into a binary linear classifier to produce a logit, and the logits from all queries are averaged to
compute the final matching score. To create informative negative pairs, we employ the hard negative
mining strategy in (Li et al.| 2021).

The final objective, Audio-Grounded Symbolic Generation, trains the Q-Former to auto-
regressively generate piano arrangement conditioned on an input audio and lead sheet. We im-
plement a cross-model causal self-attention mask, allowing the symbolic notes to see the queries but
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not vice versa. This generative loss enforces alignment between the query-extracted auditory style
and its symbolic realization. To signify a decoding task, we replace the starting <s> token with a
<DEC> token prepended by a sequence of lead sheet note embeddings.

3.4 STAGE 2: AUDIO-TO-SYMBOLIC GENERATIVE MODELING

In the generative modelling stage, we take advantage of the generative capability of MuseCoco (Lu
et al.| [2023), a large-scale symbolic music LM. As illustrated in Figure @ MuseCoco is used to
reconstruct a piano arrangement based on two concatenated conditional inputs: 1) the query output
embeddings Z from the Q-Former, and 2) a lead sheet. The Q-Former is pre-trained at Stage 1
to extract cross-modal music style from the audio, thus providing style guidance. The lead sheet
defines the theme melody and harmony as the content.

To enable compatibility with MuseCoco, we project Z into the same embedding dimension as
MuseCoco’s token embeddings via a linear layer. Symbolic note tokens are converted into the REMI
format (Huang & Yang] [2020). Despite the slightly different tokenizations used across stages, we
find that the latent representations learned in Stage 1 remain compatible with Stage 2. Since MuseC-
oco does not natively support lead sheet conditioning, and the inclusion of the lead sheet alters its
input format, we insert a LoRA adapter (Hu et al., [2022) of rank 16 into each self-attention layer.
This enables the model to reweight attention and incorporate the new conditioning inputs, while
keeping MuseCoco itself frozen.

4 ARRANGEMENT DEMONSTRATION

In this section, before presenting experiments, we first demonstrate the performance of our audio-
to-symbolic arrangement model under freely manipulated audio style references. Figure |3a] shows
an 8-bar lead sheet excerpt from the musical The Sound of Music. The selected passage features
harmonically rich chords, including diminished and seventh chord qualities, which present suitable
complexity for arrangement experiments. Figures[3b]to[3d|showcase the arrangement results condi-
tioned on varied audio references. The 8-bar arrangement is generated using windowed sampling,
wherein a 4-bar context window progresses forward every 2 bars and continues sampling condi-
tioned upon the preceding 2 bars.

Figure [3b/shows the piano cover from the original The Sound of Music soundtrack which features
lush orchestration dominated by string ensembles. Our arrangement captures this orchestral essence
through dense, block-chord voicing that emulates the sonority of string sections. Additionally, orna-
ments such as arpeggios and trills are found to complement the sweeping harmonic textures, which
contributes to the music’s free-flowing character.

Figure |3c| shows an arrangement conditioned on the ragtime classic The Entertainer Following
the audio recording, the arrangement’s tempo is “not fast,” and the piano texture distinctly adopts
a ragtime rhythm, featuring steady bass notes on downbeats and syncopated chordal accents on
upbeats.

Figure [3d| shows an arrangement conditioned on the bossa nova piece The Girl from Ipanemal| In
this interpretation, the arrangement is characterized by a moderate tempo and distinctive left-hand
syncopated patterns characteristic of the bossa nova genre.

Across all three piano arrangements, while distinct music styles are effectively captured from the
audio references, the theme melody and harmonic structures remain faithfully preserved. In Figure[3]
we highlight melody notes preserved from the lead sheet using blue note heads.

Additional examples are available on our demo page, including arrangements in a wider range of
classical, jazz, and pop styles applied to well-known lead sheets, illustrating the flexibility of both
style and lead sheet control.

