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ABSTRACT

Generalizing deep reinforcement learning agents to unseen environments remains
a significant challenge. One promising solution is Unsupervised Environment De-
sign (UED), a co-evolutionary framework in which a teacher adaptively generates
tasks with high learning potential, while a student learns a robust policy from this
evolving curriculum. Existing UED methods typically measure learning poten-
tial via regret, the gap between optimal and current performance, approximated
solely by value-function loss. Building on these approaches, we introduce the
transition-prediction error as an additional term in our regret approximation. To
capture how training on one task affects performance on others, we further pro-
pose a lightweight metric called Co-Learnability. By combining these two mea-
sures, we present Transition-aware Regret Approximation with Co-learnability for
Environment Design (TRACED). Empirical evaluations show that TRACED pro-
duces curricula that improve zero-shot generalization over strong baselines across
multiple benchmarks. Ablation studies confirm that the transition-prediction er-
ror drives rapid complexity ramp-up and that Co-Learnability delivers additional
gains when paired with the transition-prediction error. These results demon-
strate how refined regret approximation and explicit modeling of task relation-
ships can be leveraged for sample-efficient curriculum design in UED. https:
//traced.vercel.app/

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable success in games, continuous control,
and robotics (Sutton et al., 1998). Ideally, we want agents that generalize robustly to a broad
range of unseen environments. However, hand-crafting a training distribution that captures all
real-world variability is intractable, and agents often overfit even large training sets, performing
poorly out-of-distribution (Kirk et al., 2023; Korkmaz, 2024).

Unsupervised Environment Design (UED) tackles this by adapting the curriculum: a teacher module
generates training tasks that challenge the student agent (Dennis et al., 2020). A popular class of
UED methods measures task difficulty by regret, the difference between the optimal return and the
agent’s achieved return, and uses this metric to guide curriculum design (Dennis et al., 2020; Jiang
et al., 2021b;a; Parker-Holder et al., 2022; Azad et al., 2023b; Mediratta et al., 2023; Erlebach &
Cook, 2024). Unfortunately, genuine regret requires knowing each environment’s optimal Q∗, which
is infeasible in complex domains. Existing approaches, therefore, resort to coarse proxies such as
Positive Value Loss (PVL) or maximum observed return (MaxMC) (Rutherford et al., 2024). In this
paper, we refine regret estimation by augmenting PVL with a transition-prediction error term that
captures how poorly a learned model predicts the environment’s dynamics. This combined signal
provides a more faithful approximation of regret and a sharper basis for curriculum design.

We further introduce a metric called Co-Learnability to quantify how training on one task benefits
others. For instance, consider three 100-word vocabulary tasks, Spanish, English, and Japanese,
whose transfer patterns differ: because Spanish and English share many cognates, learning Span-
ish accelerates lexical access and boosts English accuracy (Ramı́rez et al., 2013; Costa et al., 2000;
Lemhöfer & Dijkstra, 2004), reflecting high Co-Learnability; in contrast, Japanese is typologically
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distant (Chiswick & and, 2005), so gains from Japanese may transfer unefficiently to English, re-
flecting low Co-Learnability. We present a lightweight estimator of Co-Learnability that leverages
observed changes in approximated regret, avoiding any additional modeling overhead in the UED
loop.
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Figure 1: Task Priority Land-
scape. Task with high diffi-
culty and high Co-Learnability
are scheduled with the highest
priority in the curriculum.

We propose TRACED (Transition-aware Regret Approximation
with Co-Learnability for Environment Design), which combines
refined regret and Co-Learnability to yield a task-priority land-
scape (Figure 1). We evaluate TRACED on procedurally gener-
ated MiniGrid (MG) (Chevalier-Boisvert et al., 2023) and Bipedal-
Walker (BW) (Romac et al., 2021). In MG, we compare against
Domain Randomization (DR) (Jakobi, 1997), PLR⊥ (Jiang et al.,
2021b), ADD (Chung et al., 2024), and ACCEL (Parker-Holder
et al., 2022) (the strongest baseline). In BW, we additionally
include the state-of-the-art (SOTA) method CENIE (Teoh et al.,
2024).

TRACED surpasses all baselines in mean solved rate across 12
MiniGrid mazes, BipedalWalker, and even the extreme Perfect-
Maze variants. Ablation studies show that the transition-prediction
error term accelerates curriculum ramp-up, while Co-Learnability
provides additional gains when combined with our regret term. An
analysis of curriculum evolution indicates that TRACED progres-
sively increases task difficulty from easy to challenging. Taken
together, these results chart a path toward more sample-efficient
UED by coupling refined regret approximation with explicit mod-
eling of task relationships.

2 PRELIMINARIES

2.1 UNDERSPECIFIED PARTIALLY OBSERVABLE MDPS (UPOMDPS)

We model our environments as underspecified partially observable Markov decision processes (UP-
OMDPs) following Dennis et al. (2020). A UPOMDP is a tupleM = ⟨A,O,Θ, S, P0, PT , I,R, γ⟩,
where A is a finite set of actions, S is a latent state space, and O is an observation space. The ob-
servation function I : S → ∆(O) generates each observation ot given the true state st, the reward
function R : S × A → R and discount factor γ ∈ [0, 1) are shared across all levels. Crucially, Θ
is a set of underspecified parameters that distinguish individual “levels”: for each θ ∈ Θ, the initial
state is drawn from P0(θ) ∈ ∆(S) and transitions follow PT (st+1 | st, at, θ).
At each time step t, the agent observes ot ∼ I(st) and selects an action at according to a
trajectory-conditioned policy π

(
at|o0, a0, . . . , ot

)
. For a fixed level θ, the utility of policy π is

the expected discounted return Uθ(π) = E
[∑T

t=0 γ
t rt

]
, rt = R(st, at) with the expectation taken

over both the stochastic dynamics and the policy’s choices. We denote an optimal policy on level θ
by π⋆

θ ∈ argmaxπ Uθ(π).

2.2 UNSUPERVISED ENVIRONMENT DESIGN (UED)

UED provides a series of levels with unknown parameters that are used to produce task environments
automatically as a curriculum for the agent so as to efficiently train a single generalist policy πϕ

across the entire parameter space Θ (Dennis et al., 2020). Recent UED methods maximize regret of
the agent to generate a distribution of environments that guide effective learning (Jiang et al., 2021b;
Parker-Holder et al., 2022; Teoh et al., 2024). The regret of policy π is defined as the difference in
expected reward between optimal policy π∗ and policy π, Regretθ(π) = Uθ(π

∗)− Uθ(π).

Because the true optimal policy π⋆ is unknown in complex environments, existing methods ap-
proximate the instantaneous regret using proxy metrics. For example, PLR⊥ (Jiang et al., 2021a)
evaluates two such proxies: Positive Value Loss (PVL) and Maximum Monte Carlo (MaxMC). PVL
estimates the instantaneous regret as the average positive part of the Generalized Advantage Estima-
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tion (GAE)-based Temporal Difference (TD) errors over an episode. PVL for an episode τ of length
T is defined as

PVL(τ) =
1

T

T∑
t=0

max(

T∑
k=t

(γλ) k−t δk, 0
)

(1)

where γ is the discount factor, λ is the GAE coefficient and δt = rt + γ V (st+1) − V (st) is the
one-step TD-error at timestep t. MaxMC uses the highest undiscounted return observed on the
task instead of a bootstrap target. Other criteria such as policy entropy, one-step TD error, GAE,
policy min-margin, and policy least-confidence have also been evaluated in curriculum learning
contexts (Jiang et al., 2021b).

3 TRACED: TRANSITION-AWARE REGRET APPROXIMATION WITH
CO-LEARNABILITY FOR ENVIRONMENT DESIGN

TRACED improves UED via (i) a regret approximation combining value and transition-prediction
errors and (ii) a Co-Learnability measure. These yield a unified Task Priority score that governs
new-task generation and replay sampling. We first present the motivating regret decomposition,
then the curriculum derived from the approximated regret.

3.1 REGRET APPROXIMATION VIA TRANSITION PREDICTION LOSS

Since regret quantifies the difficulty an agent experiences on a task, improving its approximation
can yield more accurate difficulty estimates and, in turn, more effective curricula. We approximate
the one-step regret at a state-action pair (s, a) via the following decomposition:

Regret(s, a) = V ∗(s)−Qπ(s, a)

= V ∗(s)− V̂ ∗(s) + V̂ ∗(s)−Qπ(s, a)

= V ∗(s)− V̂ ∗(s)︸ ︷︷ ︸
(i) Value estimation error

+ r(s, a∗)− r(s, a)︸ ︷︷ ︸
(ii) Reward gap

+ γ
(
Es′′∼P̂ (·|s,a∗)

[
V̂ ∗(s′′)

]
− Es′∼P (·|s,a)

[
V π(s′)

])
︸ ︷︷ ︸

(iii) Future value gap

,

(2)

Notation. A hat (e.g., V̂ ∗(s)) indicates an empirical/learned estimator of the optimal value; Q∗, V ∗

are the optimal value functions; Qπ, V π are the value functions under policy π; P is the true transi-
tion kernel and P̂ is a learned transition model; γ is the discount factor.

Eq. 2 makes clear that Positive Value Loss (PVL), which evaluates only the accuracy of the empirical
value estimator and thus corresponds to term (i), is insufficient as a proxy for regret. The future-
value gap in term (iii) is influenced not only by value-function error but also by mismatch between
the learned dynamics P̂ and the true dynamics P . Motivated by this, we augment PVL with a
transition-prediction error term, explicitly accounting for model-environment dynamics mismatch
when approximating regret.

Definition 1 (Average Transition Prediction Loss). Train a transition dynamics estimator fϕ,
implemented as a recurrent model, to minimize a one-step reconstruction loss Ltrans(st, at) between
the observed next state st+1 and the prediction ŝt+1 = fϕ(st, at) . Detailed design choices for the
transition model are provided in Appendix H.3. Over an episode τ = (s0, a0, . . . , sT ), define

ATPL(τ) =
1

T

T∑
t=0

Ltrans(st, at). (3)

Combine the two estimates into a single scalar:

R̂egret(τ) = PVL(τ) + αATPL(τ), (4)

where α > 0 balances value versus transition terms.

3
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Update 
difficulties

Sample x tasks

at time-step k 

Rollouts Buffer (RB)

New Task Difficulties +
PVL

ATPL

Compute Difficulties
Task Difficulty Buffer (TDB)

1.4 0.9 0.5

Task n

2.7 1.5 0.7 0.3

Task 1

Time-step1 1k- 0.2

k, 1Difficulty

0.1

k, xDifficulty

k, xTask

Episode

k, 1Task

Episode

Figure 2: Task Difficulty Calculation Workflow. The Task Difficulty Buffer (TDB) records each
task’s history of approximated regret. The agent interacts with sampled tasks to collect episode
trajectories, which are stored in the Rollouts Buffer (RB). For each trajectory, we compute the
Positive Value Loss (PVL) and the Average Transition-Prediction Loss (ATPL). Their sum produces
the updated task difficulty (approximated regret), which is appended to the TDB to refresh each
sampled task’s stored difficulty.

By explicitly incorporating both components, our regret approximation more faithfully captures task
difficulty and, in turn, yields more effective curricula. For each sampled task instance τ , we compute
R̂egret(τ) and append it to the task difficulty buffer (TDB), which is subsequently used to drive
curriculum updates (Figure 2). Detailed theoretical analysis of the relationship between term (iii) in
Eq. 2 and ATPL is provided in Appendix R, where we show that the dynamics-induced component
of the future-value gap is upper-bounded by ATPL. This establishes ATPL as a principled correction
term for regret approximation.

3.2 TASK PRIORITY CONSTRUCTION

A central challenge in UED is to decide which tasks to present to the agent at each step (Hughes et al.,
2024). Intuitively, we want to (1) focus on tasks that remain challenging, while (2) exploiting tasks
whose training yields transfer to others. To this end, we introduce two complementary quantities,
Task Difficulty and Co-Learnability, and combine them into a single Task Priority score. In the
following sections, time t indexes the teacher’s curriculum-selection cycles (not environment time).

