
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRACED: TRANSITION-AWARE REGRET APPROXI-
MATION WITH CO-LEARNABILITY FOR ENVIRONMENT
DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizing deep reinforcement learning agents to unseen environments remains
a significant challenge. One promising solution is Unsupervised Environment De-
sign (UED), a co-evolutionary framework in which a teacher adaptively generates
tasks with high learning potential, while a student learns a robust policy from this
evolving curriculum. Existing UED methods typically measure learning poten-
tial via regret, the gap between optimal and current performance, approximated
solely by value-function loss. Building on these approaches, we introduce the
transition-prediction error as an additional term in our regret approximation. To
capture how training on one task affects performance on others, we further pro-
pose a lightweight metric called Co-Learnability. By combining these two mea-
sures, we present Transition-aware Regret Approximation with Co-learnability for
Environment Design (TRACED). Empirical evaluations show that TRACED pro-
duces curricula that improve zero-shot generalization over strong baselines across
multiple benchmarks. Ablation studies confirm that the transition-prediction er-
ror drives rapid complexity ramp-up and that Co-Learnability delivers additional
gains when paired with the transition-prediction error. These results demon-
strate how refined regret approximation and explicit modeling of task relation-
ships can be leveraged for sample-efficient curriculum design in UED. https:
//traced.vercel.app/

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable success in games, continuous control,
and robotics (Sutton et al., 1998). Ideally, we want agents that generalize robustly to a broad
range of unseen environments. However, hand-crafting a training distribution that captures all
real-world variability is intractable, and agents often overfit even large training sets, performing
poorly out-of-distribution (Kirk et al., 2023; Korkmaz, 2024).

Unsupervised Environment Design (UED) tackles this by adapting the curriculum: a teacher module
generates training tasks that challenge the student agent (Dennis et al., 2020). A popular class of
UED methods measures task difficulty by regret, the difference between the optimal return and the
agent’s achieved return, and uses this metric to guide curriculum design (Dennis et al., 2020; Jiang
et al., 2021b;a; Parker-Holder et al., 2022; Azad et al., 2023b; Mediratta et al., 2023; Erlebach &
Cook, 2024). Unfortunately, genuine regret requires knowing each environment’s optimal Q∗, which
is infeasible in complex domains. Existing approaches, therefore, resort to coarse proxies such as
Positive Value Loss (PVL) or maximum observed return (MaxMC) (Rutherford et al., 2024). In this
paper, we refine regret estimation by augmenting PVL with a transition-prediction error term that
captures how poorly a learned model predicts the environment’s dynamics. This combined signal
provides a more faithful approximation of regret and a sharper basis for curriculum design.

We further introduce a metric called Co-Learnability to quantify how training on one task benefits
others. For instance, consider three 100-word vocabulary tasks, Spanish, English, and Japanese,
whose transfer patterns differ: because Spanish and English share many cognates, learning Span-
ish accelerates lexical access and boosts English accuracy (Ramı́rez et al., 2013; Costa et al., 2000;
Lemhöfer & Dijkstra, 2004), reflecting high Co-Learnability; in contrast, Japanese is typologically

1

https://traced.vercel.app/
https://traced.vercel.app/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

distant (Chiswick & and, 2005), so gains from Japanese may transfer unefficiently to English, re-
flecting low Co-Learnability. We present a lightweight estimator of Co-Learnability that leverages
observed changes in approximated regret, avoiding any additional modeling overhead in the UED
loop.

Co-Learnability

Ta
sk

 D
iff

ic
ul

ty

low high

lo
w

hi
g

h

Task 1

Task 3 Task 4

Task 5

Task 2

Figure 1: Task Priority Land-
scape. Task with high diffi-
culty and high Co-Learnability
are scheduled with the highest
priority in the curriculum.

We propose TRACED (Transition-aware Regret Approximation
with Co-Learnability for Environment Design), which combines
refined regret and Co-Learnability to yield a task-priority land-
scape (Figure 1). We evaluate TRACED on procedurally gener-
ated MiniGrid (MG) (Chevalier-Boisvert et al., 2023) and Bipedal-
Walker (BW) (Romac et al., 2021). In MG, we compare against
Domain Randomization (DR) (Jakobi, 1997), PLR⊥ (Jiang et al.,
2021b), ADD (Chung et al., 2024), and ACCEL (Parker-Holder
et al., 2022) (the strongest baseline). In BW, we additionally
include the state-of-the-art (SOTA) method CENIE (Teoh et al.,
2024).

TRACED surpasses all baselines in mean solved rate across 12
MiniGrid mazes, BipedalWalker, and even the extreme Perfect-
Maze variants. Ablation studies show that the transition-prediction
error term accelerates curriculum ramp-up, while Co-Learnability
provides additional gains when combined with our regret term. An
analysis of curriculum evolution indicates that TRACED progres-
sively increases task difficulty from easy to challenging. Taken
together, these results chart a path toward more sample-efficient
UED by coupling refined regret approximation with explicit mod-
eling of task relationships.

2 PRELIMINARIES

2.1 UNDERSPECIFIED PARTIALLY OBSERVABLE MDPS (UPOMDPS)

We model our environments as underspecified partially observable Markov decision processes (UP-
OMDPs) following Dennis et al. (2020). A UPOMDP is a tupleM = ⟨A,O,Θ, S, P0, PT , I,R, γ⟩,
where A is a finite set of actions, S is a latent state space, and O is an observation space. The ob-
servation function I : S → ∆(O) generates each observation ot given the true state st, the reward
function R : S × A → R and discount factor γ ∈ [0, 1) are shared across all levels. Crucially, Θ
is a set of underspecified parameters that distinguish individual “levels”: for each θ ∈ Θ, the initial
state is drawn from P0(θ) ∈ ∆(S) and transitions follow PT (st+1 | st, at, θ).
At each time step t, the agent observes ot ∼ I(st) and selects an action at according to a
trajectory-conditioned policy π

(
at|o0, a0, . . . , ot

)
. For a fixed level θ, the utility of policy π is

the expected discounted return Uθ(π) = E
[∑T

t=0 γ
t rt

]
, rt = R(st, at) with the expectation taken

over both the stochastic dynamics and the policy’s choices. We denote an optimal policy on level θ
by π⋆

θ ∈ argmaxπ Uθ(π).

2.2 UNSUPERVISED ENVIRONMENT DESIGN (UED)

UED provides a series of levels with unknown parameters that are used to produce task environments
automatically as a curriculum for the agent so as to efficiently train a single generalist policy πϕ

across the entire parameter space Θ (Dennis et al., 2020). Recent UED methods maximize regret of
the agent to generate a distribution of environments that guide effective learning (Jiang et al., 2021b;
Parker-Holder et al., 2022; Teoh et al., 2024). The regret of policy π is defined as the difference in
expected reward between optimal policy π∗ and policy π, Regretθ(π) = Uθ(π

∗)− Uθ(π).

Because the true optimal policy π⋆ is unknown in complex environments, existing methods ap-
proximate the instantaneous regret using proxy metrics. For example, PLR⊥ (Jiang et al., 2021a)
evaluates two such proxies: Positive Value Loss (PVL) and Maximum Monte Carlo (MaxMC). PVL
estimates the instantaneous regret as the average positive part of the Generalized Advantage Estima-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tion (GAE)-based Temporal Difference (TD) errors over an episode. PVL for an episode τ of length
T is defined as

PVL(τ) =
1

T

T∑
t=0

max(

T∑
k=t

(γλ) k−t δk, 0
)

(1)

where γ is the discount factor, λ is the GAE coefficient and δt = rt + γ V (st+1) − V (st) is the
one-step TD-error at timestep t. MaxMC uses the highest undiscounted return observed on the
task instead of a bootstrap target. Other criteria such as policy entropy, one-step TD error, GAE,
policy min-margin, and policy least-confidence have also been evaluated in curriculum learning
contexts (Jiang et al., 2021b).

3 TRACED: TRANSITION-AWARE REGRET APPROXIMATION WITH
CO-LEARNABILITY FOR ENVIRONMENT DESIGN

TRACED improves UED via (i) a regret approximation combining value and transition-prediction
errors and (ii) a Co-Learnability measure. These yield a unified Task Priority score that governs
new-task generation and replay sampling. We first present the motivating regret decomposition,
then the curriculum derived from the approximated regret.

3.1 REGRET APPROXIMATION VIA TRANSITION PREDICTION LOSS

Since regret quantifies the difficulty an agent experiences on a task, improving its approximation
can yield more accurate difficulty estimates and, in turn, more effective curricula. We approximate
the one-step regret at a state-action pair (s, a) via the following decomposition:

Regret(s, a) = V ∗(s)−Qπ(s, a)

= V ∗(s)− V̂ ∗(s) + V̂ ∗(s)−Qπ(s, a)

= V ∗(s)− V̂ ∗(s)︸ ︷︷ ︸
(i) Value estimation error

+ r(s, a∗)− r(s, a)︸ ︷︷ ︸
(ii) Reward gap

+ γ
(
Es′′∼P̂ (·|s,a∗)

[
V̂ ∗(s′′)

]
− Es′∼P (·|s,a)

[
V π(s′)

])
︸ ︷︷ ︸

(iii) Future value gap

,

(2)

Notation. A hat (e.g., V̂ ∗(s)) indicates an empirical/learned estimator of the optimal value; Q∗, V ∗

are the optimal value functions; Qπ, V π are the value functions under policy π; P is the true transi-
tion kernel and P̂ is a learned transition model; γ is the discount factor.

Eq. 2 makes clear that Positive Value Loss (PVL), which evaluates only the accuracy of the empirical
value estimator and thus corresponds to term (i), is insufficient as a proxy for regret. The future-
value gap in term (iii) is influenced not only by value-function error but also by mismatch between
the learned dynamics P̂ and the true dynamics P . Motivated by this, we augment PVL with a
transition-prediction error term, explicitly accounting for model-environment dynamics mismatch
when approximating regret.

Definition 1 (Average Transition Prediction Loss). Train a transition dynamics estimator fϕ,
implemented as a recurrent model, to minimize a one-step reconstruction loss Ltrans(st, at) between
the observed next state st+1 and the prediction ŝt+1 = fϕ(st, at) . Detailed design choices for the
transition model are provided in Appendix H.3. Over an episode τ = (s0, a0, . . . , sT ), define

ATPL(τ) =
1

T

T∑
t=0

Ltrans(st, at). (3)

Combine the two estimates into a single scalar:

R̂egret(τ) = PVL(τ) + αATPL(τ), (4)

where α > 0 balances value versus transition terms.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Update 
difficulties

Sample x tasks

at time-step k 

Rollouts Buffer (RB)

New Task Difficulties +
PVL

ATPL

Compute Difficulties
Task Difficulty Buffer (TDB)

1.4 0.9 0.5

Task n

2.7 1.5 0.7 0.3

Task 1

Time-step1 1k- 0.2

k, 1Difficulty

0.1

k, xDifficulty

k, xTask

Episode

k, 1Task

Episode

Figure 2: Task Difficulty Calculation Workflow. The Task Difficulty Buffer (TDB) records each
task’s history of approximated regret. The agent interacts with sampled tasks to collect episode
trajectories, which are stored in the Rollouts Buffer (RB). For each trajectory, we compute the
Positive Value Loss (PVL) and the Average Transition-Prediction Loss (ATPL). Their sum produces
the updated task difficulty (approximated regret), which is appended to the TDB to refresh each
sampled task’s stored difficulty.

By explicitly incorporating both components, our regret approximation more faithfully captures
task difficulty and, in turn, yields more effective curricula. For each sampled task instance τ , we
compute R̂egret(τ) and append it to the task difficulty buffer (TDB), which is subsequently used to
drive curriculum updates (Figure 2).

3.2 TASK PRIORITY CONSTRUCTION

A central challenge in UED is to decide which tasks to present to the agent at each step (Hughes et al.,
2024). Intuitively, we want to (1) focus on tasks that remain challenging, while (2) exploiting tasks
whose training yields transfer to others. To this end, we introduce two complementary quantities,
Task Difficulty and Co-Learnability, and combine them into a single Task Priority score. In the
following sections, time t indexes the teacher’s curriculum-selection cycles (not environment time).