2Original audio: https://youtu.be/6f0T6UV-HiI&t=57
3Ragtime audio: https://youtu.be/JK1fNfRZLIT&t=11
*Bossa nova audio: https://youtu.be/DvA_wDOVD10&t=12


https://youtu.be/6f0T6UV-HiI&t=57
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Figure 3: Audio-to-symbolic arrangement for an 8-bar excerpt from The Sound of Music. Score is
manually engraved from MIDI for visualisation purpose. Figures[3b|to[3d|are arranged based on the
lead sheet in[3a] and an audio reference from the original soundtrack, a ragtime piece, and a bossa
nova piece, respectively. Preserved music contents are highlighted in blue note heads. Synthesized
audio is provided on the demo page: https://anonymous55aht.github.io/|

5 EXPERIMENTS

This section evaluates our audio-to-symbolic arrangement model, focusing on whether it can transfer
audio-derived style while preserving lead-sheet content. Because there is no established benchmark
for measuring audio style in symbolic outputs, we cast evaluation primarily as audio-conditioned
cover song arrangement, which enables comparison to prior baselines. We hypothesize that stronger
style capture improves overall arrangement quality. As a complementary analysis, we further assess
the learned audio—symbolic representations via retrieval-based comparisons and ablations.

In Section we introduce the datasets used in the experiments. In Section we describe the
baseline models used for comparison. Our evaluation is divided into two parts: objective evaluation
in Section and subjective evaluation in Section Finally, Section extends the evalua-
tion to audio-to-symbolic retrieval, highlighting the Q-Former’s broader capability in cross-modal
alignment. More details for model configuration and training are covered in the Appendix [A]

5.1 DATASETS

Our model is trained on two dual-modal datasets: POP909 (Wang et al.| |2020a) and PIAST (Bang
et al., [2024). POP909 contains 1K piano cover arrangements created by professional musicians.
The music genre is primarily Mandarin pop, while the accompanying audio features diverse band
instrumentation, which can help the model learn generalizable audio representations of pop music.
PIAST, on the other hand, contains 8K piano recordings along with symbolic transcriptions across
a variety of genres, including pop, jazz, and classical. Despite the lack of band instrumentation
in the piano recording, the genre diversity encourages the model to produce more expressive and
stylistically varied performances. We split both datasets at song level into training (90%), validation
(5%), and test (5%) sets. Each symbolic MIDI file is clipped into 4-bar segments with a 2-bar hop
size, transposed to all 12 keys, and center-aligned with the corresponding 10s audio clip.
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Table 1: Objective evaluation on audio-to-symbolic coherence. Ballroom/GTZAN are out-of-
distribution sets to assess cross-domain arrangement capabilities.

POP909 Ballroom/GTZAN
Acc@5 (%) Rank | Acc@5 (%) T Rank |
Ours 271 +1.2 16.3 £ 0.3 214 £0.6 30.2+0.3
PCG2 23.6+1.3 16.7 £0.3 21.7 £ 09 31.3+ 0.6
A2M 184 £1.5 182+0.3 19.6 £0.8 30.6 £ 04
w/o PT 242 + 1.1 169+ 0.3 18.1 +0.1 33.1+05

We also test on two out-of-domain datasets: Ballroom (Krebs et al., 2013) and GTZAN (Dittmar
et al., 2015). Both datasets feature audio recordings with diverse band and orchestral instrumen-
tation, as well as fine-grained music genres such as jive and bossa nova. Since they lack paired
symbolic annotations, we use them for testing only. This allows us to assess the model’s generaliza-
tion ability and its capacity to accommodate styles beyond pop music.

5.2 BASELINE MODELS

We compare our model against two representative piano cover generation models: PiCoGen2 (Tan
et al.,2024a) and Audio-to-MIDI (Wang et al.}2022), as well as one ablation variant of our method.

PiCoGen2 (PCG2) is a Transformer-based language model that builds on the hidden representations
of Sheetsage, which itself is derived from Jukebox (Dhariwal et al., 2020), a large-scale music
language model. Leveraging Jukebox’s internalized understanding of music content, PiCoGen2
generates symbolic piano arrangements directly from audio.

Audio2MIDI (A2M) is a disentanglement framework, using separate modules to extract piano tex-
ture and chord from the audio. The texture extractor is initialized from a pre-trained piano transcrip-
tion model (Hawthorne et al.| [2018). The extracted components are then merged to form a piano
arrangement.

