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Abstract
Estimating heterogeneous treatment effects in
networked settings is complicated by interference,
meaning that an instance’s outcome can be influ-
enced by the treatment status of others. Existing
causal machine learning approaches often assume
a known exposure mapping that summarizes how
the outcome of a given instance is influenced by
others’ treatments, a simplification that is often
unrealistic. Furthermore, the interaction between
homophily—the tendency of similar instances to
connect—and the treatment assignment mecha-
nism has not been explicitly studied before. This
interaction can induce a network-level covariate
shift, potentially biasing the estimated treatment
effects. To address these challenges, we propose
HINet—a novel method that integrates Graph
Neural Networks (GNNs) with domain adversarial
learning. Our empirical evaluations on synthetic
and semi-synthetic network datasets demonstrate
that our approach outperforms existing methods.

1. Introduction
Individualized treatment effect estimation enables data-
driven optimization of decision-making. Traditionally, no
interference is assumed, meaning that the treatment assigned
to one instance does not affect the outcome of others. How-
ever, in many real-world settings this assumption is violated
due to spillover effects. For example, a vaccine not only
protects its recipient but also indirectly benefits their social
contacts because of the recipient’s enhanced protection.

Recent advances in causal machine learning have introduced
methods for estimating treatment effects in network settings
(Ma and Tresp, 2021; Jiang and Sun, 2022; Chen et al., 2024).
These methods often rely on a predefined exposure mapping,
which specifies how the treatments of other instances in
a network influence the outcome of a given instance. A
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Figure 1: Homophily and the treatment assignment
mechanism interact to create clusters of treated and untreated
nodes within the network, i.e., network-level covariate shift.

common approach is to aggregate these treatments using
the sum or proportion of treated one-hop neighbors (Ma and
Tresp, 2021; Forastiere et al., 2021; Jiang and Sun, 2022).
While this simplifies the modeling of spillover effects, it
is often unrealistic in real-world scenarios where the exact
mechanisms behind these effects are unknown. Moreover,
spillover effects may be heterogeneous, i.e., dependent on
the features of the instances involved (Adhikari and Zheleva,
2023; Huang et al., 2023; Zhao et al., 2024).

In this work, we propose Heterogeneous Interference
Network (HINet), a novel method that combines expressive
GNN layers—which enable the learning of heterogeneous
spillover effects—with domain adversarial learning to obtain
balanced representations for estimating treatment effects
in the presence of interference. Importantly, HINet does not
rely on a prespecified exposure mapping. Additionally, we
analyze how homophily interacts with the treatment assign-
ment mechanism. This interaction might induce clusters of
treated and untreated nodes within the network (see Figure 1).
Homophily connects nodes with similar features, while the
treatment assignment mechanism increases the likelihood
that such nodes receive similar treatment. Together, these
mechanisms introduce a covariate shift at the network level.
For instance, older individuals may be more likely to form
connections with each other in a social network (due to
homophily) and are also more likely to receive a vaccine (due
to the treatment assignment mechanism). This network-level
covariate shift arises in addition to the standard covariate
shift between treated and control units.
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Figure 2: DAG representing the assumed causal structure.

Contributions. (1) We propose HINet, a new method for
estimating treatment effects in the presence of interference.
HINet combines expressive GNN layers—to learn an
exposure mapping—and domain adversarial learning—to
address (network-level) covariate shift; (2) we empirically
show HINet’s ability to estimate treatment effects in the
presence of interference; (3) we propose two new metrics for
the evaluation of treatment effect estimates in the presence
of interference; and (4) we analyze how homophily interacts
with the treatment assignment mechanism and demonstrate
that domain adversarial training mitigates the impact of the
resulting bias.

2. Problem Setup
Notation. We consider an undirected network G={V,E}
where V is the set of nodes/vertices and E the set of edges
connecting the nodes. The set of edges of node i is denoted
as Ei. Each node i is an instance or unit in the network with
covariates Xi∈X ⊆Rd, a treatment Ti∈T ={0,1}, and an
outcome Yi∈Y⊆R. In marketing, for example, Xi can rep-
resent customer features, Ti whether a customer was targeted
with a marketing campaign, and Yi customer expenditure.
The set of directly connected instances, or neighbors, of in-
stance i are denoted Ni. Ni is used as a subscript to describe
the set of covariates XNi

or treatments TNi
of i’s neighbors.