Definition 2 (Task Difficulty). Let si(k) = max{ s ≤ k : TDB(i, s) exists} denote the most
recent time at or before k when task i was sampled, so that its approximated regret was stored at
time si(k). We define the task difficulty of task i at time k as

TaskDifficulty(i, k) =

{
TDB

(
i, si(k)

)
, if si(k) is finite,

0, if i has never been sampled before t.
(5)

This ensures that TaskDifficulty(i, k) always reflects the most recent approximated regret for task
i, with larger values indicating greater remaining challenge.

Definition 3 (Co-Learnability). Beyond difficulty, we wish to capture how training on one task
accelerates progress on others. Let Tk+1 be the set of tasks replayed at time k + 1. We define the
Co-Learnability (CL) of task i at time k as

CoLearnabilityi(k) =
1

|Tk+1|
∑

j∈Tk+1

[
TaskDifficulty(j, k)− TaskDifficulty(j, k + 1)

]
(6)

which measures the average reduction in the difficulty of replayed tasks when task i is selected at
time k. In principle, the true marginal contribution could be computed via Shapley values; however,
due to computational constraints we approximate task i’s effect on reducing other tasks’ difficulty
using this surrogate. A positive Co-Learnability value indicates that visiting i yields transfer benefits.

Definition 4 (Task Priority). We combine difficulty and Co-Learnability into a scalar score and
then apply a rank transform, which replaces raw values with their relative order (e.g., the largest
value receives rank 1, the next largest rank 2, etc.), as in ACCEL (Parker-Holder et al., 2022):

TaskPriority(i, t) = Rank
(
TaskDifficulty(i, t) + β CoLearnability(i, t)

)
(7)

where β > 0 trades off challenge versus transfer. At each step, we sample tasks inversely to their
priority (e.g., p(i | t) ∝ 1/TaskPriority(i, t)), so lower ranks (higher priority) are selected more
often. The rank transform prevents outliers from dominating the sampling distribution.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

��  Task Sampling ��  Priority Update �� Task Mutate

Task Priority

Level BufferLevel Buffer Mutate tasks

Agent

Task Priority

Level BufferLevel Buffer

Sample levels 
based on priority

3rd 1st 8th 2nd 3rd 2nd 4th 1st

Agent

Task Priority

Level BufferLevel Buffer

Update priorities
3rd 2nd 8th 5th

Figure 3: Method Workflow Overview. The three panels in figure depict: (1) Task Sampling: levels
are drawn from the buffer based on their priority scores. (2) Priority Update: we recompute each
level’s priority based on our task priority definition (Eq. 7). (3) Task Mutation: the lowest-priority
levels are mutated into new variants and reinserted into the buffer.

3.3 OVERALL UED WORKFLOW

The overall UED algorithm follows the ACCEL loop (Parker-Holder et al., 2022), with the sole
change that task scoring uses our Task Priority (Eq. 7) in place of Positive Value Loss (PVL) alone
(Figure 3). At each curriculum update time t, with probability d we sample a new level uniformly at
random, and with probability 1 − d we sample a level from the replay buffer according to its Task
Priority score. Early in training, when the buffer is empty, we sample levels uniformly at random
for a warm-up period. The warm-up length matches ACCEL’s setting.

After training the agent on the selected level, we approximate its regret using the agent’s value-
related loss and the transition-prediction loss (for Task Difficulty), and append the result to the
task difficulty buffer. Co-Learnability is updated following Eq. 6 after the next curriculum step,
once the newly visited levels have had their difficulties updated. The updated Task Difficulty and
Co-Learnability define Task Priority via Eq. 7, which then governs both new-task sampling and pri-
oritized replay at future times. The algorithm alternates between sampling new tasks and prioritized
replay until policy performance converges. The full procedure is given in Algorithm 1.

4 EXPERIMENTS

We evaluate TRACED on two procedurally generated domains: MiniGrid (MG) and BipedalWalker
(BW). In both environments, we compare against DR, PLR⊥, ACCEL (our primary baseline, since
TRACED builds directly upon it), and ADD. In BW only, we additionally include the recent sota
method CENIE (Teoh et al., 2024). We exclude SFL (Rutherford et al., 2024) because, on MiniGrid,
it does not outperform PLR (Rutherford et al., 2024). Detailed descriptions of all baselines can be
found in Appendix K.

For each domain, we track the emergent complexity of the sampled curricula during training and
evaluate zero-shot test performance on held-out levels. To summarize test results, we report the
median, interquartile mean (IQM), mean, and optimality gap using the rliable library (Agarwal et al.,
2021). The optimality gap measures how far an algorithm falls short of a target performance level,
beyond which further gains are deemed negligible. Accordingly, higher IQM and lower optimality
gap values indicate better performance.

All methods use Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the student agent.
Following prior work (Parker-Holder et al., 2022; Teoh et al., 2024), we plot performance versus
the number of PPO updates and report the corresponding environment interactions per update in
Appendix F. Our only deviation from ACCEL is the number of PPO workers (i.e., parallel trajectory
collectors), chosen for computational constraints: MiniGrid uses 16 workers instead of 32, and
BipedalWalker uses 4 instead of 16. Consequently, some baseline scores may differ from those in
the ACCEL paper. However, Appendix A.4 shows that TRACED has no worker-specific tuning and
that reducing workers does not render the comparison unfair. We report TRACED at 10k updates
(rather than 20k) because single-seed, long-horizon runs (45k PPO updates) on MiniGrid reveal post-
convergence oscillations in both TRACED and ACCEL, and reporting earlier avoids this confound
(Appendix B). Additional hyperparameters and architectures are provided in Appendix H.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

SixteenRooms Maze Labyrinth LargeCorridor

(a) Minigrid

Stairs

Roughness

(b) BipedalWalker

Figure 4: Held-out Evaluation Environments. (a) Example held-out MiniGrid mazes for zero-shot
evaluation: 4 tasks are shown (see Appendix H.1 for all 12 task definitions). (b) Example held-out
BipedalWalker terrains for zero-shot evaluation: 2 tasks are shown (see Appendix H.2 for all 6 task
definitions).

4.1 PARTIALLY OBSERVABLE NAVIGATION

We evaluate our curriculum design on a partially observable maze navigation domain based on
MiniGrid (Chevalier-Boisvert et al., 2023), as in prior UED work. Four representatives are shown in
Figure 4. The agent observes a 147-dimensional pixel observation and is trained for up to 20k PPO
updates.

0.2 0.4 0.6
DR 10k
DR 20k

PLR  10k
PLR  20k
ADD 10k
ADD 20k

ACCEL 10k
ACCEL 20k

TRACED (Ours) 10k
Median

0.2 0.4 0.6 0.8

IQM

0.30 0.45 0.60

Mean

0.30 0.45 0.60 0.75

Optimality Gap

Score

Figure 5: Zero-Shot Transfer Performance in MiniGrid. Aggregated solved rates on held-out
MiniGrid mazes after 10k and 20k PPO updates. TRACED at 10k updates outperforms baselines at
20k updates.

Our method achieves a superior solved rate at only 10k updates, matching or exceeding the 20k
update performance of all baselines (Figure 5). In particular, TRACED’s median solved rate at 10k
surpasses ACCEL at 20k, and its IQM leads the field, indicating that the majority of runs benefit
rapidly from our combined regret and Co-Learnability scoring.

Table 1: Wall-clock training time comparison. Average training duration (hours ± SE over 10
runs) on the MiniGrid domain.

TRACED 10k ACCEL 10k ACCEL 20k ADD 10k ADD 20k PLR⊥ 10k PLR⊥ 20k DR 10k DR 20k

13.78 ± 0.36 12.94 ± 0.66 26.58 ± 0.76 22.48 ± 0.27 45.08 ± 0.29 14.87 ± 0.62 31.83 ± 1.36 5.82 ± 0.12 12.41 ± 0.18

Compared to ACCEL, TRACED halves the wall-clock training time while maintaining equivalent
or better transfer performance (Table 1). Even relative to ACCEL at the same 10k update budget,
TRACED incurs a 6% computational overhead yet delivers a 22% relative increase in mean solved
rate. Taken together, these metrics demonstrate that TRACED not only accelerates learning but also
delivers more consistent and reliable zero-shot transfer across diverse MiniGrid mazes. Detailed
per-task zero-shot results are provided in Appendix P, and the number of environment interactions
per PPO update for each method is in Appendix F.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

TRACED (Ours) ACCEL + ATPL ACCEL

0 5k 10k
Student PPO Updates

0
20
40
60
80

100
120
140

(a) Shortest Path Length

0 5k 10k
Student PPO Updates

0
10
20
30
40
50
60
70
80

(b) Number of Blocks

Figure 6: Emergent maze complexity metrics. Shortest path length and number of blocks both
grow faster under TRACED (pink) than ACCEL (blue). This faster ramp-up indicates that our
curriculum more effectively escalates difficulty in lockstep with agent learning.

To analyze emergent environment complexity, we track two structural metrics for each generated
maze: (i) the length of the shortest solution path and (ii) the number of obstacles (Figure 6).
Curves are averaged over 10 seeds with shaded 95% confidence intervals. Both metrics increase
substantially faster under TRACED than under ACCEL, indicating that our priority scoring more
effectively separates easy from challenging tasks and yields a steadily escalating curriculum. No-
tably, ACCEL+ATPL also drives complexity upward far faster than ACCEL alone and closely tracks
TRACED, demonstrating that the transition-prediction component on its own contributes strongly
to complexity ramp-up.

(a) PerfectMazeLarge (b) PerfectMazeXL

0.0

0.3

0.6

So
lv

ed
 ra

te

PerfectMazeLarge

0.0

0.3

0.6

So
lv

ed
 ra

te

PerfectMazeXL

Ours 10k
ACCEL 20k
ACCEL 10k
ADD 20k
ADD 10k
PLR  20k
PLR  10k
DR 20k
DR 10k

(c)

Figure 7: PerfectMaze Evaluation. (a), (b) Two held-out maze instances, PerfectMazeLarge and
PerfectMazeXL, used for zero-shot testing. (c) Zero-shot solved rates. TRACED achieves the high-
est 10k performance on PerfectMazeLarge and closely matches the best 20k performance on Per-
fectMazeXL.

To stress-test our curriculum on extremely large, procedurally generated mazes, we introduce two
PerfectMaze benchmarks. PerfectMazeLarge consists of 51 × 51 grids with a maximum episode
length exceeding 5k steps, while PerfectMazeXL scales this to 100 × 100 grids. Figure 7 shows
representative levels from each variant. We evaluate zero-shot transfer performance, measuring the
mean success rate over 100 episodes per seed (10 seeds total).

On PerfectMazeLarge, TRACED achieves the highest 10k solved rate (27%± 23%), outperforming
ACCEL’s best 20k rate (20% ± 25%) and far exceeding ADD, DR and PLR⊥ (Figure 7). On the
even more complex PerfectMazeXL, ACCEL narrowly leads at 12% ± 28% after 20k updates,
with TRACED close behind at 10% ± 14% after just 10k updates, demonstrating that TRACED
scales to extremely large mazes. Detailed per-baseline results for both benchmarks are provided in
Appendix P.

4.2 WALKING IN CHALLENGING TERRAIN

We further validate our curriculum in the continuous-control BipedalWalkerHardcore environment
from OpenAI Gym (Brockman et al., 2016), as modified by Wang et al. (2019). This domain features
a procedurally generated terrain controlled by eight parameters, terrain roughness, pit gap frequency,
stump height, stair spacing, etc., that jointly determine locomotion difficulty. We consider the com-
plete set of eight parameters in our design space. Figure 4 illustrates two representative terrains

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

with varying stair heights and surface roughness. We evaluate zero-shot transfer on six held-out test
terrains over 100 episodes each, averaged over five random seeds.