QOurs w/o Pre-Training (w/o PT) is an ablation variant of our model in which the Q-Former is
trained directly in Stage 2, without undergoing the representation learning phase in Stage 1. This
setup tests the validity of the two-stage training strategy we applied in this work.

To ensure a fair comparison with baseline models, we use Sheetsage (Donahue et al.,[2022;|Donahue
& Liang| [2021)) to transcribe lead sheets from the audio, making audio the sole input for all methods.

5.3 OBIJECTIVE EVALUATION

We first evaluate our model’s performance in terms of audio-to-symbolic coherence, specifically
assessing how well the generated piano covers preserve the style from the original audio. To do this,
we leverage CLaMP3 (Wu et al.l 2025)) as a cross-modal retriever. For each test audio, CLaMP3
computes the similarity between the audio and all generated symbolic piano covers. If the most
similar symbolic candidate corresponds to the one generated from the audio input, we count it as a
correct match. Based on this setup, we report two metrics: 1) Top-5 Retrieval Accuracy (Acc@5):
the proportion of audio inputs for which the correct symbolic output is ranked within the top 5.
Higher values indicate stronger coherence; 2) Mean Rank: the average rank position of the correct
audio-symbolic pair across all candidates. Lower values indicate better alignment.

We consider two evaluation settings: 1) in-distribution evaluation on the POP909 dataset, and 2) out-
of-distribution evaluation on 100 tracks randomly drawn from the Ballroom and GTZAN datasets,
which can reflect the model’s generalization to unseen genres and instrumentation. We use 16-
bar audio excerpts for evaluation on POP909, and full 30s audio clips for Ballroom and GTZAN.
Each model is evaluated over 10 independent runs, and we report the mean and standard error. As
shown in Table [T} our model consistently outperforms all baselines on POP909 by a clear margin.
On the testing-only Ballroom/GTZAN datasets, it also achieves a substantially lower Mean Rank,
demonstrating strong generalization across styles and genres. In comparison, the w/o PT variant
surpasses PCG2 and A2M on POP909 but fails on Ballroom/GTZAN, confirming that our Q-Former
pre-trained at Stage 1 is crucial for effective style transfer and cross-modal piano arrangement.
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Figure 4: Subjective evaluation on music quality, conducted on Ballroom and GTZAN datasets to
assess the musicality for diverse music genres and styles.

5.4 SUBJECTIVE EVALUATION

We further conduct a double-blind online listening survey to evaluate the music quality. The survey
comprises 6 test pieces of varied genres drawn from the Ballroom and the GTZAN datasets. Each
test piece is accompanied by 4 piano covers interpreted by our model and each baseline model. For
each model, we select the best result from 3 generated samples. All samples are 16 bars long and
rendered to audio using the Cakewalk TTS-1 soundfont, resulting in "40s audio per sample. Both the
order of the test pieces and the order of samples are randomized. Participants are asked to complete
3 test pieces by rating each piano cover on a 5-point Likert scale across 4 criteria: 1) Audio-to-
Symbolic Coherence, 2) Naturalness, 3) Creativity, and 4) Overall Musicality.

A total of 21 participants with diverse musical backgrounds completed our survey. The average
completion time is 12 minutes. Figure 4|shows the mean ratings and standard errors analyzed using
within-subject ANOVA 1999). The analysis reveals significant main effects (p < 0.05)
across all evaluation criteria. While our model performs comparably to the state-of-the-art PCG2 in
Naturalness, it consistently receives higher ratings than the baselines across all criteria. A Bonferroni
post-hoc test further confirms that our model significantly outperforms all baselines in Coherence
and Musicality. These results align with the objective evaluation and demonstrate that our model
captures music style more effectively and produces coherent, high-quality piano cover arrangements.

5.5 EVALUATION ON AUDIO-TO-SYMBOLIC ALIGNMENT

While the Q-Former bridges the modality gap for audio-to-symbolic arrangement, it can also operate
independently as an audio-to-symbolic retriever. In this setting, the Q-Former measures stylistic co-
herence between an audio clip and a symbolic segment by comparing their learned representations.
Given an audio query and a set of symbolic candidates, the model can retrieve the symbolic piece
that best aligns with the music style of the query audio. To the best of our knowledge, CLaMP3
is the only existing model with an audio-to-symbolic alignment capability, and we aim
to evaluate whether our approach can achieve superior performance.

