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ABSTRACT

The accessibility surge and abuse risks of user-friendly image editing models have
created an urgent need for generalizable, up-to-date methods for Image Manipula-
tion Detection and Localization (IMDL). Current IMDL research typically uses
cross-dataset evaluation, where models trained on one benchmark are tested on oth-
ers. However, this simplified evaluation approach conceals the fragility of existing
methods when handling diverse AI-generated content, leading to misleading impres-
sions of progress. This paper challenges this illusion by proposing NeXT-IMDL,
a large-scale diagnostic benchmark designed not just to collect data, but to probe
the generalization boundaries of current detectors systematically. Specifically,
NeXT-IMDL categorizes AIGC-based manipulations along four fundamental axes:
editing models, manipulation types, content semantics, and forgery granularity.
Built upon this, NeXT-IMDL implements five rigorous cross-dimension evaluation
protocols. Our extensive experiments on 11 representative models reveal a critical
insight: while these models perform well in their original settings, they exhibit
systemic failures and significant performance degradation when evaluated under
our designed protocols that simulate real-world various generalization scenarios.
By providing this diagnostic toolkit and the new findings, we aim to advance the
development towards building truly robust, next-generation IMDL models.

1 INTRODUCTION

The rapid popularization of easy-to-use generative image editing models (AI, 2023; Zhao et al.,
2024a) has largely reduced the barrier of creating authentic manipulated images, shifting from
requiring professional Photoshop expertise to a one-click prompt conversation with Multimodal Large
Language Models (MLLMs) (OpenAI, 2025). While this advancement fuels mass creativity, it also
presents a formidable challenge to information integrity, as malicious actors can now produce highly
plausible forgeries with unprecedented ease.

In response, the research community has developed a number of Image Manipulation Detection &
Localization (IMDL) models (Sun et al., 2024; Wang et al., 2025; Huang et al., 2024), reaching ever-
growing performances under established evaluation protocols. However, we argue that the perceived
progress in this field might be a “benchmark illusion”. Most existing detectors are evaluated on
datasets with a narrow scope of manipulation methods (Sun et al., 2024; Huang et al., 2024) or under
simplistic “train-on-one, test-on-others” protocols (Wang et al., 2025). This creates a dangerous
disconnect between high reported scores and a model’s true robustness in real-world scenarios, where
it must confront an unpredictable and ever-expanding universe of forgery techniques. For example, an
IMDL model (Wang et al., 2025) can achieve excellent performance when evaluated on a narrow set
of familiar manipulation types Wang et al. (2025), creating a misleading impression of its real-world
robustness. This apparent success, however, is brittle. As demonstrated in our cross-type evaluation
(Table 4.2), the very same model can experience a dramatic performance collapse when confronted
with unseen forgery techniques, thus revealing a critical fragility that could lead to the deployment of
unreliable forensics systems.

On the other hand, existing benchmarks on AIGC manipulation have largely pushed forward the
data scale Wang et al. (2025), whereas the manipulation diversity therein often lacks a systematic
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Figure 1: Overview of NeXT-IMDL. We organize predominant works in various dimensions. More-
over, we propose to decouple the AIGC IMDL task into four key aspects and build five comprehensive
evaluation protocols. Insights are extracted from the results of our extensive experiments.

structure, focusing on narrow classes of manipulation models or types. The failure of state-of-the-art
(SoTA) models from these benchmarks to generalize under our rigorous protocols directly exposes
the “benchmark illusion”. We therefore argue that the root cause of this illusion is the absence
of a systematic framework to dissect the challenge and rigorously probe for model weaknesses.
To address this gap, we propose the first comprehensive framework to categorize and analyze
AIGC-based manipulations along four distinct and crucial axes of IMDL generalization. Each axis
represents a critical potential failure point for a detector: (1) Cross-Edit-Models tests for overfitting
to the unique "fingerprints" of specific generator architectures, a vital capability as new models are
released constantly. (2) Cross-Edit-Types evaluates whether a model has learned the underlying
concept of a forgery, or if it has merely memorized the patterns of a specific task like removal (Ekin
et al., 2024; Li et al., 2025), replacement (alimama creative, 2024b; Rombach & Esser, 2022), and
addition (Wasserman et al., 2024). (3) Cross-Semantic-Labels directly confronts the pervasive issue
of "shortcut learning" (Geirhos et al., 2020), examining if a model is truly identifying manipulation
artifacts or just flagging images with their unique semantic content. (4) Cross-Edit-Granularity
assesses a model’s multi-scale analysis capability, as detecting a tiny, localized edit presents a tougher
challenge than spotting a large, obvious forgery. To our knowledge, this is the first work to explicitly
define this multi-dimensional problem space for AIGC-based IMDL evaluation, shifting the goal
from simply measuring general performances to diagnostically understanding the limits of existing
approaches.

