
SUBP: Soft Uniform Block Pruning for 1×N Sparse
CNNs Multithreading Acceleration

Jingyang Xiang1 Siqi Li1 Jun Chen1 Shipeng Bai1
Yukai Ma1 Guang Dai2,3 Yong Liu1∗

1APRIL Lab, Zhejiang University, Hangzhou, China
2State Grid Corporation of China
3SGIT AI Lab, Shaanxi, China

{jingyangxiang,lsq4747,junc,shipengbai,yukaima}@zju.edu.cn
guang.gdai@gmail.com,yongliu@iipc.zju.edu.cn

Abstract

The study of sparsity in Convolutional Neural Networks (CNNs) has become
widespread to compress and accelerate models in environments with limited re-
sources. By constraining N consecutive weights along the output channel to be
group-wise non-zero, the recent network with 1×N sparsity has received tremen-
dous popularity for its three outstanding advantages: 1) A large amount of storage
space saving by a Block Sparse Row matrix. 2) Excellent performance at a high
sparsity. 3) Significant speedups on CPUs with Advanced Vector Extensions. Re-
cent work requires selecting and fine-tuning 1×N sparse weights based on dense
pre-trained weights, leading to the problems such as expensive training cost and
memory access, sub-optimal model quality, as well as unbalanced workload across
threads (different sparsity across output channels). To overcome them, this pa-
per proposes a novel Soft Uniform Block Pruning (SUBP) approach to train a
uniform 1×N sparse structured network from scratch. Specifically, our approach
tends to repeatedly allow pruned blocks to regrow to the network based on block
angular redundancy and importance sampling in a uniform manner throughout
the training process. It not only makes the model less dependent on pre-training,
reduces the model redundancy and the risk of pruning the important blocks per-
manently but also achieves balanced workload. Empirically, on ImageNet, com-
prehensive experiments across various CNN architectures show that our SUBP
consistently outperforms existing 1×N and structured sparsity methods based on
pre-trained models or training from scratch. Source codes and models are available
at https://github.com/JingyangXiang/SUBP.

1 Introduction

In recent years, convolutional neural networks (CNNs) have achieved great success in image clas-
sification [56, 22], object detection [21, 16], semantic segmentation [17, 4] and other fields. The
remarkable performance owes to the deeper and wider architectures, also leading to the prohibitively
expensive computational cost and colossal memory footprint. Although some efficient architectures
are proposed, such as residual connection [22], inception module [58], etc., it is still difficult to deploy
the state-of-the-art CNNs on the available CPUs embedded devices with limited resource. Therefore,
the network pruning is emerging by pruning the redundancy in CNNs. Due to the appealing perfor-

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/JingyangXiang/SUBP

Deploy Deploy Deploy Deploy

None-zero
data

None-zero
data

None-zero
data

None-zero
data

IndptrIndices Indices Indices

(a) Unstructured
weight pruning

(b) Structured filter
pruning

(c) N:M weight
pruning

(d) 1xN weight
pruning

Unstructured sparse
weight

Structured sparse
filter

N:M structured
sparse weight

1xN structured
sparse weight

Figure 1: Four mainstream types of pruning in the literature. (a) Unstructured weight pruning removes
individual weights at arbitrary locations. (b) Structured filter pruning removes entire convolutional
filters. (c) N:M weight pruning (2:4 case) requires at most N out of M consecutive weights along
input channels to be non-zero. (d)1×N weight pruning (1×4 case) constrains N consecutive weights
along the output channel to be group-wise non-zero.

mance, it has received extensive attention from industry and academia. It is necessary to maintain the
model with small size, low memory footprint, low computational cost and high inference speed.

According to the pruning granularity, most existing works about network pruning mainly focus on
weight pruning [10, 19, 34] and filter pruning [64, 40, 25, 24, 46]. Weight pruning deletes the weight
of filters directly, which may always result in the unstructured sparsity of filters. The expensive
memory accesses is also less efficient in saving memory usage and computational cost, since the
unstructured model needs a large number of indices to record the positions of the reserved weights
and can’t take full advantage of Advanced Vector Extensions (AVX), Single Instruction Multiple
Data (SIMD) and poorly utilizes memory caches [63]. In contrast, filter pruning tends to prune at
the level of filter or even layer. Since filter pruning still preserves the original convolution structure,
it enables the model with structured sparsity and more efficient memory usage. Therefore, filter
pruning can take full advantage of the high-performance computing library i.e. Basic Linear Algebra
Subprogram (BLAS) to achieve apparent acceleration and is more advocated in accelerating the
networks. More recently, the development of hardware and operators has given rise to new pruning
patterns. The most famous work is N:M fine-grained pruning [55], where N out of M weights are
zeros for every continuous M weights along input channels. It also can be seen as a special pattern
of weight pruning. Currently, this pattern achieves acceleration only in the case of 2:4. However,
it is impossible to be utilized on other types of devices since the instructions of sparse Matrix
Multiply-Accumulate (MMA) are specially designed for NVIDIA Ampere Core [55]. Not to mention,
in realistic deployment scenarios, GPUs on mobile and embedded devices are not always accessible,
and such GPUs are more difficult to be satisfied.

Above all, how to retain the performance and achieve realistic acceleration on mobile CPUs becomes
a challengeable but valuable problem. In order to solve this issue, Lin et al. [65] proposed a novel
pattern of 1×N weight pruning with its merits in realizing both high-performing accuracy and
apparent CPUs acceleration for practical model deployment. The 1×N pruning pattern provides an
intermediate granular level for network pruning, which is coarser as compared to the fine-grained
weight but finer as compared to the coarse-grained filter. Fig. 1(d) shows an example of 1×N pruning
pattern that satisfies N=4, the core distinction lies in that 1×N pruning consists of N consecutive
weights along the output channel to be group-wise non-zero. These consecutive weights can be
stored continuously in the memory cache and the convolution with the inputs can proceed using a
block-wise vectorized operation in parallel thanks to AVX and SIMD. The indices memory of the
weight positions can also benefit from Block Sparse Row (BSR) matrix and be greatly saved.

However, Lin et al. [65] permanently pruned blocks based on “smaller-norm-less-important” criterion
in a non-uniform manner. On the one hand, it reduced the capacity of original model and thus harmed
the performance. On the other hand, it left the blocks redundancy untouched and always caused
unbalanced workload across threads. What’s more, it still followed a traditional pre-training, pruning

2

and fine-tuning (PPF) pipeline, which depended on pre-trained model and still suffered from the
expensive pre-training burden.