5.5.1 AUDIO-TO-SYMBOLIC RETRIEVAL

To assess the alignment capability of the Q-Former, we evaluate it after Stage-1 training on the
audio-to-MIDI retrieval task. In each of 10 independent runs, we construct a test set of 128 pairs
of 10-second audio and 4-bar MIDI, randomly sampled from PIAST and POP909 (64 pairs each).
For each audio query, the model is tasked with retrieving its corresponding MIDI segment from the
full pool of 128 candidates. We consider two evaluation settings: one in which MIDI candidates are
randomly transposed to all 12 keys, and the other without transposition. This setup helps us examine
the model’s robustness in capturing stylistic features beyond absolute pitch and key. Performance
is measured using three metrics: Top-1 Accuracy (Acc@1), Top-5 Accuracy (Acc@5), and Mean
Rank. We report the mean and standard error across the 10 resampled runs.

As shown in Table 2] we compare our model against CLaMP3 in addition to a random guessing
bot for sanity check. In CLaMP3, audio and MIDI are aligned indirectly via text due to the greater



Under review as a conference paper at ICLR 2026

Table 2: Objective evaluation on audio-to-MIDI retrieval. Results are compared against baseline
models and across two evaluation settings: MIDI with random transposition (left) and without trans-
position (right), highlighting robustness in capturing stylistic features beyond absolute pitch and key.

w/o Transposition w/ Random Transposition
Acc@1 (%) 1T Acc@5 (%) T Rank 1 Acc@1 (%) T Acc@5 (%) 1T Rank 1
Random 14+03 4.8+0.8 64.4+ 1.7 0.7+0.2 42405 654+ 1.0
CLaMP 34404 15.0+ 0.6 425402 34+04 11.0 £ 0.6 48.5+0.3
Ours 714+ 1.5 95.1 +0.5 2.1+0.1 702+ 1.5 94.8 + 0.5 2.1+0.1

Table 3: Ablation study on individual pre-training objectives for cross-modal alignment.

PIAST POP909
Acc@1 T Rank | Acc@1 T Rank |
C 96.7+03 1.8£02 362+13 52403

C+M 97.2+04 16=+£02 408+09 50404
C+M+G 97.1£03 1.7+£02 447+14 47+04

availability of music—text pairs in both domains. While this indirect alignment allows CLaMP3 to
perform substantially better than random guessing, its Top-1 accuracy remains low. Interestingly,
transposing the MIDI candidates has a noticeable effect, leading to a 4-point drop in Acc@5 and a
6-rank increase in Mean Rank. We presume this is because key signatures are frequently referenced
in text descriptions of music, making CLaMP3 particularly sensitive to pitch-level features while
struggling to capture finer stylistic nuances. In comparison, our model consistently outperforms
CLaMP3 across all metrics and exhibits negligible performance differences between the transposed
and non-transposed settings. This demonstrates that our Q-Former learns more robust audio-to-
symbolic alignments, effectively capturing stylistic coherence beyond surface-level attributes.

5.5.2 ABLATION STUDY ON PRE-TRAINING OBJECTIVES

We are also interested in the contribution of each pre-training objective in Section[3.3]to cross-modal
alignment. We conduct an ablation study on the Q-Former’s audio-to-MIDI retrieval performance
based on three different pre-training configurations: contrastive loss only (C), contrastive + matching
losses (C+M), and contrastive + matching + generative losses (C+M+G). As in the previous section,
we repeat our experiment over 10 independent runs on 128 resampled audio-MIDI pairs.

As shown in Table[3] we conduct evaluation separately on PIAST and POP909. The former involves
piano-only music, while the latter includes multi-instrumental accompaniments, requiring the model
to extract style from richer audio textures. We observe that the performance difference is relatively
small on PIAST, suggesting that contrastive learning alone may suffice for simpler piano alignment.
However, on POP909, we see both the matching and generative losses contribute meaningfully to
improved retrieval accuracy and lower mean rank. These findings indicate that all three objectives
are important for learning robust, generalizable cross-modal alignment.