0.00 0.15 0.30

DR 10k
DR 20k

PLR  10k
PLR  20k
ADD 10k
ADD 20k

ACCEL 10k
ACCEL 20k

ACCEL-CENIE 10k
ACCEL-CENIE 20k

TRACED (Ours) 10k
Median

0.00 0.15 0.30

IQM

0.00 0.15 0.30

Mean

0.75 0.90 1.05

Optimality Gap

Normalized Score

Figure 8: Aggregate zero-shot performance on BipedalWalker terrains. All scores are normal-
ized by the maximum return of 300 in the BipedalWalker domain. TRACED at 10k updates (pink)
matches or exceeds ACCEL-CENIE at 20k updates (purple) across all metrics.

TRACED (Ours) ACCEL ADD PLR DR

0 5k 10k
Student PPO Updates

-100

0

100

200

300

R
et

ur
n

(a) Basic

0 5k 10k
Student PPO Updates

-100

0

100

200

300

R
et

ur
n

(b) Hardcore

0 5k 10k
Student PPO Updates

-100

0

100

200

300

R
et

ur
n

(c) Stair

0 5k 10k
Student PPO Updates

-100

0

100

200

300

R
et

ur
n

(d) Pitgap

0 5k 10k
Student PPO Updates

-100

0

100

200

300

R
et

ur
n

(e) Stump

0 5k 10k
Student PPO Updates

-100

0

100

200

300

R
et

ur
n

(f) Roughness

Figure 9: Return progression on BipedalWalker terrains. TRACED consistently outperforms
baselines.

TRACED delivers consistent gains across all four aggregate metrics, median, interquartile mean
(IQM), mean, and optimality gap, on the six held-out BipedalWalker terrains (Figure 8). After
only 10k updates, it already outperforms all baselines evaluated at 20k. As in MiniGrid, TRACED
also reaches its peak performance in roughly half the wall-clock time of ACCEL on BipedalWalker
(Appendix F). Moreover, TRACED consistently surpasses ACCEL in zero-shot returns across all
terrains throughout training (Figure 9), further underscoring the effectiveness of its curriculum de-
sign. Detailed numerical results are provided in Appendix P.

4.3 ABLATION STUDY

0.30 0.45 0.60 0.75
TRACED - ATPL 10k

TRACED - CL 10k
TRACED (Ours) 10k

Median

0.4 0.6 0.8

IQM

0.45 0.60 0.75

Mean

0.30 0.45 0.60

Optimality Gap

Score

Figure 10: Ablation Study on TRACED. Both ATPL and CL are important design choices.

To isolate component contributions, we compare TRACED at 10k updates with two ablations (Fig-
ure 10): ATPL only (TRACED−CL) and Co-Learnability only (TRACED−ATPL), each evaluated

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

with five seeds. Results are reported following Agarwal et al. (2021). On MiniGrid, TRACED out-
performs both variants across four metrics, indicating that each component contributes meaningfully
to performance. The same trend holds on BipedalWalker (Appendix A). Ablations on the scaling
factors α and β further show that both elements play significant roles in TRACED and that carefully
balancing ATPL and CL can yield additional gains (Appendix A.1). Detailed numerical results are
provided in Appendix P.

4.4 ANALYSIS ON CURRICULUM PROGRESSION

Table 2: Proportions (%) of Easy, Moderate, and Challenging levels in the level buffer during
PPO updates.

Method Difficulty 0k 5k 10k 15k 20k

ACCEL
Easy 100 100 79.2 26.7 9.2
Moderate 0 0 20.8 73.3 90.8
Challenging 0 0 0 0 0

TRACED
Easy 100 72 24.5 19.5 11.2
Moderate 0 25.7 60.9 68 77.3
Challenging 0 2.3 14.6 12.5 11.5

To analyze how the curriculum evolves, we examine the BipedalWalker level buffer over time and
categorize each generated level into three difficulty bands: Easy, Moderate, and Challenging, based
on environment hyperparameters. Following Teoh et al. (2024), we set thresholds for Stump Height
(2.4), Pit Gap (6), Ground Roughness (4.5), and Stairs Height (5). Levels exceeding no thresholds
are labeled Easy, those exceeding exactly one threshold are Moderate, and those exceeding at least
two thresholds are Challenging. Table 2 reports the proportion of each difficulty in the buffer at
different PPO update steps.

TRACED progressively shifts mass from Easy to Moderate and Challenging, introducing nontrivial
proportions of Challenging levels by 10k (14.6%) and maintaining them thereafter (11.5% at 20k).
In contrast, ACCEL never surfaces Challenging levels even at 20k (0% throughout), with the buffer
dominated by Moderate levels by 20k (90.8%). This steady escalation under TRACED aligns with
its faster convergence and stronger performance already at 10k updates. The respective contributions
of ATPL and Co-Learnability (CL) to curriculum progression are analyzed in Appendix C, and a
visualization of level evolution is provided in Appendix D.

5 CONCLUSION

In this paper, we introduced Unsupervised Environment Design (UED) method with two key compo-
nents: (i) an explicit transition-prediction error term for regret approximation, and (ii) a lightweight
Co-Learnability metric that captures cross-task transfer effects. By integrating these into the stan-
dard generator-replay loop, TRACED produces curricula that escalate environment complexity in
tandem with agent learning.

Empirically, we demonstrated on two procedurally generated domains (MiniGrid navigation and
BipedalWalker) that TRACED outperforms baselines (DR, PLR⊥, ADD, ACCEL), including sota
CENIE, using only half the training updates. We showed superior zero-shot transfer success rates,
faster growth in structural complexity, and scalability to extremely large mazes. Ablation studies
confirmed that each component is essential: ATPL drives the primary complexity ramp-up, while
Co-Learnability yields gains when paired with our regret estimates.

Looking forward, Co-Learnability offers a simple, computationally light mechanism for capturing
inter-task influences and could be further refined via more sophisticated causal estimators or learned
models. More broadly, any RL setting that relies on regret-approximation stands to benefit from in-
corporating transition-prediction error, providing an easy-to-implement boost in sample efficiency.
We anticipate that these ideas will inspire future work on adaptive curricula, advanced editing mech-
anisms, and broader applications of regret-guided exploration in open-ended learning environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep Reinforcement Learning at the Edge of the Statistical Precipice. In NeurIPS, 2021.

Abdus Salam Azad, Izzeddin Gur, Jasper Emhoff, Nathaniel Alexis, Aleksandra Faust, Pieter
Abbeel, and Ion Stoica. CLUTR: Curriculum Learning via Unsupervised Task Representation
Learning. In ICML, 2023a.

Abdus Salam Azad, Izzeddin Gur, Jasper Emhoff, Nathaniel Alexis, Aleksandra Faust, Pieter
Abbeel, and Ion Stoica. CLUTR: Curriculum Learning via Unsupervised Task Representation
Learning. In ICML, 2023b.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & Miniworld:
Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks. In
NeurIPS, 2023.

Barry R. Chiswick and Paul W. Miller and. Linguistic distance: A quantitative measure of the
distance between english and other languages. Journal of Multilingual and Multicultural De-
velopment, 26(1):1–11, 2005. doi: 10.1080/14790710508668395. URL https://doi.org/
10.1080/14790710508668395.

François Chollet. On the Measure of Intelligence. arXiv preprint arXiv:1911.01547, 2019.

Hojun Chung, Junseo Lee, Minsoo Kim, Dohyeong Kim, and Songhwai Oh. Adversarial En-
vironment Design via Regret-Guided Diffusion Models. In NeurIPS, 2024. URL https:
//github.com/rllab-snu/ADD/tree/main.

Albert Costa, Alfonso Caramazza, and Nuria Sebastian-Galles. The Cognate Facilitation Effect:
Implications for Models of Lexical Access. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 26(5):1283, 2000.

Robby Costales and Stefanos Nikolaidis. Enabling Adaptive Agent Training in Open-Ended Simu-
lators by Targeting Diversity. In NeurIPS, 2024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design. In NeurIPS, 2020.

Theresa Eimer, André Biedenkapp, Frank Hutter, and Marius Lindauer. Self-Paced Context Evalu-
ation for Contextual Reinforcement Learning. In ICML, 2021.

Hannah Erlebach and Jonathan Cook. RACCOON: Regret-based Adaptive Curricula for Coop-
eration. In RLC Workshop on Coordination and Cooperation for Multi-Agent Reinforcement
Learning Methods, 2024.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in Actor-
Critic Methods. In ICML, 2018.

David Ha and Jürgen Schmidhuber. World Models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In ICML, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Control
Tasks through World Models. Nature, pp. 1–7, 2025.

Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktäschel. Position: Open-Endedness is Essential for Artificial
Superhuman Intelligence. In ICML, 2024.

10

https://doi.org/10.1080/14790710508668395
https://doi.org/10.1080/14790710508668395
https://github.com/rllab-snu/ADD/tree/main
https://github.com/rllab-snu/ADD/tree/main


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matthew Thomas Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Gregory Far-
quhar, Shimon Whiteson, and Jakob Nicolaus Foerster. Discovering general reinforcement learn-
ing algorithms with adversarial environment design. In NeurIPS, 2023.

Nick Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive behavior,
6(2):325–368, 1997.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-Guided Adversarial Environment Design. In NeurIPS, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized Level Replay. In ICML, 2021b.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design, 2022. URL https://github.
com/facebookresearch/dcd.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A Survey of Zero-shot Gen-
eralisation in Deep Reinforcement Learning. Journal of Artificial Intelligence Research, 76:201–
264, 2023.

Pascal Klink, Carlo D’Eramo, Jan R Peters, and Joni Pajarinen. Self-Paced Deep Reinforcement
Learning. In NeurIPS, 2020.

Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum Reinforce-
ment Learning via Constrained Optimal Transport. In ICML, 2022.

Ezgi Korkmaz. A Survey Analyzing Generalization in Deep Reinforcement Learning. arXiv preprint
arXiv:2401.02349, 2024.

Kristin Lemhöfer and Ton Dijkstra. Recognizing Cognates and Interlingual Homographs: Effects of
Code Similarity in Language-Specific and Generalized Lexical Decision. Memory & cognition,
32:533–550, 2004.

Dexun Li, Wenjun Li, and Pradeep Varakantham. Marginal Benefit Induced Unsupervised Environ-
ment Design, 2024. URL https://openreview.net/forum?id=QJNOnYDsYA.

Wenjun Li, Pradeep Varakantham, and Dexun Li. Generalization through Diversity: Improving
Unsupervised Environment Design. In IJCAI, 2023.

A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking Reinforcement Learning Algorithms on Real-World Robots. In CoRL, 2018.

Ishita Mediratta, Minqi Jiang, Jack Parker-Holder, Michael Dennis, Eugene Vinitsky, and Tim
Rocktäschel. Stabilizing Unsupervised Environment Design with a Learned Adversary. In CoL-
LAs, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-Level
Control through Deep Reinforcement Learning. Nature, 518(7540):529–533, 2015.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey. Journal
of Machine Learning Research, 21(181):1–50, 2020.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-Conditional
Video Prediction using Deep Networks in Atari Games. In NeurIPS, 2015.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving Curricula with Regret-Based Environment Design.
In ICML, 2022.

Gloria Ramı́rez, Xi Chen, and Adrian Pasquarella. Cross-linguistic transfer of morphological aware-
ness in Spanish-Speaking English language learners: The facilitating effect of cognate knowledge.
Topics in Language Disorders, 33(1):73–92, jan 2013. doi: 10.1097/TLD.0b013e318280f55a.

11

https://github.com/facebookresearch/dcd
https://github.com/facebookresearch/dcd
https://openreview.net/forum?id=QJNOnYDsYA


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marc Rigter, Minqi Jiang, and Ingmar Posner. Reward-Free Curricula for Training Robust World
Models. In ICLR, 2024.

Clément Romac, Rémy Portelas, Katja Hofmann, and Pierre-Yves Oudeyer. TeachMyAgent: a
Benchmark for Automatic Curriculum Learning in Deep RL. In ICML, 2021.

Alexander Rutherford, Michael Beukman, Timon Willi, Bruno Lacerda, Nick Hawes, and
Jakob Nicolaus Foerster. No Regrets: Investigating and Improving Regret Approximations for
Curriculum Discovery. In NeurIPS, 2024.