To address the above-mentioned limitations, we propose a novel block pruning approach named Soft
Uniform Block Pruning (SUBP) to obtain high accuracy sub-model without PPF pipeline. In contrast
to the traditional pruning approaches that non-uniformly and permanently remove blocks, we prune
and regrow the blocks uniformly via importance sampling, which allows the pruned blocks to be
recovered and balanced workload across threads. From intra-layer’s perspective, we propose a new
Block Pruning criterion by taking Angular Redundancy (BPAR) into account. BPAR identifies the
angular redundancy between blocks, so we can prune blocks with redundancy, rather than those with
“relatively less” importance. With only one training procedure from scratch, our obtained sub-models
yield better accuracy than the previous methods under the similar FLOPs constraints.

To sum up, the contributions of this paper are highlighted as follows:

• We propose a novel block pruning approach named Soft Uniform Block Pruning (SUBP)
with three appealing characteristics: (1) a periodic block pruning and regrowing technique
via importance sampling, (2) a pruning criterion based on angular redundancy across blocks,
and (3) a uniform 1×N sparse pattern for multithreading acceleration.

• Our approach trains a uniform 1×N sparse CNNs from scratch, effectively reducing the
training cost and achieving better inference latencies in multithreading scenarios, since it
circumvents the expensive PPF pipeline and balances workload across threads.

• Extensive experiments on the large ImageNet dataset have demonstrated the effectiveness
of our SUBP under different FLOPs constraints. SUBP obtains consistent accuracy im-
provement across various N and networks, achieving a better trade-off between accuracy
and inference latencies. For example, ResNet50 (1×16) model yields 4× FLOPs reduction
while still achieving 76.3% top-1 accuracy and suppressing the previous results.

2 Related Work

Fully connected operators are widely used in various types of neural networks, and they can be
mathematically represented by one matrix multiplication. The natural idea is that all elements
of a matrix are not equally important. Removing unimportant elements from the fully connected
operators not only reduces the size and the amount of computation, but also potentially improves the
generalization performance of the model. Weight pruning (Fig. 1(a)) and filter pruning (Fig. 1(b)) are
traditional pruning methods. There are also some special pruning methods that require a high degree
of integration with hardware or operators as shown in Fig. 1(c,d). In what follows, we will briefly
review some related works.

Weight Pruning. Weight pruning is one of the most widely studied model pruning methods, which
removes individual weights at any position of the network. The study of weight pruning could
date back to optimal brain damage [33] and optimal surgeon [20], which prune weights based
on the Hessian within the loss function. Previous studies removed unimportant weights by using
gradient [34], momentum [10], magnitude [19], etc. Han et al. [19] proposed to discard the small
weights whose values are below the threshold through an iterative method. Recent some works also
payed attention to unstructured sparsity in an adaptive training manner. Ding et al. [10] gradually
zeroed out the redundant weights by categorizing weights into two parts and updating them according
to different rules. Frankle et al. [13] presented an algorithm to identify subnetworks that were capable
of training effectively. Although weight pruning can maintain most of the accuracy of the model
with high sparsity, it is difficult to leverage the existing high-efficiency BLAS libraries in practice to
accelerate on general hardware due to its irregular weight distribution. Therefore, weight sparsity
pruning is rarely used in practical applications.

Filter Pruning. Filter pruning gains achieve noticeable speedup on general hardware after pruning.
The filter importance and the pruned network structure are the two most important issues widely
studied by researchers. Typical works solve the former issue by devising a certain criterion to
measure the importance of filters, including output activation [64], scale factor amplitude of Batch
Normalization layer [46], ranks of feature map [40], norm or geometric median of filters [24, 25],
etc.. To be specific, he et al. [25] leveraged geometric median to prune filters with redundancy. As
for the latter, most works are based on rules of thumb [7, 24], or use evolutionary algorithms [41],

3

Layer i

Layer i+1

Randomly

initialized model

Layer i

Layer i+1

Block pruning stage

Layer i

Block regrowing stage

Step 1

Layer i

Block pruning stage

Layer i

Block regrowing stage

Step 2

Training Training

Step≤N？
Training

Yes

Training

No

Step 3 to N

BPAR prune

criterion

Prune blocks

with a layer

Regrow

scheduler

Importance

sampling

BPAR prune

criterion

Prune blocks

with a layer

Regrow

scheduler

Importance

sampling

Retained weight

Regrown weight

Pruned weight

Training

Pruned model &

optimized block

weights

Layer i+1 Layer i+1 Layer i+1

Figure 2: An illustration of our SUBP method, which optimizes the weight values and regrows the
removed blocks in one training pass from scratch jointly. In SUBP, both retained and regrown blocks
are active, participating in the training iterations. After the last iteration, SUBP exports the pruned
model and optimized block weights.

reinforcement learning [26], meta learning [45] and other methods [9, 43] to predict the layer-wise
sparsity. For instance, he et al. [26] applied reinforcement learning to compression and acceleration
models on mobile devices automatically. However, filter pruning removes entire convolution filters,
which may damage the information learned by the network and cause serious accuracy degradation
with a high pruning rate. Therefore, filter pruning is still difficult to apply in practical tasks.

Special Pruning. In order to achieve the maximum balance between accuracy and model performance,
researchers have proposed various special pruning types [49, 50, 3, 12]. These convolution modes
often require the combination of special operators or hardwares. Supported by the NVIDIA Ampere
Core, N:M sparsity has gained tremendous attention due to its attractive storage and computation
efficiency. Asit et al. [50] and Pool et al. [53] followed a traditional PPF pipeline to implement
N:M sparsity. Although retraining can improve the accuracy of the N:M sparsity network, the
pre-training-based approach still incurs expensive training costs, which hinders the deployment of
N:M sparsity techniques. To address this, zhou et al. [66] proposed a Sparse-refined straight-through
estimator (SR-STE) to train N:M sparsity network from scratch. Zhang et al. [65] characterized N:M
sparsity as a combinatorial problem and assigned each combination a learnable score to obtain the
best subset. Apart from these, researchers have also turned their attention to 1×N sparse networks,
which can be accelerated on CPUs. Lin et al. [42] proposed 1×N pruning pattern for CNNs firstly,
which achieved better accuracy and speed trade-off than both weight and filter pruning.

3 Methodology

3.1 Uniform 1×N Block Pruning

We start by introducing symbols and notations in this subsection. Without losing generality, we
assume that a CNN has L layers. We parameterize the tensor connection of CNN with {W i ∈
RCi+1×Ci×Kh

i ×Kw
i |1 ≤ i ≤ L}, where Ci, Ci+1, Kh

i and Kw
i represent the numbers of input

channels, output channels, kernel height and kernel width of i-th layer, respectively.