Built upon our proposed four-dimensional landscape, we introduce NeXT-IMDL, a large-scale
diagnostic benchmark for NeXT-Generation Image Manipulation Detection & Localization. The
design of NeXT-IMDL is directly guided by the need to populate these four axes with unprecedented
diversity, providing the statistical power required for meaningful cross-domain evaluation. Its
composition—incorporating 32 widely-used academic and commercial editing tools, covering 4
distinct manipulation types guided by masks, text, and reference images, and spanning a wide range
of semantic categories and forgery sizes—is not an end in itself, but a necessary foundation to
operationalize our diagnostic approach. The benchmark is thus aimed to serve as an adversarial
“stress test,” revealing failure modes that remain invisible under conventional evaluation.

Our contributions are threefold: (1) Construction of a large-scale and diverse IMDL training and
evaluation benchmark. NeXT-IMDL implements 32 different image editing techniques, including
state-of-the-art open-source models and popular commercial tools, such as the just-released GPT-
Image-1 (OpenAI, 2025) and Gemini-2.0-flash-Image (Google DeepMind Team). (2) We establish
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Table 1: Comparison of previous image manipulation and detection datasets. NeXT-IMDL sub-
stantially diversifies previous datasets in terms of the number of included editing methods and
manipulation diversity. Rem.

Type Name Venue Sample Number Traditional
Manipulation

AIGC
Real Manipulated Methods Num. Model Type Conditions Manipulation

Traditional

Columbia(Ng & Chang, 2004) ICME2006 183 180 splice — — — —
CASIAv2(Dong et al., 2013a) ISIP2013 7491 5123 copy-move;splice — — — —

COVERAGE(Wen et al., 2016a) ICIP2016 100 100 copy-move — — — —
In Wild(Huh et al., 2018) ECCV2018 0 201 splice — — — —

NIST16(Guan et al., 2019) WACVW2019 875 564 copy-move;splice;remove — — — —
Fantastic Reality(Kniaz et al., 2019) NIPS2019 16,592 19,423 copy-move;splice;remove — — — —

TrainFors(Nandi et al., 2023) ICCVW2023 200,000 800,000 copy-move;splice;remove — — — —
MIML(Qu et al., 2024) CVPR2024 0 123,150 splice — — — —

Traditional
+AIGC

IMD2020
(Novozamsky et al., 2020) WACV2020 35,000 35,000 copy-move;

splice;remove 1 GAN Mask Rep.

AIGC

AutoSplice(Jia et al., 2023) CVPRW2023 3,621 2,273 — 1 Diffusion Mask Rep.
CocoGlide(Guillaro et al., 2022) CVPR2023 0 512 — 1 Diffusion Mask Rep.

GRE(Sun et al., 2024) MM 2024 0 228,650 — 5 GAN, Diffusion Mask Rem., Rep., Add.
GIM(Chen et al., 2025) AAAI2025 1,140,000 1,140,000 — 3 Diffusion Mask Rem., Rep.

SID-Set(Huang et al., 2024) CVPR2025 100,000 100,000 — 1 Diffusion Mask Rep.
OpenSDI(Wang et al., 2025) CVPR2025 300,000 450,000 — 5 Diffusion; FLUX Mask Rep., Rem.

DiQuID(Giakoumoglou et al., 2025) arXiv2025 78,000 95,000 — 6 Diffusion; CNNs Text, Mask Rep., Rem.

NeXT-IMDL(Ours) — 558,269 558,269 — 32 GAN; Diffusion;
FLUX; Commercial

Mask, Text,
Ref.Image

Rem., Rep.,
Add., Null-Text

i) Types of AIGC Manipulations: removal (Rem.), replacement (Rep.), addition (Add.), null-text (Null-Text).