Mikayel Samvelyan, Akbir Khan, Michael D Dennis, Minqi Jiang, Jack Parker-Holder, Jakob Nico-
laus Foerster, Roberta Raileanu, and Tim Rocktäschel. MAESTRO: Open-Ended Environment
Design for Multi-Agent Reinforcement Learning. In ICLR, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton, Andrew G Barto, et al. Reinforcement Learning: An Introduction, volume 1. MIT
Press Cambridge, 1998.

Jayden Teoh, Wenjun Li, and Pradeep Varakantham. Improving Environment Novelty Quantification
for Effective Unsupervised Environment Design. In NeurIPS, 2024.

Linji Wang, Zifan Xu, Peter Stone, and Xuesu Xiao. Grounded curriculum learning. arXiv preprint
arXiv:2409.19816, 2024.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired Open-Ended Trailblazer
(POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and
Their Solutions. arXiv preprint arXiv:1901.01753, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced POET: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In ICML, 2020.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss Functions for Image Restoration with
Neural Networks. IEEE Transactions on Computational Imaging, 3(1):47–57, 2016.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS

A.1 ABLATION STUDY ON THE SCALING FACTOR

In this ablation, we keep every setting in Appendix O fixed except for one of the weight-scaling
factors, α (ATPL weight), β (Co-Learnability weight). Results are averaged over five random seeds
and reported as mean ± standard error on 12 held-out MiniGrid tasks. Each method is evaluated
after 10k PPO updates.

Table 3: Ablation study on the scaling factor. Comparing different fixed projection Weight base-
lines (α = 0.0, α = 100.0, β = 0.0, β = 100.0) and TRACED (α = 1.0, β = 1.0). Bold indicates
the best; underline indicates the second-best.

Environment α=0.0 α=100.0 β=0.0 β=100.0 TRACED
16Rooms 0.81 ± 0.1 0.06 ± 0.04 0.73 ± 0.09 0.74 ± 0.17 0.79 ± 0.19
16Rooms2 0.94 ± 0.05 0.0 ± 0.0 0.28 ± 0.2 0.59 ± 0.15 0.72 ± 0.17
SimpleCrossing 0.84 ± 0.04 0.43 ± 0.08 0.86 ± 0.04 0.82 ± 0.04 0.89 ± 0.01
FourRooms 0.45 ± 0.05 0.23 ± 0.04 0.41 ± 0.05 0.52 ± 0.03 0.47 ± 0.02
SmallCorridor 0.42 ± 0.24 0.12 ± 0.06 0.62 ± 0.21 0.51 ± 0.12 0.49 ± 0.17
LargeCorridor 0.44 ± 0.26 0.04 ± 0.02 0.54 ± 0.16 0.56 ± 0.18 0.5 ± 0.14
Labyrinth 0.5 ± 0.29 0.0 ± 0.0 0.49 ± 0.25 0.19 ± 0.18 1.0 ± 0.0
Labyrinth2 0.61 ± 0.2 0.0 ± 0.0 0.2 ± 0.17 0.2 ± 0.2 0.98 ± 0.01
Maze 0.74 ± 0.21 0.0 ± 0.0 0.18 ± 0.07 0.39 ± 0.24 0.59 ± 0.17
Maze2 0.56 ± 0.26 0.0 ± 0.0 0.51 ± 0.21 0.14 ± 0.12 0.42 ± 0.19
Maze3 0.51 ± 0.27 0.0 ± 0.0 0.59 ± 0.22 0.51 ± 0.21 0.86 ± 0.07
PerfectMaze(M) 0.4 ± 0.16 0.01 ± 0.02 0.4 ± 0.06 0.34 ± 0.07 0.66 ± 0.11
Mean 0.6 ± 0.1 0.07 ± 0.01 0.5 ± 0.09 0.46 ± 0.05 0.7 ± 0.04

Deviating from defaults on either α or β reduces the solved rates in most domains (Table 3). For
both ignoring one of the weighted terms (α = 0.0 or β = 0.0) and using excessively large weight
(α = 100.0 or β = 100.0), solved rates show slight improvement for some individual tasks, but
statistical drops for overall performance. The default TRACED weights show the best performance
compared to fixed projection baselines. This result shows that an effective balance between ATPL
and Co-Learnability is needed.

A.2 ABLATION STUDY ON ATPL AND CO-LEARNABILITY

In this ablation, we evaluate TRACED by removing each of its two components in turn. Table 4
reports zero-shot solve rates on six held-out BipedalWalker tasks after 10k PPO updates. Results
are averaged over five random seeds and reported as mean ± standard error.

Table 4: Ablation study on ATPL and Co-Learnability. Comparing ACCEL (10k), TRACED -
ATPL (10k), TRACED - CL (10k), and TRACED (10k, α = 1.5, β = 0.6). Bold indicates the best
result per task; underline indicates the second-best.

Environment ACCEL 10k TRACED - ATPL 10k TRACED - CL 10k TRACED 10k
Basic 281.65 ± 5.25 282.61 ± 4.64 286.75 ± 5.01 293.67 ± 3.56
Hardcore 37.59 ± 15.0 53.77 ± 20.8 48.35 ± 23.74 86.83 ± 17.96
Stairs -38.71 ± 10.54 -43.99 ± 12.99 -34.1 ± 8.44 -29.0 ± 10.4
PitGap -65.07 ± 7.57 -72.92 ± 13.95 -5.2 ± 66.89 -39.26 ± 11.42
Stump -79.18 ± 5.45 -38.06 ± 39.88 -19.89 ± 64.11 34.16 ± 54.58
Roughness 161.72 ± 28.36 191.75 ± 25.07 191.68 ± 4.99 193.29 ± 21.6
Mean 49.67 ± 11.24 62.19 ± 11.21 77.93 ± 17.58 89.95 ± 12.95

TRACED achieves the top score in five of six tasks (Basic, Hardcore, Stairs, Stump, Roughness)
and ranks second in the remaining one. The ATPL only variant (TRACED - CL) leads to the first
place in one task (PitGap) and second place in two tasks (Basic, Stump), while the Co-Learnability
only variant (TRACED - ATPL) only reaches the second place in two tasks (Hardcore, Roughness).
Removing both components (the ACCEL baseline) ranks second on one (Stairs). These results
confirm that both transition-prediction error and Co-Learnability are essential to TRACED’s high
and stable performance across diverse tasks.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyze impact of varying the ATPL weight α and the Co-Learnability weight β in TRACED
across the 12 held-out MiniGrid environments and six held-out BipedalWalker terrains. Results are
reported for a single random seed due to computational constraints.

Table 5: Effect of hyperparameter weights (α, β) on MiniGrid environments. Evaluations are
performed under varying (α, β) settings. Bold indicates the best; underline indicates the second-
best.

Environment (0.75, 1.0) (1.25, 1.0) (1.0, 0.75) (1.0, 1.25) (1.25, 0.75) TRACED (1.0, 1.0)

16Rooms 0.26 0.90 1.00 0.96 1.00 0.79± 0.19
16Rooms2 0.00 0.05 0.08 0.78 0.10 0.72± 0.17
SimpleCrossing 0.82 0.84 0.85 0.71 0.78 0.89 ± 0.01
FourRooms 0.68 0.36 0.52 0.39 0.51 0.47± 0.02
SmallCorridor 0.55 0.00 0.01 0.00 0.01 0.49± 0.17
LargeCorridor 0.94 0.02 0.01 0.00 0.01 0.50± 0.14
Labyrinth 0.98 1.00 1.00 1.00 1.00 1.00 ± 0.00
Labyrinth2 1.00 0.73 0.76 1.00 0.95 0.98± 0.01
Maze 0.76 0.16 0.39 0.00 1.00 0.59± 0.17
Maze2 0.07 0.00 0.94 1.00 0.98 0.42± 0.19
Maze3 0.92 1.00 0.10 0.89 0.93 0.86± 0.07
PerfectMaze(M) 0.56 0.38 0.55 0.55 0.85 0.66± 0.11

Mean 0.63 0.45 0.52 0.61 0.67 0.70 ± 0.04

In MiniGrid environments, four of the six (α, β) settings outperform the 10k-update baselines (Ap-
pendix P), and even the weakest setting matches the performance of PLR⊥ at 10k (Table 5). These
results indicate that TRACED provides consistently strong zero-shot generalization across a broad
range of hyperparameters, without extensive tuning.

Table 6: Effect of hyperparameter Weights (α, β) on BipedalWalker environments. Evaluations
are performed under varying (α, β) settings. Bold indicates the best; underline indicates the second-
best.

Environment (1.25, 0.6) (1.75, 0.6) (1.5, 0.45) (1.5, 0.75) TRACED (1.5, 0.6)

Basic 282.06 291.04 281.32 279.37 293.67±3.56
Hardcore -7.60 115.87 29.55 50.10 86.83±17.96
Stairs -52.78 -21.94 -42.37 -66.02 -29.0±10.4
PitGap 12.96 -52.72 -52.21 -122.54 -39.26±11.42
Stump -100.95 -40.11 -74.83 -73.93 34.16±54.58
Roughness 148.22 187.43 244.57 185.83 193.29±21.6

Mean 46.99 79.93 64.34 42.13 89.95±12.95

In BipedalWalker, three of the configurations outperform all 10k-update baselines (Appendix P)
(Table 6). Even the mean return across all five (α, β) choices (≈ 64.9) exceeds every baseline.
These results demonstrate that TRACED delivers consistently strong zero-shot generalization across
a wide range of weight settings, without requiring extensive hyperparameter tuning.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 ABLATION STUDY ON THE NUMBER OF WORKERS

We analyze the effect of the number of PPO workers, which determines how many agents collect
trajectories in parallel. The only difference between our experimental setup and ACCEL (Parker-
Holder et al., 2022) is the worker count: we use 16 workers for MiniGrid and 4 for BipedalWalker,
whereas the original ACCEL paper uses 32 and 16, respectively. To ensure this configuration does
not unfairly disadvantage TRACED, we additionally evaluate MiniGrid with 32 workers. Even
under this setting, TRACED consistently outperforms ACCEL, indicating that our gains are robust
to the PPO worker configuration (Table 7).

Table 7: Ablation study on Number of Workers. Bold indicates the best; underline indicates the
second-best.

Environment ACCEL 5k ACCEL 10k TRACED 5k TRACED 10k
16Rooms 0.37 ± 0.17 0.78 ± 0.14 0.95 ± 0.02 0.93 ± 0.07

16Rooms2 0.20 ± 0.20 0.77 ± 0.23 0.29 ± 0.14 0.91 ± 0.04

SimpleCrossing 0.65 ± 0.09 0.73 ± 0.07 0.78 ± 0.02 0.88 ± 0.05

FourRooms 0.33 ± 0.08 0.45 ± 0.04 0.33 ± 0.04 0.59 ± 0.01

SmallCorridor 0.52 ± 0.21 0.27 ± 0.17 0.62 ± 0.31 0.10 ± 0.04

LargeCorridor 0.42 ± 0.17 0.36 ± 0.30 0.49 ± 0.24 0.16 ± 0.13

Labyrinth 0.15 ± 0.15 0.49 ± 0.29 0.67 ± 0.33 0.91 ± 0.09

Labyrinth2 0.0 ± 0.0 0.51 ± 0.29 0.65 ± 0.20 1.0 ± 0.0

Maze 0.33 ± 0.33 0.36 ± 0.32 0.95 ± 0.04 0.99 ± 0.01

Maze2 0.01 ± 0.01 0.74 ± 0.23 0.22 ± 0.19 0.60 ± 0.20

Maze3 0.14 ± 0.13 0.48 ± 0.27 0.63 ± 0.29 1.0 ± 0.0

PerfectMaze(M) 0.20 ± 0.09 0.48 ± 0.07 0.58 ± 0.10 0.63 ± 0.13

Mean 0.28 ± 0.10 0.54 ± 0.09 0.60 ± 0.06 0.72 ± 0.09

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B LONG-TERM ANALYSIS ON TRACED

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Maze

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FourRooms

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Labyrinth

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PerfectMaze(M)

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.2

0.4

0.6

0.8

SimpleCrossing

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.2

0.4

0.6

0.8

SmallCorridor

Figure 11: TRACED Solved-Rate Time Series. Solved rate progression on MiniGrid tasks plotted
over 0-45k PPO updates.