A 1×N pruning pattern partitions the whole W i into a collection of small blocks. Considering the
W i in the i-th layer, the 1×N pruning pattern can be achieved by partitioning W i into a collection of
Ci col-groups and then further partitioning Ni into a collection of Ci+1

N row-groups. Consequently,
each block is a 1×N matrix along the input channel, which includes N consecutive output kernel
with the same input channel index. We denote the matrix block set as {Bi

j,k ∈ RN×1×Kh
i ×Kw

i |1 ≤
i ≤ L, 0 ≤ j ≤ Ci+1

N − 1, 0 ≤ k ≤ Ci − 1}, to stand for the W i
j·N :(j+1)·N,k,:,:. Based on this

partition pattern, the basic pruning granularity of 1×N sparsity falls into these blocks. According
to network pruning which can be implemented by imposing a mask M i upon W i, we introduce
{M i

j,k ∈ {0, 1}|1 ≤ i ≤ L, 0 ≤ j ≤ Ci+1

N − 1, 0 ≤ k ≤ Ci − 1}, to define the objective function of

4

pre-existing work:

argmax
Mi

L∑
i=1

F({Bi
j,k ·M i

j,k|0 ≤ j ≤ Ci+1

N
− 1, 0 ≤ k ≤ Ci − 1}), s.t.

∥M i
:,:∥0
K

= 1− p (1)

where F(·) measures the importance of its input, K = Ci+1

N · Ci and p is the expected prune rate for
the model.

To reduce the latency of CNNs, multi-core devices are often adopted in most practical scenarios. On
a single-core CPU, the most important aspect is the continuity and locality of memory access and
calculation in order to fully utilize the cache and vectorization unit. However, nearly all modern
processors have multiple cores, and the computation can benefit from multithreading parallelism.
Even though the continuity and locality of memory access and calculation are also important to
multi-core CPU, the most important aspect of CPU multi-core computing is to achieve balanced
workload to fully utilize the computing power of each core and improve computational efficiency. As
can be seen from Fig. 3, if the sparsity among different output channel blocks keeps the same, the
workload across different threads will be the same.

Figure 3: Balanced workload across threads.

However, it is easy to know that the condi-
tions in Eq. (1) often lead to different spar-
sity levels among different output channel
blocks, e.g., ∥M i

1,:∥0 = 1 and ∥M i
2,:∥0 =

Ci − 1, which will cause workload imbal-
ance [60] among threads, degrade perfor-
mance and waste resources during multi-
core execution. Therefore, to overcome
these issues, we propose a uniform 1×N
block pruning type on the basis of the anal-
ysis in above, which is equivalent to con-
straining the sparsity levels among different
output channel blocks to be the same. In
another word, the uniform 1×N block prun-
ing is a special case of 1×N block pruning.
Therefore, we define the objective function
of uniform 1×N block pruning as:

argmax
Mi

L∑
i=1

Ci+1
N −1∑
j=0

F({Bi
j,k ·M i

j,k|0 ≤ k ≤ Ci − 1}), s.t.
∥M i

j,:∥0
Ci

= 1− p (2)

3.2 Block Pruning via Angular Redundancy

To get rid of the constraints in the norm-based criterion, we propose a new block pruning criterion by
taking block angular redundancy into account and name it as BPAR here. The central idea of angular
redundancy is as follows: given a non-zero vector X ∈ RN×M and a non-zero vector W ∈ RN×1,
we have {

WT
1 X = αWT

2 X, < W1,W2 >= 0

WT
1 X = −αWT

2 X, < W1,W2 >= π
, α =

∥W1∥2
∥W2∥2

(3)

where < ·, · > denotes the angle between two vectors. In particular, we define the < 0, · >= 0.
According to the above analyses, even though a 1×N block may be relatively important, this block
still has an angular redundancy if there exists another block with a similar orientation angle. Similarly,
a relatively less important 1×N block can also map the vectors to a meaningful space and extract
valuable information if its orientation angle is very different from others.

In order to simplify the explanations, firstly, we vectorize the representation of Bi
j,k ∈ RN×1×Kh

i ×Kw
i

as Ωi
j,k ∈ RN∗1∗Kh

i ∗Kw
i . Then, we compute the importance score S of our block as:

Si
j,k =

∥Ωi
j,k∥1∑Ci−1

m=0 ∥Ωi
j,m∥1

− λ

∑Ci−1
m=0

∣∣∣CosineSim(Ωi
j,k,Ω

i
j,m)

∣∣∣∑Ci−1
n=0

∑Ci−1
m=0

∣∣CosineSim(Ωi
j,n,Ω

i
j,m)

∣∣ , (4)

5

where λ is a balanced hyper-parameter and CosineSim denotes cosine distance between two vectors.
Based on Eq. (4), it is obvious that unlike previous criterion solely based on norm, our approach
might retain some blocks with smaller norm but larger angular differences in comparison with other
blocks. Simultaneously, it may discard the blocks with larger norm but smaller angular differences.

3.3 Soft Uniform Block Pruning

Most of the previous pruning [27, 40, 42] works followed a traditional PPF pipeline, which com-
pressed CNNs in a hard manner. However, once filters or weights are pruned, they can not be
recovered, which limits the model capacity and leads to unacceptable accuracy degradation.

To rectify the aforementioned limitations, here we propose a novel soft block pruning approach i.e.
Soft Uniform Block Pruning (SUBP) to obtain high accuracy sub-model without a pre-trained super-
model or fine-tuning the pruned model. In contrast to the traditional hard pruning approaches, we
recover the pruned blocks through an importance sampling approach, which enables the compressed
network to have a large model capacity and thus achieves a higher accuracy than others. As shown in
Fig. 2, the details of our SUBP can be divided into two stages in what follows.

1) Block Pruning Stage: Firstly, we init all elements in M i
j,k to 1. For the i-th layer, we use Eq. (4)

to evaluate the importance of each block and identify the set of important blocks to retain as:

T i
j = ArgTopK

(
{Si

j,k|1 ≤ k ≤ Ci}
)
∈ R⌈Ci(1−pi)⌉ (5)

which gives the indices of blocks with the top ⌈Ci(1− pi)⌉ scores of Bi
j . Then, we prune the

bottom-ranking block by zeroizing {M i
j,k|k /∈ T i

j }.