5 evaluation protocols. Through our extensive experiments of SoTA models, including 6 detection
& localization methods, covering representative models built for both traditional and AIGC-based
manipulations, and 5 binary detection methods, we found that while achieving satisfactory results
on their original settings, all 11 models fail to maintain their original performance and would
drop even more significantly when conducting cross-setting evaluation. We accordingly provide 9
valuable findings to the community and aspire to inspire the development of next-generation image
manipulation detection & localization models.

2 RELATED WORKS

Generative image editing. Image editing techniques have evolved significantly with generative
models. Early methods like basic diffusion(Bertalmio et al., 2000; 2001; Bertalmio, 2005; Chan &
Shen, 2001) and exemplar-based approaches(Criminisi et al., 2004; Jin & Ye, 2015; Kawai et al.,
2015; Guo et al., 2017) have been succeeded by sophisticated GAN-based models like MAT(Li
et al., 2022) and LaMa(Suvorov et al., 2022), and further by powerful diffusion models such as
Stable Diffusion(Rombach et al., 2022) and ControlNet(Zhang et al., 2023b). Despite these advances,
datasets for evaluating generative editing detection like DeepArt(Wang et al., 2023a), CiFAKE(Bird &
Lotfi, 2024), and GenImage(Zhu et al., 2023) remain limited, as they primarily focus on image-level
detection rather than the more challenging task of localization. This poses significant challenges for
developing robust and generalizable detection models.

AIGC detection datasets and benchmarks. While AIGC detection benchmarks historically focused
on facial manipulations with datasets like ForgeryNet(He et al., 2021), DeepFakeFace(Song et al.,
2023), and DFFD(Cheng et al., 2024), recent works such as GenImage(Zhu et al., 2023), HiFi-
IFDL(Guo et al., 2023), DiffForensics(Wang et al., 2023c), and CIFAKE(Bird & Lotfi, 2024) have
expanded to general content from GANs and diffusion models(Ho et al., 2020). However, many
datasets are synthetically generated (e.g., ForgeryNet(He et al., 2021), ASVspoof(Liu et al., 2023;
Wang et al., 2020), DFDC(Dolhansky et al., 2020)), inadequately representing real-world deepfakes.
Current limitations include outdated in-the-wild video data(Zi et al., 2020; Pu et al., 2021) and
minimal linguistic diversity in audio datasets(Reimao & Tzerpos, 2019; Wang et al., 2024c; Liu et al.,
2023; Pu et al., 2021), highlighting the need for more comprehensive benchmarks.

Image manipulation detection and localization. The paradigm for image manipulation detection
primarily focuses on identifying low-level artifacts. Models like SPAN(Hu et al., 2020) and ManTra-
Net(Wu et al., 2019) incorporate filters such as SRM(Zhou et al., 2018) and BayarConv(Bayar
& Stamm, 2018) into VGG(Simonyan & Zisserman, 2014) backbones to extract these features, a
technique also seen in MVSS-Net(Dong et al., 2021). Recent approaches tackle generalization
challenges via data augmentation(Wang & Deng, 2021), adversarial training(Chen et al., 2022), and
reconstruction techniques(Cao et al., 2022), while others explore frequency domain features(Jeong
et al., 2022; Tan et al., 2024b) or spatial-spectral fusion(Duan et al., 2025; Wang et al., 2023b). The
field has progressed to include localization, with works(Guillaro et al., 2022; Miao et al., 2023;
Nguyen et al., 2024; Zhang et al., 2023a; 2024b) constructing datasets with manipulated masks.
Nevertheless, many methods still struggle with overfitting(Sun et al., 2023; Zhou et al., 2023) and
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Table 2: Methods included in NeXT-IMDL
Method ID Edit-Types Venue Condition Data Use Sample CodeRem. Rep. Add. Null-Text

Blended-Diffusion (Avrahami et al., 2022) 1 ✓ CVPR 2022 Mask + Text 6,043 Link
PbE (Yang et al., 2023) 2 ✓ arXiv 2022 Mask + Ref.Image 8,778 Link

SD2-Inpainting (AI, 2022) 3 ✓ ✓ ✓ HF 2022 Mask + Src./Tar. Prompt 46,226 Link
Inpainting-Anything (Yu et al., 2023) 4 ✓ ✓ arXiv 2023 Mask + Text 24,129 Link

anything-4.0-inpainting (Sanster, 2024) 5 ✓ HF 2023 Mask + Src./Tar. Prompt 5,116 Link
dreamshaper-8-inpainting (Lykon, 2024) 6 ✓ ✓ HF 2023 Mask + Src./Tar. Prompt 28,945 Link

