

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING MUSIC STYLE FOR PIANO ARRANGEMENT THROUGH CROSS-MODAL BOOTSTRAPPING

Anonymous authors

Paper under double-blind review

ABSTRACT

What is music style? Though often described using text labels such as “swing,” “classical,” or “emotional,” the real style remains implicit and hidden in concrete music examples. In this paper, we introduce a cross-modal framework that learns implicit music styles from raw audio and applies the styles to symbolic music generation. Inspired by BLIP-2, our model leverages a Querying Transformer (Q-Former) to extract style representations from a large, pre-trained audio language model (LM), and further applies them to condition a symbolic LM for generating piano arrangements. We adopt a two-stage training strategy: contrastive learning to align auditory style with symbolic expression, followed by generative modelling to perform music arrangement. Our model generates piano performances jointly conditioned on a lead sheet (content) and a reference audio example (style), enabling controllable and stylistically faithful arrangement. Experiments demonstrate the effectiveness of our approach in piano cover generation, style transfer, and audio-to-MIDI retrieval, achieving substantial improvements in style-aware alignment and music quality.¹

1 INTRODUCTION

Automatic music generation is often controlled by *explicit* content such as melody, chords, and text labels (Yang et al., 2019; Wang et al., 2020b; Lu et al., 2023; Bhandari et al., 2025), but music concepts can be more nuanced than we often realize. When musicians learn a style, instead of relying on abstract *descriptors* like “romantic” or “jazz” alone, they absorb patterns from music examples that share common stylistic traits. The commonality across these examples forms a style, an *implicit* one that cannot be fully described with words or labels but only understood through the music itself. *This paper studies such implicit style qualities, particularly regarding grooving patterns and dynamics in piano performances, where abstract descriptors often oversimplify their richness, even though they are immediately perceivable in audio.* We explore how such implicit style can be internalized from given audio examples and control music generation in a deep learning framework.

Large-scale music language models (music LMs) have shown strong capabilities in learning explicit music content, as demonstrated by probing studies (Wei et al., 2024; Ma & Xia, 2024; Ma et al., 2024; Vásquez et al., 2024; Castellon et al., 2021) and adapter-based designs (Lin et al., 2024a; Zhang et al., 2024; Lin et al., 2024b; Wu et al., 2024). Yet, control over implicit style remains limited. For example, when using audio to guide symbolic music generation, existing models can extract melody and chords (Donahue et al., 2022; Wang et al., 2022), but capturing stylistic traits like *the rhythmic feel and more expressive nuances* remains a greater challenge. This requires disentangling style from music content, which current music LM-based studies have yet to explore.

In this paper, we explore learning implicit music style in a cross-modal setting for symbolic piano arrangement. Our goal is to generate an *expressive piano MIDI performance* conditioned on two inputs: an audio example (providing style) and a lead sheet *MIDI score* (melody and chords as content). To achieve this, we connect pre-trained music LMs in the audio and symbolic domains using a Querying Transformer (Q-Former), a lightweight Transformer originally designed for vision-language alignment (Li et al., 2023). As shown in Figure 1, we extend its role to capture implicit music style, extracting a *style representation* from the hidden states of an audio LM. Then, a

¹Demo page: <https://anonymous55aht.github.io/>

Figure 1: A Q-Former module bridges the modality gap between a frozen audio LM and a symbolic music LM. It extracts cross-modal music *style* from the hidden representations of the audio LM and, together with a lead sheet providing music *content*, conditions the symbolic LM for piano arrangement. The Q-Former is trained in a two-stage process, effectively bootstrapping audio-to-symbolic arrangement without re-training either LM backbone.

symbolic LM conditions on this representation, along with the *content* of the lead sheet, to generate a piano arrangement. The Q-Former enables **cross-modal** style transfer between two large unimodal LMs without re-training them—a process we refer to as *bootstrapping*.

In our design, we treat the Q-Former as a bottleneck to transfer only style-related information and adopt a two-stage training strategy. The first stage employs contrastive learning, training the Q-Former to extract auditory representations that are musically relevant, expressible in symbolic piano arrangements, and independent of explicit music content. **These include accompaniment textures, grooving patterns, and performance dynamics (MIDI velocity contour and tempo).** The second stage focuses on generative modeling, where the Q-Former’s output conditions the symbolic LM to **generate a piano arrangement with the desired expression**. We show that the complete system generates more stylistically accurate cover songs compared to existing audio-to-symbolic arrangement methods, while also enabling piano style transfer by conditioning on **alternative** audio examples. In addition, we demonstrate that the Q-Former can also be applied to audio-to-symbolic retrieval, further highlighting its strength as a general-purpose cross-modal representation learner.

In summary, the contributions of this paper are threefold:

1. We use the Q-Former to **align audio and symbolic modalities through implicit music style**, extending its role beyond content alignment in vision-language tasks.
2. We present a **new methodology to disentangle music style from large, pre-trained LMs**, offering a more scalable alternative to traditional latent-variable disentanglement methods.
3. Our model achieves **style-aware audio-to-symbolic piano cover arrangement**. Experiments demonstrate that it outperforms existing audio-to-symbolic models, including both disentanglement-based methods and standard LM approaches.

2 RELATED WORKS

We review two areas of key relevance. Section 2.1 discusses recent advances in music LMs. Section 2.2 further introduces piano cover generation, the primary task addressed in this paper.

2.1 MUSIC LANGUAGE MODELS

Rapid progress in large-scale language models has transformed how we interact with various forms of media, including text, image, and music (Touvron et al., 2023; Alayrac et al., 2022; Li et al., 2023; Kong et al., 2024; Yuan et al., 2025). In particular, large music LMs (Agostinelli et al., 2023; Melechovský et al., 2024; Thickstun et al., 2024; Bhandari et al., 2025) have notably influenced creative practices and user experiences. Models like MusicGen (Copet et al., 2023) can generate music audio with rich timbres directly from text, while MuseCoco (Lu et al., 2023) produces symbolic compositions with well-structured textures in varied genres. These advancements are driven

108 by training large-scale neural networks on extensive data, scaling up to billions of model parameters
 109 to enhance controllability and musicality.
 110

111 Despite these successes, most existing music LMs operate in an unimodal setting, focusing solely on
 112 either audio or symbolic representations. Although text-to-music generation has been increasingly
 113 effective (Agostinelli et al., 2023; Melechovský et al., 2024; Bhandari et al., 2025), text descriptions
 114 may fall short in expressing nuanced style or performance subtlety. In contrast, our work explores a
 115 cross-modal framework that bridges audio and symbolic modalities. By leveraging the strong per-
 116 ceptual understanding of audio LMs and the expressive composition capabilities of symbolic LMs,
 117 we bootstrap a system for audio-to-symbolic arrangement. This approach enables more intuitive and
 118 fine-grained control over music style beyond what can be conveyed through text alone.
 119

120 2.2 PIANO COVER GENERATION

121 Piano cover generation aims to reinterpret an audio recording as a symbolic piano performance.
 122 Unlike traditional music transcription, which primarily analyses note-level content such as pitch and
 123 timing (Kong et al., 2021; Ou et al., 2022; Gardner et al., 2022; Gu et al., 2024; Zeng et al., 2024),
 124 a piano cover often targets higher-level, more structured music elements that shape the *feel* of a
 125 performance. The goal is to generate symbolic arrangements that not only sound correct but also
 126 feel musically aligned with the original audio.
 127

128 Existing approaches to piano cover generation often leverage pre-trained transcription models,
 129 which primarily extract melodic and harmonic content from the audio (Nakamura & Yoshii, 2018;
 130 Tan et al., 2024b;a; Wang et al., 2022; Choi & Lee, 2023). However, such models tend to overlook
 131 stylistic nuances, resulting in outputs accurate in harmony but lacking the expressive character of the
 132 source performance. In this paper, we re-frame piano cover generation through the lens of content-
 133 style disentanglement, acquiring *content* in the symbolic form (i.e., melody and chord progression)
 134 while learning *style* from the audio. This approach bridges the audio-symbolic gap more effectively,
 135 capturing not just *what* is played, but *how* it is played.
 136

137 3 METHOD

138 Our goal is to learn music style representations from the audio and leverage these representations to
 139 arrange symbolic piano performances. To bridge the modality gap from audio to symbolic music,
 140 we adopt the Q-Former (Li et al., 2023) under a two-stage training strategy. As shown in Figure 2,
 141 Stage-I focuses on audio-symbolic representation learning with a frozen audio LM, while Stage-II
 142 addresses audio-to-symbolic arrangement with a symbolic LM. In Section 3.1, we first introduce
 143 our audio-symbolic data pairing method that facilitates style learning. We illustrate the Q-Former
 144 architecture in Section 3.2, followed by the two-stage training procedure in Sections 3.3 and 3.4.
 145