Definition 2 (Task Difficulty). Let si(k) = max{ s ≤ k : TDB(i, s) exists} denote the most
recent time at or before k when task i was sampled, so that its approximated regret was stored at
time si(k). We define the task difficulty of task i at time k as

TaskDifficulty(i, k) =

{
TDB

(
i, si(k)

)
, if si(k) is finite,

0, if i has never been sampled before t.
(5)

This ensures that TaskDifficulty(i, k) always reflects the most recent approximated regret for task
i, with larger values indicating greater remaining challenge. Note that a difficulty value for task i is
well-defined at time k only if the task has been sampled at least once on or before k. This difficulty
estimate becomes available for use when constructing the curriculum at time k+1.

Definition 3 (Co-Learnability). Beyond difficulty, we wish to capture how training on one task
accelerates progress on others. Let Tk+1 be the set of tasks replayed at time k + 1. We define the
Co-Learnability (CL) of task i at time k as

CoLearnabilityi(k) =
1

|Tk+1|
∑

j∈Tk+1

[
TaskDifficulty(j, k)− TaskDifficulty(j, k + 1)

]
(6)

which measures the average reduction in the difficulty of replayed tasks when task i is selected at
time k. In principle, the true marginal contribution could be computed via Shapley values; however,
due to computational constraints we approximate task i’s effect on reducing other tasks’ difficulty
using this surrogate. A positive Co-Learnability value indicates that visiting i yields transfer bene-
fits. Since CoLearnabilityi(k) depends on difficulty updates that occur at time k + 1, it becomes
available beginning at timestep k + 2.

Definition 4 (Task Priority). We combine difficulty and Co-Learnability into a scalar score and
then apply a rank transform, which replaces raw values with their relative order (e.g., the largest

4
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��  Task Sampling ��  Priority Update �� Task Mutate

Task Priority

Level BufferLevel Buffer Mutate tasks

Agent

Task Priority

Level BufferLevel Buffer

Sample levels 
based on priority

3rd 1st 8th 2nd 3rd 2nd 4th 1st

Agent

Task Priority

Level BufferLevel Buffer

Update priorities
3rd 2nd 8th 5th

Figure 3: Method Workflow Overview. The three panels in figure depict: (1) Task Sampling: levels
are drawn from the buffer based on their priority scores. (2) Priority Update: we recompute each
level’s priority based on our task priority definition (Eq. 7). (3) Task Mutation: the lowest-priority
levels are mutated into new variants and reinserted into the buffer.

value receives rank 1, the next largest rank 2, etc.), as in ACCEL (Parker-Holder et al., 2022):

TaskPriority(i, t) = Rank
(
TaskDifficulty(i, t) + β CoLearnability(i, t)

)
(7)

where β > 0 trades off challenge versus transfer. At each step, we sample tasks inversely to their
priority (e.g., p(i | t) ∝ 1/TaskPriority(i, t)), so lower ranks (higher priority) are selected more
often.

The rank transform mitigates the influence of outliers by discarding the absolute magnitude of raw
scores and retaining only their relative ordering. Without this transformation, a single task with
an anomalously large difficulty or Co-Learnability value can dominate the sampling distribution,
collapsing the curriculum toward that task.

3.3 OVERALL UED WORKFLOW

The overall UED algorithm follows the ACCEL loop (Parker-Holder et al., 2022), with the sole
change that task scoring uses our Task Priority (Eq. 7) in place of Positive Value Loss (PVL) alone
(Figure 3). At each curriculum update time t, with probability d we sample a new level uniformly at
random, and with probability 1 − d we sample a level from the replay buffer according to its Task
Priority score. Early in training, when the buffer is empty, we sample levels uniformly at random
for a warm-up period. The warm-up length matches ACCEL’s setting.

After training the agent on the selected level, we approximate its regret using the agent’s value-
related loss and the transition-prediction loss (for Task Difficulty), and append the result to the
task difficulty buffer. Co-Learnability is updated following Eq. 6 after the next curriculum step,
once the newly visited levels have had their difficulties updated. The updated Task Difficulty and
Co-Learnability define Task Priority via Eq. 7, which then governs both new-task sampling and pri-
oritized replay at future times. The algorithm alternates between sampling new tasks and prioritized
replay until policy performance converges. The full procedure is given in Algorithm 1.

4 EXPERIMENTS

We evaluate TRACED on two procedurally generated domains: MiniGrid (MG) and BipedalWalker
(BW). In both environments, we compare against DR, PLR⊥, ACCEL (our primary baseline, since
TRACED builds directly upon it), and ADD. In BW only, we additionally include the recent sota
method CENIE (Teoh et al., 2024). We exclude SFL (Rutherford et al., 2024) because, on MiniGrid,
it does not outperform PLR (Rutherford et al., 2024). Detailed descriptions of all baselines can be
found in Appendix K.

For each domain, we track the emergent complexity of the sampled curricula during training and
evaluate zero-shot test performance on held-out levels. To summarize test results, we report the
median, interquartile mean (IQM), mean, and optimality gap using the rliable library (Agarwal et al.,
2021). The optimality gap measures how far an algorithm falls short of a target performance level,
beyond which further gains are deemed negligible. Accordingly, higher IQM and lower optimality
gap values indicate better performance.

5
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SixteenRooms Maze Labyrinth LargeCorridor

(a) Minigrid

Stairs

Roughness

(b) BipedalWalker

Figure 4: Held-out Evaluation Environments. (a) Example held-out MiniGrid mazes for zero-shot
evaluation: 4 tasks are shown (see Appendix H.1 for all 12 task definitions). (b) Example held-out
BipedalWalker terrains for zero-shot evaluation: 2 tasks are shown (see Appendix H.2 for all 6 task
definitions).

All methods use Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the student agent.
Following prior work (Parker-Holder et al., 2022; Teoh et al., 2024), we plot performance versus
the number of PPO updates and report the corresponding environment interactions per update in
Appendix F. Our only deviation from ACCEL is the number of PPO workers (i.e., parallel trajectory
collectors), chosen for computational constraints: MiniGrid uses 16 workers instead of 32, and
BipedalWalker uses 4 instead of 16. Consequently, some baseline scores may differ from those in
the ACCEL paper. However, Appendix A.4 shows that TRACED has no worker-specific tuning and
that reducing workers does not render the comparison unfair. We report TRACED at 10k updates
(rather than 20k) because single-seed, long-horizon runs (45k PPO updates) on MiniGrid reveal post-
convergence oscillations in both TRACED and ACCEL, and reporting earlier avoids this confound
(Appendix B). Additional hyperparameters and architectures are provided in Appendix H.

4.1 PARTIALLY OBSERVABLE NAVIGATION

We evaluate our curriculum design on a partially observable maze navigation domain based on
MiniGrid (Chevalier-Boisvert et al., 2023), as in prior UED work. Four representatives are shown in
Figure 4. The agent observes a 147-dimensional pixel observation and is trained for up to 20k PPO
updates.

0.2 0.4 0.6
DR 10k
DR 20k

PLR  10k
PLR  20k
ADD 10k
ADD 20k

ACCEL 10k
ACCEL 20k

TRACED (Ours) 10k
Median

0.2 0.4 0.6 0.8

IQM

0.30 0.45 0.60

Mean

0.30 0.45 0.60 0.75

Optimality Gap

Score

Figure 5: Zero-Shot Transfer Performance in MiniGrid. Aggregated solved rates on held-out
MiniGrid mazes after 10k and 20k PPO updates. TRACED at 10k updates outperforms baselines at
20k updates.

Our method achieves a superior solved rate at only 10k updates, matching or exceeding the 20k
update performance of all baselines (Figure 5). In particular, TRACED’s median solved rate at 10k
surpasses ACCEL at 20k, and its IQM leads the field, indicating that the majority of runs benefit
rapidly from our combined regret and Co-Learnability scoring.

Compared to ACCEL, TRACED halves the wall-clock training time while maintaining equivalent
or better transfer performance (Table 1). Even relative to ACCEL at the same 10k update budget,
TRACED incurs a 6% computational overhead yet delivers a 22% relative increase in mean solved
rate. Taken together, these metrics demonstrate that TRACED not only accelerates learning but also
delivers more consistent and reliable zero-shot transfer across diverse MiniGrid mazes. Detailed
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Table 1: Wall-clock training time comparison. Average training duration (hours ± SE over 10
runs) on the MiniGrid domain.

TRACED 10k ACCEL 10k ACCEL 20k ADD 10k ADD 20k PLR⊥ 10k PLR⊥ 20k DR 10k DR 20k

13.78 ± 0.36 12.94 ± 0.66 26.58 ± 0.76 22.48 ± 0.27 45.08 ± 0.29 14.87 ± 0.62 31.83 ± 1.36 5.82 ± 0.12 12.41 ± 0.18

per-task zero-shot results are provided in Appendix P, and the number of environment interactions
per PPO update for each method is in Appendix F.

TRACED (Ours) ACCEL + ATPL ACCEL

0 5k 10k
Student PPO Updates

0
20
40
60
80

100
120
140

(a) Shortest Path Length

0 5k 10k
Student PPO Updates

0
10
20
30
40
50
60
70
80

(b) Number of Blocks

Figure 6: Emergent maze complexity metrics. Shortest path length and number of blocks both
grow faster under TRACED (pink) than ACCEL (blue). This faster ramp-up indicates that our
curriculum more effectively escalates difficulty in lockstep with agent learning.

To analyze emergent environment complexity, we track two structural metrics for each generated
maze: (i) the length of the shortest solution path and (ii) the number of obstacles (Figure 6).
Curves are averaged over 10 seeds with shaded 95% confidence intervals. Both metrics increase
substantially faster under TRACED than under ACCEL, indicating that our priority scoring more
effectively separates easy from challenging tasks and yields a steadily escalating curriculum. No-
tably, ACCEL+ATPL also drives complexity upward far faster than ACCEL alone and closely tracks
TRACED, demonstrating that the transition-prediction component on its own contributes strongly
to complexity ramp-up.

(a) PerfectMazeLarge (b) PerfectMazeXL

0.0

0.3

0.6 PerfectMazeLarge

0.0

0.3

0.6 PerfectMazeXL

Ours 10k
ACCEL 20k
ACCEL 10k
ADD 20k
ADD 10k
PLR  20k
PLR  10k
DR 20k
DR 10k

(c)

Figure 7: PerfectMaze Evaluation. (a), (b) Two held-out maze instances, PerfectMazeLarge and
PerfectMazeXL, used for zero-shot testing. (c) Zero-shot solved rates. TRACED achieves the high-
est 10k performance on PerfectMazeLarge and closely matches the best 20k performance on Per-
fectMazeXL.

To stress-test our curriculum on extremely large, procedurally generated mazes, we introduce two
PerfectMaze benchmarks. PerfectMazeLarge consists of 51 × 51 grids with a maximum episode
length exceeding 5k steps, while PerfectMazeXL scales this to 100 × 100 grids. Figure 7 shows
representative levels from each variant. We evaluate zero-shot transfer performance, measuring the
mean success rate (± standard deviation) over 100 episodes per seed (10 seeds total).

On PerfectMazeLarge, TRACED achieves the highest 10k solved rate (27%± 23%), outperforming
ACCEL’s best 20k rate (20% ± 25%) and far exceeding ADD, DR and PLR⊥ (Figure 7). On the
even more complex PerfectMazeXL, ACCEL narrowly leads at 12% ± 28% after 20k updates,
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with TRACED close behind at 10% ± 14% after just 10k updates, demonstrating that TRACED
scales to extremely large mazes. Detailed per-baseline results for both benchmarks are provided in
Appendix P.

4.2 WALKING IN CHALLENGING TERRAIN

We further validate our curriculum in the continuous-control BipedalWalkerHardcore environment
from OpenAI Gym (Brockman et al., 2016), as modified by Wang et al. (2019). This domain features
a procedurally generated terrain controlled by eight parameters, terrain roughness, pit gap frequency,
stump height, stair spacing, etc., that jointly determine locomotion difficulty. We consider the com-
plete set of eight parameters in our design space. Figure 4 illustrates two representative terrains
with varying stair heights and surface roughness. We evaluate zero-shot transfer on six held-out test
terrains over 100 episodes each, averaged over five random seeds.