The potential outcome for unit i with treatment ti and the set
of treatments of its neighbors tNi

is denoted as Yi(ti,tNi
).

Assumptions. We assume that only directly connected
instances affect each other (Markov assumption). The
assumed causal structure is visualized as a Directed Acyclic
Graph (DAG) in Figure 2 (Greenland et al., 1999; Ogburn
and VanderWeele, 2014). Three mutually connected
instances i,j, and k are shown. The features of a unit i, Xi,
affect the treatment T and outcome Y of both itself and its
neighbors. The treatment, in turn, affects the outcome of
itself and its neighbors. The arrows from Xk and Tk to Yj ,
and from Xj and Tj to Yk are omitted for visual clarity.

We assume that we have access to observational data
D=

(
{xi,ti,yi,}|V|

i=1;G
)
. Importantly, this data does not nec-

essarily come from a randomized controlled trial (RCT), and

a treatment assignment mechanism might be present. This is
represented in the DAG by the arrows from a unit’s features
to its own treatment and the treatments of its neighbors.

Previous work assumed a predefined exposure mapping that
summarizes how the treatments of neighbors influence the
outcome of a given instance. In this work, we do not assume
this function is known; instead, we aim to learn an exposure
mapping from data.

The classic assumptions from causal inference are slightly
modified to ensure identifiability in a networked setting
(Forastiere et al., 2021; Jiang and Sun, 2022):

Consistency: If Ti= ti and TNi
=tNi

, then Yi=Yi(ti,tNi
),

with tNi
the set of treatments of i’s neighbors.

Overlap: ∃ δ∈ (0,1) such that δ<p(Ti=1|Xi=xi,XNi
=

xNi
)<1−δ.

Strong ignorability: Yi(Ti = ti,TNi = tNi) ⊥⊥ Ti,TNi |
Xi,XNi

,∀ti∈T ,tNi
∈T |Ni|,Xi∈X ,XNi

∈X |Ni|.

Objective. We aim to estimate the Individual Total
Treatment Effect (ITTE) (Caljon et al., 2024), defined as:

ωi(ti,tNi
)=E

[
Yi(ti,tNi

)−Yi(0,0) |xi,xNi

]
. (1)

To this end, we train a model M(xi,ti,xNi
,tNi

) to predict
Yi(ti,tNi), which is used twice to obtain a predicted ITTE:
ω̂i(ti,tNi)=M(xi,ti,xNi ,tNi)−M(xi,0,xNi ,0).

Homophily and the treatment assignment mechanism.
In observational data, the treatment assignment mechanism—
such as a policy or self-selection—can induce a covariate
shift, where the treatment and control groups have different
covariate distributions. Consequently, treatment effect
estimates can be biased (Shalit et al., 2017). In a setting with
interference, this issue may also be present, and possibly even
amplified by homophily. Homophily is a social phenomenon
that refers to the tendency of people with similar features
to be connected in a social network (McPherson et al., 2001).
When the features that drive homophily also influence
treatment assignment, an additional form of covariate shift
arises—namely, network-level covariate shift—since similar
instances are not only more likely to be connected but also
more likely to receive the same treatment. Consequently,
an instance that is likely to be treated (due to the treatment
assignment mechanism) will also be more likely to have
treated neighbors (due to the interaction between homophily
and the treatment assignment mechanism). This can lead to
clusters of treated and untreated instances within a network,
as depicted in Figure 1b, creating a covariate shift at the
network level—where instances with many treated neighbors
and those with few treated neighbors have different feature
distributions. We hypothesize that this can lead to biased
treatment effect estimates, and that learning balanced node
representations will aid in reducing this bias.
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3. Methodology
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Figure 3: HINet architecture.

The architecture of HINet—our proposed neural model for
estimating treatment effects in the presence of interference,
which models heterogeneous spillover effects and uses do-
main adversarial training to learn balanced representations—
is visualized in Figure 3. For each instance, the features xi

are transformed to a representation ϕi through a multi-layer
perceptron (MLP) eϕ. This representation is subsequently
used to predict both the treatment t̂i and the outcome ŷi.
Following Bica et al. (2020), the neural network first learns
a shared representation and then splits into two branches.