146 3.1 DATA PAIRING FOR STYLE LEARNING

147 Training an audio-to-symbolic alignment model requires paired audio–MIDI data. In this work,
 148 we use 10-second audio clips paired with 4-bar MIDI segments. Since our goal is to capture style
 149 rather than low-level note transcription, we construct the pairs to be *loosely aligned*. Specifically,
 150 for each audio clip, we select a MIDI segment near its center with a random temporal shift of up
 151 to ± 1 second, and we randomly transpose the MIDI into all 12 keys. This design assumes that
 152 music style is locally consistent, while discouraging the model from memorizing exact note-to-note
 153 correspondences. In the following sections, we show that the two-step training method enables the
 154 model to abstract style features that are shared between the modalities.
 155

156 We represent music audio as raw waveforms sampled at 32kHz. MIDI is tokenized into note event
 157 sequences quantized at 1/12-beat resolution. We include various symbolic features including time
 158 signature (quadruple and triple meters), tempo curve, note pitch, duration, and velocity.
 159

160 3.2 Q-FORMER ARCHITECTURE

161 The Q-Former is a Transformer encoder with two parallel, modality-specific streams that share the
 162 self-attention layers. As shown in Figure 2a, it accepts audio and symbolic inputs and learns a cross-

Figure 2: Overview of the two-stage framework. (Left) Stage-I: The Q-Former is a Transformer encoder with two parallel, modality-specific streams (audio and symbolic). Both streams are used during training for cross-modal alignment, while only the audio stream is retained at test time. It extracts a cross-modal music style representation Z via cross-attention to an audio LM. (Right) Stage-II: A symbolic music LM further generates piano arrangements conditioned on (i) the style embedding Z obtained from the Q-Former and (ii) a lead sheet providing music content.

modal music style representation Z . The left stream is connected to the audio LM **via cross-attention**, while the right stream encodes symbolic **piano arrangement** tokens **via the shared self-attention**. A set of query embeddings (*queries*), initialized randomly, is fed into the left stream and **trained to capture style cues from the audio modality while being aligned with the symbolic modality**. At test time, only the left stream is retained to uncover cross-modal style directly from audio.

We initialise the Q-Former weights using the pre-trained MusicBERT-Base model (Zeng et al., 2021). The added cross-attention layers are randomly initialized. Following Blip-2 (Li et al., 2023), we use 32 learnable queries, each with dimension 768. Symbolic piano arrangements are tokenized in the OctMIDI format (Zeng et al., 2021), which produces note-wise joint embeddings. Overall, the Q-Former comprises 186M parameters, including the learnable queries and note embedding layers.

3.3 STAGE-I: AUDIO-SYMBOLIC REPRESENTATION LEARNING

We integrate the Q-Former into MusicGen (Copet et al., 2023), one of the leading audio LMs available today. The queries interact with audio hidden states through cross-attention while remaining connected to the symbolic stream via shared self-attention layers. However, relying solely on loosely aligned data is insufficient for learning robust style representations, since no direct *content*-level correspondence exists between the audio and symbolic streams (see Section 3.1). To prevent representation collapse and encourage meaningful style abstraction, we introduce three complementary training losses, each paired with a tailored self-attention mask that regulates cross-modal interactions. These objectives are illustrated in Figure 2a and detailed below.

The primary objective is **Audio-Symbolic Contrastive Learning**, which enforces a higher audio-symbolic similarity for positive (original) pairs compared to negative ones (i.e., randomly paired audio and MIDI clips). Let $Z \in \mathbb{R}^{32 \times 768}$ be the query outputs from the audio stream of Q-Former, and $t \in \mathbb{R}^{1 \times 768}$ be the output embedding of the start token ($< s >$) from the symbolic stream. We define the audio-symbolic similarity as $\max_k(\cos(Z_k, t))$ for $k = 1, 2, \dots, 32$, where $\cos(\cdot, \cdot)$ denotes the cosine similarity. The contrastive loss pulls closer aligned audio and symbolic clips in the representation space, while pushing apart unrelated pairs. To prevent information leakage, we employ a *unimodal self-attention mask*, ensuring queries and symbolic tokens do not attend to each other. For detailed mask design, we refer readers to BLIP-2 (Li et al., 2023).

The second objective is **Audio-Symbolic Matching**. It is formulated as a binary classification task, where the model predicts whether a given audio-symbolic pair corresponds to each other. On top of contrastive loss, the matching loss aims to capture a finer cross-modal correspondence. In this case, we apply *no masking*, allowing the queries to attend across modalities. Each query output Z_k is fed into a binary linear classifier to produce a logit, and the logits from all queries are averaged to

216 compute the final matching score. To create informative negative pairs, we employ the hard negative
 217 mining strategy in (Li et al., 2021).

218 The final objective, **Audio-Grounded Symbolic Generation**, enforces the Q-Former’s right stream
 219 to auto-regressively **reconstruct the input piano arrangement**. We implement a *cross-model causal*
 220 *self-attention mask*, allowing the symbolic tokens to attend to the queries but not vice versa. **This**
 221 **objective ensures that the style cues extracted from the audio are sufficiently informative to support**
 222 **symbolic realization**. To signal a decoding task, we replace the starting $\langle s \rangle$ token with a special
 223 $\langle \text{DEC} \rangle$ token. **Additionally, we prepend a sequence of lead sheet tokens before the $\langle \text{DEC} \rangle$ token**
 224 **so that the queries are encouraged to extract *style*, rather than transcribing *content* from the audio.**

226 3.4 STAGE-II: AUDIO-TO-SYMBOLIC GENERATIVE MODELING

227 In the generative modelling stage, we take advantage of the generative capability of MuseCoco (Lu
 228 et al., 2023), a large-scale symbolic music LM. As illustrated in Figure 2b, MuseCoco is used to
 229 reconstruct a piano arrangement based on two concatenated conditional inputs: 1) the query output
 230 embeddings \mathbf{Z} from the Q-Former, and 2) a lead sheet. The Q-Former is pre-trained at Stage-I
 231 to extract cross-modal music style from the audio, thus providing style guidance. The lead sheet
 232 defines the theme melody and chord progression as the content.

233 To enable compatibility with MuseCoco, we project \mathbf{Z} into the same embedding dimension as
 234 MuseCoco’s token embeddings via a linear layer. Symbolic note tokens are converted into the REMI
 235 format (Huang & Yang, 2020). Despite the slightly different tokenizations used across stages, we
 236 find that the latent representations learned in Stage-I remain compatible with Stage-II. Since MuseC-
 237 oco does not natively support lead sheet conditioning, and the inclusion of the lead sheet tokens alters
 238 its input format, we insert a LoRA adapter (Hu et al., 2022) of rank 16 into each self-attention layer.
 239 This enables the model to reweight attention and incorporate the new conditioning inputs, while
 240 keeping MuseCoco’s original parameters frozen.

242 4 ARRANGEMENT DEMONSTRATION

243 In this section, before presenting experiments, we first demonstrate the performance of our audio-
 244 to-symbolic arrangement model under *freely manipulated* audio style references. Figure 3a shows
 245 an 8-bar lead sheet excerpt from the musical *The Sound of Music*. The selected passage features
 246 harmonically rich chords, including diminished and seventh chord qualities, which present suitable
 247 complexity for arrangement experiments. Figures 3b to 3d showcase the arrangement results condi-
 248 tioned on varied audio references. The 8-bar arrangement is generated using windowed sampling,
 249 wherein a 4-bar context window progresses forward every 2 bars and continues sampling condi-
 250 tioned upon the preceding 2 bars.

251 Figure 3b shows the piano cover from the original *The Sound of Music* soundtrack,² which features
 252 lush orchestration dominated by string ensembles. Our arrangement captures this orchestral essence
 253 through dense, block-chord voicing that emulates the sonority of string sections. Additionally, orna-
 254 ments such as arpeggios and trills are found to complement the sweeping harmonic textures, which
 255 contributes to the music’s free-flowing character.

256 Figure 3c shows an arrangement conditioned on the ragtime classic *The Entertainer*.³ Following
 257 the audio recording, the arrangement’s tempo is “not fast,” and the piano texture distinctly adopts a
 258 ragtime rhythm, with steady bass notes on downbeats and syncopated chordal accents on upbeats.

259 Figure 3d shows an arrangement conditioned on the bossa nova piece *The Girl from Ipanema*.⁴ In
 260 this interpretation, the arrangement is characterized by a moderate tempo and distinctive left-hand
 261 syncopated patterns characteristic of the bossa nova genre.