0.00 0.15 0.30

DR 10k
DR 20k

PLR  10k
PLR  20k
ADD 10k
ADD 20k

ACCEL 10k
ACCEL 20k

ACCEL-CENIE 10k
ACCEL-CENIE 20k

TRACED (Ours) 10k
Median

0.00 0.15 0.30

IQM

0.00 0.15 0.30

Mean

0.75 0.90 1.05

Optimality Gap

Normalized Score

Figure 8: Aggregate zero-shot performance on BipedalWalker terrains. All scores are normal-
ized by the maximum return of 300 in the BipedalWalker domain. TRACED at 10k updates (pink)
matches or exceeds ACCEL-CENIE at 20k updates (purple) across all metrics.
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Figure 9: Return progression on BipedalWalker terrains. TRACED consistently outperforms
baselines.

TRACED delivers consistent gains across all four aggregate metrics, median, interquartile mean
(IQM), mean, and optimality gap, on the six held-out BipedalWalker terrains (Figure 8). After
only 10k updates, it already outperforms all baselines evaluated at 20k. As in MiniGrid, TRACED
also reaches its peak performance in roughly half the wall-clock time of ACCEL on BipedalWalker
(Appendix F). Moreover, TRACED consistently surpasses ACCEL in zero-shot returns across all
terrains throughout training (Figure 9), further underscoring the effectiveness of its curriculum de-
sign. Detailed numerical results are provided in Appendix P.
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4.3 ABLATION STUDY

0.30 0.45 0.60 0.75
TRACED - ATPL 10k

TRACED - CL 10k
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Figure 10: Ablation Study on TRACED. Both ATPL and CL are important design choices.

To isolate component contributions, we compare TRACED at 10k updates with two ablations (Fig-
ure 10): ATPL only (TRACED−CL) and Co-Learnability only (TRACED−ATPL), each evaluated
with five seeds. Results are reported following Agarwal et al. (2021). On MiniGrid, TRACED out-
performs both variants across four metrics, indicating that each component contributes meaningfully
to performance. The same trend holds on BipedalWalker (Appendix A). Ablations on the scaling
factors α and β further show that both elements play significant roles in TRACED and that carefully
balancing ATPL and CL can yield additional gains (Appendix A.1). Detailed numerical results are
provided in Appendix P.

4.4 ANALYSIS ON CURRICULUM PROGRESSION

Table 2: Proportions (%) of Easy, Moderate, and Challenging levels in the level buffer during
PPO updates.

Method Difficulty 0k 5k 10k 15k 20k

ACCEL
Easy 100 100 79.2 26.7 9.2
Moderate 0 0 20.8 73.3 90.8
Challenging 0 0 0 0 0

TRACED
Easy 100 72 24.5 19.5 11.2
Moderate 0 25.7 60.9 68 77.3
Challenging 0 2.3 14.6 12.5 11.5

To analyze how the curriculum evolves, we examine the BipedalWalker level buffer over time and
categorize each generated level into three difficulty bands: Easy, Moderate, and Challenging, based
on environment hyperparameters. Following Teoh et al. (2024), we set thresholds for Stump Height
(2.4), Pit Gap (6), Ground Roughness (4.5), and Stairs Height (5). Levels exceeding no thresholds
are labeled Easy, those exceeding exactly one threshold are Moderate, and those exceeding at least
two thresholds are Challenging. Table 2 reports the proportion of each difficulty in the buffer at
different PPO update steps.

TRACED progressively shifts mass from Easy to Moderate and Challenging, introducing nontrivial
proportions of Challenging levels by 10k (14.6%) and maintaining them thereafter (11.5% at 20k).
In contrast, ACCEL never surfaces Challenging levels even at 20k (0% throughout), with the buffer
dominated by Moderate levels by 20k (90.8%). This steady escalation under TRACED aligns with
its faster convergence and stronger performance already at 10k updates. The respective contributions
of ATPL and Co-Learnability (CL) to curriculum progression are analyzed in Appendix C, and a
visualization of level evolution is provided in Appendix D.

5 CONCLUSION

In this paper, we introduced Unsupervised Environment Design (UED) method with two key compo-
nents: (i) an explicit transition-prediction error term for regret approximation, and (ii) a lightweight
Co-Learnability metric that captures cross-task transfer effects. By integrating these into the stan-
dard generator-replay loop, TRACED produces curricula that escalate environment complexity in
tandem with agent learning.

Empirically, we demonstrated on two procedurally generated domains (MiniGrid navigation and
BipedalWalker) that TRACED outperforms baselines (DR, PLR⊥, ADD, ACCEL), including sota
CENIE, using only half the training updates. We showed superior zero-shot transfer success rates,
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faster growth in structural complexity, and scalability to extremely large mazes. Ablation studies
confirmed that each component is essential: ATPL drives the primary complexity ramp-up, while
Co-Learnability yields gains when paired with our regret estimates.

Looking forward, Co-Learnability offers a simple, computationally light mechanism for capturing
inter-task influences and could be further refined via more sophisticated causal estimators or learned
models. More broadly, any RL setting that relies on regret-approximation stands to benefit from in-
corporating transition-prediction error, providing an easy-to-implement boost in sample efficiency.
We anticipate that these ideas will inspire future work on adaptive curricula, advanced editing mech-
anisms, and broader applications of regret-guided exploration in open-ended learning environments.
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A ADDITIONAL EXPERIMENTS

A.1 ABLATION STUDY ON THE SCALING FACTOR

In this ablation, we keep every setting in Appendix O fixed except for one of the weight-scaling
factors, α (ATPL weight), β (Co-Learnability weight). Results are averaged over five random seeds
and reported as mean ± standard error on 12 held-out MiniGrid tasks. Each method is evaluated
after 10k PPO updates.

Table 3: Ablation study on the scaling factor. Comparing different fixed projection Weight base-
lines (α = 0.0, α = 100.0, β = 0.0, β = 100.0) and TRACED (α = 1.0, β = 1.0). Bold indicates
the best; underline indicates the second-best.

Environment α=0.0 α=100.0 β=0.0 β=100.0 TRACED
16Rooms 0.81 ± 0.1 0.06 ± 0.04 0.73 ± 0.09 0.74 ± 0.17 0.79 ± 0.19
16Rooms2 0.94 ± 0.05 0.0 ± 0.0 0.28 ± 0.2 0.59 ± 0.15 0.72 ± 0.17
SimpleCrossing 0.84 ± 0.04 0.43 ± 0.08 0.86 ± 0.04 0.82 ± 0.04 0.89 ± 0.01
FourRooms 0.45 ± 0.05 0.23 ± 0.04 0.41 ± 0.05 0.52 ± 0.03 0.47 ± 0.02
SmallCorridor 0.42 ± 0.24 0.12 ± 0.06 0.62 ± 0.21 0.51 ± 0.12 0.49 ± 0.17
LargeCorridor 0.44 ± 0.26 0.04 ± 0.02 0.54 ± 0.16 0.56 ± 0.18 0.5 ± 0.14
Labyrinth 0.5 ± 0.29 0.0 ± 0.0 0.49 ± 0.25 0.19 ± 0.18 1.0 ± 0.0
Labyrinth2 0.61 ± 0.2 0.0 ± 0.0 0.2 ± 0.17 0.2 ± 0.2 0.98 ± 0.01
Maze 0.74 ± 0.21 0.0 ± 0.0 0.18 ± 0.07 0.39 ± 0.24 0.59 ± 0.17
Maze2 0.56 ± 0.26 0.0 ± 0.0 0.51 ± 0.21 0.14 ± 0.12 0.42 ± 0.19
Maze3 0.51 ± 0.27 0.0 ± 0.0 0.59 ± 0.22 0.51 ± 0.21 0.86 ± 0.07
PerfectMaze(M) 0.4 ± 0.16 0.01 ± 0.02 0.4 ± 0.06 0.34 ± 0.07 0.66 ± 0.11
Mean 0.6 ± 0.1 0.07 ± 0.01 0.5 ± 0.09 0.46 ± 0.05 0.7 ± 0.04

Deviating from defaults on either α or β reduces the solved rates in most domains (Table 3). For
both ignoring one of the weighted terms (α = 0.0 or β = 0.0) and using excessively large weight
(α = 100.0 or β = 100.0), solved rates show slight improvement for some individual tasks, but
statistical drops for overall performance. The default TRACED weights show the best performance
compared to fixed projection baselines. This result shows that an effective balance between ATPL
and Co-Learnability is needed.

A.2 ABLATION STUDY ON ATPL AND CO-LEARNABILITY

In this ablation, we evaluate TRACED by removing each of its two components in turn. Table 4
reports zero-shot solve rates on six held-out BipedalWalker tasks after 10k PPO updates. Results
are averaged over five random seeds and reported as mean ± standard error.

Table 4: Ablation study on ATPL and Co-Learnability. Comparing ACCEL (10k), TRACED -
ATPL (10k), TRACED - CL (10k), and TRACED (10k, α = 1.5, β = 0.6). Bold indicates the best
result per task; underline indicates the second-best.

Environment ACCEL 10k TRACED - ATPL 10k TRACED - CL 10k TRACED 10k
Basic 281.65 ± 5.25 282.61 ± 4.64 286.75 ± 5.01 293.67 ± 3.56
Hardcore 37.59 ± 15.0 53.77 ± 20.8 48.35 ± 23.74 86.83 ± 17.96
Stairs -38.71 ± 10.54 -43.99 ± 12.99 -34.1 ± 8.44 -29.0 ± 10.4
PitGap -65.07 ± 7.57 -72.92 ± 13.95 -5.2 ± 66.89 -39.26 ± 11.42
Stump -79.18 ± 5.45 -38.06 ± 39.88 -19.89 ± 64.11 34.16 ± 54.58
Roughness 161.72 ± 28.36 191.75 ± 25.07 191.68 ± 4.99 193.29 ± 21.6
Mean 49.67 ± 11.24 62.19 ± 11.21 77.93 ± 17.58 89.95 ± 12.95

TRACED achieves the top score in five of six tasks (Basic, Hardcore, Stairs, Stump, Roughness)
and ranks second in the remaining one. The ATPL only variant (TRACED - CL) leads to the first
place in one task (PitGap) and second place in two tasks (Basic, Stump), while the Co-Learnability
only variant (TRACED - ATPL) only reaches the second place in two tasks (Hardcore, Roughness).
Removing both components (the ACCEL baseline) ranks second on one (Stairs). These results
confirm that both transition-prediction error and Co-Learnability are essential to TRACED’s high
and stable performance across diverse tasks.
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A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyze impact of varying the ATPL weight α and the Co-Learnability weight β in TRACED
across the 12 held-out MiniGrid environments and six held-out BipedalWalker terrains. Results are
reported for a single random seed due to computational constraints.

Table 5: Effect of hyperparameter weights (α, β) on MiniGrid environments. Evaluations are
performed under varying (α, β) settings. Bold indicates the best; underline indicates the second-
best.

Environment (0.75, 1.0) (1.25, 1.0) (1.0, 0.75) (1.0, 1.25) (1.25, 0.75) TRACED (1.0, 1.0)

16Rooms 0.26 0.90 1.00 0.96 1.00 0.79± 0.19
16Rooms2 0.00 0.05 0.08 0.78 0.10 0.72± 0.17
SimpleCrossing 0.82 0.84 0.85 0.71 0.78 0.89 ± 0.01
FourRooms 0.68 0.36 0.52 0.39 0.51 0.47± 0.02
SmallCorridor 0.55 0.00 0.01 0.00 0.01 0.49± 0.17
LargeCorridor 0.94 0.02 0.01 0.00 0.01 0.50± 0.14
Labyrinth 0.98 1.00 1.00 1.00 1.00 1.00 ± 0.00
Labyrinth2 1.00 0.73 0.76 1.00 0.95 0.98± 0.01
Maze 0.76 0.16 0.39 0.00 1.00 0.59± 0.17
Maze2 0.07 0.00 0.94 1.00 0.98 0.42± 0.19
Maze3 0.92 1.00 0.10 0.89 0.93 0.86± 0.07
PerfectMaze(M) 0.56 0.38 0.55 0.55 0.85 0.66± 0.11

Mean 0.63 0.45 0.52 0.61 0.67 0.70 ± 0.04

In MiniGrid environments, four of the six (α, β) settings outperform the 10k-update baselines (Ap-
pendix P), and even the weakest setting matches the performance of PLR⊥ at 10k (Table 5). These
results indicate that TRACED provides consistently strong zero-shot generalization across a broad
range of hyperparameters, without extensive tuning.