6 CONCLUSION

In this paper, we introduce a cross-modal framework for audio-to-symbolic arrangement. By repur-
posing the Q-Former to align audio and symbolic modalities, our model extracts and applies implicit
music style using pre-trained music LMs, enabling expressive piano arrangement conditioned on
both a lead sheet and an audio reference. Through a two-stage training process—combining repre-
sentation learning and generative modeling—we extract stylistic features from a frozen, large audio
LM and guide a symbolic LM without re-training either backbone. We conduct quantitative experi-
ments on piano cover generation and provide qualitative demos of style transfer. Results demonstrate
improved audio-to-symbolic coherence and musicality, highlighting the potential of this framework
for controllable, style-aware music generation beyond explicitly labeled content.
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7 ETHICS STATEMENT

We confirm that our work adheres to the ICLR Code of Ethics. Datasets used in this study are open-
source with appropriate licenses: the POP909 dataset under MIT license and the PIAST dataset
under CC-BY-NC 4.0 license. Our subject evaluation was conducted through online crowdsourcing,
which bears minimal risk. Participants were informed that participation was voluntary and that they
could withdraw at any time without negative consequences. No personally identifiable information
was collected. Further details of the subjective evaluation setup are described in Section 4.4.3.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Section 4 provides a detailed
description of our experimental setup, including the datasets (Section 4.1) and model configurations
(Section 4.2). Note that, due to copyright restrictions, the audio portion of POP909 is not publicly
distributed. We obtained it by directly contacting the original authors. For objective experiments,
we repeated each experiment 10 times and report the mean and standard error of the mean. For
subjective evaluation, we applied within-subject ANOVA followed by post-hoc paired t-tests. To
further facilitate reproducibility, we will release our implementation code upon publication.
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A  MODEL CONFIGURATION AND TRAINING DETAILS

We use MusicGen-Large (Copet et al., [2023) as our audio LM. We discard the text encoder and
retain only the music decoder, a 48-layer Transformer. Audio codecs are fed to the decoder and we
extract the hidden representations from the 25th layer, as prior probing studies (Wei et al., 2024; Ma
et al.| 2024; [Vasquez et al., 2024; |Castellon et al., 2021) suggest that middle layers capture more
musically meaningful features. This setup retains 1.7B frozen parameters from MusicGen.

For symbolic music arrangement, we adopt MuseCoco-xLarge (Lu et al.} 2023)), which is a 24-layer
Transformer decoder pre-trained on large-scale symbolic music corpora. We remove its text-related
components and keep 1.2B frozen parameters from the music decoder.

The Q-Former comprises 186M learnable parameters, which is significantly smaller than the billion-
scale backbone models. In Stage 1, it is pre-trained in FP16 using batch size 128 for 10 epochs (130K
iteration). The LoRA adaptor in Stage 2 adds SM parameters and we fine-tune the model for another
5 epochs using batch size 32. Both training stages are conducted on four RTX A40 GPUs (48GB
each). We use the AdamW optimizer (Loshchilov & Hutter, |2019) with an initial learning rate of
le-4, a linear warm-up over the first 1k steps, and a cosine decay schedule to a final rate of le-5. At
test time, we use top-k sampling with £ = 15.

B LIMITATION

Our proposed method demonstrates the ability to learn implicit music style from audio. At the
current stage of this work, we acknowledge that the extracted style primarily represents global music
characteristics. The finer, time-varying structures are not yet explicitly modeled. This limitation
arises in part from our audio-to-symbolic formulation, which arranges a 4-bar piano performance
globally conditioned on a 10-second audio reference. Although longer-range generation can be
achieved by windowed sampling, it may still fail to capture the structured evolution of stylistic traits
spanning multiple sections. Nevertheless, our framework represents a significant step forward in
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improving audio-symbolic coherence, which lays a solid foundation for future advancements. Also,
subject to the availability of audio-symbolic data, this work is dedicated to piano arrangement. The
cross-modal arrangement of long-term, multi-track music would be a more challenging topic, which
points to opportunities for future exploration.
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