262 Across all three piano arrangements, while distinct music styles are effectively captured from the
 263 audio references, the theme melody and harmonic structures remain faithfully preserved. In Figure 3,
 264 we highlight melody notes preserved from the lead sheet using blue note heads.

265 ²Original audio: <https://youtu.be/6f0T6UV-HiI&t=57>

266 ³Ragtime audio: <https://youtu.be/jK1fNfRZL9I&t=11>

267 ⁴Bossa nova audio: https://youtu.be/DvA_wDOVD10&t=12

Figure 3: Audio-to-symbolic arrangement for an 8-bar excerpt from *The Sound of Music*. Score is manually engraved from MIDI for visualisation purpose. Figures 3b to 3d are arranged based on the lead sheet in 3a and an audio reference from the original soundtrack, a ragtime piece, and a bossa nova piece, respectively. Preserved music contents are highlighted in blue note heads. Synthesized audio is provided on the demo page: <https://anonymous55aht.github.io/>.

Additional examples are available on our demo page, including arrangements in a wider range of classical, jazz, and pop styles applied to well-known lead sheets, illustrating the flexibility of both style and lead sheet control.

5 EXPERIMENTS

This section evaluates our audio-to-symbolic arrangement model. Our model generates piano performances jointly conditioned on a lead sheet and an audio reference. When the two inputs are aligned with each other, the task corresponds to *piano cover generation*; when they are unpaired, the task becomes *cross-modal style transfer*. In this section, we primarily frame our evaluation as *audio-conditioned piano cover generation*, focusing on whether it can transfer audio-derived style while preserving thematic content, which allows direct comparison with prior baselines. For the style transfer setting, we additionally compare with ablation variants of our model in Appendix C.

In Section 5.1, we introduce the datasets used in the experiments. In Section 5.2, we describe the baseline models used for comparison. Our evaluation is divided into two parts: objective evaluation in Section 5.3, and subjective evaluation in Section 5.4. Finally, Section 5.5 extends the evaluation to audio-to-symbolic retrieval, highlighting the Q-Former’s broader capability in cross-modal alignment. More details for model configuration and training are covered in the Appendix A.

5.1 DATASETS

Our model is trained on two dual-modal datasets: POP909 (Wang et al., 2020a) and PIAST (Bang et al., 2024). POP909 contains 1K piano cover arrangements created by professional musicians. The music genre is primarily Mandarin pop, while the accompanying audio features diverse band instrumentation, which can help the model learn generalizable audio representations of pop music.

324 PIAST, on the other hand, contains 8K piano recordings along with symbolic transcriptions across a
 325 variety of genres, including pop, jazz, and classical. Despite the lack of band instrumentation in the
 326 piano recording, the genre diversity of PIAST encourages the model to produce more expressive and
 327 stylistically varied performances. We split both datasets at song level into training (90%), validation
 328 (5%), and test (5%) sets. Each symbolic MIDI file is clipped into 4-bar segments with a 2-bar hop
 329 size, transposed to all 12 keys, and center-aligned with the corresponding 10s audio clip.

330 We also test on two out-of-domain datasets: Ballroom (Gouyon et al., 2006; Krebs et al., 2013) and
 331 GTZAN (Tzanetakis & Cook, 2002; Marchand & Peeters, 2015), both featuring diverse band and
 332 orchestral instrumentation, as well as fine-grained music genres such as jive and bossa nova. Since
 333 they lack paired symbolic annotations, we use them for testing only. This allows us to assess the
 334 model’s generalization ability and its capacity to accommodate styles beyond pop music.

335

336 5.2 BASELINE MODELS

337

338 We compare our model against two representative piano cover generation models: *PiCoGen2* (Tan
 339 et al., 2024a) and *Audio-to-MIDI* (Wang et al., 2022), as well as one ablation variant of our method.

340 **PiCoGen2** (PCG2) is a Transformer-based language model that builds on the hidden states of Sheet-
 341 sage (Donahue et al., 2022; Donahue & Liang, 2021), which itself is derived from Jukebox (Dhariwal
 342 et al., 2020), a pre-trained, large-scale music language model. Leveraging Jukebox’s internalized
 343 understanding of music *content*, PiCoGen2 generates symbolic piano covers directly from audio.

344

345 **Audio2MIDI** (A2M) is an auto-encoder-based disentanglement framework, using separate modules
 346 to extract *beat and tempo* (Böck & Davies, 2020), chord (Jiang et al., 2019), and piano texture from
 347 audio. The texture extractor is initialized from a piano transcription model (Hawthorne et al., 2018).
 348 The extracted components are then merged to form a symbolic piano arrangement.

349

350 **Ours w/o Pre-Training** (w/o PT) is an ablation variant of our model in which the Q-Former is
 351 trained directly in Stage-II, without undergoing the representation learning phase in Stage-I. This
 352 setup tests the validity of the two-stage training strategy we applied in this work.

353

354 To ensure a fair comparison with baseline models, we use Sheetsage (Donahue et al., 2022; Donahue
 355 & Liang, 2021) to transcribe lead sheets from the audio, making audio the sole input for all methods.

356

357 5.3 OBJECTIVE EVALUATION

358

359 Piano cover generation transforms an audio input into a symbolic piano performance, which should
 360 ideally capture not only *what* is played, but also *how* it is played. In Section 5.3.1, we evaluate
 361 *content preservation* (*what* is played) and *style coherence* (*how* it is played) using statistical metrics.
 362 We hypothesize that stronger style capture can improve overall arrangement quality. Hence, in Sec-
 363 tion 5.3.2 we further assess *broader audio-to-symbolic coherence* using latent embedding measures.

364

365 5.3.1 CONTENT PRESERVATION AND STYLE COHERENCE

366

367 We first evaluate how well the generated piano cover inherits audio-derived style while preserving
 368 thematic content. We introduce two categories of metrics: 1) *content preservation*, and 2) *style*
 369 *coherence*. *Content preservation* assesses whether the melody and harmony are well-maintained.
 370 We use *Melody Chroma Accuracy* (*MCA*) (Choi & Lee, 2023; Tan et al., 2024a) and *Chord Accuracy*
 371 (*CA*) (Ren et al., 2020; Zhao et al., 2024) to measure these aspects. *Style coherence* evaluates
 372 whether the accompaniment grooves and performance dynamics are well captured and manifested in
 373 the symbolic arrangement. We introduce three metrics: *Grooving Pattern Coherence* (*GPC*) (Wu &
 374 Yang, 2020), *Velocity Contour Coherence* (*VCC*), and *Tempo Accuracy* (*TA*). Among them, *GPC* and
 375 *VCC* compare the generated covers to human arrangements (available for POP909). *TA* compares
 376 the generated tempo to the ground-truth (estimatable from audio using (Böck & Davies, 2020) when
 377 not annotated). Taken together, these metrics indicate how well the generated cover captures the
 378 stylistic “feel” of the reference audio. Across the content and style metrics, a higher value indicates
 379 better coherence. We provide more detailed definitions for each metric in Appendix B.

380

381 We consider two evaluation settings: 1) *in-distribution* evaluation on the POP909 test set, and 2) *out-*
 382 *distribution* evaluation on 100 tracks randomly drawn from the Ballroom and GTZAN datasets.

378
 379
 380
 381
 382
 383
 384 Table 1: Objective evaluation on *content preservation* and *style coherence*. Ballroom/GTZAN are
 385 out-of-distribution sets to assess generalization to unseen genres and instrumentation. Results are
 386 reported in the form of mean \pm sem^s (in percentage), where sem is the standard error of mean.
 387 Different superscript letters *s* within a column indicate significant differences ($p < 0.05/6$) based on
 388 Wilcoxon signed rank test with Bonferroni correction.
 389

	POP909 (In-Distribution) Test Set				TA \uparrow	Ballroom/GTZAN		
	MCA \uparrow	CA \uparrow	GPC \uparrow	VCC \uparrow		MCA \uparrow	CA \uparrow	TA \uparrow
Ours	32.0 \pm 0.5 ^b	33.3 \pm 1.1 ^b	79.2 \pm 0.5 ^a	76.6 \pm 0.5 ^a	83.6 \pm 1.5 ^a	17.8 \pm 0.3 ^a	16.3 \pm 0.4 ^a	79.4 \pm 1.1 ^a
PCG2	39.3 \pm 0.6 ^a	40.0 \pm 0.9 ^a	78.4 \pm 0.6 ^a	73.2 \pm 0.5 ^b	74.4 \pm 2.0 ^c	17.2 \pm 0.3 ^a	15.5 \pm 0.5 ^b	57.6 \pm 1.5 ^c
A2M	15.0 \pm 0.3 ^c	22.4 \pm 0.9 ^d	69.0 \pm 0.7 ^b	68.6 \pm 0.8 ^c	77.8 \pm 1.4 ^b	10.9 \pm 0.2 ^b	14.8 \pm 0.5 ^b	-
w/o PT	30.0 \pm 0.6 ^b	28.8 \pm 1.0 ^c	78.6 \pm 0.5 ^a	76.3 \pm 0.5 ^a	68.6 \pm 1.9 ^d	17.2 \pm 0.3 ^a	15.0 \pm 0.4 ^b	74.5 \pm 1.3 ^b