Table 6: Effect of hyperparameter Weights (α, β) on BipedalWalker environments. Evaluations
are performed under varying (α, β) settings. Bold indicates the best; underline indicates the second-
best.

Environment (1.25, 0.6) (1.75, 0.6) (1.5, 0.45) (1.5, 0.75) TRACED (1.5, 0.6)

Basic 282.06 291.04 281.32 279.37 293.67±3.56
Hardcore -7.60 115.87 29.55 50.10 86.83±17.96
Stairs -52.78 -21.94 -42.37 -66.02 -29.0±10.4
PitGap 12.96 -52.72 -52.21 -122.54 -39.26±11.42
Stump -100.95 -40.11 -74.83 -73.93 34.16±54.58
Roughness 148.22 187.43 244.57 185.83 193.29±21.6

Mean 46.99 79.93 64.34 42.13 89.95±12.95

In BipedalWalker, three of the configurations outperform all 10k-update baselines (Appendix P)
(Table 6). Even the mean return across all five (α, β) choices (≈ 64.9) exceeds every baseline.
These results demonstrate that TRACED delivers consistently strong zero-shot generalization across
a wide range of weight settings, without requiring extensive hyperparameter tuning.
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A.4 ABLATION STUDY ON THE NUMBER OF WORKERS

We analyze the effect of the number of PPO workers, which determines how many agents collect
trajectories in parallel. The only difference between our experimental setup and ACCEL (Parker-
Holder et al., 2022) is the worker count: we use 16 workers for MiniGrid and 4 for BipedalWalker,
whereas the original ACCEL paper uses 32 and 16, respectively. To ensure this configuration does
not unfairly disadvantage TRACED, we additionally evaluate MiniGrid with 32 workers. Even
under this setting, TRACED consistently outperforms ACCEL, indicating that our gains are robust
to the PPO worker configuration (Table 7).

Table 7: Ablation study on Number of Workers. Bold indicates the best; underline indicates the
second-best.

Environment ACCEL 5k ACCEL 10k TRACED 5k TRACED 10k
16Rooms 0.37 ± 0.17 0.78 ± 0.14 0.95 ± 0.02 0.93 ± 0.07

16Rooms2 0.20 ± 0.20 0.77 ± 0.23 0.29 ± 0.14 0.91 ± 0.04

SimpleCrossing 0.65 ± 0.09 0.73 ± 0.07 0.78 ± 0.02 0.88 ± 0.05

FourRooms 0.33 ± 0.08 0.45 ± 0.04 0.33 ± 0.04 0.59 ± 0.01

SmallCorridor 0.52 ± 0.21 0.27 ± 0.17 0.62 ± 0.31 0.10 ± 0.04

LargeCorridor 0.42 ± 0.17 0.36 ± 0.30 0.49 ± 0.24 0.16 ± 0.13

Labyrinth 0.15 ± 0.15 0.49 ± 0.29 0.67 ± 0.33 0.91 ± 0.09

Labyrinth2 0.0 ± 0.0 0.51 ± 0.29 0.65 ± 0.20 1.0 ± 0.0

Maze 0.33 ± 0.33 0.36 ± 0.32 0.95 ± 0.04 0.99 ± 0.01

Maze2 0.01 ± 0.01 0.74 ± 0.23 0.22 ± 0.19 0.60 ± 0.20

Maze3 0.14 ± 0.13 0.48 ± 0.27 0.63 ± 0.29 1.0 ± 0.0

PerfectMaze(M) 0.20 ± 0.09 0.48 ± 0.07 0.58 ± 0.10 0.63 ± 0.13

Mean 0.28 ± 0.10 0.54 ± 0.09 0.60 ± 0.06 0.72 ± 0.09
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B LONG-TERM ANALYSIS ON TRACED
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Figure 11: TRACED Solved-Rate Time Series. Solved rate progression on MiniGrid tasks plotted
over 0-45k PPO updates.
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Figure 12: ACCEL Solved-Rate Time Series. Solved rate progression on MiniGrid tasks plotted
over 0-45k PPO updates.

To study long-horizon behavior, we ran single-seed, 45k PPO updates for both TRACED and AC-
CEL in the MiniGrid environment. Both methods exhibit post-convergence oscillations in success
rate (i.e., solved rate). TRACED reaches near-peak success rapidly, but its performance subse-
quently oscillates rather than remaining perfectly stable (Figure 11). The same post-peak fluctua-
tions appear under the ACCEL curriculum (Figure 12): although ACCEL attains its maximum more
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slowly, it shows a similar up-and-down pattern thereafter. These oscillations likely reflect inherent
instability of the RL policy on held-out levels, and may be further influenced by ACCEL’s mutation
dynamics, rather than a pathology introduced by our task-prioritization strategy. For this reason, we
report TRACED’s performance at 10k updates (rather than 20k), before long-horizon oscillations
confound comparisons. Mitigating these fluctuations in the student policy is an important direction
for future work.

C VISUALIZING CURRICULUM DYNAMICS

(a) 2.5k, Low ATPL, Low Co-Learnability (b) 2.5k, Low ATPL, High Co-Learnability

(c) 2.5k, High ATPL, Low Co-Learnability (d) 2.5k, High ATPL, High Co-Learnability

(e) 5k, Low ATPL, Low Co-Learnability (f) 5k, Low ATPL, High Co-Learnability

(g) 5k, High ATPL, Low Co-Learnability (h) 5k, High ATPL, High Co-Learnability

Figure 13: Representative terrains from BipedalWalker selected by ATPL and co-learnability
at two training stages. The top two rows show terrains after 2.5k PPO updates, and the bottom two
rows after 5k updates.

Figure 13 illustrates the joint impact of ATPL and Co-Learnability on terrain selection at 2.5k and
5k PPO updates. ATPL alone captures the raw challenge level: low-ATPL terrains (first and third
rows) remain relatively smooth, while high-ATPL terrains (second and fourth rows) feature larger
gaps and steeper bumps. As training proceeds from 2.5k to 5k updates, the overall terrains become
systematically harder, demonstrating TRACED’s ability to ramp up difficulty in lockstep with the
agent’s improving skills. Co-Learnability then refines this progression by filtering out extremes:
low Co-Learnability (left column) tends to generate either trivial or overwhelmingly difficult levels
that can stall learning, whereas high Co-Learnability (right column) favors intermediate-difficulty
terrains that transfer more effectively across tasks. Together, these visualizations confirm that ATPL
drives a steadily increasing complexity trajectory, while Co-Learnability smooths it to sustain robust,
transferable learning throughout the curriculum.
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D LEVEL EVOLUTION

D.1 VISUALIZATION OF LEVEL EVOLUTION IN MINIGRID

The visualization of how the Minigrid environment evolves as the number of blocks increases (Fig-
ure 14). Each step of the evolutionary process produces an edited level that has a high learning
efficiency.

Figure 14: Visualization of a single level’s evolving progression in the MiniGrid environ-
ment. Starting from top-left, ending bottom-right. This progress is automatically designed by our
TRACED algorithm.

D.2 EVOLUTION OF LEVELS IN BIPEDALWALKER

Figure 15 shows the complexity metric results trained by three methods, TRACED (Ours), ACCEL
+ ATPL, ACCEL. Starting with plain terrain (near zero point), all three methods guide levels with
more complex terrain. With aspect of (a) Stump height, (b) Stump height high, (e) Stair height step
metrics, the results show TRACED and ACCEL + ATPL quickly evolve levels compared to ACCEL.
This rapid level increasing brings, short wall-clock relative to performance and high performance
results in various test environments.
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Figure 15: Emergent BipedalWalker terrain complexity metrics. Aspect of (a) Stump height
low, (b) Stump height high, and (e) Stair height step, complexity grows faster under TRACED
(Ours, pink) or ACCEL + ATPL (brown) than under ACCEL (blue). The result is averaged over five
random seeds. This faster ramp-up indicates that our curriculum more effectively escalates difficulty
in lockstep with agent learning.
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D.3 VISUALIZATION OF LEVEL EVOLUTION IN BIPEDALWALKER

Figure 16 shows the visualization of how the environment evolves as the complexity of the task
increases. The process starts from a plain terrain and gradually evolves to a level of terrain with
increasingly complex parameters.

Figure 16: Visualization of the level evolving progression in the BipedalWalker environment.
Starting from top-left, ending bottom-right. in this example, starting with plain terrain, the pits
are created and their number increases, then the roughness increases, then stairs and stumps are
created and their number, width, and height increase. This progress is automatically designed by
our TRACED algorithm.

E AGENT TRAJECTORY VISUALIZATIONS ACROSS ENVIRONMENTS

E.1 MINIGRID

Figure 17: Agent trajectory visualization in the PerfectMaze evaluation task. TRACED enables
efficient path planning and robust generalization to challenging maze environments, as demonstrated
by the agent’s successful navigation to the goal (green).

E.2 BIPEDALWALKER

Figure 18: Agent trajectory visualization in the BipedalWalkerHardcore. TRACED agent suc-
cessfully overcomes various combined obstacles, including stairs, pit gaps, stumps, and roughness,
demonstrating robust generalization to complex environments.
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F EFFICIENCY ANALYSIS

F.1 WALL-CLOCK TRAINING TIME IN BIPEDALWALKER

Table 8 reports wall-clock training times on the BipedalWalker domain, in hours (mean ± s.e.) over
five runs at 10k and 20k PPO updates. At 10k updates, TRACED requires 35.64± 0.53 h, about 7%
more than ACCEL’s 33.26± 1.17 h, yet achieves a 22% higher mean solved rate (Section 4).

Table 8: Wall-Clock Training Time on BipedalWalker. Average wall-clock duration for each
algorithm

Domain TRACED 10k ACCEL 10k ACCEL 20k ADD 10k ADD 20k PLR⊥ 10k PLR⊥ 20k DR 10k DR 20k

BipedalWalker 35.64 ± 0.53 33.26 ± 1.17 70.22 ± 5.9 21.13 ± 0.11 41.58 ± 0.24 35.49 ± 1.07 71.01 ± 2.17 18.38 ± 0.1 37.03 ± 0.3

F.2 SAMPLE COMPLEXITY: ENVIRONMENT STEPS

Table 9 shows total environment steps required to achieve a fixed number of PPO updates. TRACED
matches ACCEL’s sample complexity exactly, confirming that its superior generalization stems from
improved curriculum design rather than additional data.

Table 9: Environment Steps. Total environment interactions (millions) for each method per given
number of student PPO updates.

Environment PPO Updates PLR⊥ ADD ACCEL TRACED
MiniGrid 10k 82M 41M 93M 93M
MiniGrid 20k 165M 82M 185M –
BipedalWalker 10k 165M 80M 174M 174M
BipedalWalker 20k 329M 160M 347M –
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G OVERALL WORKFLOW

Algorithm 1 summarizes our overall UED procedure under the TRACED framework. We followed
ACCEL (Parker-Holder et al., 2022) in all respects except the procedure used to compute task pri-
ority. At each iteration, with probability 1 − preplay the teacher enters the exploration phase by
sampling a fresh level θ ∼ G, executing the current policy πϕ to collect a trajectory, and computing
its approximated regret

R̂egret(τ) = PVL(τ) + αATPL(τ).

If the buffer is full, we evict the lowest-priority task before appending. Otherwise, with probability
preplay the teacher enters the replay+mutation phase, drawing a batch of B tasks from the buffer pro-
portional to their TaskPriority scores, updating the policy on each, and recomputing regret. We then
select the Nmutate tasks with the smallest regret, mutate each via the editor, evaluate the new variant,
and replace its parent in the buffer. Finally, for every modified task we recompute TaskDifficulty,
CoLearnability, and TaskPriority (Eq. 7) before proceeding to the next timestep.