2) Block Regrowing Stage: To determine the blocks to regrow, we introduce an importance sampling
strategy based on the block importance score. We compute the importance of sampling probabilities

by pij,k = exp
(

Si
j,k

τ

)
/
∑

m/∈T i
j

exp
(

Si
j,m

τ

)
, where the temperature τ is to balance the sampling

attention between the different blocks. Then we select the regrow block indices by performing
importance sampling Gi

j = Multinomial({pij,k|k /∈ T i
j }, δtCi) without replacement based on the

regrowing factor δt at t-th epoch and reset {M i
j,k|k ∈ Gi

j} to 1.

To compute the regrowing factor δt, we employ a gradually schedule [67] to gradually reduce the
regrown blocks so that the subnet can converge to the target uniform 1×N sparsity stably at the end
of training. Specially, the regrowing factor at t-th epoch is computed as:

δt =


1− p, t ≤ ts
δ0(1− t−ts

te−ts
)3, ts < t ≤ te

0, te < t

(6)

where δ0 is the initial regrowing factor, ts and te denote the start and end of the training epochs in the
block pruning-regrowing stage respectively. Since the model is trained from scratch and the pruning
and regrowing decision based on the weights may not be sufficient enough, therefore, we don’t prune
blocks in the early stage of training. When t ≥ te, the blocks will stop regrowing and we finish
pruning the block. The remaining blocks are considered to be the best candidates in the end.

4 Experiments

4.1 Experiment Settings and Implementation Details

In this section, we evaluate our SUBP on the largescale dataset ImageNet with the representative
networks, including ResNet18, ResNet34, ResNet50 and MobileNetV1. We implement SUBP using
the PyTorch framework and NVIDIA RTX 3090 GPUs. The SGD optimizer with a momentum
of 0.875 and a weight decay of 3e-5 is adopted. We train all compared networks for 250 epochs
with a mini-batch size of 512 and an initial learning rate of 0 which is linearly increased to 0.512
during the first 8 epochs and then decayed to 0 by the cosine learning rate schedule. Same as
previous methods [18, 45], we also use label smoothing with the factor 0.1 and apply the standard
data augmentation. To keep our method simple and generic, the hyper-parameters (τ , λ, δ0, ts, te) in
above are set to (1.0, 1.0, 0.2, 10, 180) and kept constant in our experiments. By adjusting appropriate

6

Table 1: Performance comparison of our BPAR prune criterion against ℓ1 norm. The experiment is
conducted using MobileNetV1 and ResNet50 with the pruning rate p = 50% on ImageNet dataset.
We test our BPAR on three cases, which N is set to 8, 16 and 32 respectively.

MobileNetV1
(p = 50%)

ResNet50
(p = 50%)

Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Origin 71.15 89.83 71.15 89.83 77.00 93.65 77.01 93.65

Weight Pruning 70.76 89.59 70.76 89.59 77.09 93.61 77.09 93.61
Filter Pruning 65.35 86.26 65.35 86.26 75.38 92.52 75.38 92.52

Prune Criterion ℓ1 norm BPAR ℓ1 norm BPAR
Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

1×2 Pattern 70.28 89.37 - - 76.65 93.47 - -
1×4 Pattern 70.05 89.06 - - 76.51 93.24 - -
1×8 Pattern 69.91 89.08 70.55 89.42 76.15 93.13 76.70 93.51

1×16 Pattern 69.56 88.93 70.30 89.35 76.25 93.08 76.52 93.20
1×32 Pattern 69.54 88.80 70.03 89.23 75.96 92.95 76.31 93.18

Table 2: Results of ResNet18, ResNet34, ResNet50 and MobileNetV1 on ImageNet dataset. “PT”:
require pre-training. “SR”: sparse ratio.

Method PT FLOPs SR Top-1 Epochs Method PT FLOPs SR Top-1 Epochs
ResNet-18 ResNet-50

PFP [39] ✓ 1.27G 43.8% 67.4% 270 SSS [31] ✗ 2.3G 38.8% 71.8% 100
SCOP [59] ✓ 1.10G 39.3% 69.2% 230 TAS [11] ✗ 2.3G 43.5% 76.2% 240
SFP [24] ✓ 1.04G 47.6% 67.1% 200 GAL [43] ✓ 2.3G 16.8% 72.0% 150
FPGM [25] ✓ 1.04G 47.6% 68.4% 200 Hrank [40] ✓ 2.3G 36.7% 75.0% 570
DMCP [18] ✗ 1.04G 17.6% 69.0% 150 Taylor [51] ✓ 2.2G 44.3% 74.5% -
CHEX [29] ✗ 1.03G 38.7% 69.6% 250 C-SGD [6] ✓ 2.2G 42.8% 74.9% -
SUBP(1×16) ✗ 1.03G 44.1% 69.9% 250 SCOP [59] ✓ 2.2G 42.8% 76.0% 230
SUBP(1×32) ✗ 1.03G 44.1% 69.7% 250 DSA [52] ✗ 2.0G - 74.7% 120

ResNet-34 CafeNet [57] ✗ 2.0G 27.8% 76.9% 300
Taylor[51] ✓ 2.8G 21.1% 72.8% - CHEX [29] ✗ 2.0G 35.8% 77.4% 250
SFP [24] ✓ 2.2G 49.1% 71.8% 200 SUBP(1×16) ✗ 2.0G 45.5% 77.6% 250
FPGM [25] ✓ 2.2G 49.1% 72.5% 200 SUBP(1×32) ✗ 2.0G 45.5% 77.4% 250

GFS [62] ✓ 2.1G 32.5% 72.9% 240 SCP [32] ✗ 1.9G - 75.3% 200
DMC [15] ✓ 2.1G - 72.6% 490 Hinge [38] ✓ 1.9G - 74.7% -
NPPM [14] ✓ 2.1G - 73.0% 390 AdaptDCP [69] ✓ 1.9G 51.5% 75.2% 210
SCOP [59] ✓ 2.0G 45.6% 72.6% 230 LFPC [23] ✓ 1.6G - 74.5% 235
CafeNet [57] ✗ 1.8G 21.1% 73.1% 300 ResRep [8] ✓ 1.5G - 75.3% 270
CHEX [29] ✗ 2.0G 29.2% 73.5% 250 Polarize [68] ✓ 1.2G - 74.2% 248
SUBP(1×16) ✗ 2.0G 43.8% 73.7% 250 DSNet [36] ✓ 1.2G - 74.6% 150
SUBP(1×32) ✗ 2.0G 43.8% 73.6% 250 CURL [47] ✓ 1.1G 73.8% 73.4% 190