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maze

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.2

0.4

0.6

0.8

FourRooms

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Labyrinth

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PerfectMaze(M)

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.2

0.4

0.6

0.8

SimpleCrossing

0 10000 20000 30000 40000
Student PPO Updates

0.0

0.2

0.4

0.6

0.8

SmallCorridor

Figure 12: ACCEL Solved-Rate Time Series. Solved rate progression on MiniGrid tasks plotted
over 0-45k PPO updates.

To study long-horizon behavior, we ran single-seed, 45k PPO updates for both TRACED and AC-
CEL in the MiniGrid environment. Both methods exhibit post-convergence oscillations in success
rate (i.e., solved rate). TRACED reaches near-peak success rapidly, but its performance subse-
quently oscillates rather than remaining perfectly stable (Figure 11). The same post-peak fluctua-
tions appear under the ACCEL curriculum (Figure 12): although ACCEL attains its maximum more

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

slowly, it shows a similar up-and-down pattern thereafter. These oscillations likely reflect inherent
instability of the RL policy on held-out levels, and may be further influenced by ACCEL’s mutation
dynamics, rather than a pathology introduced by our task-prioritization strategy. For this reason, we
report TRACED’s performance at 10k updates (rather than 20k), before long-horizon oscillations
confound comparisons. Mitigating these fluctuations in the student policy is an important direction
for future work.

C VISUALIZING CURRICULUM DYNAMICS

(a) 2.5k, Low ATPL, Low Co-Learnability (b) 2.5k, Low ATPL, High Co-Learnability

(c) 2.5k, High ATPL, Low Co-Learnability (d) 2.5k, High ATPL, High Co-Learnability

(e) 5k, Low ATPL, Low Co-Learnability (f) 5k, Low ATPL, High Co-Learnability

(g) 5k, High ATPL, Low Co-Learnability (h) 5k, High ATPL, High Co-Learnability

Figure 13: Representative terrains from BipedalWalker selected by ATPL and co-learnability
at two training stages. The top two rows show terrains after 2.5k PPO updates, and the bottom two
rows after 5k updates.

Figure 13 illustrates the joint impact of ATPL and Co-Learnability on terrain selection at 2.5k and
5k PPO updates. ATPL alone captures the raw challenge level: low-ATPL terrains (first and third
rows) remain relatively smooth, while high-ATPL terrains (second and fourth rows) feature larger
gaps and steeper bumps. As training proceeds from 2.5k to 5k updates, the overall terrains become
systematically harder, demonstrating TRACED’s ability to ramp up difficulty in lockstep with the
agent’s improving skills. Co-Learnability then refines this progression by filtering out extremes:
low Co-Learnability (left column) tends to generate either trivial or overwhelmingly difficult levels
that can stall learning, whereas high Co-Learnability (right column) favors intermediate-difficulty
terrains that transfer more effectively across tasks. Together, these visualizations confirm that ATPL
drives a steadily increasing complexity trajectory, while Co-Learnability smooths it to sustain robust,
transferable learning throughout the curriculum.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D LEVEL EVOLUTION

D.1 VISUALIZATION OF LEVEL EVOLUTION IN MINIGRID

The visualization of how the Minigrid environment evolves as the number of blocks increases (Fig-
ure 14). Each step of the evolutionary process produces an edited level that has a high learning
efficiency.

Figure 14: Visualization of a single level’s evolving progression in the MiniGrid environ-
ment. Starting from top-left, ending bottom-right. This progress is automatically designed by our
TRACED algorithm.

D.2 EVOLUTION OF LEVELS IN BIPEDALWALKER

Figure 15 shows the complexity metric results trained by three methods, TRACED (Ours), ACCEL
+ ATPL, ACCEL. Starting with plain terrain (near zero point), all three methods guide levels with
more complex terrain. With aspect of (a) Stump height, (b) Stump height high, (e) Stair height step
metrics, the results show TRACED and ACCEL + ATPL quickly evolve levels compared to ACCEL.
This rapid level increasing brings, short wall-clock relative to performance and high performance
results in various test environments.

TRACED (Ours) ACCEL + ATPL ACCEL

0 5k 10k
Student PPO Updates

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(a) Stump height low

0 5k 10k
Student PPO Updates

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(b) Stump height high

0 5k 10k
Student PPO Updates

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(c) Stair height low

0 5k 10k
Student PPO Updates

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(d) Stair height high

0 5k 10k
Student PPO Updates

0
1
2
3
4
5
6
7

(e) Stair height step

0 5k 10k
Student PPO Updates

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(f) Pit gap low

0 5k 10k
Student PPO Updates

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(g) Pit gap high

0 5k 10k
Student PPO Updates

0
1
2
3
4
5
6
7
8

(h) Roughness

Figure 15: Emergent BipedalWalker terrain complexity metrics. Aspect of (a) Stump height
low, (b) Stump height high, and (e) Stair height step, complexity grows faster under TRACED
(Ours, pink) or ACCEL + ATPL (brown) than under ACCEL (blue). The result is averaged over five
random seeds. This faster ramp-up indicates that our curriculum more effectively escalates difficulty
in lockstep with agent learning.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.3 VISUALIZATION OF LEVEL EVOLUTION IN BIPEDALWALKER

Figure 16 shows the visualization of how the environment evolves as the complexity of the task
increases. The process starts from a plain terrain and gradually evolves to a level of terrain with
increasingly complex parameters.

Figure 16: Visualization of the level evolving progression in the BipedalWalker environment.
Starting from top-left, ending bottom-right. in this example, starting with plain terrain, the pits
are created and their number increases, then the roughness increases, then stairs and stumps are
created and their number, width, and height increase. This progress is automatically designed by
our TRACED algorithm.

E AGENT TRAJECTORY VISUALIZATIONS ACROSS ENVIRONMENTS

E.1 MINIGRID

Figure 17: Agent trajectory visualization in the PerfectMaze evaluation task. TRACED enables
efficient path planning and robust generalization to challenging maze environments, as demonstrated
by the agent’s successful navigation to the goal (green).

E.2 BIPEDALWALKER

Figure 18: Agent trajectory visualization in the BipedalWalkerHardcore. TRACED agent suc-
cessfully overcomes various combined obstacles, including stairs, pit gaps, stumps, and roughness,
demonstrating robust generalization to complex environments.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F EFFICIENCY ANALYSIS

F.1 WALL-CLOCK TRAINING TIME IN BIPEDALWALKER

Table 8 reports wall-clock training times on the BipedalWalker domain, in hours (mean ± s.e.) over
five runs at 10k and 20k PPO updates. At 10k updates, TRACED requires 35.64± 0.53 h, about 7%
more than ACCEL’s 33.26± 1.17 h, yet achieves a 22% higher mean solved rate (Section 4).

Table 8: Wall-Clock Training Time on BipedalWalker. Average wall-clock duration for each
algorithm

Domain TRACED 10k ACCEL 10k ACCEL 20k ADD 10k ADD 20k PLR⊥ 10k PLR⊥ 20k DR 10k DR 20k

BipedalWalker 35.64 ± 0.53 33.26 ± 1.17 70.22 ± 5.9 21.13 ± 0.11 41.58 ± 0.24 35.49 ± 1.07 71.01 ± 2.17 18.38 ± 0.1 37.03 ± 0.3

F.2 SAMPLE COMPLEXITY: ENVIRONMENT STEPS

Table 9 shows total environment steps required to achieve a fixed number of PPO updates. TRACED
matches ACCEL’s sample complexity exactly, confirming that its superior generalization stems from
improved curriculum design rather than additional data.

Table 9: Environment Steps. Total environment interactions (millions) for each method per given
number of student PPO updates.

Environment PPO Updates PLR⊥ ADD ACCEL TRACED
MiniGrid 10k 82M 41M 93M 93M
MiniGrid 20k 165M 82M 185M –
BipedalWalker 10k 165M 80M 174M 174M
BipedalWalker 20k 329M 160M 347M –

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G OVERALL WORKFLOW

Algorithm 1 summarizes our overall UED procedure under the TRACED framework. We followed
ACCEL (Parker-Holder et al., 2022) in all respects except the procedure used to compute task pri-
ority. At each iteration, with probability 1 − preplay the teacher enters the exploration phase by
sampling a fresh level θ ∼ G, executing the current policy πϕ to collect a trajectory, and computing
its approximated regret

R̂egret(τ) = PVL(τ) + αATPL(τ).

If the buffer is full, we evict the lowest-priority task before appending. Otherwise, with probability
preplay the teacher enters the replay+mutation phase, drawing a batch of B tasks from the buffer pro-
portional to their TaskPriority scores, updating the policy on each, and recomputing regret. We then
select the Nmutate tasks with the smallest regret, mutate each via the editor, evaluate the new variant,
and replace its parent in the buffer. Finally, for every modified task we recompute TaskDifficulty,
CoLearnability, and TaskPriority (Eq. 7) before proceeding to the next timestep.

Algorithm 1 UED Workflow with Transition-Prediction Loss and Co-Learnability

1: Given: policy πϕ, level generator G, buffer capacity K, replay probability preplay, batch size B,
mutation count Nmutate, scaling factors α, β

2: Initialize Task Buffer Λ← ∅, timestep t← 0
3: while policy has not converged do
4: Sample decision dt ∼ Bernoulli(preplay)
5: if dt = 0 then ▷ Exploration phase
6: Sample new task θ ∼ G
7: Collect trajectory τ by executing πϕ on θ (no gradient)
8: Compute regret estimate

R̂egret(τ) = PVL(τ) + αATPL(τ)

9: Append θ to buffer Λ (if |Λ| > K, remove lowest-priority)
10: else ▷ Replay + Mutation phase
11: Sample a batch {θk}Bk=1 from Λ w.p. ∝ 1

TaskPriority(·,t)
12: for k = 1 . . . B do
13: Collect trajectory τk by executing πϕ on θk
14: Update policy ϕ using rewards from τk
15: Compute R̂egret(τk)
16: end for
17: Select the N tasks {θk′} with smallest R̂egret(τk′)
18: for each selected θk′ do
19: θ̃ ← editor(θk′ )
20: Collect trajectory τ̃ on θ̃ (no gradient)
21: Compute R̂egret(τ̃)

22: Replace θk′ in Λ with θ̃
23: end for
24: end if
25: Buffer update:
26: for each task i ∈ Λ updated at t do
27: Recompute TaskDifficulty(i, t)
28: Recompute CoLearnability(i, t− 1)
29: Update TaskPriority(i, t) via Eq. 7
30: end for
31: t← t+ 1
32: end while

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H IMPLEMENTATION DETAILS

H.1 MINIGRID ENVIRONMENT

SixteenRooms SixteenRooms2 SmallCorridor LargeCorridor SimpleCrossing FourRooms

Labyrinth Labyrinth2 Maze Maze2 Maze3 PerfectMaze

Figure 19: MiniGrid zero-shot environments used for evaluation. In SmallCorridor and
LargeCorridor, the goal can appear in any of the corridor paths. SimpleCrossing and FourRooms are
adapted from MiniGrid (Chevalier-Boisvert et al., 2023), and PerfectMaze from REPAIRED (Jiang
et al., 2021a).

The partially observable navigation environment is designed as a 15 × 15 grid maze, based on
MiniGrid (Chevalier-Boisvert et al., 2023). Each tile in the maze can be either an empty tile, a wall,
a goal, or the agent itself. The empty tile is a navigable space through which the agent can move,
whereas the wall is an impassable obstacle that blocks the agent’s movement. At the beginning of
each episode, the initial position of the agent, the goal location, and the wall layout are randomly
initialized. Up to 60 walls can be placed throughout the maze, increasing navigational complexity.
At each timestep, the agent receives a 5× 5 local observation, along with its current direction. The
action space is defined as a discrete set of seven possible actions, although only three, turn left,
turn right, and move forward, are relevant to maze navigation. These actions are selected without
masking the unused action outputs. A reward is provided when the agent successfully reaches the
goal, calculated as 1 − T/Tmax, where T is the number of steps taken and Tmax = 250 denotes the
maximum allowed steps per episode. If the agent fails to reach the goal within the time limit, it does
not receive a reward.