SDXL-Inpainting (AI, 2023) 7 ✓ ✓ HF 2023 Mask + Src./Tar. Prompt 26,063 Link
Blended-Latent-Diffusion (Avrahami et al., 2023) 8 ✓ ✓ SIGGRAPH 2023 Mask + Text 19,651 Link

ZONE (Li et al., 2024) 9 ✓ ✓ CVPR 2024 Mask + Text 25,725 Link
PowerPaint (Zhuang et al., 2024) 10 ✓ ✓ ✓ ECCV 2024 Mask + Text Detection 40,183 Link

UltraEdit (Zhao et al., 2024a) 11 ✓ ✓ NeurIPS 2024 Mask + Text & Localization 8,395 Link
CLIPAway (Ekin et al., 2024) 12 ✓ NeurIPS 2024 Mask (Train/Val/Test) 17,586 Link
Diffree (Zhao et al., 2024b) 13 ✓ ✓ arXiv 2024 Mask + Text 7,585 Link

Kolors-Inpainting (Kwai-Kolors, 2024) 14 ✓ HF 2024 Mask + Src./Tar. Prompt 7,258 Link
SD3-Controlnet-Inpainting (alimama creative, 2024b) 15 ✓ HF 2024 Mask + Src./Tar. Prompt 8,699 Link

SD-v1.5-Inpainting (Rombach & Esser, 2022) 16 ✓ ✓ HF 2024 Mask + Src./Tar. Prompt 29,013 Link
FLUX-Inpainting (alimama creative, 2024a) 17 ✓ ✓ ✓ HF 2024 Mask + Src./Tar. Prompt 38,180 Link

HD-Painter (Manukyan et al., 2023) 18 ✓ ICLR 2025 Mask + Text 9,257 Link
RORem (Li et al., 2025) 19 ✓ CVPR 2025 Mask 17,082 Link

ACE++(Mao et al., 2025) 20 ✓ ✓ HF 2025 Mask + Text 18,908 Link
inst-inpaint (Yildirim et al., 2023) 21 ✓ arXiv 2023 Text 19,342 Link

InstructDiffusion (Geng et al., 2024) 22 ✓ ✓ CVPR 2024 Text 28,862 Link
HIVE (Zhang et al., 2024a) 23 ✓ ✓ ✓ arXiv 2024 Text Binary Detection 43,209 Link

RF-Solver-Edit (Wang et al., 2024a) 24 ✓ ✓ arXiv 2024 Src./Tar. Prompt (Train/Val/Test) 23,836 Link
FlowEdit (Kulikov et al., 2024) 25 ✓ arXiv 2024 Src./Tar. Prompt 9,516 Link

FireFlow (Deng et al., 2024) 26 ✓ ✓ arXiv 2024 Src./Tar. Prompt 23,797 Link
Paint-by-Inpaint(Wasserman et al., 2024) 27 ✓ CVPR 2025 Text 14,385 Link

Doubao Vision(ByteDance, 2023) 28 ✓ \ Mask + Text Detection 500 Link
Meitu(Meitu Network Technology Co., 2023) 29 ✓ \ Mask & Localization 500 Link

Photoshop(Inc., 2023) 30 ✓ \ Mask (Test Only) 500 Link
GPT-Image-1(OpenAI, 2025) 31 ✓ ✓ ✓ \ Text Binary Detection 500 Link
Gemini-2.0-flash(Team, 2024) 32 ✓ ✓ ✓ \ Text (Test Only) 500 Link

Sum 32 15 25 11 5 558,269
i) Venue of Methods: HF refers to models’ release date in Huggingface

generalization, especially for non-facial content, due to limited high-quality data(Dong et al., 2013a;
Novozamsky et al., 2020).

3 NEXT-IMDL

The primary goal of the NeXT-IMDL benchmark is to provide a comprehensive and diagnostic
testbed for identifying images tampered by generative models and localizing the manipulated areas.
We aim to systematically operationalize the four-dimensional framework (Models, Types, Semantics,
and Granularity) proposed in the introduction. This principle dictates a focus on creating structured,
multi-faceted diversity, rather than merely accumulating a large volume of data. The following
subsections detail our paradigm for benchmark construction, which emphasizes systematic diversity
and the resulting dataset.