390 Table 2: Objective evaluation on *broader audio-to-symbolic coherence* using CLaMP3.
 391

	POP909		Ballroom/GTZAN	
	Acc@5 (%) \uparrow	Rank \downarrow	Acc@5 (%) \uparrow	Rank \downarrow
Ours	27.1 \pm 1.2	16.3 \pm 0.3	21.4 \pm 0.6	30.2 \pm 0.3
PCG2	23.6 \pm 1.3	16.7 \pm 0.3	21.7 \pm 0.9	31.3 \pm 0.6
A2M	18.4 \pm 1.5	18.2 \pm 0.3	19.6 \pm 0.8	30.6 \pm 0.4
w/o PT	24.2 \pm 1.1	16.9 \pm 0.3	18.1 \pm 0.1	33.1 \pm 0.5

392
 393
 394
 395
 396
 397
 398
 399 We run our method and baseline models at each test piece in 10 independent rounds, deriving 450
 400 sets of piano cover samples for POP909, and 1000 sets for Ballroom/GTZAN. We report the mean
 401 and standard error. As shown in Table 1, while our method leads in most metrics, we find that on
 402 POP909, it achieves a lower *content preservation* score (*MCA* and *CA*) than the *PCG2* baseline.
 403 This is probably because our arrangement process relies on Sheetsage-extracted lead sheets, where
 404 wrongly estimated chords or melody notes at this stage can propagate to our final results. However,
 405 on the out-of-distribution Ballroom/GTZAN dataset, our model surpasses *PCG2* in *MCA* and *CA*,
 406 suggesting that *PCG2* is more tailored to pop music (where chords and melodies are relatively
 407 simple), whereas our approach generalizes better across diverse music genres and instrumentations.
 408 In terms of *style coherence*, our model outperforms all baselines in *GC* and *VC* on POP909, and in
 409 *TA* on both test sets, indicating that it can better capture the stylistic characteristics from the audio.
 410

5.3.2 BROADER AUDIO-TO-SYMBOLIC COHERENCE

411
 412 We further evaluate *broader audio-to-symbolic coherence* using CLaMP3 (Wu et al., 2025), which
 413 offers a shared latent space bridging the two modalities. We use CLaMP3 as a cross-modal retriever:
 414 for each test audio, it computes the cosine similarity between the audio’s embedding and all symbolic
 415 covers’ embeddings. If the most similar symbolic candidate matches the one generated from that
 416 audio input, we count it as a correct match, indicating coherent audio–symbolic alignment. Based
 417 on this setup, we report two metrics: *Top-5 Retrieval Accuracy* (*Acc@5*, higher is better), and *Mean
 418 Rank*: the average rank position of the correct audio–symbolic pair in all candidates (lower is better).

419
 420 We evaluate on POP909 and Ballroom/GTZAN, respectively. POP909 provides 45 test pop tracks,
 421 for which we use randomly cropped 16-bar excerpts. Ballroom/GTZAN offers 100 tracks spanning
 422 more diverse genres and instrumentation, and we evaluate using the full 30s clips. **In each run, every
 423 model generates one cover per test piece. We repeat the evaluation over 10 independent runs and
 424 report the mean and standard error.** As shown in Table 2, our model consistently outperforms all
 425 baselines, including *PCG2*, on POP909 by a clear margin. **This suggests that stronger style capture
 426 can lead to higher overall arrangement quality.** On Ballroom/GTZAN datasets, our model also
 427 attains a substantially lower *Mean Rank*, indicating strong generalization across styles and genres.
 428 In contrast, the *w/o PT* variant outperforms baselines on POP909 but fails on Ballroom/GTZAN,
 429 confirming that the Stage-I pre-training is crucial for effective cross-modal alignment.

5.4 SUBJECTIVE EVALUATION

430
 431 We further conduct a double-blind online listening survey to evaluate the music quality. The survey
 432 comprises 6 test pieces of varied genres drawn from the Ballroom and the GTZAN datasets. Each

Figure 4: Subjective evaluation on music quality

test piece is accompanied by 4 piano covers interpreted by our model and each baseline model. For each model, we select the best result from 3 generated samples. The purpose is to prevent occasional low-probability failures (e.g., incomplete or degenerate generations) from disproportionately influencing the subjective assessment. All samples are 16 bars long and rendered to audio using the Cakewalk TTS-1 soundfont, resulting in approximately 40s of audio per sample. Both the order of the test pieces and the order of samples are randomized. Participants are asked to complete 3 test pieces by rating each piano cover on a 5-point Likert scale across 4 criteria: 1) *Audio-to-Symbolic Coherence*, 2) *Naturalness*, 3) *Creativity*, and 4) *Overall Musicality*. See more detail in Appendix D.

A total of 21 participants with diverse musical backgrounds completed our survey. The average completion time is 12 minutes. Figure 4 shows the mean ratings and standard errors analyzed using within-subject ANOVA (Scheffe, 1999). The results reveal significant main effects ($p < 0.05$) across all evaluation criteria. While our model performs comparably to the state-of-the-art PCG2 in *Naturalness*, it consistently receives higher ratings than the baselines across all criteria. A Bonferroni post-hoc test further confirms that our model significantly outperforms all baselines in *Coherence* and *Musicality*. These results align with the objective evaluation and demonstrate that our model captures music style more effectively and produces coherent, high-quality piano cover arrangements.

5.5 EVALUATION ON AUDIO-TO-SYMBOLIC ALIGNMENT

While the Q-Former bridges the modality gap for audio-to-symbolic arrangement, it can also operate independently as an audio-to-symbolic retriever. In this setting, the Q-Former measures stylistic coherence between an audio clip and a symbolic segment by comparing their learned representations. Given an audio query and a set of symbolic candidates, the model can retrieve the symbolic piece that best aligns with the music style of the query audio. To the best of our knowledge, CLAMP3 (Wu et al., 2025) is the only existing model with an audio-to-symbolic alignment capability, and we aim to evaluate whether our approach can achieve superior performance.

5.5.1 AUDIO-TO-SYMBOLIC RETRIEVAL

To assess the alignment capability of the Q-Former, we evaluate it after Stage-I training on the audio-to-MIDI retrieval task. In each of 10 independent runs, we construct a test set of 128 pairs of 10-second audio and 4-bar MIDI, randomly sampled from PIAST and POP909 (64 pairs each). For each audio query, the model is tasked with retrieving its corresponding MIDI segment from the full pool of 128 candidates. We consider two evaluation settings: one in which MIDI candidates are randomly transposed to all 12 keys, and the other without transposition. This setup helps us examine the model’s robustness in capturing stylistic features beyond absolute pitch and key. Performance is measured using three metrics: *Top-1 Accuracy* ($Acc@1$), *Top-5 Accuracy* ($Acc@5$), and *Mean Rank*. We report the mean and standard error across the 10 resampled runs.