Algorithm 1 UED Workflow with Transition-Prediction Loss and Co-Learnability

1: Given: policy πϕ, level generator G, buffer capacity K, replay probability preplay, batch size B,
mutation count Nmutate, scaling factors α, β

2: Initialize Task Buffer Λ← ∅, timestep t← 0
3: while policy has not converged do
4: Sample decision dt ∼ Bernoulli(preplay)
5: if dt = 0 then ▷ Exploration phase
6: Sample new task θ ∼ G
7: Collect trajectory τ by executing πϕ on θ (no gradient)
8: Compute regret estimate

R̂egret(τ) = PVL(τ) + αATPL(τ)

9: Append θ to buffer Λ (if |Λ| > K, remove lowest-priority)
10: else ▷ Replay + Mutation phase
11: Sample a batch {θk}Bk=1 from Λ w.p. ∝ 1

TaskPriority(·,t)
12: for k = 1 . . . B do
13: Collect trajectory τk by executing πϕ on θk
14: Update policy ϕ using rewards from τk
15: Compute R̂egret(τk)
16: end for
17: Select the N tasks {θk′} with smallest R̂egret(τk′)
18: for each selected θk′ do
19: θ̃ ← editor(θk′ )
20: Collect trajectory τ̃ on θ̃ (no gradient)
21: Compute R̂egret(τ̃)

22: Replace θk′ in Λ with θ̃
23: end for
24: end if
25: Buffer update:
26: for each task i ∈ Λ updated at t do
27: Recompute TaskDifficulty(i, t)
28: Recompute CoLearnability(i, t− 1)
29: Update TaskPriority(i, t) via Eq. 7
30: end for
31: t← t+ 1
32: end while
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H IMPLEMENTATION DETAILS

H.1 MINIGRID ENVIRONMENT

SixteenRooms SixteenRooms2 SmallCorridor LargeCorridor SimpleCrossing FourRooms

Labyrinth Labyrinth2 Maze Maze2 Maze3 PerfectMaze

Figure 19: MiniGrid zero-shot environments used for evaluation. In SmallCorridor and
LargeCorridor, the goal can appear in any of the corridor paths. SimpleCrossing and FourRooms are
adapted from MiniGrid (Chevalier-Boisvert et al., 2023), and PerfectMaze from REPAIRED (Jiang
et al., 2021a).

The partially observable navigation environment is designed as a 15 × 15 grid maze, based on
MiniGrid (Chevalier-Boisvert et al., 2023). Each tile in the maze can be either an empty tile, a wall,
a goal, or the agent itself. The empty tile is a navigable space through which the agent can move,
whereas the wall is an impassable obstacle that blocks the agent’s movement. At the beginning of
each episode, the initial position of the agent, the goal location, and the wall layout are randomly
initialized. Up to 60 walls can be placed throughout the maze, increasing navigational complexity.
At each timestep, the agent receives a 5× 5 local observation, along with its current direction. The
action space is defined as a discrete set of seven possible actions, although only three, turn left,
turn right, and move forward, are relevant to maze navigation. These actions are selected without
masking the unused action outputs. A reward is provided when the agent successfully reaches the
goal, calculated as 1 − T/Tmax, where T is the number of steps taken and Tmax = 250 denotes the
maximum allowed steps per episode. If the agent fails to reach the goal within the time limit, it does
not receive a reward.

To evaluate performance in partially observable navigation, we include additional results on the Min-
iGrid environments, covering a suite of challenging zero-shot tasks from prior UED work (Dennis
et al., 2020; Jiang et al., 2021a). Figure 19 displays all evaluation tasks.

H.2 BIPEDALWALKER ENVIRONMENT

The environment is based on the BipedalWalkerHardcore environment of the OpenAI gym (Brock-
man et al., 2016). At each timestep, the agent receives a 24-dimensional observation, which in-
cludes information such as the hull angle and angular velocity, joint angles and speeds for the hips
and knees, ground contact indicators for each foot, the robot’s horizontal and vertical velocities,
and lidar-based distance measurements to the ground ahead. The action space is represented by a 4-
dimensional vector that controls the torques applied to the robot’s two hip joints and two knee joints.
Rewards are structured to encourage efficient and stable locomotion across the terrain. The agent
receives positive rewards for processing while maintaining a straight hull posture, with small penal-
ties applied for energy expenditure to discourage unnecessary motor use. The maximum achievable
score is 300. If the agent falls or moves backward, the episode ends immediately, and a penalty
of -100 is applied. The maximum episode length is 2000 timesteps. To introduce additional diffi-
culty and test the robustness of the agent’s locomotion policy, the environment includes a variety of
challenging terrain features. These include stairs, which consist of sequences of elevated steps that
the agent must ascend or descend; pit gaps, which are horizontal gaps over which the agent must
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jump or step over; stumps, which are vertical obstacles with varying heights and widths that ob-
struct movement; and surface roughness, which introduces uneven ground textures that can disrupt
balance and foot placement.

We evaluate agents in the BipedalWalker-v3 environment, which features relatively smooth terrain,
as well as in the more demanding BipedalWalkerHardcore-v3, which introduces a variety of chal-
lenging obstacles. The BipedalWalker-v3 focuses on basic locomotion and balance without signifi-
cant terrain disturbances. Terrain in this environment does not have obstacles such as stairs, pit gaps,
and stumps, and only gentle slopes are generated by adding noise in the range of approximately -1
to 1. In contrast, BipedalWalkerHardcore-v3 includes complex terrain elements such as stairs, pit
gaps, stumps, and roughness, which require precise control and adaptive strategies. These obstacles
are procedurally generated with randomized parameters. The stair height is randomly set to either
+1 (ascending) or −1 (descending), with the number of steps and step width randomly sampled be-
tween 3-5 steps and 4-5 units, respectively. The pit width is determined by sampling a single integer
between 3-5 units. Both the height and width of each stump are sampled as a single random integer
between 1-3 units, ensuring the stumps are always square-shaped. Terrain roughness noise range is
the same as BipedalWalker-v3.

To further probe the agent’s generalization capabilities, we include four targeted evaluation environ-
ments that isolate specific terrain challenges: Stairs, PitGap, Stump, and Roughness. Stairs specifies
a fixed stair height of 2 units, with 5 steps and a step width between 4 and 5. PitGap sets the pit
width to exactly 5 units. Stump defines the stump height as 2 units while allowing the stump width
to vary between 1 and 2 units. Finally, Roughness generates terrain by adding noise 5. Figure 20
displays all evaluation tasks.

(a) BipedalWalker-v3 (b) BipedalWalkerHardcore-v3 (c) Stairs

(d) PitGap (e) Stump (f) Roughness

Figure 20: Evaluation Terrains in BipedalWalker. 6 held-out environments used to as-
sess zero-shot generalization: (a) BipedalWalker-v3 with gentle noise-induced slopes; (b)
BipedalWalkerHardcore-v3 combining multiple obstacle types; (c) Stairs, a fixed 5-step sequence
requiring precise stepping; (d) PitGap, a 5-unit horizontal gap; (e) Stump, 2-unit tall obstacles with
variable width; and (f) Roughness, continuous uneven ground generated by noise.

H.3 NETWORK STRUCTURES

For partially observable navigation, the LSTM-based transition prediction model fϕ consists of three
components: 1. an image encoder that compresses the input observation st into a 128-dimensional
latent embedding, 2. an LSTM module (hidden size 128, 1 layer) that processes the concatenation
of this embedding and the action at, 3. and an image decoder that reconstructs the predicted next
observation ŝt+1 from the LSTM output. We adopt an LSTM here because recurrent architectures
have proven effective at capturing temporal dependencies in transition and video-prediction tasks
under partial observability (Ha & Schmidhuber, 2018; Oh et al., 2015).

For walking in challenging terrain (BipedalWalker), the model instead concatenates the raw state
vector st with at and feeds this into an LSTM (hidden size 128, 1 layer); the recurrent output is then
linearly mapped to the predicted next state ŝt+1.

Its instantaneous error is defined by

ℓt =

{
∥ ŝt+1 − st+1∥1, in MiniGrid environments,
∥ŝt+1 − st+1∥22, in BipedalWalker.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We use L1 loss for MiniGrid because it preserves sharp edges and reduces blurring in image recon-
struction (Zhao et al., 2016), while mean squared error is a standard, reliable choice for continuous
state regression in locomotion domains (Mnih et al., 2015).

We adopt ACCEL’s network architecture (Parker-Holder et al., 2022), differing only in the LSTM
design choice. The PPO network serves as the student agent in our system, directly learning to opti-
mize both the policy and value functions through interaction with the environment. The architecture
follows the standard actor-critic structure where the actor head outputs an action distribution, and
the critic head predicts the scalar value V (s).

For partially observable navigation, the input consists of a 3-channel 5× 5 local image observation
and a directional scalar with dimension 4 indicating the agent’s current orientation. The image is
processed by a convolutional encoder with a filter size of 16, a kernel size of 3, and Rectified Linear
Unit (ReLU) activations, followed by flattening. The directional scalar is passed through a fully
connected layer of size 5, and the resulting embedding is concatenated with the flattened image
features. The combined feature vector is fed separately to the actor and critic heads, each consisting
of fully connected layers of size [32, 32]. The actor outputs a categorical distribution over discrete
actions, while the critic produces a scalar value estimate V (s).

For walking in a challenging terrain (BipedalWalker), the input is a flat state vector of dimension
24. This input is processed through a Multilayer Perceptron (MLP) with two hidden layers of 64
dimensions, followed by actor and critic heads. The actor head outputs the mean and standard
deviation parameters of a diagonal Gaussian distribution over a continuous 4-dimensional action
space, and the critic head outputs a scalar state value V (s). The PPO learning process optimizes a
clipped surrogate policy loss with clip parameter ϵ = 0.2 combined with a value function loss.

I DIFFERENCE WITH FORMER STUDIES

I.1 DIFFERENCE WITH ACCEL

Our approach builds on ACCEL’s evolutionary, regret-based curriculum design, refining both its
regret estimator and its sampling criterion. Like ACCEL, we maintain a level buffer and record each
task’s difficulty. However, instead of relying solely on Positive Value Loss (PVL) to approximate
regret, we decompose regret into value error and transition-prediction error and incorporate both
components into our difficulty measure.

Furthermore, prior UED methods sample levels independently based solely on their individual dif-
ficulty, ignoring cross-task transfer effects. We address this with our Co-Learnability metric, which
quantifies how training on one task influences regret on others by measuring the average change in
their difficulty after replay. By integrating Co-Learnability into our priority score, we can prioritize
tasks that not only challenge the agent but also deliver broad transfer benefits across the entire task
space.

I.2 DIFFERENCE WITH CENIE

CENIE introduces a complementary curriculum strategy by explicitly measuring environmental nov-
elty, rather than relying solely on regret signals as in PLR⊥ or ACCEL. It fits a Gaussian mixture
model (GMM) to the agent’s past trajectories and scores new tasks by how poorly the GMM explains
them, thereby steering the agent toward unfamiliar regions of the state-action space. This model-
agnostic approach can be applied on top of any UED framework, including PLR and ACCEL.

However, CENIE’s diversity-driven objective differs from ours. TRACED’s primary goal is to ap-
proximate task difficulty more faithfully, by decomposing regret into value and transition-prediction
errors, and to capture how training on one task transfers to others via our Co-Learnability metric.
While CENIE accounts for per-task novelty and regret, it ignores cross-task transfer effects. More-
over, TRACED is agnostic to the choice of level generator or editor, meaning our method could
be combined with CENIE’s novelty scoring to yield a curriculum that balances both transfer-aware
difficulty and environmental diversity.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

J RELATED WORKS

Unsupervised Environment Design (UED) defines a co-evolutionary framework in which a teacher
agent generates task instances for a student policy, selecting those tasks with high learning potential
to promote robust generalization to unseen environments (Wang et al., 2019; 2020; Dennis et al.,
2020; Chung et al., 2024). PAIRED (Dennis et al., 2020) trains the teacher to maximize the regret
between a protagonist and antagonist policy, causing the teacher to create increasingly challenging
yet solvable environments. However, non-stationary task distributions and the high dimensionality
of the task space impede convergence to optimal curricula. To mitigate these limitations, Mediratta
et al. (2023) introduce entropy bonuses, alternative optimization algorithms, and online behavioral
cloning, and Clutr (Azad et al., 2023a) employs variational autoencoder-based unsupervised task
representation learning to compress the task manifold and yield more stable curricula.