MobileNetV1 DMCP [18] ✗ 1.1G 43.6% 74.1% 150
0.75x[30] ✗ 325M 38.1% 68.4% - MetaPrune [45] ✗ 1.0G 53.5% 73.4% 160
NetAdapt [61] ✓ 284M - 69.1% - EagleEye [35] ✓ 1.0G 69.4% 74.2% 240
AMC [26] ✓ 285M - 70.5% - CafeNet [57] ✗ 1.0G 52.9% 75.3% 300
MetaPruning [45] ✓ 281M 50.9% 70.6% 320 CHEX [29] ✗ 1.0G 67.1% 76.0% 250
SUBP(1×16) ✗ 279M 40.0% 70.8% 250 SUBP(1×16) ✗ 1.0G 68.3% 76.3% 250
SUBP(1×32) ✗ 279M 40.0% 71.1% 250 SUBP(1×32) ✗ 1.0G 68.3% 76.0% 250

parameters for different models and pruning rates, better results should be obtained in general. In this
paper, we calculate FLOPs by counting multiplication and addition as one operation as He [22] did.

4.2 Influence of Pruning Criterion

In this subsection, we will investigate the influence of 1×N pruning criterion. Table 1 shows the
compared results with respect to ℓ1 norm [42] and BPAR. As suggested by [37, 48, 51, 28], the
pruning criterion selects the appropriate sub-model on the basis of its importance or redundancy,
which plays an important role in the traditional PPF approach. Table 1 tells us that our BPAR

7

outperforms the norm-based method on the ImageNet dataset. For MobileNetV1 and ResNet50, our
BPAR can achieve consistent accuracy improvements with the same sparsity and inference speedup.
On MobileNetV1(1×16), it obtains 0.74% and 0.38% top1-accuracy and top5-accuracy improvement
when BPAR is applied. In particular, for pruning a pre-trained MobileNetV1, BPAR achieves better
results for N=8 than ℓ1 norm for N=2, which indicates 1×N pruning based on BPAR can obtain a
better trade-off between accuracy and inference latencies. Similar results can also be observed on
the ResNet50 in Table 1. In essence, our BPAR explicitly utilizes the relationship and identifies the
mutual angular redundancy between blocks, giving rise to its superior performance.

4.3 Results on ImageNet

To verify the effectiveness of our SUBP, we apply it to the heavyweight CNN model (i.e. ResNet [22])
with different depths and the lightweight CNN model (i.e. MobileNet) initialized with random
weights on ImageNet [5] dataset. Here, ResNet-18/34/50 and MobileNetV1 are used as the baseline
models and have 1.8/3.7/4.1 GFLOPs and 572 MFLOPs.

The results in Table 2 show that SUBP achieves noticeably higher accuracy than the state-of-the-art
pruning methods under the same FLOPs constraints. For example, our SUBP on ResNet50(1×16)
with 2× FLOPs reduction achieves 77.6% top-1 accuracy, which is 3.1%, 1.6%, 0.7% and 0.2%
higher than Taylor[51], SCOP [59], CafeNet [57] and CHEX [29] respectively. The results on 1×32
sparsity also demonstrate the superiority against the other methods. On the other hand, at the same
target accuracy, our SUBP also achieves higher FLOPs reduction. For example, our SUBP achieves
4× FLOPs reduction and 76.0% top-1 accuracy on ResNet50(1×32) compared to the SCOP, which
only yields 1.9× FLOPs reduction. We further observe that SUBP also achieves higher accuracy at a
fraction of the training cost for MobileNetV1. For instance, SUBP achieves 71.1% top-1 accuracy
on MobileNetV1(1×32, 250 epoch) under the 279M FLOPs constraint, which is 0.5% higher than
MetaPruing [45](320 epoch). This is because SUBP can dynamically explore the optimal sub-model
in one training pass from scratch, circumventing the expensive PPF cycles.

4.4 Results on Object Detection and Instance Segmentation

To further explore the performance of SUBP in downstream tasks, we conduct experiments on object
detection and instance segmentation on the challenging COCO dataset [44]. The results are shown in
Table 3 and Table 4. We adopt the classical method Faster RCNN [54] for object detection and Mask
RCNN [21] for instance segmentation. We use ResNet50 with different sparse ratios and block sizes
as backbone. All the experiments are conducted based on MMDetection [1]. Compared to Dense
ResNet50, the SUBP can achieve competitive results, which further demonstrates itsrobustness and
superiority on downstream computer vision tasks.

Table 3: Object detection results on COCO.

Model Block Size mAP

F-RCNN-R50(4.1G) - 37.4
F-RCNN-R50(2.0G) 1× 32 38.4
F-RCNN-R50(2.0G) 1× 16 38.5
F-RCNN-R50(1.0G) 1× 32 37.1
F-RCNN-R50(1.0G) 1× 16 37.3

Table 4: Instance segmentation results on COCO.

Model Block Size Box mAP Mask mAP

M-RCNN-R50(4.1G) - 38.2 34.7
M-RCNN-R50(2.0G) 1× 32 39.2 35.4
M-RCNN-R50(2.0G) 1× 16 39.4 35.5
M-RCNN-R50(1.0G) 1× 32 37.4 33.8
M-RCNN-R50(1.0G) 1× 16 37.5 33.8

4.5 SUBP from Pre-trained Models

In order to further investigate the generality property of our approach, we apply SUBP to the model
initialized with pre-trained weights. For an equitable comparison with other PPF methods, we adopt
the pre-trained ResNet18 provided by the torchvision2 and run SUBP for 120 epochs as the previous
one did. The results in Table 5 show that our SUBP still achieves competitive top-1 and top-5 accuracy
under the same FLOPs compared to the previous state-of-the-art PPF methods. Furthermore, when
ResNet18 is trained for 90+120 epochs, it achieves 69.5% top-1 accuracy, which is only 0.4% lower
than training it from scratch for 250 epochs in Table 2.

2https://pytorch.org/vision/stable/models.html

8

Table 5: ResNet18 starting from the pre-trained models on ImageNet dataset. “Epochs” are reported
as: pre-training epochs plus all subsequent training epochs needed to obtain the final pruned model.