As shown in Table 3, we compare our model against CLAMP3 in addition to a random guessing bot for sanity check. In CLAMP3, audio and MIDI are aligned indirectly via text due to the greater availability of music–text pairs in both domains. While this indirect alignment allows CLAMP3 to perform substantially better than random guessing, its $Acc@1$ remains low. Interestingly, transposing the MIDI candidates has a noticeable effect, leading to a 4-point drop in $Acc@5$ and a 6-rank

486
 487 Table 3: Objective evaluation on audio-to-MIDI retrieval. Results are compared against baseline
 488 models and across two evaluation settings: MIDI with random transposition (left) and without trans-
 489 position (right), highlighting robustness in capturing stylistic features beyond absolute pitch and key.
 490

	w/o Transposition			w/ Random Transposition		
	Acc@1 (%) ↑	Acc@5 (%) ↑	Rank ↓	Acc@1 (%) ↑	Acc@5 (%) ↑	Rank ↓
Random	1.4 ± 0.3	4.8 ± 0.8	64.4 ± 1.7	0.7 ± 0.2	4.2 ± 0.5	65.4 ± 1.0
CLaMP	3.4 ± 0.4	15.0 ± 0.6	42.5 ± 0.2	3.4 ± 0.4	11.0 ± 0.6	48.5 ± 0.3
Ours	71.4 ± 1.5	95.1 ± 0.5	2.1 ± 0.1	70.2 ± 1.5	94.8 ± 0.5	2.1 ± 0.1

495
 496 Table 4: Ablation study on individual pre-training objectives for cross-modal alignment.
 497

	PIAST		POP909	
	Acc@1 ↑	Rank ↓	Acc@1 ↑	Rank ↓
C	96.7 ± 0.3	1.8 ± 0.2	36.2 ± 1.3	5.2 ± 0.3
C+M	97.2 ± 0.4	1.6 ± 0.2	40.8 ± 0.9	5.0 ± 0.4
C+M+G	97.1 ± 0.3	1.7 ± 0.2	44.7 ± 1.4	4.7 ± 0.4

500
 501
 502
 503 increase in *Mean Rank*. This is probably because key signatures are frequently referenced in text de-
 504 descriptions of music, making CLaMP3 particularly sensitive to pitch-level features while struggling
 505 to capture finer stylistic nuances. In comparison, our model consistently outperforms CLaMP3
 506 across all metrics and exhibits negligible performance differences between the transposed and non-
 507 transposed settings. This demonstrates that our Q-Former learns more robust audio-to-symbolic
 508 alignments, effectively capturing stylistic coherence beyond surface-level attributes.
 509

510 5.5.2 ABLATION STUDY ON PRE-TRAINING OBJECTIVES

511
 512 We are also interested in the contribution of each pre-training objective in Section 3.3 to cross-modal
 513 alignment. We conduct an ablation study on the Q-Former’s audio-to-MIDI retrieval performance
 514 based on three different pre-training configurations: contrastive loss only (C), contrastive + matching
 515 losses (C+M), and contrastive + matching + generative losses (C+M+G). As in the previous section,
 516 we repeat our experiment over 10 independent runs on 128 resampled audio-MIDI pairs.

517
 518 As shown in Table 4, we conduct evaluation separately on PIAST and POP909. The former involves
 519 piano-only music, while the latter includes multi-instrumental accompaniments, requiring the model
 520 to extract style from richer audio textures. We observe that the performance difference is relatively
 521 small on PIAST, suggesting that contrastive learning alone may suffice for simpler piano alignment.
 522 However, on POP909, we see both the matching and generative losses contribute meaningfully to
 523 improved retrieval accuracy and lower mean rank. These findings indicate that all three objectives
 524 are important for learning robust, generalizable cross-modal alignment.

525 6 CONCLUSION

526
 527 In this paper, we introduce a cross-modal framework for audio-to-symbolic arrangement. By repur-
 528 posing the Q-Former to align audio and symbolic modalities, our model extracts and applies implicit
 529 music style using pre-trained music LMs, enabling expressive piano arrangement conditioned on
 530 both a lead sheet and an audio reference. Through a two-stage training process—combining repre-
 531 sentation learning and generative modeling—we extract stylistic features from a frozen, large audio
 532 LM and guide a symbolic LM without re-training either backbone. We conduct quantitative experi-
 533 ments on piano cover generation and provide qualitative demos of style transfer. Results demonstrate
 534 improved audio-to-symbolic coherence and musicality, highlighting the potential of this framework
 535 for controllable, style-aware music generation beyond explicitly labeled content.

536 7 ETHICS STATEMENT

537
 538 We confirm that our work adheres to the ICLR Code of Ethics. Datasets used in this study are open-
 539 source with appropriate licenses: the POP909 dataset under MIT license and the PIAST dataset

540 under CC-BY-NC 4.0 license. Our subject evaluation was conducted through online crowdsourcing,
 541 which bears minimal risk. Participants were informed that participation was voluntary and that they
 542 could withdraw at any time without negative consequences. No personally identifiable information
 543 was collected. Further details of the subjective evaluation setup are described in [Appendix D](#).
 544

545 8 REPRODUCIBILITY STATEMENT

546 We have made every effort to ensure the reproducibility of our results. Section 4 provides a detailed
 547 description of our experimental setup, including the datasets (Section 5.1) and model configurations
 548 (referred to Appendix A). Note that, due to copyright restrictions, the audio portion of POP909
 549 is not publicly distributed. We obtained it by reaching out to the original authors. For objective
 550 experiments, we repeated each experiment 10 times and report the mean and standard error of the
 551 mean. For subjective evaluation, we applied within-subject ANOVA followed by post-hoc paired t-
 552 tests. To further facilitate reproducibility, we will release our implementation code upon publication.
 553

554 REFERENCES

555 Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
 556 Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
 557 music from text. *arXiv preprint arXiv:2301.11325*, 2023.

558 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 559 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
 560 Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick,
 561 Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
 562 Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual
 563 language model for few-shot learning. In *Advances in Neural Information Processing Systems*
 564 *35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022*, 2022.

565 Hayeon Bang, Eunjin Choi, Megan Finch, Seungheon Doh, Seolhee Lee, Gyeong-Hoon Lee, and
 566 Juhan Nam. Piast: A multimodal piano dataset with audio, symbolic and text. In *Proceedings of*
 567 *the 3rd Workshop on NLP for Music and Audio (NLP4MusA)*, pp. 5–10, 2024.

568 Keshav Bhandari, Abhinaba Roy, Kyra Wang, Geeta Puri, Simon Colton, and Dorien Herremans.
 569 Text2midi: Generating symbolic music from captions. In *AAAI-25, Sponsored by the Association*
 570 *for the Advancement of Artificial Intelligence*, pp. 23478–23486. AAAI Press, 2025.

571 Sebastian Böck and Matthew E. P. Davies. Deconstruct, analyse, reconstruct: How to improve
 572 tempo, beat, and downbeat estimation. In *Proceedings of the 21th International Society for Music*
 573 *Information Retrieval Conference, ISMIR 2020*, pp. 574–582, 2020.

574 Rodrigo Castellon, Chris Donahue, and Percy Liang. Codified audio language modeling learns
 575 useful representations for music information retrieval. In *Proceedings of the 22nd International*
 576 *Society for Music Information Retrieval Conference, ISMIR 2021*, pp. 88–96, 2021.

577 Jongho Choi and Kyogu Lee. Pop2piano : Pop audio-based piano cover generation. In *IEEE*
 578 *International Conference on Acoustics, Speech and Signal Processing ICASSP 2023*, pp. 1–5.
 579 IEEE, 2023.

580 Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
 581 dre Défossez. Simple and controllable music generation. In *Advances in Neural Information*
 582 *Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,*
 583 *NeurIPS 2023*, 2023.

584 Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
 585 Jukebox: A generative model for music. *arXiv preprint arXiv:2005.00341*, 2020.

586 Simon Dixon. Automatic extraction of tempo and beat from expressive performances. *Journal of*
 587 *New Music Research*, 30(1):39–58, 2001.

594 Chris Donahue and Percy Liang. Sheet sage: Lead sheets from music audio. *ISMIR 2021 Late-*
 595 *Breaking and Demo*, 2021.

596

597 Chris Donahue, John Thickstun, and Percy Liang. Melody transcription via generative pre-training.
 598 *In Proceedings of the 23rd International Society for Music Information Retrieval Conference,*
 599 *ISMIR 2022*, pp. 485–492, 2022.

600

601 Josh Gardner, Ian Simon, Ethan Manilow, Curtis Hawthorne, and Jesse H. Engel. MT3: multi-task
 602 multitrack music transcription. In *The Tenth International Conference on Learning Representa-*
 603 *tions, ICLR 2022*. OpenReview.net, 2022.

604

605 Fabien Gouyon, Anssi Klapuri, Simon Dixon, M. Alonso, George Tzanetakis, C. Uhle, and Pedro
 606 Cano. An experimental comparison of audio tempo induction algorithms. *IEEE Trans. Speech*
 607 *Audio Process.*, 14(5):1832–1844, 2006.

608

609 Xiangming Gu, Longshen Ou, Wei Zeng, Jianan Zhang, Nicholas Wong, and Ye Wang. Automatic
 610 lyric transcription and automatic music transcription from multimodal singing. *ACM Trans. Mul-*
 611 *tim. Comput. Commun. Appl.*, 20(7):209:1–209:29, 2024.

612

613 Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Raffel, Jesse H. En-
 614 gel, Sageev Oore, and Douglas Eck. Onsets and frames: Dual-objective piano transcription. In
 615 *Proceedings of the 19th International Society for Music Information Retrieval Conference, ISMIR*
 616 2018, pp. 50–57, 2018.

617

618 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 619 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-*
 620 *tional Conference on Learning Representations, ICLR 2022*. OpenReview.net, 2022.