The lower branch predicts yi. To account for network infor-
mation, a Graph Isomorphism Network (GIN) is used (Xu
et al., 2019). Unlike some other GNN architectures, such as
GCN (Kipf and Welling, 2016) and GraphSAGE (Hamilton
et al., 2017), GIN offers maximal representational capacity.
Consequently, it is particularly well-suited for learning dif-
ferent exposure mapping functions and thus heterogeneous
spillover effects. The output of the GIN is combined with
ϕi and ti, and fed into the MLP pY to predict ŷi.

The upper branch predicts the treatment ti for each instance.
Its setup is very similar to that of the lower branch, with
two key differences: t is not used as an input, and Gradient
Reversal Layers (GRLs) (Ganin et al., 2016) are used. GRLs
do not apply any transformation in the forward pass but
reverse the gradient in the backward pass. This trains ϕi to
become a treatment-invariant representation of the features,
thereby reducing treatment assignment bias (Shalit et al.,
2017; Bica et al., 2020; Berrevoets et al., 2020).

HINet is trained by combining two different losses:
the outcome loss and the treatment prediction loss, de-
fined respectively as Ly = 1

n

∑n
i=1(yi − ŷi)

2 and Lt =
1
n

∑n
i=1BCE(ti,t̂i), where BCE is the binary cross-entropy

loss. Thanks to the GRL, we can optimize the combined loss

Lcomb=Ly+α·Lt, (2)

where α determines the importance of adversarial balancing.
Note that Ly does not affect the upper (treatment) branch,
while Lt does not affect the lower (outcome) branch.

4. Experiments and Discussion
Data. Simulated data is commonly used in causal machine
learning to evaluate treatment effect estimators, as ground
truth effects are unobservable in real-world datasets
(Berrevoets et al., 2020; Feuerriegel et al., 2024). As in
related work (Ma and Tresp, 2021; Jiang and Sun, 2022;
Chen et al., 2024), we use the Flickr and BlogCatalog (BC)
datasets. To further evaluate generalization across different
network structures, we also simulate two fully synthetic
datasets: one using the Barabási–Albert (BA) random
network model (Barabási and Albert, 1999), and another
using a procedure that generates homophilous graphs based
on cosine similarity. For each dataset, a training, validation,
and test set is generated. Full details of the data-generating
process (DGP) are provided in Appendix A. Appendix B
provides details on the quantification of homophily.

Methods for comparison. We compare HINet to the
following methods for estimating treatment effects: TARNet
(Shalit et al., 2017), which ignores network information;
NetDeconf (Guo et al., 2020), which incorporates network
information but does not account for spillover effects; NetEst
(Jiang and Sun, 2022), which relies on a predefined exposure
mapping to estimate spillover effects; and SPNet (own
implementation) (Zhao et al., 2024), which aims to estimate
heterogeneous spillover effects using a masked attention
mechanism. Finally, we include a GIN model, which uses
node features and treatments as inputs to a GIN layer that is
followed by an MLP to predict ŷi. Details on implementation
and hyperparameter selection—including the selection of
α—can be found in Appendix C.

Performance metrics. In a traditional no-interference
setting with binary treatment, there is a uniquely defined
treatment effect. In contrast, in a network setting, this is
no longer the case, as there are many possible treatment
assignments, each potentially resulting in different potential
outcomes. It remains an open question how best to evaluate
treatment effect estimation methods in the presence of in-
terference using simulated data. Previous work has typically
assessed performance based on only one counterfactual
network—i.e., a network in which at least one unit receives
a different treatment than in the observed network (Jiang and
Sun, 2022; Chen et al., 2024). However, some models may be
accurate in certain counterfactual networks (e.g., those with
a low treatment rate) but perform poorly in others. Therefore,
we argue that a good evaluation procedure should account
for performance across multiple counterfactual networks.
Yet, since there are 2|V|−1 possible counterfactual networks,
it is computationally infeasible to evaluate all of them in
larger networks. To address this, we propose two novel
evaluation metrics that sample multiple counterfactual
networks and report the average estimation error. First, the
Precision in Estimation of Heterogeneous Network Effects
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Dataset Metric TARNet NetDeconf NetEst GIN model SPNet HINet (ours)

Flickr PEHNE 3.39 ± 0.02 4.74 ± 0.14 1.67 ± 0.22 1.94 ± 0.37 5.87 ± 0.18 0.88 ± 0.32
CNEE 5.54 ± 0.02 6.14 ± 0.14 2.91 ± 0.28 1.07 ± 0.06 7.39 ± 0.08 0.98 ± 0.31