Another line of work is based on Prioritized Level Replay (PLR) (Jiang et al., 2021b), which avoids
training a teacher agent and instead randomly generates tasks while introducing a replay buffer that
stores previously generated tasks. This approach prioritizes tasks with high learning potential from
the buffer to more effectively train the student agent. PLR⊥ (Jiang et al., 2021a) make improvement
of PLR, which used stop-gradient on trajectories from newly generated tasks but updated only with
replayed tasks from buffer. This leads to better performance on unseen environments counterintu-
itively. ACCEL (Parker-Holder et al., 2022) extends the PLR⊥ by implementing an evolutionary
approach that makes small mutation to high-regret levels from the buffer. This evolutionary mecha-
nism enables the development of progressively more complex challenges starting with simpler tasks.
However, these methods (Jiang et al., 2021b;a; Parker-Holder et al., 2022) approximate regret solely
via value loss, thereby implicitly learn true environment dynamics that could improve regret estima-
tion.

Moving beyond regret-based approaches, CENIE (Teoh et al., 2024) integrates novelty with regret
to expose agents to more diverse learning situations. Using Gaussian Mixture Models, CENIE quan-
tifies how much a new task’s trajectory differs from previous experiences stored in the buffer. This
curriculum-awareness leads to better exploration and generalization. DIPLR (Li et al., 2023) intro-
duces a diversity that quantifies the similarity between different levels by computing the Wasserstein
distance between their occupancy distributions over state-action trajectories. MBeDED (Li et al.,
2024) introduces the marginal benefit metric to quantify the performance gain of a student policy
from training on a generated task. It compares a base policy (before training) and the updated stu-
dent policy by measuring the difference in their expected returns on that task. SFL (Rutherford et al.,
2024) assigns a learnability score to each level, computed from the empirical success rate achieved
by evaluating the agent on sampled levels. Levels whose success rates fall in the intermediate range,
neither too easy nor too difficult, are prioritized, guiding the agent toward tasks that are most con-
ducive to further learning. A related idea appears in GoalGAN (Florensa et al., 2018), which is not
a UED method but similarly adapts task difficulty by training a generative model to propose goals
of suitable challenge. So far, to the best of our knowledge, there are no prior works that explicitly
consider Co-Learnability between tasks.

UED’s benefit on robust generalization performance in unseen environments has led to its applica-
tion in other domains. For Multi-Agent Reinforcement Learning, MAESTRO (Samvelyan et al.,
2023) extends UED to competitive multi-agent settings by creating a regret-based curriculum over
the joint environment and co-player space, leveraging self-play to generate opponents while train-
ing agents robust to environment and co-player variations. In contrast, RACCOON (Erlebach &
Cook, 2024) applies UED to cooperative scenarios, developing a curriculum that prioritizes high-
regret partners from pre-trained partners to enhance collaboration. For meta-RL, GROOVE (Jack-
son et al., 2023) suggested policy meta-optimization (PMO) introducing algorithmic regret (AR),
which measures the performance gap between a meta-learned optimizer and RL algorithms like
A2C, creating curricula that identify informative environments for meta-training. DIVA (Costales
& Nikolaidis, 2024) is the first method that extends UED to semi-supervised environment design,
employing quality-diversity search to maintain a population of diverse training tasks in open-ended
simulators, maximizing behavioral coverage. In sim-to-real settings, GCL (Wang et al., 2024) aligns
the simulated curriculum with actual deployment tasks by sampling from real-world task distribu-
tions and adapting subsequent task generation based on the robot’s past performance.
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Similar to UED works, Curriculum Reinforcement Learning (CRL) accelerates agent training by
constructing a sequence of progressively challenging tasks rather than directly confronting the agent
with a single, complex target task (Narvekar et al., 2020). Early approaches distinguished between
fixed curricula in which task order is predefined and self-paced learning, in which task selection
adapts dynamically based on the agent’s learning progress (Klink et al., 2020). Modern CRL meth-
ods have advanced this paradigm by framing curriculum generation as an inference process (Eimer
et al., 2021; Klink et al., 2022). WAKER (Rigter et al., 2024) leverages reward-free curricula to
train robust world models, thereby underscoring the versatility of self-paced approaches in diverse
learning scenarios. Akin to the concept underlying SFL (Rutherford et al., 2024), ProCuRL (Tzan-
netos et al., 2023) operationalizes the pedagogical notion of the Zone of Proximal Development by
using probability of success score-based scoring combined with softmax sampling to prioritize tasks
of intermediate difficulty. However, these approaches assume access to the target task distribution,
which conflicts with UED’s core assumption of an unknown distribution.

K MORE DETAILS ON BASELINE ALGORITHMS

In Unsupervised Environment Design (UED), Domain Randomization (DR) constructs the curricu-
lum by uniformly sampling tasks from the environment parameter space Θ. Formally, DR samples
tasks according to θ ∼ p(Θ) where p(Θ) represents a uniform distribution over the task parameter
space. The agent is trained on these randomly sampled tasks.

Robust PLR (PLR⊥) (Jiang et al., 2021a) was introduced as an extension of the original PLR (Jiang
et al., 2021b). While DR treats all tasks equally, PLR⊥ prioritizes tasks with high learning potential,
maintaining a buffer Λ of previously encountered tasks for replay. When sampling new tasks, the
agent’s policy parameters are stop-gradiented, meaning the policy is not updated on trajectories
collected from these newly sampled tasks. The collected trajectories are used to compute PVL scores
to decide whether to add the task to the replay buffer. Policy updates are exclusively performed on
tasks sampled from the replay buffer. By stopping the gradient on randomly sampled levels, PLR⊥

ensures that the policy is only updated on tasks specifically selected to maximize regret, leading to
more robust generalization compared to both DR and PLR unintuitively.

Adversarially Compounding Complexity by Editing Levels (ACCEL) (Parker-Holder et al., 2022)
actively evolves environments through an editing mechanism, allowing it to more efficiently explore
the environment design space. This enables reusing the structure of sampled levels in the buffer
for high-regret, rather than curating randomly sampled levels for high-regret. ACCEL maintains a
buffer Λ and employs a cycle of sampling, editing, and curation. The key insight of ACCEL is that
regret serves as a domain-agnostic fitness function for evolution, enabling it to produce batches of
levels at the frontier of agent capabilities. The editing mechanism involves making small mutations
to previously high-regret levels, which can operate directly on environment elements such as blocks
in MiniGrid. This evolutionary process creates an expanding frontier that matches the agent’s capa-
bilities, starting with simple levels and progressively increasing in complexity. Like PLR⊥, ACCEL
employs stop-gradient when evaluating new or edited levels to ensure theoretical guarantees.

Coverage-based Evaluation of Novelty In Environment (CENIE) (Teoh et al., 2024) introduces envi-
ronment novelty as a complementary objective to regret in UED. CENIE quantifies environment nov-
elty through state-action space coverage derived from the agent’s accumulated experiences across
previous environments in its curriculum. The framework operates on the intuition that a novel envi-
ronment should induce unfamiliar experiences, pushing the student agent into unexplored regions of
the state-action space. At the core of CENIE’s implementation is the use of Gaussian Mixture Mod-
els (GMMs) to model the distribution of state-action pairs from the agent’s past experiences. Given
a state-action buffer Γ containing pairs collected from previous environments, CENIE fits a GMM
with parameters λΓ to represent this distribution. The novelty of a candidate environment is then
quantified by measuring the similarity between its newly observed state-action pairs and the learned
distribution of past state-action experiences. CENIE integrates with existing UED algorithms by
combining both novelty and regret into a unified priority score for environment selection.

Adversarial Environment Design via Regret-Guided Diffusion Models (ADD) (Chung et al., 2024)
frames environment generation as a diffusion process steered by the agent’s regret. Starting from
uniformly sampled tasks, a pretrained score network sϕ is guided by the gradient of a differentiable
regret estimate, computed via a learned return critic, during reverse diffusion.
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In our empirical study, DR, PLR⊥, and ACCEL were evaluated with the DCD codebase (Jiang et al.,
2022), and assessed ADD with the ADD codebase (Chung et al., 2024). CENIE’s performance data
were incorporated from its original publication, as no open-source implementation was available.

L LIMITATIONS

As with any research, our approach presents several limitations that highlight opportunities for future
investigation:

Co-Learnability. In this paper, we proposed Co-Learnability, simple yet effective method. Follow-
up studies could address these gaps by developing multi-step Co-Learnability estimators, incorpo-
rating importance-weighting or counterfactual techniques to reduce sampling bias, and combining
observational co-learn signals with auxiliary models (e.g., task-conditioned value predictors) for
stronger causal inference.

ATPL. In environments with highly stochastic transitions, the ATPL signal (transition-prediction
error) can become noisy, potentially reducing the fidelity of our regret approximation.

Sampling levels. We sampled a fixed number of the lowest-regret levels as easy tasks to mirror AC-
CEL’s approach and enable fair comparisons with baseline methods. However, this simple strategy
leaves room to explore more advanced task-selection mechanisms.

Heuristic weighting. We introduced weighted approach to regret approximation and task prioritiza-
tion that relies on two key parameters α, PVL and ATPL in the regret approximation, and β, which
weights the relative importance of Co-Learnability against task difficulty. While these parameters
were manually tuned in the current implementation and demonstrated effective results across envi-
ronments, future work could explore more principled methods for automatically determining these
weights.

Extension to other RL algorithms. Our experiments have been conducted with PPO-based student
agents. While this allows for fair comparisons with previous work, there is a much broader range of
algorithms that may interact differently with our regret-based curriculum. Off-policy methods such
as SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) feature distinct exploration strate-
gies, which may yield different performance dynamics under our curriculum framework. Moreover,
Model-based approaches like DreamerV3 (Hafner et al., 2025) build world models for planning,
offering complementary insights into curriculum design. Evaluating these methods under our cur-
riculum framework remains an important direction for future work.

Extend to other UED methods. We empirically demonstrated that TRACED yields more effec-
tive curricula, thereby enhancing agents’ generalization capabilities at half the training cost. While
our experiments focus on the ACCEL framework, future work will integrate our approach into al-
ternative UED methods (PLR⊥ (Jiang et al., 2021a) and CENIE (Teoh et al., 2024)) and conduct
comprehensive experiments to assess its performance in these settings.

Evaluation in other domains. Our experimental validation has been conducted in Mini-
Grid (Chevalier-Boisvert et al., 2023; Dennis et al., 2020) and BipedalWalker (Brockman et al.,
2016; Parker-Holder et al., 2022). Evaluating TRACED in other domains such as Car Rac-
ing (Brockman et al., 2016; Jiang et al., 2021a), physical robotics applications (Mahmood et al.,
2018), and reasoning task ARC (Chollet, 2019) would provide a more comprehensive assessment of
the approach’s generality and scalability across diverse settings.

M EXPERIMENTAL SETUP AND REPRODUCIBILITY

All experiments were conducted using Python 3.8.20 on Ubuntu 22.04.4 LTS. The hardware setup
included an AMD EPYC 7543 32-core processor, 80GB of RAM, and an NVIDIA A100 GPU.
Experiments were run on a shared server with 8 GPUs, with each experiment using a single GPU.
We implemented all experiments in Python 3.8.20, using PyTorch(v1.9.0+cu111). The environment
stack was built using MiniGrid (v1.0.1), Gym (v0.15.7).
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N LLM USAGE

We used a large language model (LLM) solely for language editing. Concretely, the LLM assisted
with grammar and style polishing, LaTeX phrasing (e.g., equation and caption wording), and im-
proving clarity and concision of author-written text. The LLM was not used to generate ideas, design
algorithms, select hyperparameters, run experiments, analyze data, create figures/tables, write code,
or produce mathematical results.

O HYPERPARAMETERS

Table 10 summarizes the hyperparameters used. Unless otherwise noted, values are adopted directly
from the DCD repository (Jiang et al., 2022). The only deviation from the DCD defaults is the
number of PPO workers (see Appendix A.4). We tune two key weights, α and β, on MiniGrid and
BipedalWalker, exploring α ∈ {0.5, 1.0, 1.5} and β ∈ {0.6, 0.8, 1.0}.

Table 10: Hyperparameters used for training each method in each environment.