To evaluate performance in partially observable navigation, we include additional results on the Min-
iGrid environments, covering a suite of challenging zero-shot tasks from prior UED work (Dennis
et al., 2020; Jiang et al., 2021a). Figure 19 displays all evaluation tasks.

H.2 BIPEDALWALKER ENVIRONMENT

The environment is based on the BipedalWalkerHardcore environment of the OpenAI gym (Brock-
man et al., 2016). At each timestep, the agent receives a 24-dimensional observation, which in-
cludes information such as the hull angle and angular velocity, joint angles and speeds for the hips
and knees, ground contact indicators for each foot, the robot’s horizontal and vertical velocities,
and lidar-based distance measurements to the ground ahead. The action space is represented by a 4-
dimensional vector that controls the torques applied to the robot’s two hip joints and two knee joints.
Rewards are structured to encourage efficient and stable locomotion across the terrain. The agent
receives positive rewards for processing while maintaining a straight hull posture, with small penal-
ties applied for energy expenditure to discourage unnecessary motor use. The maximum achievable
score is 300. If the agent falls or moves backward, the episode ends immediately, and a penalty
of -100 is applied. The maximum episode length is 2000 timesteps. To introduce additional diffi-
culty and test the robustness of the agent’s locomotion policy, the environment includes a variety of
challenging terrain features. These include stairs, which consist of sequences of elevated steps that
the agent must ascend or descend; pit gaps, which are horizontal gaps over which the agent must

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

jump or step over; stumps, which are vertical obstacles with varying heights and widths that ob-
struct movement; and surface roughness, which introduces uneven ground textures that can disrupt
balance and foot placement.

We evaluate agents in the BipedalWalker-v3 environment, which features relatively smooth terrain,
as well as in the more demanding BipedalWalkerHardcore-v3, which introduces a variety of chal-
lenging obstacles. The BipedalWalker-v3 focuses on basic locomotion and balance without signifi-
cant terrain disturbances. Terrain in this environment does not have obstacles such as stairs, pit gaps,
and stumps, and only gentle slopes are generated by adding noise in the range of approximately -1
to 1. In contrast, BipedalWalkerHardcore-v3 includes complex terrain elements such as stairs, pit
gaps, stumps, and roughness, which require precise control and adaptive strategies. These obstacles
are procedurally generated with randomized parameters. The stair height is randomly set to either
+1 (ascending) or −1 (descending), with the number of steps and step width randomly sampled be-
tween 3-5 steps and 4-5 units, respectively. The pit width is determined by sampling a single integer
between 3-5 units. Both the height and width of each stump are sampled as a single random integer
between 1-3 units, ensuring the stumps are always square-shaped. Terrain roughness noise range is
the same as BipedalWalker-v3.

To further probe the agent’s generalization capabilities, we include four targeted evaluation environ-
ments that isolate specific terrain challenges: Stairs, PitGap, Stump, and Roughness. Stairs specifies
a fixed stair height of 2 units, with 5 steps and a step width between 4 and 5. PitGap sets the pit
width to exactly 5 units. Stump defines the stump height as 2 units while allowing the stump width
to vary between 1 and 2 units. Finally, Roughness generates terrain by adding noise 5. Figure 20
displays all evaluation tasks.

(a) BipedalWalker-v3 (b) BipedalWalkerHardcore-v3 (c) Stairs

(d) PitGap (e) Stump (f) Roughness

Figure 20: Evaluation Terrains in BipedalWalker. 6 held-out environments used to as-
sess zero-shot generalization: (a) BipedalWalker-v3 with gentle noise-induced slopes; (b)
BipedalWalkerHardcore-v3 combining multiple obstacle types; (c) Stairs, a fixed 5-step sequence
requiring precise stepping; (d) PitGap, a 5-unit horizontal gap; (e) Stump, 2-unit tall obstacles with
variable width; and (f) Roughness, continuous uneven ground generated by noise.

H.3 NETWORK STRUCTURES

For partially observable navigation, the LSTM-based transition prediction model fϕ consists of three
components: 1. an image encoder that compresses the input observation st into a 128-dimensional
latent embedding, 2. an LSTM module (hidden size 128, 1 layer) that processes the concatenation
of this embedding and the action at, 3. and an image decoder that reconstructs the predicted next
observation ŝt+1 from the LSTM output. We adopt an LSTM here because recurrent architectures
have proven effective at capturing temporal dependencies in transition and video-prediction tasks
under partial observability (Ha & Schmidhuber, 2018; Oh et al., 2015).

For walking in challenging terrain (BipedalWalker), the model instead concatenates the raw state
vector st with at and feeds this into an LSTM (hidden size 128, 1 layer); the recurrent output is then
linearly mapped to the predicted next state ŝt+1.

Its instantaneous error is defined by

ℓt =

{
∥ ŝt+1 − st+1∥1, in MiniGrid environments,
∥ŝt+1 − st+1∥22, in BipedalWalker.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We use L1 loss for MiniGrid because it preserves sharp edges and reduces blurring in image recon-
struction (Zhao et al., 2016), while mean squared error is a standard, reliable choice for continuous
state regression in locomotion domains (Mnih et al., 2015).

We adopt ACCEL’s network architecture (Parker-Holder et al., 2022), differing only in the LSTM
design choice. The PPO network serves as the student agent in our system, directly learning to opti-
mize both the policy and value functions through interaction with the environment. The architecture
follows the standard actor-critic structure where the actor head outputs an action distribution, and
the critic head predicts the scalar value V (s).

For partially observable navigation, the input consists of a 3-channel 5× 5 local image observation
and a directional scalar with dimension 4 indicating the agent’s current orientation. The image is
processed by a convolutional encoder with a filter size of 16, a kernel size of 3, and Rectified Linear
Unit (ReLU) activations, followed by flattening. The directional scalar is passed through a fully
connected layer of size 5, and the resulting embedding is concatenated with the flattened image
features. The combined feature vector is fed separately to the actor and critic heads, each consisting
of fully connected layers of size [32, 32]. The actor outputs a categorical distribution over discrete
actions, while the critic produces a scalar value estimate V (s).

For walking in a challenging terrain (BipedalWalker), the input is a flat state vector of dimension
24. This input is processed through a Multilayer Perceptron (MLP) with two hidden layers of 64
dimensions, followed by actor and critic heads. The actor head outputs the mean and standard
deviation parameters of a diagonal Gaussian distribution over a continuous 4-dimensional action
space, and the critic head outputs a scalar state value V (s). The PPO learning process optimizes a
clipped surrogate policy loss with clip parameter ϵ = 0.2 combined with a value function loss.

I DIFFERENCE WITH FORMER STUDIES

I.1 DIFFERENCE WITH ACCEL

Our approach builds on ACCEL’s evolutionary, regret-based curriculum design, refining both its
regret estimator and its sampling criterion. Like ACCEL, we maintain a level buffer and record each
task’s difficulty. However, instead of relying solely on Positive Value Loss (PVL) to approximate
regret, we decompose regret into value error and transition-prediction error and incorporate both
components into our difficulty measure.

Furthermore, prior UED methods sample levels independently based solely on their individual dif-
ficulty, ignoring cross-task transfer effects. We address this with our Co-Learnability metric, which
quantifies how training on one task influences regret on others by measuring the average change in
their difficulty after replay. By integrating Co-Learnability into our priority score, we can prioritize
tasks that not only challenge the agent but also deliver broad transfer benefits across the entire task
space.

I.2 DIFFERENCE WITH CENIE

CENIE introduces a complementary curriculum strategy by explicitly measuring environmental nov-
elty, rather than relying solely on regret signals as in PLR⊥ or ACCEL. It fits a Gaussian mixture
model (GMM) to the agent’s past trajectories and scores new tasks by how poorly the GMM explains
them, thereby steering the agent toward unfamiliar regions of the state-action space. This model-
agnostic approach can be applied on top of any UED framework, including PLR and ACCEL.

However, CENIE’s diversity-driven objective differs from ours. TRACED’s primary goal is to ap-
proximate task difficulty more faithfully, by decomposing regret into value and transition-prediction
errors, and to capture how training on one task transfers to others via our Co-Learnability metric.
While CENIE accounts for per-task novelty and regret, it ignores cross-task transfer effects. More-
over, TRACED is agnostic to the choice of level generator or editor, meaning our method could
be combined with CENIE’s novelty scoring to yield a curriculum that balances both transfer-aware
difficulty and environmental diversity.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J RELATED WORKS

Unsupervised Environment Design (UED) defines a co-evolutionary framework in which a teacher
agent generates task instances for a student policy, selecting those tasks with high learning potential
to promote robust generalization to unseen environments (Wang et al., 2019; 2020; Dennis et al.,
2020; Chung et al., 2024). PAIRED (Dennis et al., 2020) trains the teacher to maximize the regret
between a protagonist and antagonist policy, causing the teacher to create increasingly challenging
yet solvable environments. However, non-stationary task distributions and the high dimensionality
of the task space impede convergence to optimal curricula. To mitigate these limitations, Mediratta
et al. (2023) introduce entropy bonuses, alternative optimization algorithms, and online behavioral
cloning, and Clutr (Azad et al., 2023a) employs variational autoencoder-based unsupervised task
representation learning to compress the task manifold and yield more stable curricula.

Another line of work is based on Prioritized Level Replay (PLR) (Jiang et al., 2021b), which avoids
training a teacher agent and instead randomly generates tasks while introducing a replay buffer that
stores previously generated tasks. This approach prioritizes tasks with high learning potential from
the buffer to more effectively train the student agent. PLR⊥ (Jiang et al., 2021a) make improvement
of PLR, which used stop-gradient on trajectories from newly generated tasks but updated only with
replayed tasks from buffer. This leads to better performance on unseen environments counterintu-
itively. ACCEL (Parker-Holder et al., 2022) extends the PLR⊥ by implementing an evolutionary
approach that makes small mutation to high-regret levels from the buffer. This evolutionary mecha-
nism enables the development of progressively more complex challenges starting with simpler tasks.
However, these methods (Jiang et al., 2021b;a; Parker-Holder et al., 2022) approximate regret solely
via value loss, thereby implicitly learn true environment dynamics that could improve regret estima-
tion.

Moving beyond regret-based approaches, CENIE (Teoh et al., 2024) integrates novelty with regret
to expose agents to more diverse learning situations. Using Gaussian Mixture Models, CENIE quan-
tifies how much a new task’s trajectory differs from previous experiences stored in the buffer. This
curriculum-awareness leads to better exploration and generalization. DIPLR (Li et al., 2023) intro-
duces a diversity that quantifies the similarity between different levels by computing the Wasserstein
distance between their occupancy distributions over state-action trajectories. MBeDED (Li et al.,
2024) introduces the marginal benefit metric to quantify the performance gain of a student policy
from training on a generated task. It compares a base policy (before training) and the updated stu-
dent policy by measuring the difference in their expected returns on that task. So far, to the best of
our knowledge, there are no prior works that explicitly consider Co-Learnability between tasks.

UED’s benefit on robust generalization performance in unseen environments has led to its applica-
tion in other domains. For Multi-Agent Reinforcement Learning, MAESTRO (Samvelyan et al.,
2023) extends UED to competitive multi-agent settings by creating a regret-based curriculum over
the joint environment and co-player space, leveraging self-play to generate opponents while train-
ing agents robust to environment and co-player variations. In contrast, RACCOON (Erlebach &
Cook, 2024) applies UED to cooperative scenarios, developing a curriculum that prioritizes high-
regret partners from pre-trained partners to enhance collaboration. For meta-RL, GROOVE (Jack-
son et al., 2023) suggested policy meta-optimization (PMO) introducing algorithmic regret (AR),
which measures the performance gap between a meta-learned optimizer and RL algorithms like
A2C, creating curricula that identify informative environments for meta-training. DIVA (Costales
& Nikolaidis, 2024) is the first method that extends UED to semi-supervised environment design,
employing quality-diversity search to maintain a population of diverse training tasks in open-ended
simulators, maximizing behavioral coverage. In sim-to-real settings, GCL (Wang et al., 2024) aligns
the simulated curriculum with actual deployment tasks by sampling from real-world task distribu-
tions and adapting subsequent task generation based on the robot’s past performance.