BC PEHNE 3.25 ± 0.02 6.97 ± 0.31 2.47 ± 0.25 1.86 ± 0.27 5.48 ± 0.78 1.11 ± 0.24
CNEE 3.95 ± 0.02 7.17 ± 0.34 1.34 ± 0.09 1.34 ± 0.09 5.66 ± 0.83 1.17 ± 0.29

Simulated BA PEHNE 3.01 ± 0.02 5.05 ± 0.17 0.93 ± 0.10 1.60 ± 0.08 3.94 ± 0.10 0.64 ± 0.06
CNEE 5.96 ± 0.02 7.13 ± 0.18 1.88 ± 0.10 1.27 ± 0.04 5.88 ± 0.10 0.70 ± 0.05

Simulated homophilous PEHNE 2.28 ± 0.03 1.50 ± 0.09 0.90 ± 0.04 0.59 ± 0.04 1.65 ± 0.04 0.36 ± 0.02
CNEE 4.50 ± 0.03 1.44 ± 0.08 1.04 ± 0.05 0.70 ± 0.03 1.61 ± 0.04 0.35 ± 0.01

Table 1: Test set results (averaged over five different initializations) for the Flickr, BC, and the simulated BA and homophilous
datasets. Lower is better for both metrics. The best-performing method is shown in bold; the second-best is underlined.
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Figure 4: Impact of balancing node representations in HINet
on test CNEE (averaged over five different initializations).
The x-axis shows increasing treatment assignment mecha-
nism strength (βXT ). Each row represents a different DGP.

(PEHNE) measures the estimation error for ITTE. Second,
the Counterfactual Network Estimation Error (CNEE)
measures the estimation error for counterfactual outcomes.
The difference is that the latter puts less emphasis on the
estimation of potential outcomes without any treatment,
Yi(0,0). Further details are provided in Appendix D.

4.1. Performance on (semi-)synthetic data

Table 1 shows the test set results for the different datasets in
terms of the PEHNE and CNEE metrics. HINet outperforms
all comparison methods on both metrics. The GIN model

consistently ranks second best on the CNEE metric, while
NetEst outperforms the GIN model in terms of PEHNE on
two of the four datasets. The latter is somewhat unexpected,
as NetEst assumes an incorrect exposure mapping.

4.2. Impact of homophily

Figure 4 shows the performance of HINet on simulated
homophilous and non-homophilous (BA) networks for three
different DGP settings and for varying levels of treatment
assignment mechanism strength (βXT , with βXT = 0
resembling an RCT). The DGP settings are: (a) individual
(direct) treatment effects without interference, (b) spillover
effects without direct effects, and (c) both individual and
spillover effects. We visualize the test set results in terms
of CNEE with and without balancing node representations.
As expected, CNEE generally increases with higher values
of βXT , due to stronger covariate shift (Shalit et al., 2017).
Notably, we also observe that balancing node representations
has a greater positive impact on performance in the ho-
mophilous networks compared to the non-homophilous ones
when spillover effects—both with and without individual
effects—are present. This supports our hypothesis that
network-level covariate shift can be (partly) mitigated by
balancing representations. Nevertheless, additional results
(Appendix E) indicate that while the impact of balancing
is consistently larger when both homophily and both types
of effects are present, it does not always lead to improved
performance in settings with only spillover effects.

5. Conclusion
We introduced HINet, a novel method for estimating het-
erogeneous treatment effects in the presence of interference.
HINet learns an exposure mapping directly from data to
capture how neighbors’ treatments influence an instance’s
outcome, while simultaneously balancing node representa-
tions. We showed that this enables effective mitigation of
network-level covariate shift arising from the interaction be-
tween homophily and the treatment assignment mechanism.
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A. Data-generating process

We adjust the DGP proposed by Jiang and Sun (2022). Instead of using a predefined exposure mapping zi=
∑

j∈Ni
tj

|Ni| , we
define a function that allows for heterogeneous spillover effects.

For the fully synthetic datasets, we first generate 10 features (following Jiang and Sun (2022)) from a standard normal
distribution: xj

i ∼N (0,1),j=1,...,10. For the semi-synthetic datasets (Flickr and BC), we follow Jiang and Sun (2022) to split
the network into train, validation and test using METIS (Karypis and Kumar, 1998). Then, following Guo et al. (2020); Jiang
and Sun (2022), we use Latent Dirichlet Allocation (Blei et al., 2003) to reduce the sparse features to a lower-dimensional
representation. We also set the feature dimension for these datasets to 10.