Model Method Params FLOPs Top-1 Top-5 Epochs

ResNet-18

Baseline 11.7M 1.81G 69.8% 89.1% 90
PFP [39] 6.6M 1.27G 67.4% 87.9% 90+180
SCOP [59] 7.1M 1.10G 69.2% 88.9% 90+140
SFP [24] 7.1M 1.04G 67.1% 87.8% 100+100
FPGM [25] 7.1M 1.04G 68.4% 88.5% 100+100
CHEX [29] - 1.04G 69.2% - 90+120

SUBP(1×16) 7.1M 1.04G 69.5% 89.0% 90+120
SUBP(1×32) 7.1M 1.04G 69.3% 88.9% 90+120

4.6 Deployment Efficiency Analysis

0.125 0.25 0.375 0.5 0.625 0.75 0.875
Pruning Rate p

40

65

90

115

140

165

190

Ne
tw

or
k

La
te

nc
y

(m
s)

Dense
1x32(Uniform)
1x16(Uniform)
1x8(Uniform)
1x32(Non-Uniform)
1x16(Non-Uniform)
1x8(Non-Uniform)

0.125 0.25 0.375 0.5 0.625 0.75 0.875
Pruning Rate p

30

55

80

105

130

155

180

Ne
tw

or
k

La
te

nc
y

(m
s)

Dense
1x32(Uniform)
1x16(Uniform)
1x8(Uniform)
1x32(Non-Uniform)
1x16(Non-Uniform)
1x8(Non-Uniform)

Figure 4: Network latency comparison between uniform 1×N sparse against non-uniform and dense
model with varying N and prune rates. The experiment is conducted using ResNet18 and set the input
shape as (4, 3, 224, 224) on the arm platform of Apple M1 Pro CPU @ 3.20GHz with single thread
(left) and two threads (right). Best viewd in colors.

To further explore the acceleration capacity with respect to different N and prune rates on CPUs-based
platforms, we adopt TVM [2] to compile the uniform and non-uniform 1×N pruned models. For a fair
comparison, we also consider TVM for dense model to obtain baseline latency. We deploy the 1×N
pruned models to obtain network latencies on the arm platform of Apple M1 Pro CPU @ 3.20GHz.
From Fig. 4, we observe 1×N pruned model achieves noticeable latency reductions across various
pruning rates and N. For example, when the pruning rate is greater than 0.25, the inference latencies
of different N are all the better than their dense baseline under the single thread scenario. When
the thread num is set to 2, the inference speed of different configurations has been improved. Due
to the workload imbalance between threads in non-uniform 1×N, it always lags behind its uniform
counterpart. From Fig. 4, there are also two points worth noting: 1) the improvement of 1×N is not
as significant as a vanilla convolution in a multithreading context; 2) N=16 achieves a faster inference
speed than other N on M1 Pro. Therefore, optimizing multithreading inference with 1×N pruning
and selecting appropriate N based on suitable platforms are directions that can be further explored.

5 Limitation and Discussion

Firstly, our SUBP masks weights throughout the training and still needs dense computations. There-
fore, while SUBP has advantages over methods that depend on PPF pipeline, there is still room for
improving its training efficiency. Secondly, there are still missing experiments, including applying
1×N sparsity on other types of DNNs like RNN, transformer and other tasks including object detec-
tion, natural language processing, etc.. We will design corresponding high-performance operators to
improve the training efficiency of SUBP, and explore the performance of 1×N sparsity in other types
of DNNs and tasks to verify its broader applicability in our future work.

9

6 Conclusion

Uniform 1×N sparsity is an important technique that allows fast inference on multithreading scenarios
under multi-core architecture. This paper proposes soft uniform block pruning, SUBP, to efficiently
train a uniform 1×N sparsity network from scratch. SUBP dynamically adjusts the pruning blocks
based on a periodic pruning and regrowing process, which prevents the important blocks from being
prematurely pruned and keeps the model’s capacity. We also present a new block pruning criterion
named BPAR, which explicitly considers the mutual angular redundancy between blocks rather than
“relatively less” importance only. By proposing a BPAR based block subset selection approach for
pruning and an importance sampling based strategy for regrowing, we can obtain a sub-model with
high accuracy by end-to-end implementation without pre-training a large model or requiring extra
fine-tuning. Extensive experiments have exhibited our method can effectively reduce the FLOPs and
inference latencies while achieving superior accuracy over several SOTAs.

10

Acknowledgments and Disclosure of Funding

This work is funded in part by the Key Research and Development Project of Zhejiang Province
under Grant 2021C01035.

References
[1] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun,

Wansen Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: An automated end-to-end optimizing
compiler for deep learning. In Symposium on Operating Systems Design and Implementation
(OSDI), pages 578–594, 2018.

[3] Zhuangzhi Chen, Jingyang Xiang, Yao Lu, Qi Xuan, Zhen Wang, Guanrong Chen, and Xiaoniu
Yang. Rgp: Neural network pruning through regular graph with edges swapping. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–13, 2023.

[4] Ioana Croitoru, Simion-Vlad Bogolin, and Marius Leordeanu. Unsupervised learning of
foreground object segmentation. International Journal of Computer Vision (IJCV), 127(9):1279–
1302, 2019.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255, 2009.

[6] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning
very deep convolutional networks with complicated structure. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4943–4953, 2019.

[7] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and Chenggang Yan. Approximated
oracle filter pruning for destructive cnn width optimization. In International Conference on
Machine Learning (ICML), pages 1607–1616. PMLR, 2019.

[8] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang
Ding. Lossless cnn channel pruning via decoupling remembering and forgetting. Proceedings
of the IEEE/CVF International Conference on Com-puter Vision, 2021.

[9] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang
Ding. Resrep: Lossless cnn pruning via decoupling remembering and forgetting. In IEEE
International Conference on Computer Vision (ICCV), pages 4510–4520, 2021.

[10] Xiaohan Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu, et al. Global sparse
momentum sgd for pruning very deep neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), pages 6382–6394, 2019.

[11] Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. Proceedings
of Advances in Neural Information Processing Systems, pages 759–770, 2019.

[12] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast sparse convnets. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
14629–14638, 2020.

[13] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations (ICLR), 2019.

[14] Shangqian Gao, Feihu Huang, Weidong Cai, and Heng Huang. Network pruning via perfor-
mance maximization. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9270–9280, 2021.

11

[15] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang. Discrete model compression with
resource constraint for deep neural networks. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1899–1908, 2020.

[16] Ross Girshick. Fast r-cnn. In IEEE International Conference on Computer Vision (ICCV),
pages 1440–1448, 2015.

[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE International Conference on
Computer Vision (ICCV), pages 580–587, 2014.

[18] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. Dmcp: Differentiable markov
channel pruning for neural networks. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1539–1547, 2020.

[19] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems (NeurIPS),
pages 1135–1143, 2015.