Similar to UED works, Curriculum Reinforcement Learning (CRL) accelerates agent training by
constructing a sequence of progressively challenging tasks rather than directly confronting the agent
with a single, complex target task (Narvekar et al., 2020). Early approaches distinguished between
fixed curricula in which task order is predefined and self-paced learning, in which task selection
adapts dynamically based on the agent’s learning progress (Klink et al., 2020). Modern CRL meth-
ods have advanced this paradigm by framing curriculum generation as an inference process (Eimer
et al., 2021; Klink et al., 2022). WAKER (Rigter et al., 2024) leverages reward-free curricula to

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

train robust world models, thereby underscoring the versatility of self-paced approaches in diverse
learning scenarios. However, these approaches assume access to the target task distribution, which
conflicts with UED’s core assumption of an unknown distribution.

K MORE DETAILS ON BASELINE ALGORITHMS

In Unsupervised Environment Design (UED), Domain Randomization (DR) constructs the curricu-
lum by uniformly sampling tasks from the environment parameter space Θ. Formally, DR samples
tasks according to θ ∼ p(Θ) where p(Θ) represents a uniform distribution over the task parameter
space. The agent is trained on these randomly sampled tasks.

Robust PLR (PLR⊥) (Jiang et al., 2021a) was introduced as an extension of the original PLR (Jiang
et al., 2021b). While DR treats all tasks equally, PLR⊥ prioritizes tasks with high learning potential,
maintaining a buffer Λ of previously encountered tasks for replay. When sampling new tasks, the
agent’s policy parameters are stop-gradiented, meaning the policy is not updated on trajectories
collected from these newly sampled tasks. The collected trajectories are used to compute PVL scores
to decide whether to add the task to the replay buffer. Policy updates are exclusively performed on
tasks sampled from the replay buffer. By stopping the gradient on randomly sampled levels, PLR⊥

ensures that the policy is only updated on tasks specifically selected to maximize regret, leading to
more robust generalization compared to both DR and PLR unintuitively.

Adversarially Compounding Complexity by Editing Levels (ACCEL) (Parker-Holder et al., 2022)
actively evolves environments through an editing mechanism, allowing it to more efficiently explore
the environment design space. This enables reusing the structure of sampled levels in the buffer
for high-regret, rather than curating randomly sampled levels for high-regret. ACCEL maintains a
buffer Λ and employs a cycle of sampling, editing, and curation. The key insight of ACCEL is that
regret serves as a domain-agnostic fitness function for evolution, enabling it to produce batches of
levels at the frontier of agent capabilities. The editing mechanism involves making small mutations
to previously high-regret levels, which can operate directly on environment elements such as blocks
in MiniGrid. This evolutionary process creates an expanding frontier that matches the agent’s capa-
bilities, starting with simple levels and progressively increasing in complexity. Like PLR⊥, ACCEL
employs stop-gradient when evaluating new or edited levels to ensure theoretical guarantees.

Coverage-based Evaluation of Novelty In Environment (CENIE) (Teoh et al., 2024) introduces envi-
ronment novelty as a complementary objective to regret in UED. CENIE quantifies environment nov-
elty through state-action space coverage derived from the agent’s accumulated experiences across
previous environments in its curriculum. The framework operates on the intuition that a novel envi-
ronment should induce unfamiliar experiences, pushing the student agent into unexplored regions of
the state-action space. At the core of CENIE’s implementation is the use of Gaussian Mixture Mod-
els (GMMs) to model the distribution of state-action pairs from the agent’s past experiences. Given
a state-action buffer Γ containing pairs collected from previous environments, CENIE fits a GMM
with parameters λΓ to represent this distribution. The novelty of a candidate environment is then
quantified by measuring the similarity between its newly observed state-action pairs and the learned
distribution of past state-action experiences. CENIE integrates with existing UED algorithms by
combining both novelty and regret into a unified priority score for environment selection.

Adversarial Environment Design via Regret-Guided Diffusion Models (ADD) (Chung et al., 2024)
frames environment generation as a diffusion process steered by the agent’s regret. Starting from
uniformly sampled tasks, a pretrained score network sϕ is guided by the gradient of a differentiable
regret estimate, computed via a learned return critic, during reverse diffusion.

In our empirical study, DR, PLR⊥, and ACCEL were evaluated with the DCD codebase (Jiang et al.,
2022), and assessed ADD with the ADD codebase (Chung et al., 2024). CENIE’s performance data
were incorporated from its original publication, as no open-source implementation was available.

L LIMITATIONS

As with any research, our approach presents several limitations that highlight opportunities for future
investigation:

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Co-Learnability. In this paper, we proposed Co-Learnability, simple yet effective method. Follow-
up studies could address these gaps by developing multi-step Co-Learnability estimators, incorpo-
rating importance-weighting or counterfactual techniques to reduce sampling bias, and combining
observational co-learn signals with auxiliary models (e.g., task-conditioned value predictors) for
stronger causal inference.

ATPL. In environments with highly stochastic transitions, the ATPL signal (transition-prediction
error) can become noisy, potentially reducing the fidelity of our regret approximation.

Sampling levels. We sampled a fixed number of the lowest-regret levels as easy tasks to mirror AC-
CEL’s approach and enable fair comparisons with baseline methods. However, this simple strategy
leaves room to explore more advanced task-selection mechanisms.

Heuristic weighting. We introduced weighted approach to regret approximation and task prioritiza-
tion that relies on two key parameters α, PVL and ATPL in the regret approximation, and β, which
weights the relative importance of Co-Learnability against task difficulty. While these parameters
were manually tuned in the current implementation and demonstrated effective results across envi-
ronments, future work could explore more principled methods for automatically determining these
weights.

Extension to other RL algorithms. Our experiments have been conducted with PPO-based student
agents. While this allows for fair comparisons with previous work, there is a much broader range of
algorithms that may interact differently with our regret-based curriculum. Off-policy methods such
as SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) feature distinct exploration strate-
gies, which may yield different performance dynamics under our curriculum framework. Moreover,
Model-based approaches like DreamerV3 (Hafner et al., 2025) build world models for planning,
offering complementary insights into curriculum design. Evaluating these methods under our cur-
riculum framework remains an important direction for future work.

Extend to other UED methods. We empirically demonstrated that TRACED yields more effec-
tive curricula, thereby enhancing agents’ generalization capabilities at half the training cost. While
our experiments focus on the ACCEL framework, future work will integrate our approach into al-
ternative UED methods (PLR⊥ (Jiang et al., 2021a) and CENIE (Teoh et al., 2024)) and conduct
comprehensive experiments to assess its performance in these settings.

Evaluation in other domains. Our experimental validation has been conducted in Mini-
Grid (Chevalier-Boisvert et al., 2023; Dennis et al., 2020) and BipedalWalker (Brockman et al.,
2016; Parker-Holder et al., 2022). Evaluating TRACED in other domains such as Car Rac-
ing (Brockman et al., 2016; Jiang et al., 2021a), physical robotics applications (Mahmood et al.,
2018), and reasoning task ARC (Chollet, 2019) would provide a more comprehensive assessment of
the approach’s generality and scalability across diverse settings.

M EXPERIMENTAL SETUP AND REPRODUCIBILITY

All experiments were conducted using Python 3.8.20 on Ubuntu 22.04.4 LTS. The hardware setup
included an AMD EPYC 7543 32-core processor, 80GB of RAM, and an NVIDIA A100 GPU.
Experiments were run on a shared server with 8 GPUs, with each experiment using a single GPU.
We implemented all experiments in Python 3.8.20, using PyTorch(v1.9.0+cu111). The environment
stack was built using MiniGrid (v1.0.1), Gym (v0.15.7).

N LLM USAGE

We used a large language model (LLM) solely for language editing. Concretely, the LLM assisted
with grammar and style polishing, LaTeX phrasing (e.g., equation and caption wording), and im-
proving clarity and concision of author-written text. The LLM was not used to generate ideas, design
algorithms, select hyperparameters, run experiments, analyze data, create figures/tables, write code,
or produce mathematical results.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

O HYPERPARAMETERS

Table 10 summarizes the hyperparameters used. Unless otherwise noted, values are adopted directly
from the DCD repository (Jiang et al., 2022). The only deviation from the DCD defaults is the
number of PPO workers (see Appendix A.4). We tune two key weights, α and β, on MiniGrid and
BipedalWalker, exploring α ∈ {0.5, 1.0, 1.5} and β ∈ {0.6, 0.8, 1.0}.

Table 10: Hyperparameters used for training each method in each environment.

HyperParameter MiniGrid BipedalWalker
PPO
γ 0.995 0.99
λGAE 0.95 0.9
PPO rollout length 256 2048
PPO epochs 5 5
PPO minibatches per epoch 1 32
PPO clip range 0.2 0.2
PPO number of workers 16 4
Adam learning rate 1e-4 3e-4
Adam ϵ 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping True False
Return normalization False True
Value loss coefficient 0.5 0.5
Student entropy coefficient 0.0 1e-3
Generator entropy coefficient 0.0 1e-2

TRACED
ATPL weight, α 1.0 1.5
Co-Learnability weight, β 1.0 0.6

ACCEL
Replay rate, preplay 0.8 0.9
Buffer size, K 4000 1000
Number of edits 5 3
Batch Size, B 4 4
Number of mutated tasks, Nmutate 4 4
Temperature 0.3 0.1
Staleness coefficient, ρ 0.3 0.5

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

P NUMERICAL RESULTS

P.1 MINIGRID ENVIRONMENT

Table 11: MiniGrid Zero-Shot Solved Rates. Bold indicates the best result per task; underline
indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL TRACED

16Rooms 10k 0.4 ± 0.12 0.81 ± 0.06 0.72 ± 0.1 0.76 ± 0.12 0.53 ± 0.14
20k 0.51 ± 0.13 0.86 ± 0.06 0.64 ± 0.12 0.65 ± 0.1 –

16Rooms2 10k 0.1 ± 0.09 0.42 ± 0.11 0.14 ± 0.05 0.48 ± 0.13 0.58 ± 0.13
20k 0.27 ± 0.11 0.55 ± 0.15 0.18 ± 0.1 0.58 ± 0.14 –

SimpleCrossing 10k 0.58 ± 0.05 0.72 ± 0.03 0.63 ± 0.03 0.81 ± 0.03 0.85 ± 0.03
20k 0.73 ± 0.02 0.8 ± 0.03 0.74 ± 0.04 0.85 ± 0.02 –

FourRooms 10k 0.32 ± 0.04 0.47 ± 0.01 0.39 ± 0.03 0.46 ± 0.02 0.46 ± 0.02
20k 0.5 ± 0.02 0.53 ± 0.03 0.61 ± 0.03 0.49 ± 0.03 –

SmallCorridor 10k 0.3 ± 0.07 0.52 ± 0.13 0.47 ± 0.1 0.37 ± 0.14 0.49 ± 0.13
20k 0.74 ± 0.1 0.61 ± 0.11 0.74 ± 0.04 0.22 ± 0.13 –

LargeCorridor 10k 0.36 ± 0.13 0.33 ± 0.13 0.35 ± 0.09 0.44 ± 0.15 0.43 ± 0.11
20k 0.54 ± 0.13 0.32 ± 0.11 0.72 ± 0.06 0.25 ± 0.12 –

Labyrinth 10k 0.1 ± 0.1 0.5 ± 0.15 0.22 ± 0.13 0.6 ± 0.15 0.93 ± 0.03
20k 0.58 ± 0.16 0.92 ± 0.06 0.9 ± 0.1 0.8 ± 0.13 –

Labyrinth2 10k 0.1 ± 0.1 0.28 ± 0.13 0.0 ± 0.0 0.52 ± 0.14 0.96 ± 0.03
20k 0.18 ± 0.12 0.64 ± 0.15 0.63 ± 0.14 0.78 ± 0.13 –

Maze 10k 0.02 ± 0.01 0.13 ± 0.1 0.04 ± 0.02 0.41 ± 0.13 0.7 ± 0.1
20k 0.1 ± 0.1 0.52 ± 0.16 0.2 ± 0.13 0.59 ± 0.14 –

Maze2 10k 0.19 ± 0.12 0.43 ± 0.14 0.09 ± 0.08 0.44 ± 0.15 0.6 ± 0.1
20k 0.16 ± 0.11 0.56 ± 0.14 0.28 ± 0.1 0.65 ± 0.13 –

Maze3 10k 0.27 ± 0.13 0.57 ± 0.13 0.2 ± 0.1 0.78 ± 0.13 0.81 ± 0.06
20k 0.46 ± 0.14 0.95 ± 0.04 0.54 ± 0.16 0.86 ± 0.09 –

PerfectMaze(M) 10k 0.06 ± 0.02 0.24 ± 0.05 0.17 ± 0.08 0.41 ± 0.05 0.64 ± 0.07
20k 0.2 ± 0.05 0.55 ± 0.08 0.36 ± 0.08 0.53 ± 0.08 –

Mean 10k 0.23 ± 0.05 0.45 ± 0.04 0.28 ± 0.04 0.54 ± 0.03 0.66 ± 0.03
20k 0.41 ± 0.03 0.65 ± 0.04 0.55 ± 0.04 0.6 ± 0.05 –

Table 11 reports per-task zero-shot solved rates on twelve held-out MiniGrid mazes, averaged over
10 seeds (mean ± s.e.), following Agarwal et al. (2021). We compare TRACED at 10k updates
against DR, PLR⊥, ACCEL, and ADD (each at 10k and 20k). At 10k, TRACED achieves the high-
est solved rate in six mazes (16Rooms2, SimpleCrossing, Labyrinth, Labyrinth2, Maze, Perfect-
Maze(M)) and the second-best in one maze (Maze2). Averaged across all twelve mazes, TRACED
attains a mean solved rate of 0.66, outperforming all baseline configurations.