For the fully synthetic datasets, we generate the network structure as follows. For the simulated BA dataset, each network
of 5000 nodes (i.e., training, validation, and test) is simulated based on the Barabasi-Albert random network model (Barabási
and Albert, 1999). The hyperparameter m is set to 2. For the simulated homophilous dataset, homophilous networks with
5000 nodes are generated based on the cosine similarity between the feature vectors of all node pairs in the network (some
noise is added to the cosine similarity to allow unlikely edges to occur). Then, the node pairs are sorted according to cosine
similarity. Edges are created between nodes with the highest cosine similarity until the average degree (number of edges
per node) is equal to the average degree of the simulated BA network ( ¯deg=4).

To induce the causal structure (see Figure 2), we generate the following parameters:

wXT
j ∼Unif(−1,1) for j∈{1,2,...,10}

wXY
j ∼Unif(−1,1) for j∈{1,2,...,10}

wTY
j ∼Unif(−1,1) for j∈{1,2,...,10}

wXNY
j ∼Unif(−1,1) for j∈{1,2,...,10}

wTNY
j ∼Unif(−1,1) for j∈{1,2,...,10}

wXT =[wXT
1 ,wXT

2 ,...,wXT
10 ],

wXY =[wXY
1 ,wXY

2 ,...,wXY
10 ],

wTY =[wTY
1 ,wTY

2 ,...,wTY
10 ],

wXNY =[wXNY
1 ,wXNY

2 ,...,wXNY
10 ],

wTNY =[wTNY
1 ,wTNY

2 ,...,wTNY
10 ].

These parameters quantify the effect of Xi on Ti, Xi on Yi, the heterogeneous effect of Ti on Yi, the effect of XNi on Yi, and
the heterogeneous spillover effect of TNi on Yi, respectively. The treatment ti is generated as follows. We first calculate νi as:

νi=βXT ·wXT ·xi,

with βXT ≥0 the treatment assignment mechanism strength and xi=[x1,x2,...,x10]
′. Next, to set the percentage of nodes

treated to approximately 25%, we calculate the 75-th percentile ν75 and transform ν′=ν−ν75. Finally, we apply the sigmoid
function σ to ν′, and obtain ti by sampling: ti∼Bernoulli(σ(ν′i)).

To generate the outcomes, we first generate a transformed feature vector x̃i by transforming half the features using the sigmoid
function σ to add nonlinearities. The outcomes are obtained as follows:

yi=βindividual ·hi ·ti+βspillover ·zi+βXY ·ui+βXNY ·uNi
+βϵ ·ϵ; ϵ∼N (0,1),

with

hi=wTY ·x̃i,

zi=

∑
j∈Ni

tj ·wTNY ·x̃j

|Ni|
,

ui=wXY ·x̃i,

uNi
=

∑
j∈Ni

wXNY ·x̃j

|Ni|
.

We use the following parameter values in the experiments presented in Section 4.1: βXT =3,βindividual=2,βspillover=2,βXY =
1.5,βXNY = 1.5,βϵ = 0.2. The parameters for the experiments analyzing the impact of homophily (Section 4.2) are the
same, except that βXNY =0. Additionally, βindividual and βspillover are set to 0 when isolating the effect of spillover and direct
individual effects, respectively.

B. Measuring homophily
Homophily (McPherson et al., 2001) or assortative mixing (Newman, 2002; 2003) refers to the tendency of nodes in a network
to associate with others that are similar to themselves. For example, individuals with similar interests are more likely to
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be friends. The degree of assortative mixing for a given feature can be quantified using the assortativity coefficient. This
coefficient is positive when an attribute is assortative, negative when it is disassortative, and zero when there is no assortativity.
By calculating this coefficient for the treatment variable, we can objectively assess whether treated nodes are more likely
to have treated neighbors. Similarly, outcome assortativity is positive if the outcomes of neighbors are positively correlated.
These measures are reported in Table 2 for the four datasets used in our experiments. There is considerable assortativity
in both outcomes and treatments in the simulated homophilous dataset. In other words, knowing the treatment and outcome
of a neighbor of a randomly selected node provides information about the treatment and outcome of that node.