HyperParameter MiniGrid BipedalWalker
PPO
γ 0.995 0.99
λGAE 0.95 0.9
PPO rollout length 256 2048
PPO epochs 5 5
PPO minibatches per epoch 1 32
PPO clip range 0.2 0.2
PPO number of workers 16 4
Adam learning rate 1e-4 3e-4
Adam ϵ 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping True False
Return normalization False True
Value loss coefficient 0.5 0.5
Student entropy coefficient 0.0 1e-3
Generator entropy coefficient 0.0 1e-2

TRACED
ATPL weight, α 1.0 1.5
Co-Learnability weight, β 1.0 0.6

ACCEL
Replay rate, preplay 0.8 0.9
Buffer size, K 4000 1000
Number of edits 5 3
Batch Size, B 4 4
Number of mutated tasks, Nmutate 4 4
Temperature 0.3 0.1
Staleness coefficient, ρ 0.3 0.5
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P NUMERICAL RESULTS

P.1 MINIGRID ENVIRONMENT

Table 11: MiniGrid Zero-Shot Solved Rates. Bold indicates the best result per task; underline
indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL TRACED

16Rooms 10k 0.4 ± 0.12 0.81 ± 0.06 0.72 ± 0.1 0.76 ± 0.12 0.53 ± 0.14
20k 0.51 ± 0.13 0.86 ± 0.06 0.64 ± 0.12 0.65 ± 0.1 –

16Rooms2 10k 0.1 ± 0.09 0.42 ± 0.11 0.14 ± 0.05 0.48 ± 0.13 0.58 ± 0.13
20k 0.27 ± 0.11 0.55 ± 0.15 0.18 ± 0.1 0.58 ± 0.14 –

SimpleCrossing 10k 0.58 ± 0.05 0.72 ± 0.03 0.63 ± 0.03 0.81 ± 0.03 0.85 ± 0.03
20k 0.73 ± 0.02 0.8 ± 0.03 0.74 ± 0.04 0.85 ± 0.02 –

FourRooms 10k 0.32 ± 0.04 0.47 ± 0.01 0.39 ± 0.03 0.46 ± 0.02 0.46 ± 0.02
20k 0.5 ± 0.02 0.53 ± 0.03 0.61 ± 0.03 0.49 ± 0.03 –

SmallCorridor 10k 0.3 ± 0.07 0.52 ± 0.13 0.47 ± 0.1 0.37 ± 0.14 0.49 ± 0.13
20k 0.74 ± 0.1 0.61 ± 0.11 0.74 ± 0.04 0.22 ± 0.13 –

LargeCorridor 10k 0.36 ± 0.13 0.33 ± 0.13 0.35 ± 0.09 0.44 ± 0.15 0.43 ± 0.11
20k 0.54 ± 0.13 0.32 ± 0.11 0.72 ± 0.06 0.25 ± 0.12 –

Labyrinth 10k 0.1 ± 0.1 0.5 ± 0.15 0.22 ± 0.13 0.6 ± 0.15 0.93 ± 0.03
20k 0.58 ± 0.16 0.92 ± 0.06 0.9 ± 0.1 0.8 ± 0.13 –

Labyrinth2 10k 0.1 ± 0.1 0.28 ± 0.13 0.0 ± 0.0 0.52 ± 0.14 0.96 ± 0.03
20k 0.18 ± 0.12 0.64 ± 0.15 0.63 ± 0.14 0.78 ± 0.13 –

Maze 10k 0.02 ± 0.01 0.13 ± 0.1 0.04 ± 0.02 0.41 ± 0.13 0.7 ± 0.1
20k 0.1 ± 0.1 0.52 ± 0.16 0.2 ± 0.13 0.59 ± 0.14 –

Maze2 10k 0.19 ± 0.12 0.43 ± 0.14 0.09 ± 0.08 0.44 ± 0.15 0.6 ± 0.1
20k 0.16 ± 0.11 0.56 ± 0.14 0.28 ± 0.1 0.65 ± 0.13 –

Maze3 10k 0.27 ± 0.13 0.57 ± 0.13 0.2 ± 0.1 0.78 ± 0.13 0.81 ± 0.06
20k 0.46 ± 0.14 0.95 ± 0.04 0.54 ± 0.16 0.86 ± 0.09 –

PerfectMaze(M) 10k 0.06 ± 0.02 0.24 ± 0.05 0.17 ± 0.08 0.41 ± 0.05 0.64 ± 0.07
20k 0.2 ± 0.05 0.55 ± 0.08 0.36 ± 0.08 0.53 ± 0.08 –

Mean 10k 0.23 ± 0.05 0.45 ± 0.04 0.28 ± 0.04 0.54 ± 0.03 0.66 ± 0.03
20k 0.41 ± 0.03 0.65 ± 0.04 0.55 ± 0.04 0.6 ± 0.05 –

Table 11 reports per-task zero-shot solved rates on twelve held-out MiniGrid mazes, averaged over
10 seeds (mean ± s.e.), following Agarwal et al. (2021). We compare TRACED at 10k updates
against DR, PLR⊥, ACCEL, and ADD (each at 10k and 20k). At 10k, TRACED achieves the high-
est solved rate in six mazes (16Rooms2, SimpleCrossing, Labyrinth, Labyrinth2, Maze, Perfect-
Maze(M)) and the second-best in one maze (Maze2). Averaged across all twelve mazes, TRACED
attains a mean solved rate of 0.66, outperforming all baseline configurations.

Table 12: MiniGrid Ablation Results. Bold indicates the best result per task; underline indicates
the second-best.

Environment ACCEL 10k TRACED - ATPL 10k TRACED - CL 10k TRACED 10k
16Rooms 0.7 ± 0.19 0.72 ± 0.14 0.91 ± 0.06 0.79 ± 0.19
16Rooms2 0.44 ± 0.17 0.01 ± 0.01 0.79 ± 0.17 0.72 ± 0.17
SimpleCrossing 0.77 ± 0.02 0.68 ± 0.04 0.86 ± 0.04 0.89 ± 0.01
FourRooms 0.46 ± 0.04 0.36 ± 0.02 0.48 ± 0.04 0.47 ± 0.02
SmallCorridor 0.03 ± 0.03 0.44 ± 0.21 0.57 ± 0.2 0.49 ± 0.17
LargeCorridor 0.11 ± 0.1 0.42 ± 0.22 0.65 ± 0.21 0.5 ± 0.14
Labyrinth 0.55 ± 0.23 0.4 ± 0.24 0.49 ± 0.2 1.0 ± 0.0
Labyrinth2 0.88 ± 0.1 0.16 ± 0.11 0.62 ± 0.18 0.98 ± 0.01
Maze 0.42 ± 0.24 0.29 ± 0.19 0.63 ± 0.2 0.59 ± 0.17
Maze2 0.42 ± 0.24 0.3 ± 0.19 0.41 ± 0.15 0.42 ± 0.19
Maze3 0.8 ± 0.2 0.68 ± 0.2 0.86 ± 0.12 0.86 ± 0.07
PerfectMaze(M) 0.33 ± 0.04 0.34 ± 0.02 0.53 ± 0.07 0.66 ± 0.11
Mean 0.49 ± 0.04 0.4 ± 0.04 0.65 ± 0.03 0.7 ± 0.04
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Table 12 presents zero-shot solved rates on twelve held-out MiniGrid mazes for TRACED and its
ablations at 10k updates, averaged over 10 seeds (mean ± s.e.). Full TRACED achieves the highest
score in six mazes (SimpleCrossing, Labyrinth, Labyrinth2, Maze3, PerfectMaze(M), and Four-
Rooms) and ranks second in the remaining six, yielding a mean solved rate of 0.70 and outperform-
ing every variant. These results indicate that both the transition-prediction error and Co-Learnability
are critical to TRACED’s strong, consistent performance across diverse tasks.

Table 13: PerfectMaze Zero-Shot Solved Rates. Bold indicates the best result per environment;
underline indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL TRACED

PerfectMaze(Large) 10k 0.0 ± 0.0 0.02 ± 0.01 0.04 ± 0.04 0.09 ± 0.03 0.27 ± 0.07
20k 0.02 ± 0.01 0.19 ± 0.09 0.18 ± 0.1 0.20 ± 0.08 –

PerfectMaze(XL) 10k 0.0 ± 0.0 0.01 ± 0.0 0.02 ± 0.02 0.01 ± 0.01 0.1 ± 0.04
20k 0.0 ± 0.0 0.12 ± 0.09 0.14 ± 0.09 0.09 ± 0.06 –

Table 13 compares zero-shot solved rates of TRACED against DR, PLR⊥, ADD, and ACCEL on
two large-scale PerfectMaze environments: PerfectMazeLarge and PerfectMazeXL, averaged over
10 seeds (mean ± s.e.). After 10k updates, TRACED achieves the highest success rate on Perfect-
MazeLarge (27% ± 7%) and the third-highest on PerfectMazeXL (10% ± 4%), matching ADD at
20k. These results underscore TRACED’s ability to scale to extreme maze sizes.

0.0 0.1 0.2 0.3
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DR 20k

PLR  10k
PLR  20k
ADD 10k
ADD 20k
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ACCEL 20k

TRACED (Ours) 10k
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(a) PerfectMazeXL
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Figure 21: Aggregate zero-shot performance on PerfectMaze. Full metric curves (Median, IQM,
Mean, Optimality Gap) for PerfectMazeXL (top) and PerfectMazeLarge (bottom).

Figure 21 presents the full aggregate metrics for both PerfectMaze benchmarks. Despite the high
variance inherent to these large-scale tasks, TRACED achieves the strongest 10k performance and
closely matches the best 20k performance among all baselines.
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P.2 BIPEDALWALKER ENVIRONMENT

Table 14 compares TRACED’s zero-shot returns with DR, PLR⊥, ADD, ACCEL, and ACCEL-
CENIE on six BipedalWalker terrains, averaged over five seeds (mean ± s.e.). ACCEL-CENIE is
estimated by applying the ACCEL-to-CENIE performance ratio reported in Teoh et al. (2024) to
our ACCEL implementation. At 10k updates, TRACED achieves the highest mean return on three
terrains (Basic, Hardcore, and Stump) and attains an overall mean of 89.95± 31.72, outperforming
all baselines.

Table 14: BipedalWalker Zero-Shot Test Returns. Bold indicates the best result per terrain;
underline indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL ACCEL-CENIE TRACED

Basic 10k 112.56 ± 62.99 131.63 ± 56.58 119.43 ± 63.72 281.65 ± 5.25 273.56 ± 1.5 293.67 ± 3.56
20k 68.17 ± 44.71 97.67 ± 61.73 63.64 ± 62.71 281.85 ± 3.72 275.04 ± 3.19 –

Hardcore 10k -19.67 ± 7.35 -17.36 ± 5.99 3.83 ± 9.07 37.59 ± 15.0 66.83 ± 17.48 86.83 ± 17.96
20k -16.98 ± 5.8 -23.7 ± 2.05 10.48 ± 20.12 59.23 ± 25.5 84.09 ± 34.32 –

Stairs 10k -17.6 ± 7.21 -7.23 ± 7.16 -5.87 ± 9.07 -38.71 ± 10.54 -30.4 ± 8.35 -29.0 ± 10.4
20k -9.11 ± 7.67 -10.2 ± 4.5 -0.66 ± 9.2 -46.34 ± 5.78 -36.39 ± 11.48 –

PitGap 10k -34.39 ± 15.66 -46.21 ± 15.69 -17.8 ± 13.82 -65.07 ± 7.57 -39.81 ± 18.75 -39.26 ± 11.42
20k -26.03 ± 10.98 -48.72 ± 12.23 -7.65 ± 7.52 -64.89 ± 18.93 -45.92 ± 33.9 –

Stump 10k -24.99 ± 6.76 -27.74 ± 6.33 -26.15 ± 8.49 -79.18 ± 5.45 -60.05 ± 10.96 34.16 ± 54.58
20k -25.52 ± 12.39 -23.61 ± 2.86 3.26 ± 19.1 -67.18 ± 15.56 -46.34 ± 176.21 –

Roughness 10k -0.66 ± 12.01 3.55 ± 9.91 20.61 ± 13.78 161.72 ± 28.36 174.92 ± 2.25 193.29 ± 21.6
20k 0.19 ± 8.18 -2.73 ± 9.51 18.71 ± 21.59 213.48 ± 7.69 224.4 ± 8.63 –

Mean 10k 2.54 ± 15.44 6.1 ± 10.69 14.4 ± 14.05 49.67 ± 11.24 64.18 89.95 ± 12.95
20k -1.55 ± 8.83 -1.89 ± 8.93 14.63 ± 21.99 62.69 ±8.91 75.81 –

Table 15 reports zero-shot solved rates across six BipedalWalker terrains for DR, PLR⊥, ADD, AC-
CEL, and TRACED, averaged over five seeds. A trajectory is considered “solved” if its return ex-
ceeds 230. At 10k updates, TRACED achieves the highest solved rate on five of the six tasks (Basic,
Hardcore, Stairs, PitGap, Stump) and ranks second on Roughness, yielding an overall mean of 0.36,
substantially higher than ACCEL’s 0.29 and the other baselines. No baseline matches TRACED’s
combined efficiency and reliability in zero-shot generalization.