621

622 Yu-Siang Huang and Yi-Hsuan Yang. Pop music transformer: Beat-based modeling and generation
 623 of expressive pop piano compositions. In *MM '20: The 28th ACM International Conference on*
 624 *Multimedia*, pp. 1180–1188, 2020.

625

626 Junyan Jiang. MIDI Chord Recognition via Bar-Level Modeling. [https://github.com/](https://github.com/music-x-lab/midi-chord-recognition)
 627 *music-x-lab/midi-chord-recognition*, 2025.

628

629 Junyan Jiang, Ke Chen, Wei Li, and Gus Xia. Large-vocabulary chord transcription via chord
 630 structure decomposition. In *Proceedings of the 20th International Society for Music Information*
 631 *Retrieval Conference*, pp. 644–651, 2019.

632

633 Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang. High-resolution piano
 634 transcription with pedals by regressing onset and offset times. *IEEE ACM Trans. Audio Speech*
 635 *Lang. Process.*, 29:3707–3717, 2021.

636

637 Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio
 638 flamingo: A novel audio language model with few-shot learning and dialogue abilities. In *Forty-*
 639 *first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,*
 640 *2024*. OpenReview.net, 2024.

641

642 Florian Krebs, Sebastian Böck, and Gerhard Widmer. Rhythmic pattern modeling for beat and
 643 downbeat tracking in musical audio. In *Proceedings of the 14th International Society for Music*
 644 *Information Retrieval Conference, ISMIR 2013*, pp. 227–232, 2013.

645

646 Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Gotmare, Shafiq R. Joty, Caiming Xiong, and
 647 Steven Chu-Hong Hoi. Align before fuse: Vision and language representation learning with
 648 momentum distillation. In *Advances in Neural Information Processing Systems 34: Annual Con-*
 649 *ference on Neural Information Processing Systems 2021, NeurIPS 2021*, pp. 9694–9705, 2021.

650

651 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-
 652 image pre-training with frozen image encoders and large language models. In *International Con-*
 653 *ference on Machine Learning, ICML 2023*, volume 202 of *Proceedings of Machine Learning*
 654 *Research*, pp. 19730–19742. PMLR, 2023.

648 Liwei Lin, Gus Xia, Junyan Jiang, and Yixiao Zhang. Content-based controls for music large lan-
 649 guage modeling. In *Proceedings of the 25th International Society for Music Information Retrieval*
 650 *Conference, ISMIR 2024*, pp. 783–790, 2024a.

651

652 Liwei Lin, Gus Xia, Yixiao Zhang, and Junyan Jiang. Arrange, inpaint, and refine: Steerable long-
 653 term music audio generation and editing via content-based controls. In *Proceedings of the Thirty-*
 654 *Third International Joint Conference on Artificial Intelligence, IJCAI 2024*, pp. 7690–7698. ij-
 655 cai.org, 2024b.

656 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International*
 657 *Conference on Learning Representations, ICLR 2019*. OpenReview.net, 2019.

658

659 Peiling Lu, Xin Xu, Chenfei Kang, Botao Yu, Chengyi Xing, Xu Tan, and Jiang Bian. Musecoco:
 660 Generating symbolic music from text. *arXiv preprint arXiv:2306.00110*, 2023.

661

662 Wenyen Ma and Gus Xia. Exploring the internal mechanisms of music llms: A study of root and
 663 quality via probing and intervention techniques. In *ICML 2024 Workshop on Mechanistic Inter-*
 664 *pretability*, 2024.

665 Wenyen Ma, Xinyue Li, and Gus Xia. Do music llms learn symbolic concepts? a pilot study using
 666 probing and intervention. In *Audio Imagination: NeurIPS 2024 Workshop AI-Driven Speech,*
 667 *Music, and Sound Generation*, 2024.

668

669 Ugo Marchand and Geoffroy Peeters. Swing ratio estimation. In *Proceedings of the 18th Interna-*
 670 *tional Conference on Digital Audio Effects, DAFX-15*, pp. 1–6, 2015.

671

672 Matthias Mauch and Simon Dixon. PYIN: A fundamental frequency estimator using probabilis-
 673 tic threshold distributions. In *IEEE International Conference on Acoustics, Speech and Signal*
 674 *Processing, ICASSP 2014*, pp. 659–663. IEEE, 2014.

675

676 Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W. Ellis, Matt McVicar, Eric Battenberg, and
 677 Oriol Nieto. librosa: Audio and music signal analysis in python. In *Proceedings of the 14th*
 678 *Python in Science Conference 2015 (SciPy 2015)*, pp. 18–24. scipy.org, 2015.

679

680 Jan Melechovský, Zixun Guo, Deepanway Ghosal, Navonil Majumder, Dorien Herremans, and Sou-
 681 janya Poria. Mustango: Toward controllable text-to-music generation. In *Proceedings of the 2024*
 682 *Conference of the North American Chapter of the Association for Computational Linguistics: Hu-*
 683 *man Language Technologies (Volume 1: Long Papers), NAACL 2024*, pp. 8293–8316. Association
 684 for Computational Linguistics, 2024.

685

686 Eita Nakamura and Kazuyoshi Yoshii. Statistical piano reduction controlling performance difficulty.
 687 *APSIPA Transactions on Signal and Information Processing*, 7, 2018.

688

689 Longshen Ou, Ziyi Guo, Emmanouil Benetos, Jiqing Han, and Ye Wang. Exploring transformer’s
 690 potential on automatic piano transcription. In *IEEE International Conference on Acoustics,*
 691 *Speech and Signal Processing, ICASSP 2022*, pp. 776–780. IEEE, 2022.

692

693 Colin Raffel, Brian McFee, Eric J. Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, and
 694 Daniel P. W. Ellis. Mir_eval: A transparent implementation of common MIR metrics. In *Proceed-
 695 ings of the 15th International Society for Music Information Retrieval Conference, ISMIR 2014*,
 696 pp. 367–372, 2014.

697

698 Yi Ren, Jinzheng He, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Popmag: Pop music accom-
 699 paniment generation. In *Proceedings of the 28th ACM International Conference on Multimedia*,
 700 pp. 1198–1206, 2020.

701

Simon Rouard, Francisco Massa, and Alexandre Défossez. Hybrid transformers for music source
 separation. In *IEEE International Conference on Acoustics, Speech and Signal Processing*
 ICASSP 2023, pp. 1–5. IEEE, 2023.

Henry Scheffe. *The analysis of variance*, volume 72. John Wiley & Sons, 1999.

702 Chih-Pin Tan, Hsin Ai, Yi-Hsin Chang, Shuen-Huei Guan, and Yi-Hsuan Yang. Picogen2: Piano
 703 cover generation with transfer learning approach and weakly aligned data. In *Proceedings of the*
 704 *25th International Society for Music Information Retrieval Conference, ISMIR 2024*, pp. 555–
 705 562, 2024a.

706 Chih-Pin Tan, Shuen-Huei Guan, and Yi-Hsuan Yang. Picogen: Generate piano covers with a two-
 707 stage approach. In *Proceedings of the 2024 International Conference on Multimedia Retrieval,*
 708 *ICMR 2024*, pp. 1180–1184. ACM, 2024b.

710 John Thickstun, David Leo Wright Hall, Chris Donahue, and Percy Liang. Anticipatory music
 711 transformer. *Transactions on Machine Learning Research*, 2024.

712 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 713 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 714 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

716 George Tzanetakis and Perry R. Cook. Musical genre classification of audio signals. *IEEE Trans.*
 717 *Speech Audio Process.*, 10(5):293–302, 2002.

718 Alexandra L. Uitdenbogerd and Justin Zobel. Manipulation of music for melody matching. In
 719 *Proceedings of the 6th ACM International Conference on Multimedia '98*, pp. 235–240. ACM,
 720 1998.

721 Marcel A. Vélez Vásquez, Charlotte Pouw, John Ashley Burgoyne, and Willem H. Zuidema. Ex-
 722 ploring the inner mechanisms of large generative music models. In *Proceedings of the 25th*
 723 *International Society for Music Information Retrieval Conference, ISMIR 2024*, pp. 791–798,
 724 2024.

726 Ziyu Wang, Ke Chen, Junyan Jiang, Yiyi Zhang, Maoran Xu, Shuqi Dai, and Gus Xia. POP909:
 727 A pop-song dataset for music arrangement generation. In *Proceedings of the 21st International*
 728 *Society for Music Information Retrieval Conference, ISMIR 2020*, pp. 38–45, 2020a.

729 Ziyu Wang, Dingsu Wang, Yixiao Zhang, and Gus Xia. Learning interpretable representation for
 730 controllable polyphonic music generation. In *Proceedings of the 21st International Society for*
 731 *Music Information Retrieval Conference, ISMIR 2020*, pp. 662–669, 2020b.