Flickr BC Simulated BA Simulated homophilous

Treatment assortativity 0.01 0.04 0.01 0.47
Outcome assortativity -0.01 0.12 -0.13 0.67

Table 2: Treatment and outcome assortativity for the different datasets used in our experiments.

C. Hyperparameter selection and implementation details
Due to the fundamental problem of causal inference (Holland, 1986), individualized treatment effects are unobservable. As
a result, selecting hyperparameters is challenging, since we cannot directly optimize them based on treatment effect estimation
error. For standard machine learning hyperparameters, such as hidden layer size or learning rate, we can rely on the factual
validation loss for hyperparameter selection. The factual validation loss is the average estimation error for outcomes actually
observed in the validation set and can always be calculated. However, the factual loss may not reflect the treatment effect
estimation performance. Nevertheless, this approach has been shown to work reasonably well (Curth and van der Schaar, 2023).

The weight for adversarial balancing, α, is a special type of hyperparameter. A positive α may cause the model to discard
relevant information for predicting yi in favor of constructing treatment-invariant representations, which will likely impair
the factual validation loss. Consequently, if the factual loss is used to select this hyperparameter, α will often be chosen as
zero—meaning that the upper branch of HINet would not be used.

However, both theoretical and empirical work suggests that balancing representations can improve treatment effect estimates
(Shalit et al., 2017; Bica et al., 2020; Berrevoets et al., 2020). Based on this, we propose the following approach for
hyperparameter selection. First, the standard machine learning hyperparameters are tuned using the factual validation loss.
Once these hyperparameters are set, the factual loss is calculated for different values of α. As α increases, the factual loss
typically increases as well. Our intuition is that a modest increase in factual loss is acceptable and merely indicates that
treatment assignment bias is being mitigated. However, a substantial increase may suggest that valuable information is being
discarded in favor of learning treatment-invariant representations. As a heuristic, we propose selecting the largest value of
α for which the factual loss remains below (1+p)·lossα=0. As a rule of thumb, we set p=0.10, meaning that we allow for
a maximum increase in validation error of 10%. An important advantage of this approach is that it allows α=0 to be selected
when representation balancing would otherwise result in excessive information being discarded.

For HINet, NetEst, and SPNet, the range for α is {0,0.025,0.05,0.1,0.2,0.3}. The other hyperparameters are selected from the
ranges shown in Table 3. The GIN layers use a 2-layer MLP. The encoder block eϕ in HINet consists of two hidden layers. The

Parameter Value

Hidden size {16,32}
Num. epochs {1500,2000,3000}
Learning rate {0.001,0.0005,0.0001}

Table 3: Hyperparameter ranges.

MLP blocks dT and pY , as well as the MLP block in the GIN model, each consist of three hidden layers. All MLP blocks (for ev-
ery method) use ReLU activations after each layer. Other hyperparameters are set to author-recommended values. Each model
is trained using the Adam optimizer (Kingma and Ba, 2015) with weight decay set to 0.001. For all models except SPNet, we use
the implementation provided by Jiang and Sun (2022). Since there is no publicly available implementation of SPNet, we imple-
mented it ourselves based on the description in Zhao et al. (2024). Reported results are averages over five different initializations,
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affecting both weight initialization and training data shuffling. Our code is available at https://github.com/daan-caljon/HINet.

D. Performance metrics
In a traditional no-interference setting with binary treatment, there is only one counterfactual: the outcome under the opposite
treatment, Yi(1−ti). In network settings, however, counterfactuals must be considered at the level of the entire network, since
the potential outcome of any given unit may depend on the treatments of others. Therefore, we argue that a good evaluation
procedure should account for counterfactual networks rather than only individual-level counterfactuals. A counterfactual
network is a network in which at least one unit receives a different treatment than in the observed network. Note that the
number of counterfactual networks is 2|V|−1, each with |V| potential outcomes.

When simulated data is available, the Precision in Estimation of Heterogeneous Effects (PEHE) (Hill, 2011) is often used
to evaluate methods in a traditional no-interference setting with binary treatment. PEHE is defined as the root mean squared
error of the estimated Conditional Average Treatment Effects (CATEs), which is uniquely defined since there is a single
counterfactual. In the presence of interference, however, this is no longer the case and estimated ITTEs could in principle be
evaluated for each counterfactual network j=1,2,...,2|V|−1 in a similar manner. For large networks, however, this becomes
computationally intractable. Therefore, we propose two new metrics that sample a diverse set of counterfactual networks.
These metrics are inspired by the Mean Integrated Squared Error (MISE), which is used for evaluating treatment effects
with a continuous treatment (Schwab et al., 2020). In the continuous setting, a similar challenge arises due to the existence
of more than two counterfactuals per unit.