Table 12: MiniGrid Ablation Results. Bold indicates the best result per task; underline indicates
the second-best.

Environment ACCEL 10k TRACED - ATPL 10k TRACED - CL 10k TRACED 10k
16Rooms 0.7 ± 0.19 0.72 ± 0.14 0.91 ± 0.06 0.79 ± 0.19
16Rooms2 0.44 ± 0.17 0.01 ± 0.01 0.79 ± 0.17 0.72 ± 0.17
SimpleCrossing 0.77 ± 0.02 0.68 ± 0.04 0.86 ± 0.04 0.89 ± 0.01
FourRooms 0.46 ± 0.04 0.36 ± 0.02 0.48 ± 0.04 0.47 ± 0.02
SmallCorridor 0.03 ± 0.03 0.44 ± 0.21 0.57 ± 0.2 0.49 ± 0.17
LargeCorridor 0.11 ± 0.1 0.42 ± 0.22 0.65 ± 0.21 0.5 ± 0.14
Labyrinth 0.55 ± 0.23 0.4 ± 0.24 0.49 ± 0.2 1.0 ± 0.0
Labyrinth2 0.88 ± 0.1 0.16 ± 0.11 0.62 ± 0.18 0.98 ± 0.01
Maze 0.42 ± 0.24 0.29 ± 0.19 0.63 ± 0.2 0.59 ± 0.17
Maze2 0.42 ± 0.24 0.3 ± 0.19 0.41 ± 0.15 0.42 ± 0.19
Maze3 0.8 ± 0.2 0.68 ± 0.2 0.86 ± 0.12 0.86 ± 0.07
PerfectMaze(M) 0.33 ± 0.04 0.34 ± 0.02 0.53 ± 0.07 0.66 ± 0.11
Mean 0.49 ± 0.04 0.4 ± 0.04 0.65 ± 0.03 0.7 ± 0.04

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 12 presents zero-shot solved rates on twelve held-out MiniGrid mazes for TRACED and its
ablations at 10k updates, averaged over 10 seeds (mean ± s.e.). Full TRACED achieves the highest
score in six mazes (SimpleCrossing, Labyrinth, Labyrinth2, Maze3, PerfectMaze(M), and Four-
Rooms) and ranks second in the remaining six, yielding a mean solved rate of 0.70 and outperform-
ing every variant. These results indicate that both the transition-prediction error and Co-Learnability
are critical to TRACED’s strong, consistent performance across diverse tasks.

Table 13: PerfectMaze Zero-Shot Solved Rates. Bold indicates the best result per environment;
underline indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL TRACED

PerfectMaze(Large) 10k 0.0 ± 0.0 0.02 ± 0.01 0.04 ± 0.04 0.09 ± 0.03 0.27 ± 0.07
20k 0.02 ± 0.01 0.19 ± 0.09 0.18 ± 0.1 0.20 ± 0.08 –

PerfectMaze(XL) 10k 0.0 ± 0.0 0.01 ± 0.0 0.02 ± 0.02 0.01 ± 0.01 0.1 ± 0.04
20k 0.0 ± 0.0 0.12 ± 0.09 0.14 ± 0.09 0.09 ± 0.06 –

Table 13 compares zero-shot solved rates of TRACED against DR, PLR⊥, ADD, and ACCEL on
two large-scale PerfectMaze environments: PerfectMazeLarge and PerfectMazeXL, averaged over
10 seeds (mean ± s.e.). After 10k updates, TRACED achieves the highest success rate on Perfect-
MazeLarge (27% ± 7%) and the third-highest on PerfectMazeXL (10% ± 4%), matching ADD at
20k. These results underscore TRACED’s ability to scale to extreme maze sizes.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

P.2 BIPEDALWALKER ENVIRONMENT

Table 14 compares TRACED’s zero-shot returns with DR, PLR⊥, ADD, ACCEL, and ACCEL-
CENIE on six BipedalWalker terrains, averaged over five seeds (mean ± s.e.). ACCEL-CENIE is
estimated by applying the ACCEL-to-CENIE performance ratio reported in Teoh et al. (2024) to
our ACCEL implementation. At 10k updates, TRACED achieves the highest mean return on three
terrains (Basic, Hardcore, and Stump) and attains an overall mean of 89.95± 31.72, outperforming
all baselines.

Table 14: BipedalWalker Zero-Shot Test Returns. Bold indicates the best result per terrain;
underline indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL ACCEL-CENIE TRACED

Basic 10k 112.56 ± 62.99 131.63 ± 56.58 119.43 ± 63.72 281.65 ± 5.25 273.56 ± 1.5 293.67 ± 3.56
20k 68.17 ± 44.71 97.67 ± 61.73 63.64 ± 62.71 281.85 ± 3.72 275.04 ± 3.19 –

Hardcore 10k -19.67 ± 7.35 -17.36 ± 5.99 3.83 ± 9.07 37.59 ± 15.0 66.83 ± 17.48 86.83 ± 17.96
20k -16.98 ± 5.8 -23.7 ± 2.05 10.48 ± 20.12 59.23 ± 25.5 84.09 ± 34.32 –

Stairs 10k -17.6 ± 7.21 -7.23 ± 7.16 -5.87 ± 9.07 -38.71 ± 10.54 -30.4 ± 8.35 -29.0 ± 10.4
20k -9.11 ± 7.67 -10.2 ± 4.5 -0.66 ± 9.2 -46.34 ± 5.78 -36.39 ± 11.48 –

PitGap 10k -34.39 ± 15.66 -46.21 ± 15.69 -17.8 ± 13.82 -65.07 ± 7.57 -39.81 ± 18.75 -39.26 ± 11.42
20k -26.03 ± 10.98 -48.72 ± 12.23 -7.65 ± 7.52 -64.89 ± 18.93 -45.92 ± 33.9 –

Stump 10k -24.99 ± 6.76 -27.74 ± 6.33 -26.15 ± 8.49 -79.18 ± 5.45 -60.05 ± 10.96 34.16 ± 54.58
20k -25.52 ± 12.39 -23.61 ± 2.86 3.26 ± 19.1 -67.18 ± 15.56 -46.34 ± 176.21 –

Roughness 10k -0.66 ± 12.01 3.55 ± 9.91 20.61 ± 13.78 161.72 ± 28.36 174.92 ± 2.25 193.29 ± 21.6
20k 0.19 ± 8.18 -2.73 ± 9.51 18.71 ± 21.59 213.48 ± 7.69 224.4 ± 8.63 –

Mean 10k 2.54 ± 15.44 6.1 ± 10.69 14.4 ± 14.05 49.67 ± 11.24 64.18 89.95 ± 12.95
20k -1.55 ± 8.83 -1.89 ± 8.93 14.63 ± 21.99 62.69 ±8.91 75.81 –

Table 15 reports zero-shot solved rates across six BipedalWalker terrains for DR, PLR⊥, ADD, AC-
CEL, and TRACED, averaged over five seeds. A trajectory is considered “solved” if its return ex-
ceeds 230. At 10k updates, TRACED achieves the highest solved rate on five of the six tasks (Basic,
Hardcore, Stairs, PitGap, Stump) and ranks second on Roughness, yielding an overall mean of 0.36,
substantially higher than ACCEL’s 0.29 and the other baselines. No baseline matches TRACED’s
combined efficiency and reliability in zero-shot generalization.

Table 15: BipedalWalker Zero-Shot Solved Rates. Bold indicates the best per terrain; underline
indicates the second-best.

Environment Update DR PLR⊥ ADD ACCEL TRACED

Basic 10k 0.35 ± 0.2 0.43 ± 0.21 0.34 ± 0.21 0.98 ± 0.02 1.00 ± 0.0
20k 0.16 ± 0.13 0.35 ± 0.22 0.2 ± 0.2 0.99 ± 0.0 –

Hardcore 10k 0.0 ± 0.0 0.0 ± 0.0 0.01 ± 0.01 0.15 ± 0.03 0.28 ± 0.05
20k 0.0 ± 0.0 0.0 ± 0.0 0.04 ± 0.04 0.23 ± 0.08 –

Stairs 10k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.02 0.03 ± 0.02
20k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.01 –

PitGap 10k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.02 ± 0.01
20k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.02 ± 0.02 –

Stump 10k 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.18 ± 0.12
20k 0.0 ± 0.0 0.0 ± 0.0 0.02 ± 0.0.2 0.0 ± 0.0 –

Roughness 10k 0.01 ± 0.01 0.0 ± 0.01 0.01 ± 0.01 0.56 ± 0.1 0.65 ± 0.08
20k 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.03 0.76 ± 0.03 –

Mean 10k 0.06 ± 0.04 0.07 ± 0.04 0.06 ± 0.04 0.29 ± 0.02 0.36 ± 0.03
20k 0.03 ± 0.02 0.06 ± 0.04 0.05 ± 0.05 0.34 ± 0.03 –

31


	Introduction
	Preliminaries
	Underspecified Partially Observable MDPs (UPOMDPs)
	Unsupervised Environment Design (UED)

	TRACED: Transition-aware Regret Approximation with Co-learnability for Environment Design
	Regret Approximation via Transition Prediction Loss
	Task Priority Construction
	Overall UED Workflow

	Experiments
	Partially Observable Navigation
	Walking in Challenging Terrain
	Ablation Study
	Analysis on Curriculum Progression

	Conclusion
	Additional Experiments
	Ablation Study on the Scaling Factor
	Ablation Study on ATPL and Co-Learnability
	Hyperparameter Sensitivity Analysis
	Ablation Study on the Number of Workers

	Long-term Analysis on TRACED
	Visualizing Curriculum Dynamics
	Level Evolution
	Visualization of Level Evolution in Minigrid
	Evolution of Levels in BipedalWalker
	Visualization of Level Evolution in BipedalWalker

	Agent Trajectory Visualizations Across Environments
	MiniGrid
	BipedalWalker

	Efficiency Analysis
	Wall-Clock Training Time in BipedalWalker
	Sample Complexity: Environment Steps

	Overall Workflow
	Implementation Details
	Minigrid Environment
	BipedalWalker Environment
	Network Structures

	Difference with Former Studies
	Difference with ACCEL
	Difference with CENIE

	Related Works
	More Details On Baseline Algorithms
	Limitations
	Experimental Setup and Reproducibility
	LLM Usage
	Hyperparameters
	Numerical Results
	Minigrid Environment
	BipedalWalker Environment