[20] Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

[21] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[23] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter
pruning criteria for deep convolutional neural networks acceleration. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2009–2018, 2020.

[24] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for
accelerating deep convolutional neural networks. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 2234–2240, 2018.

[25] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4340–4349, 2019.

[26] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference
on computer vision (ECCV), pages 784–800, 2018.

[27] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE international conference on computer vision, pages
1389–1397, 2017.

[28] Zejiang Hou and Sun-Yuan Kung. A feature-map discriminant perspective for pruning deep
neural networks. arXiv preprint arXiv:2005.13796, 2020.

[29] Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong
Jin, Yuan Xie, and Sun-Yuan Kung. Chex: Channel exploration for cnn model compression. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12287–12298, 2022.

[30] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[31] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.
Proceedings of the European Conference on Computer Vision, pages 304–320, 2018.

12

[32] Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable
masks. Proceedings of International Conference on Machine Learning, pages 5122–5131, 2020.

[33] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1989.

[34] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations
(ICLR), 2019.

[35] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for
efficient neural network pruning. Proceedings of European Conference on Computer Vision,
pages 639–654, 2020.

[36] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang.
Dynamic slimmable network. Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021.

[37] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. Proceedings of International Conference on Learning Representations, 2017.

[38] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity:
The hinge between filter pruning and decomposition for network compression. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8018–8027,
2020.

[39] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter
pruning for efficient neural networks. Proceedings of International Conference on Learning
Representations, 2020.

[40] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian,
and Ling Shao. Hrank: Filter pruning using high-rank feature map. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1529–1538, 2020.

[41] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian.
Channel pruning via automatic structure search. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 673–679, 2020.

[42] Mingbao Lin, Yuxin Zhang, Yuchao Li, Bohong Chen, Fei Chao, Mengdi Wang, Shen Li,
Yonghong Tian, and Rongrong Ji. 1xn pattern for pruning convolutional neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[43] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue
Huang, and David Doermann. Towards optimal structured cnn pruning via generative adver-
sarial learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2790–2799, 2019.

[44] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), pages 740–755, 2014.

[45] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Tim Kwang-Ting Cheng,
and Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning. In
IEEE International Conference on Computer Vision (ICCV), pages 3296–3305, 2019.

[46] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision, pages 2736–2744, 2017.

[47] Jian-Hao Luo and Jianxin Wu. Neural network pruning with residual-connections and limited-
data. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1458–
1467, 2020.

13

[48] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. In IEEE International Conference on Computer Vision (ICCV),
pages 5058–5066, 2017.

[49] Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun.
Pruning filter in filter. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 17629–17640.
Curran Associates, Inc., 2020.

[50] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

[51] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance
estimation for neural network pruning. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 11264–11272, 2019.

[52] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong Yang. Dsa: More
efficient budgeted pruning via differentiable sparsity allocation. In European Conference on
Computer Vision (ECCV), pages 592–607. Springer, 2020.

[53] Jeff Pool and Chong Yu. Channel permutations for n: M sparsity. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021.

[54] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[55] Olivier Giroux et al. Ronny Krashinsky. Nvidia ampere sparse tensor core. https:
//developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/, 2020.

[56] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR), 2015.

[57] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Locally
free weight sharing for network width search. Proceedings of International Conference on
Learning Representations, 2021.

[58] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[59] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu.
Scop: Scientific control for reliable neural network pruning. Proceedings of Advances in Neural
Information Processing Systems, 2020.

[60] Carl Yang, Aydın Buluç, and John D Owens. Design principles for sparse matrix multiplication
on the gpu. In Euro-Par 2018: Parallel Processing: 24th International Conference on Parallel
and Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings, pages 672–687.
Springer, 2018.

[61] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne
Sze, and Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile
applications. In Proceedings of the European Conference on Computer Vision (ECCV), pages
285–300, 2018.

[62] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good
subnetworks provably exist: Pruning via greedy forward selection. Proceedings of International
Conference on Machine Learning, pages 10820–10830, 2020.

14

https:// developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https:// developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

[63] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. Sparsetir: Composable
abstractions for sparse compilation in deep learning. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, ASPLOS 2023, page 660–678, New York, NY, USA, 2023. Association for
Computing Machinery.

[64] Yuxin Zhang, Mingbao Lin, Chia-Wen Lin, Jie Chen, Yongjian Wu, Yonghong Tian, and
Rongrong Ji. Carrying out cnn channel pruning in a white box. IEEE Transactions on Neural
Networks and Learning Systems (TNNLS), 2022.

[65] Yuxin Zhang, Mingbao Lin, ZhiHang Lin, Yiting Luo, Ke Li, Fei Chao, YONGJIAN WU, and
Rongrong Ji. Learning best combination for efficient n: M sparsity. In Advances in Neural
Information Processing Systems, 2022.

[66] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n: M fine-grained structured sparse neural networks from scratch. In
International Conference on Learning Representations (ICLR), 2021.

[67] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning
for model compression. In International Conference on Learning Representations Workshop
(ICLRW), 2017.

[68] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-
level structured pruning using polarization regularizer. Proceedings of Advances in Neural
Information Processing Systems, 2020.

[69] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou
Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks.
Proceedings of Advances in Neural Information Processing Systems, pages 883–894, 2018.

15

A Supplementary Material

This Supplementary Material is structured as follows. We provide a formulation of our algorithm
in Section B. To investigate the effectiveness of different components of our SUBP, we conduct
ablation studies and provide additional experimental results in Section C. In Section D, we provide
deployment results on the x86 platform of Intel(R) Xeon(R) Platinum 8260L CPU @ 2.30GHz to
further explore the performance of 1×N sparse on different platforms. Finally, in Section E, we
discuss the societal impact of our method.

B Algorithm Formulation

Algorithm 1: Overview of the SUBP method.