The first proposed metric is the Precision in Estimation of Heterogeneous Network Effects (PEHNE), which evaluates ITTE
estimation error over a range of counterfactual networks. The calculation of PEHNE is described in Algorithm 1. In total,
m counterfactual networks are sampled. By sampling treatments according to the percentage pj , we ensure that models are
evaluated across a variety of treatment rates.

Algorithm 1 PEHNE calculation

1: for j=1,2,...,m do
2: Percentage of nodes to treat pj= 100·j

m %

3: Sample treatment for each node i: tji ∼Bernoulli(pj)
4: Estimate ITTE for each node i: ω̂j
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∑
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The second proposed metric is the Counterfactual Network Estimation Error (CNEE), which evaluates counterfactual outcome
estimation error over a range of counterfactual networks. The calculation of CNEE is described in Algorithm 2. PEHNE
places strong emhasis on the estimation of the “zero” counterfactual network, i.e., the network in which no unit receives
treatment, because of the term Yi(0,0) in Equation (1). If a model estimates these outcomes poorly, its performance in terms of
PEHNE will be significantly penalized. In contrast, CNEE assigns equal importance to all sampled counterfactual networks.

Algorithm 2 CNEE calculation

1: for j=1,2,...,m do
2: Percentage of nodes to treat pj= 100·j

m %

3: Sample treatment for each node i: tji ∼Bernoulli(pj)
4: Estimate the potential outcome Yi(ti,tNi
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6: end for
7: Return CNEE= 1
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∑
jMSEj

In our experiments, we set m= 50 for both PEHNE and CNEE. Note that these metrics are used solely for performance
evaluation, not for hyperparameter tuning (see Appendix C), as they cannot be calculated in practice from observational
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data—they require that all potential outcomes be known. Consequently, validation PEHNE/CNEE cannot be used for
hyperparameter selection.

E. Additional results
In Figure 5, we visualize the impact of balancing node representations on the test set results in terms of PEHNE. The results
are very similar to those presented for CNEE in Figure 4. When there are only individual effects, balancing improves
performance in both the homophilous and non-homophilous networks at high values of βXT . However, a difference between
the non-homophilous and homophilous networks emerges when spillover effects are present. When there are only spillover
effects, balancing considerably improves performance for the homophilous network, but does not have the same effect for
the non-homophilous network. When both individual and spillover effects are present, the performance gain from balancing
is relatively larger under homophily.
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Figure 5: Impact of balancing node representations in HINet on test PEHNE (averaged over five different initializations).
The x-axis shows increasing treatment assignment strength (βXT ). Each column corresponds to a different DGP. The top
and bottom rows present the results for the non-homophilous (BA) and homophilous networks, respectively.

In Figures 6 and 7, we visualize the impact of balancing node representations on the test set result for βXNY =1.5 (as used
in the experiments in Section 4.1). In this setting, balancing is important for accurately estimating treatment effects when
the DGP includes either only an individual treatment effect or both an individual and a spillover effect. In contrast to the
findings in Section 4.2, balancing does not seem to affect estimation performance when only spillover effects are present.
A possible explanation is that, in this setting, the effect of XNi

on Yi is substantially stronger than the effect of TNi
on Yi.

As a result, learning treatment-invariant representations may discard too much relevant information. However, this hypothesis
requires further investigation. Nevertheless, consistent with the findings in Section 4.2, the effect of balancing appears to
be relatively larger in the homophilous setting when both effects are present.
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Figure 6: Impact of balancing node representations in HINet on test CNEE (averaged over five different initializations) for
βXNY =1.5. The x-axis shows increasing treatment assignment strength (βXT ). Each column corresponds to a different
DGP. The top and bottom rows present the results for the non-homophilous (BA) and homophilous networks, respectively.
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Figure 7: Impact of balancing node representations in HINet on test PEHNE (averaged over five different initializations)
for βXNY =1.5. The x-axis shows increasing treatment assignment strength (βXT ). Each column corresponds to a different
DGP. The top and bottom rows present the results for the non-homophilous (BA) and homophilous networks, respectively.
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