Table 15: BipedalWalker Zero-Shot Solved Rates. Bold indicates the best per terrain; underline
indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL TRACED

Basic 10k 0.35 ± 0.2 0.43 ± 0.21 0.34 ± 0.21 0.98 ± 0.02 1.00 ± 0.0
20k 0.16 ± 0.13 0.35 ± 0.22 0.2 ± 0.2 0.99 ± 0.0 –

Hardcore 10k 0.0 ± 0.0 0.0 ± 0.0 0.01 ± 0.01 0.15 ± 0.03 0.28 ± 0.05
20k 0.0 ± 0.0 0.0 ± 0.0 0.04 ± 0.04 0.23 ± 0.08 –

Stairs 10k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.02 0.03 ± 0.02
20k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.01 –

PitGap 10k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.02 ± 0.01
20k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.02 ± 0.02 –

Stump 10k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.18 ± 0.12
20k 0.0 ± 0.0 0.0 ± 0.0 0.02 ± 0.0.2 0.0 ± 0.0 –

Roughness 10k 0.01 ± 0.01 0.0 ± 0.01 0.01 ± 0.01 0.56 ± 0.1 0.65 ± 0.08
20k 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.03 0.76 ± 0.03 –

Mean 10k 0.06 ± 0.04 0.07 ± 0.04 0.06 ± 0.04 0.29 ± 0.02 0.36 ± 0.03
20k 0.03 ± 0.02 0.06 ± 0.04 0.05 ± 0.05 0.34 ± 0.03 –
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Q COMPARISON WITH SFL

TRACED SFL PLR (RobustPLR)
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(b) Mean win rate on the evaluation set.

Figure 22: TRACED vs. SFL and Robust PLR on multi-agent JaxNav. TRACED consistently
outperforms Robust PLR and achieves performance comparable to SFL across all metrics.

Sampling for Learnability (SFL) (Rutherford et al., 2024) is a learnability-driven UED method that
prioritizes levels with intermediate difficulty by selecting tasks with high learnability scores, com-
puted as p(1 − p) where p is the agent’s empirical success rate on a given level obtained from
rollouts.

We evaluate TRACED on the multi-agent JaxNav benchmark following the evaluation protocol in-
troduced in Rutherford et al. (2024), including CVaR and mean win rate computed over sampled
evaluation levels. While the original SFL experiments trained baselines for 22,850 PPO updates,
we perform our comparison using 4,550 updates for computational efficiency. This training regime
corresponds to a phase in which SFL is reported to exhibit strong performance relative to other UED
baselines (Rutherford et al., 2024). Aside from the inclusion of TRACED, all training and evalua-
tion details (e.g., level sampling, CVaR estimation, and construction of evaluation sets) match those
in Rutherford et al. (2024). Results are averaged over three seeds.

Figure 23 shows CVaR across several risk levels and the mean win rate on the evaluation set. In addi-
tion to SFL, we include PLR⊥ (Robust PLR), the strongest baseline used in Rutherford et al. (2024).
TRACED consistently outperforms Robust PLR across all CVaR levels and achieves performance
comparable to SFL in both CVaR and mean win rate. Notably, TRACED attains this performance
without relying on any learnability-driven evaluation during training.

These results suggest that TRACED captures many of the benefits of learnability-based curricula
while depending solely on a regret-based difficulty signal. Incorporating SFL-style evaluation tools,
such as those used to quantify Co-Learnability, may further enhance TRACED’s performance in
complex multi-agent settings.
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R THEORETICAL ANALYSIS OF ATPL

We restate the one-step regret decomposition (Eq. 2 in the main paper):

Regret(s, a) = V ∗(s)− V̂ ∗(s)︸ ︷︷ ︸
(i) Value estimation error

+ r(s, a∗)− r(s, a)︸ ︷︷ ︸
(ii) Reward gap

+ γ
(
Es′′∼P̂ (·|s,a∗)

[
V̂ ∗(s′′)

]
− Es′∼P (·|s,a)

[
V π(s′)

])
︸ ︷︷ ︸

(iii) Future value gap

,

Our objective is to isolate and control the portion of term (iii) that arises specifically from the mis-
match between the true transition kernel P and the learned transition model P̂ . In particular, we
focus on the discrepancy between the value predictions under P and P̂ , and show that this dynamics-
induced error can be bounded by the transition loss used in ATPL.

R.1 ASSUMPTIONS

Assumption 1 (Lipschitz value function). Let (S, d) be the state space equipped with a metric
d(·, ·). The approximate optimal value function V̂ ∗ : S → R is LV -Lipschitz with respect to d, i.e.,∣∣V̂ ∗(s1)− V̂ ∗(s2)

∣∣ ≤ LV d(s1, s2), ∀s1, s2 ∈ S.

Assumption 2 (Loss dominating the metric). Let ℓ : S × S → [0,∞) be the reconstruction loss
used to train the transition model (e.g., ℓ(x, y) = ∥x− y∥2). We assume that there exists a constant
Cℓ > 0 such that

d(x, y) ≤ Cℓ ℓ(x, y), ∀x, y ∈ S.

Definition 5 (Coupling-based transition loss).

For each state-action pair (s, a), let P (· | s, a) and P̂ (· | s, a) denote the true and learned transition
kernels, respectively. A coupling of P (· | s, a) and P̂ (· | s, a) is any joint distribution Γs,a on S ×S
such that its marginals satisfy

(s+, ŝ+) ∼ Γs,a =⇒ s+ ∼ P (· | s, a), ŝ+ ∼ P̂ (· | s, a).

Given such a coupling Γs,a, we define the one-step transition loss as

Ltrans(s, a) := E(s+,ŝ+)∼Γs,a

[
ℓ(s+, ŝ+)

]
.

R.2 BOUNDING THE DYNAMICS MISMATCH TERM

Lemma 1. Define the dynamics mismatch term

∆dyn(s, a) :=
∣∣∣EP̂ (·|s,a)

[
V̂ ∗(s′′)

]
− EP (·|s,a)

[
V̂ ∗(s′)

]∣∣∣.
Under Assumptions 1 and 2, for any coupling Γs,a of P (· | s, a) and P̂ (· | s, a), we have

∆dyn(s, a) ≤ LV Cℓ Ltrans(s, a).

Proof. Let (s+, ŝ+) ∼ Γs,a be a coupling of P (· | s, a) and P̂ (· | s, a), i.e., s+ ∼ P (· | s, a) and
ŝ+ ∼ P̂ (· | s, a). Then, by the definition of the marginal distributions,

EP̂ (·|s,a)
[
V̂ ∗(s′′)

]
= E(s+,ŝ+)∼Γs,a

[
V̂ ∗(ŝ+)

]
,

and
EP (·|s,a)

[
V̂ ∗(s′)

]
= E(s+,ŝ+)∼Γs,a

[
V̂ ∗(s+)

]
.
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Hence

∆dyn(s, a) =
∣∣∣E(s+,ŝ+)∼Γs,a

[
V̂ ∗(ŝ+)

]
− E(s+,ŝ+)∼Γs,a

[
V̂ ∗(s+)

]∣∣∣
=

∣∣∣E(s+,ŝ+)∼Γs,a

[
V̂ ∗(ŝ+)− V̂ ∗(s+)

]∣∣∣
≤ E(s+,ŝ+)∼Γs,a

[∣∣V̂ ∗(ŝ+)− V̂ ∗(s+)
∣∣]

≤ LV E(s+,ŝ+)∼Γs,a

[
d(s+, ŝ+)

]
(by Lipschitzness of V̂ ∗)

≤ LV Cℓ E(s+,ŝ+)∼Γs,a

[
ℓ(s+, ŝ+)

]
(by the dominance d ≤ Cℓℓ)

= LV Cℓ Ltrans(s, a).

R.3 REGRET APPROXIMATION

We compare two regret proxies:

R̂egretPVL(τ) := PVL(τ), R̂egretATPL(τ) := PVL(τ) + αATPL(τ).

Theorem 1 (Regret Approximation Improvement with ATPL). For any trajectory τ ,∣∣Regret(τ)− R̂egretPVL(τ)
∣∣ ≤ C0 + LV Cℓ ATPL(τ),

where C0 collects the remaining terms in the regret decomposition that do not depend on the transi-
tion mismatch. Furthermore,∣∣∣Regret(τ)− R̂egretATPL(τ)

∣∣∣ ≤ C0 +
∣∣LV Cℓ − α

∣∣ATPL(τ).
In particular, choosing α = LV Cℓ yields a strictly tighter worst-case approximation bound than
PVL alone.

Proof. Lemma 1 bounds the dynamics-induced component of the regret by LV Cℓ ATPL(τ). Substi-
tuting this bound into the regret decomposition and subtracting αATPL(τ) gives the inequality.

Interpretation. PVL captures only the value-estimation component of regret and assigns zero
weight to the error arising from transition-model mismatch. Lemma 1 shows that this missing com-
ponent is controlled by ATPL. Theorem 1 then establishes that augmenting PVL with αATPL
reduces the worst-case approximation whenever α is chosen to match the scale of the transition mis-
match (i.e., LV Cℓ). Thus, ATPL provides a principled correction for the future-value error, yielding
a more faithful regret proxy for unsupervised environment design.
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S TEMPORAL CONSISTENCY OF CO-LEARNABILITY

0 500 1000 1500 2000
Student PPO Updates

1.0

0.5

0.0

0.5

1.0

1.5

t step Co-Learnability
t+1 step Co-Learnability

Figure 23: Temporal consistency of Co-Learnability. Shadow testing produces aligned Co-
Learnability sequences, enabling direct comparison of CoLearnabilityi(t) and CoLearnabilityi(t+
1). The two signals exhibit positive correlation throughout training.

To examine whether training on tasks with high Co-Learnability at time t continues to facilitate
progress at time t+1, we quantify the temporal consistency of Co-Learnability values. A key
challenge is that Co-Learnability is only computed for tasks selected by the curriculum at each step,
resulting in irregularly sampled time series in which many tasks are not evaluated at both t and t+1.
This prevents direct computation of temporal correlation.

To obtain time-aligned Co-Learnability estimates, we apply a shadow-testing procedure. Let Lt

denote the indices of levels selected by the curriculum at timestep t. After the update on Lt, we clone
the agent’s parameters to construct a shadow agent. While the main learner proceeds normally (so
that Lt+1 may differ from Lt), the shadow agent is forced to replay the same levels by setting Lt+1 =
Lt. At the next timestep, the shadow agent resumes standard TRACED updates without further
intervention. This procedure yields aligned pairs of Co-Learnability values, CoLearnabilityi(t)
and CoLearnabilityi(t+1), for the same set of levels across all timesteps, enabling direct temporal
comparison.

Figure 23 shows the resulting time series of Co-Learnability at steps t and t+1, averaged over
three random seeds on multi-agent JaxNav. Although both signals exhibit substantial variance early
in training, they converge toward small positive values as the policy improves and performance
becomes more uniform across levels. The temporal correlation between the two estimates is sum-
marized below:

• Pearson correlation: 0.3998 (p ≈ 3.9× 10−87)
• Spearman correlation: 0.2013 (p ≈ 5.4× 10−22)
• Time-averaged Co-Learnability at step t: 0.0547
• Time-averaged Co-Learnability at step t+1: 0.0473

The slightly lower mean at step t+1 is expected, as Co-Learnability values naturally decrease over
training due to overall improvement across levels. The positive correlations indicate that tasks ex-
hibiting higher Co-Learnability at time t tend to retain elevated Co-Learnability at t+1, suggesting
mild but non-negligible temporal persistency.
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