1 Input: An L-layer CNN model with weights W = {W i|1 ≤ i ≤ L}; block binary mask
matrices M = {M i

j,k ∈ {0, 1}|1 ≤ i ≤ L, 0 ≤ j ≤ Ci+1

N − 1, 0 ≤ k ≤ Ci − 1}; indices of
activate blocks with the top scores T; indices of regrow blocks based on importance sampling
G; target prune rate p; initial regrowing factor δ0; importance balance coefficient λ; sampling
attention balance factor τ ; training epochs Ttotal; start and end epoch in the pruning-regrowing
stage ts, te; training set D ;

2 Output: A sub-model satisfying the target prune rate p, its optimal weight values W∗ and binary
mask M∗ ;

3 Randomly initialize the model weights W;
4 Initialize {M i

j,k | ∀i,∀j,∀k} to 1 ;
5 Reformat W to B according to Section 3 ;
6 for each training epoch t ∈ [Ttotal] do
7 Sample a mini-batch from D and update the model weights W ;
8 if ts < t ≤ te then
9 Reset {M i

j,k | ∀i,∀j,∀k} to 1 ;
10 Compute the importance score S of block by Eq. 4 ;
11 Get the indices of activate blocks with the top scores by Eq. 5 ;
12 Prune the bottom-ranking block by set {M i

j,k|k /∈ T i
j } to 0;

13 Compute the importance sampling probabilities by

pij,k = exp
(

Si
j,k

τ

)
/
∑

m/∈T i
j

exp
(

Si
j,m

τ

)
;

14 Compute the regrowing factor by Eq. 6 ;
15 Get the indices of regrow blocks based on importance sampling by

Gi
j = Multinomial({pij,k|k /∈ T i

j }, δtCi) without replacement ;
16 Regrow the blocks by resetting {M i

j,k|k ∈ Gi
j} to 1 ;

C Ablation Analysis

Table 6: Compare different design choices in the regrowing stages of the SUBP method. All the
experiments are based on the TinyImageNet with ResNet18(1×32). The random baseline is 57.0%.

Regrowing factor
Design choices δ0 = 0.1 δ0 = 0.2 δ0 = 0.3 δ0 = 0.4 Full
Top-1 57.6% 58.4% 57.9% 58.0% 58.5%

Decay scheduler for block regrowing
Design choices Default Constant Linear decay Cosine decay
Top-1 58.3% 57.5% 58.4% 58.3%

In Table 6, we investigate the effectiveness of different design choices in our block regrowing stage.
All the experiments are based on the TinyImageNet with ResNet18(1×32). Compared to the random

16

baseline with 57.0% top-1 accuracy, our SUBP achieves consistent improvement under the different
settings.

We find that regrowing factor δ0 significantly impacts the final quality of the model. Intuitively, a
larger regrowing factor can provide a more extensive sampling space during training and retain the
model’s capacity to a greater extent. However, a sizeable regrowing factor may also cause drastic
sub-model structure changes, affecting stability during training. As shown, the accuracy is improved
by 0.8% as the δ0 increases from 0.1 to 0.2. When δ0 increases again, the model’s accuracy drops
until δ0 is the full model size. This suggests that the relationship between the regrowing factor and
the final quality of the model is varied, and selecting an appropriate regrowing factor in specific
circumstances can improve the final quality.

We also investigate the decay scheduler for the block regrowing stage. We compare several decay
schedulers, including default (Eq. 6), constant, linear, and cosine. The experiments show SUBP has
good robustness to different decay schedulers, as default, linear, and cosine decay schedulers all show
similar performance. With a decay scheduler, the sampling space can be gradually decreased, and the
sub-model under training can converge stably.

Table 7: Ablation study of block size and epochs. All the experiments are based on the ImageNet
with ResNet18.

Method FLOPs Accuracy Epochs
DMCP 1.04G 69.0% 150
CHEX 1.03G 69.6% 250
SUBP (1×4) 1.03G 70.4% 250
SUBP (1×8) 1.03G 70.2% 250
SUBP (1×16) 1.03G 68.7% 100
SUBP (1×16) 1.03G 69.2% 150

To achieve a fairer and fuller comparison with previous methods, we conduct ablation study with
the same epoch and different block sizes. It can be seen in Table 7 that both longger training epochs
and finer pruning granularity can improve the final results. We can weight trade offs in practical
applications.

D Deployment on x86 Platform

0.125 0.25 0.375 0.5 0.625 0.75 0.875
Pruning Rate p

30

55

80

105

130

155

180

Ne
tw

or
k

La
te

nc
y

(m
s)

Dense
1x32(Uniform)
1x16(Uniform)
1x8(Uniform)
1x32(Non-Uniform)
1x16(Non-Uniform)
1x8(Non-Uniform)

0.125 0.25 0.375 0.5 0.625 0.75 0.875
Pruning Rate p

20

45

70

95

120

145

170

Ne
tw

or
k

La
te

nc
y

(m
s)

Dense
1x32(Uniform)
1x16(Uniform)
1x8(Uniform)
1x32(Non-Uniform)
1x16(Non-Uniform)
1x8(Non-Uniform)

Figure 5: Network latency comparison between uniform 1×N sparse against non-uniform and dense
model with varying N and prune rates. The experiment is conducted using ResNet18 and set the input
shape as (4, 3, 224, 224) on the x86 platform of Intel(R) Xeon(R) Platinum 8260L CPU @ 2.30GHz
with single thread (left) and two threads (right). Best viewd in colors.

In order to further explore the performance of 1×N sparse DNNs on different platforms, as shown
in Fig. 5, we also conducted corresponding experiments on the x86 platform of Intel(R) Xeon(R)
Platinum 8260L CPU @ 2.30GHz and obtain the similar results in general: 1) The gain of vanilla
convolution in multithreading scenarios is much greater than that of 1×N sparse convolution. 2) The

17

inference speed of uniform 1×N is slightly faster than that of non-uniform in the case of multithread-
ing, indicating the importance of workload balance again. However, unlike the performance on the
arm platform of Apple M1 Pro CPU @ 3.20GHz, the 1×N sparse DNNs are significantly accelerated
when N is set to 16 and 32 on the Platinum 8260L CPU @ 2.30GHz. We can also notice that in most
cases, N=32 achieves a fast inference speed.

E Societal Impact

Our method can reduce the computational overhead of training and inferencing stages while achieving
satisfactory accuracy on modern CNN models. This can facilitate the application of CNN models on
edge devices and is of high value for the community and society to realize Green AI. At the same
time, our 1×N sparse DNNs are based on new sparse operators, which can promote the progress of
related hardware and algorithms to a certain extent.

18

	Introduction
	Related Work
	Methodology
	Uniform 1N Block Pruning
	Block Pruning via Angular Redundancy
	Soft Uniform Block Pruning

	Experiments
	Experiment Settings and Implementation Details
	Influence of Pruning Criterion
	Results on ImageNet
	Results on Object Detection and Instance Segmentation
	SUBP from Pre-trained Models
	Deployment Efficiency Analysis

	Limitation and Discussion
	Conclusion
	Supplementary Material
	Algorithm Formulation
	Ablation Analysis
	Deployment on x86 Platform
	Societal Impact