732 Ziyu Wang, Dejing Xu, Gus Xia, and Ying Shan. Audio-to-symbolic arrangement via cross-modal
 733 music representation learning. In *IEEE International Conference on Acoustics, Speech and Signal*
 734 *Processing, ICASSP 2022*, pp. 181–185. IEEE, 2022.

736 Megan Wei, Michael Freeman, Chris Donahue, and Chen Sun. Do music generation models encode
 737 music theory? In *Proceedings of the 25th International Society for Music Information Retrieval*
 738 *Conference, ISMIR 2024*, pp. 680–687, 2024.

739 Shangda Wu, Zhancheng Guo, Ruibin Yuan, Junyan Jiang, Seungheon Doh, Gus Xia, Juhan Nam,
 740 Xiaobing Li, Feng Yu, and Maosong Sun. Clamp 3: Universal music information retrieval across
 741 unaligned modalities and unseen languages. In *Findings of the Association for Computational*
 742 *Linguistics, ACL 2025*, pp. 2605–2625. Association for Computational Linguistics, 2025.

744 Shih-Lun Wu and Yi-Hsuan Yang. The jazz transformer on the front line: Exploring the shortcomings
 745 of ai-composed music through quantitative measures. In *Proceedings of the 21st Interna-*
 746 *tional Society for Music Information Retrieval Conference*, pp. 142–149, 2020.

747 Shih-Lun Wu, Chris Donahue, Shinji Watanabe, and Nicholas J Bryan. Music controlnet: Multiple
 748 time-varying controls for music generation. *IEEE/ACM Transactions on Audio, Speech, and*
 749 *Language Processing*, 32:2692–2703, 2024.

751 Ruihan Yang, Dingsu Wang, Ziyu Wang, Tianyao Chen, Junyan Jiang, and Gus Xia. Deep mu-
 752 sic analogy via latent representation disentanglement. In *Proceedings of the 20th Interna-*
 753 *tional Society for Music Information Retrieval Conference, ISMIR 2019*, pp. 596–603, 2019.

754 Ruibin Yuan, Hanfeng Lin, Shuyue Guo, Ge Zhang, Jiahao Pan, Yongyi Zang, Haohe Liu, Yiming
 755 Liang, Wenye Ma, Xingjian Du, et al. Yue: Scaling open foundation models for long-form music
 generation. *arXiv preprint arXiv:2503.08638*, 2025.

756 Mingliang Zeng, Xu Tan, Rui Wang, Zeqian Ju, Tao Qin, and Tie-Yan Liu. Musicbert: Symbolic
 757 music understanding with large-scale pre-training. In *Findings of the Association for Compu-*
 758 *tational Linguistics: ACL/IJCNLP 2021*, volume ACL/IJCNLP 2021 of *Findings of ACL*, pp.
 759 791–800. Association for Computational Linguistics, 2021.

760 Wei Zeng, Xian He, and Ye Wang. End-to-end real-world polyphonic piano audio-to-score transcrip-
 761 tion with hierarchical decoding. In *Proceedings of the Thirty-Third International Joint Conference*
 762 *on Artificial Intelligence, IJCAI 2024*, pp. 7788–7795. ijcai.org, 2024.

763 Yixiao Zhang, Yukara Ikemiya, Woosung Choi, Naoki Murata, Marco A Martínez-Ramírez, Li-
 764 wei Lin, Gus Xia, Wei-Hsiang Liao, Yuki Mitsufuji, and Simon Dixon. Instruct-musicgen: Un-
 765 locking text-to-music editing for music language models via instruction tuning. *arXiv preprint*
 766 *arXiv:2405.18386*, 2024.

767 Jingwei Zhao, Gus Xia, Ziyu Wang, and Ye Wang. Structured multi-track accompaniment arrange-
 768 ment via style prior modelling. In *Advances in Neural Information Processing Systems 38: Annual*
 769 *Conference on Neural Information Processing Systems 2024, NeurIPS 2024*, 2024.

772 A MODEL CONFIGURATION AND TRAINING DETAILS

773 Our model comprises three components: an audio LM, a symbolic music LM, and a Q-Former
 774 connecting the two. This section provides detailed configurations of each component module.

775 A.1 AUDIO LM

776 We use MusicGen-Large (Copet et al., 2023) as our audio LM. We discard the text encoder and
 777 retain only the music decoder, a 48-layer Transformer. Audio codecs are fed to the decoder and we
 778 extract the hidden representations from the 25th layer, as prior probing studies (Wei et al., 2024; Ma
 779 et al., 2024; Vásquez et al., 2024; Castellon et al., 2021) suggest that middle layers capture more
 780 musically meaningful features. This setup retains 1.7B frozen parameters from MusicGen.

781 A.2 SYMBOLIC MUSIC LM

782 For symbolic music arrangement, we adopt MuseCoco-xLarge (Lu et al., 2023), which is a 24-layer
 783 Transformer decoder pre-trained on large-scale symbolic music corpora. We remove its text-related
 784 components and keep 1.2B frozen parameters from the music decoder.

785 A.3 Q-FORMER

786 The Q-Former comprises 186M learnable parameters, which is significantly smaller than the billion-
 787 scale backbone models. In Stage-I, it is pre-trained in FP16 using batch size 128 for 10 epochs (130K
 788 iteration). The LoRA adaptor in Stage-II adds 5M parameters and we fine-tune the model for another
 789 5 epochs using batch size 32. Both training stages are conducted on four RTX A40 GPUs (48GB
 790 each). We use the AdamW optimizer (Loshchilov & Hutter, 2019) with an initial learning rate of
 791 1e-4, a linear warm-up over the first 1k steps, and a cosine decay schedule to a final rate of 1e-5. At
 792 test time, we use top- k sampling with $k = 15$.

800 B OBJECTIVE METRICS

801 We introduce five statistical metrics to evaluate *content preservation* and *style coherence* for the
 802 piano cover generation tasks. This section provides the definitions of each metric.

803 B.1 MELODY CHROMA ACCURACY (MCA)

804 We use the `melody.raw_chroma_accuracy` metric⁵ provided by `mir_eval` (Raffel et al., 2014) to
 805 evaluate the similarity between two monophonic melody sequences. For the reference melody, we

806
 807 ⁵https://mir-eval.readthedocs.io/latest/api/melody.html#mir_eval.melody.raw_chroma_accuracy

apply Demucs (Rouard et al., 2023) to isolate the vocal stem from the audio and then extract the F0 contour using pYIN (Mauch & Dixon, 2014) provided by librosa (McFee et al., 2015). For the estimated melody, we obtain the melody skyline (Uitdenbogerd & Zobel, 1998) from the generated piano cover MIDI and convert the MIDI pitches to frequencies. The two melodies are compared position-wise under a tolerance of 50 cents. While this implementation follows (Tan et al., 2024a), we additionally ensure that the two melodies are temporally aligned to the same sequence length.

817 B.2 CHORD ACCURACY (CA)

819 We introduce *Chord Accuracy* from (Ren et al., 2020; Zhao et al., 2024) to measure the similarity
 820 between two chord sequences. For the reference sequence, when annotated chords are not available,
 821 we apply the method of (Jiang et al., 2019) to detect chords from the input audio. For the estimated
 822 sequence, we use (Jiang, 2025) to detect chords from the generated piano cover MIDI. Both chord
 823 sequences are aligned and compared at 1-beat granularity in terms of root and full quality based on
 824 the MIREX TeTrads rule.⁶

825 B.3 GROOVE PATTERN COHERENCE (GPC)

827 *Grooving Pattern Coherence (GPC)* evaluates the *grooving pattern* similarity between the generated
 828 piano cover and human’s arrangement. The *grooving pattern*, which is defined in (Wu & Yang,
 829 2020), represents the positions in a MIDI segment at which there is at least one note onset. We
 830 consider 4-bar segments at 1/4-beat granularity, deriving *grooving pattern* g as a 64-dimensional
 831 binary vector. The *GPC* over a test piece is defined as follows:

$$832 \quad GPC = \frac{1}{N} \sum_{n=1}^N \cos(\mathbf{g}_n^{\text{hm}}, \mathbf{g}_n^{\text{cv}}), \quad (1)$$

836 where N is the number of non-overlapping 4-bar segments in the test piece. $\cos(\cdot, \cdot)$ computes
 837 the cosine similarity. \mathbf{g}^{hm} and \mathbf{g}^{cv} represent the *grooving pattern* feature from the human arrange-
 838 ment and the generated piano cover, respectively. The *GPC* metric is omitted for evaluation on
 839 Ballroom/GTZAN, where human’s piano arrangement is not available.

840 B.4 VELOCITY CONTOUR COHERENCE (VCC)

843 *Velocity Contour Coherence (VCC)* evaluates the similarity of the *velocity contour* between the
 844 generated piano cover and the human arrangement, using the same formulation as *GPC*. We define
 845 the *velocity contour* as a time-series feature representing the average note velocity at each timestep.
 846 It has the same dimensionality and temporal granularity as the *grooving pattern*, but instead of a
 847 binary vector, it consists of real values ranging from 0 to 128. The *VCC* metric is omitted for
 848 Ballroom/GTZAN, where human’s piano arrangement is not available.

849 B.5 TEMPO ACCURACY (TA)

851 *Tempo Accuracy (TA)* evaluates the correctness of the estimated tempo tp^{est} relative to the reference
 852 (ground-truth) tempo tp^{ref} . We first define correctness indicator $D(k)$ for one test piece as follows:

$$854 \quad D(k) = \mathbb{1} \left(\frac{|tp^{\text{ref}} - k \times tp^{\text{est}}|}{tp^{\text{ref}}} < 0.08 \right), \quad (2)$$

856 where $\mathbb{1}(\dots)$ is the indicator function. $k \in \{1/2, 1, 2\}$ takes into account the octave ambiguity. The
 857 tolerance threshold of 0.08 follows the empirical setting in mir_eval.⁷

859 We then define tempo accuracy *TA* as:

$$860 \quad TA = \max \left(D(1), 0.5 \cdot D(1/2), 0.5 \cdot D(2) \right), \quad (3)$$

863 ⁶https://mir-eval.readthedocs.io/latest/api/chord.html#mir_eval.chord.tetrads

7https://mir-eval.readthedocs.io/latest/api/tempo.html#mir_eval.tempo.detection

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 5: Objective evaluation on audio-to-symbolic style transfer. Results are reported by mean \pm standard error. The star (*) indicates significant differences ($p < 0.05$) based on the Friedman test.

	MCA	CA	GPC	VCC	TA
Ours	28.9\pm0.5*	40.0\pm1.0*	64.0\pm1.1	62.8\pm1.1	73.8\pm2.0*
w/o PT	25.1 \pm 0.5	33.2 \pm 1.0	62.9 \pm 1.3	62.0 \pm 1.3	69.2 \pm 2.1

where we consider half-tempo and double-tempo matches as partially correct (weight 0.5). This is because tempo perception is known to exhibit octave ambiguity, where perceptions at multiple metrical levels are still considered valid rather than true perceptual errors (Dixon, 2001).

We derive the ground-truth tempo from beat annotations when available. On Ballroom/GTZAN, we use the audio tempo estimation results by madmom (Böck & Davies, 2020), and we omit the *A2M* baseline in this setting because it already relies on madmom’s estimation in its pipeline.

C EVALUATION ON CROSS-MODAL STYLE TRANSFER

To further evaluate our model’s style transfer capability, we note that, to the best of our knowledge, our method is the first to enable cross-modal audio-to-symbolic style transfer, and thus no established baseline exists for direct comparison. Nevertheless, we conduct an objective ablation study comparing our full model (*Ours*) against a variant without Stage-I pretraining (*w/o PT*), to demonstrate the validity of our two-stage training paradigm for cross-modal style transfer. For this experiment, we collect content lead sheets from the POP909 test split. In 10 independent trials, each lead sheet is paired with a style audio reference randomly drawn from the PIAST test split. This yields a total of 450 style-transfer pairs, and both our full model and the ablation variant generate outputs for each pair. We evaluate *content preservation* using *MCA* and *CA*, which measure melody/chord similarity to the input lead sheet, and *style coherence* using *GPC*, *VCC*, and *TA*, which measure groove/velocity/tempo alignment with the style reference audio’s transcription.

As shown in Table 5, our full model outperforms the *w/o PT* variant across all metrics with a good margin, indicating stronger style-transfer capability in both *content preservation* and *style coherence*, thereby validating our two-stage training paradigm. This finding also aligns with the subjective evaluation results in Section 5.4, where our full model is consistently preferred in terms of *Audio-to-Symbolic Coherence*, in addition to other musicality criteria.

D SUBJECTIVE EVALUATION DETAILS

Our subjective evaluation is conducted through an online crowdsourcing study, where participants complete a survey consisting of listening and rating tasks. This section provides additional details on the survey design and participant profile.

D.1 GENERAL INSTRUCTIONS

Participants receive the following general instructions, which clarify their rights and the conditions of participation:

- Participation is entirely voluntary, and one may withdraw at any time without any negative consequences.
- No personally identifying information is collected; all responses are anonymous and used solely for research purposes.

D.2 SURVEY DESIGN

Our survey consists of 6 pages, each presenting 4 versions of piano cover arrangements corresponding to a common test audio piece. The test audio pieces are drawn from the Ballroom and GTZAN datasets and span a variety of genres. The 4 arrangement versions are produced by our model and all

918 baseline models (*PCG2*, *A2M*, and *w/o PT*), respectively. For each model, we select the best result
 919 from 3 independently generated samples to avoid occasional low-probability failures (e.g., incom-
 920 plete or degenerate outputs) from disproportionately affecting subjective evaluation. All models to
 921 be evaluated are anonymized, and their orders on each page are randomized.

922 We acknowledge that participants may use different internal criteria when evaluating music. To
 923 minimize such variability, we conduct within-subject ANOVA (Scheffe, 1999) for data analysis,
 924 which ensures that variances in ratings reflect differences among the models rather than participants.
 925 To control response quality, we only accept complete evaluation sets; that is, participants have to rate
 926 all four models under a common test piece for their responses to be considered valid.
 927

928 D.3 COMPLETION TIME

930 Each participant is randomly assigned 3 out of the 6 pages. On each page, participants first listen to
 931 the test audio piece, and then listen to and rate 4 corresponding piano cover samples. All samples in
 932 the survey are 16 bars long and rendered to audio using the Cakewalk TTS-1 soundfont, producing
 933 approximately 40 seconds of audio per sample. This design targets a total completion time of 10–15
 934 minutes, ensuring that participants have sufficient time to listen carefully without excessive fatigue.
 935 The actual completion time observed on average is 12 minutes.
 936

937 D.4 PARTICIPANT PROFILES

938 Participants are asked to self-identify their musical background as *amateur*, *intermediate*, or *profes-*
 939 *sional*, following the guidelines below:
 940

- 941 • **Amateur:** I enjoy listening to music. I can play/sing/compose short music pieces. I know
 942 a little music theory. I can evaluate a composition based on my feelings.
- 943 • **Intermediate:** I have some experience in performing, composing, or other music activities.
 944 I know a certain amount of music theories that can help me evaluate a composition.
- 945 • **Professional:** I am now pursuing/have completed a music degree, or having equivalent
 946 background. I am proficient in using music theory to evaluate a composition.
 947

948 Among the 21 valid responses collected, 6 participants identified as *amateur* (28.6%), 11 as *inter-*
 949 *mediate* (52.4%), and 4 as *professional* (19.0%). All authors are excluded from the survey.
 950

951 E LIMITATION

953 Our proposed method demonstrates the ability to learn implicit music style from audio. At the cur-
 954 rent stage of this work, we acknowledge that the extracted style primarily represents *segment-level*
 955 *global* characteristics. Here, “global” refers to a latent style profile at the level of short 4-bar seg-
 956 ments, which is still considerably more fine-grained (and more local) than typical global attributes
 957 such as genre labels and textual style tags. Our underlying assumption is that music style remains lo-
 958 cally consistent at the segment or bar level. We empirically found that this assumption holds across
 959 most music traditions, which guarantees our model to perform reliably under this design. While
 960 longer generation can be achieved using windowed sampling, we acknowledge that this approach
 961 may smooth over intended stylistic transitions at phrase boundaries, thus leading to diminished ex-
 962 pressivity at longer timescales. When considering inter-phrase and longer-term music development,
 963 we recognize that a single segment-level style representation is insufficient to capture evolving dy-
 964 namics. Also, subject to the availability of audio-symbolic data, this work is dedicated to piano
 965 arrangement. The cross-modal arrangement of long-term, multi-track music may require hierarchi-
 966 cal or temporally adaptive style modelling, which is an important direction for our future work.
 967

968 F ACKNOWLEDGMENT OF LLM USAGE

969 We acknowledge the use of OpenAI’s ChatGPT to refine the writing in this paper. The tool was
 970 employed to improve coherence, grammar, and readability. All research ideas, experimental designs,
 971 analysis, and conclusions are the authors’ own.