3.1 SYSTEMATIC DIVERSITY IN BENCHMARK CONSTRUCTION

Recent benchmarks such as OpenSDI (Wang et al., 2025), SIDA (Huang et al., 2024), and GRE (Sun
et al., 2024) have made valuable contributions by introducing AIGC-generated data into the IMDL
field. However, their construction methodologies often lack systematic and disentangled diversity.
For instance, efforts (Wang et al., 2025) have focused on expanding the number of editing models,
but often within the same technical family (e.g., numerous variants of Diffusion Models), which
may produce shared, predictable artifacts. Other works (Wang et al., 2025; Huang et al., 2024; Sun
et al., 2024) might concentrate primarily on a single guidance condition, like mask-based inpainting,
thus failing to capture the full spectrum of real-world user interactions, which include text- or
reference-guided edits. Consequently, the diversity within these benchmarks remains limited.

The construction of NeXT-IMDL is founded on the principle of systematic, multi-faceted diversity
from the ground up. This is achieved through three core pillars: (1) Diverse Proposal Generation: We
leverage a suite of four distinct VLM families to generate editing intentions, mitigating the risk of
model-specific biases and ensuring a wide semantic range of manipulation proposals. (2) Diverse
Manipulation Methods: We employ 32 editing models that span different architectures, training
paradigms, and sources (state-of-the-art academic vs. ubiquitous commercial tools), ensuring a broad
and challenging distribution of forgery traces. (3) Diverse Guidance Conditions: We simulate a
variety of real-world editing scenarios by systematically incorporating multiple guidance modalities,
including textual instructions, region masks, and reference images. This matrix-like approach
to diversity ensures our benchmark contains structured, disentangled data, enabling the rigorous
diagnostic evaluations that were previously infeasible.
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Figure 2: Generation pipeline of our proposed NeXT-IMDL dataset.
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Figure 3: Samples from IMDL.

3.2 DATASET CONSTRUCTION

Manipulation methods selection. To ensure our benchmark reflects the complexity of real world, a
comprehensive investigation of existing generative editing tools was conducted. Our survey spanned
three key areas: latest state-of-the-art academic works, popular open-source platforms on GitHub
and Huggingface Models, and widely-used commercial applications like Photoshop (Inc., 2023) and
GPT-Image-1 (OpenAI, 2025). From an initial pool of over 60 candidates, we selected and deployed
32 distinct models that demonstrated high-quality results and robust instruction-following capabilities,
covering a wide spectrum of underlying architectures and generative paradigms. Details of these
models are summarized in Table 2.

Original data collection and VLM proposal. We sourced pristine images from established public
datasets, including Flickr30k (Plummer et al., 2015), Microsoft COCO (Lin et al., 2014), and
OpenImages V7 (Inc., 2017), to serve as the foundation for our benchmark. To generate a diverse
and unbiased set of editing intentions, we then prompted a suite of four distinct VLM families
(InternVL (Chen et al., 2024b;a), QWen-VL (Wang et al., 2024b; Bai et al., 2025), GPT-4o (OpenAI,
2024a;b), and Gemini (Team, 2024)) to produce manipulation instructions. The corresponding target
regions for these instructions were subsequently localized using LangSAM (IndeedMiners, 2025) to
create precise segmentation masks.

Manipulation samples generation and post-filtering. The collected source images, textual instruc-
tions, and region masks were used to generate manipulated samples across our 32 editing models,
covering a wide range of guidance conditions. To guarantee the quality and realism of the final
dataset, a rigorous two-stage filtering process was implemented. First, following practice in the
generative image editing field (Ma et al., 2024), an automated stage discarded low-quality or failed
edits using quantitative metrics like SSIM and CLIP-Similarity-Score (Radford et al., 2021). This was
followed by a manual verification process to ensure all samples meet a high standard of visual fidelity.
Volunteers are recruited to perform image editing using commercial tools like Photoshop (Inc.,
2023). This meticulous process resulted in 558,269 high-quality manipulated samples, which were
partitioned into training, validation, and testing sets with a 6:1:1 ratio.

5
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Table 3: Protocol-1: Cross-EM. Removal. Image-level (detection) performance.
Set - 1 Set - 2 Set - 3 Set - 4 Avg

Inp-Any ZONE CLIPAway FLUX-Inp SD2-Inp PowerP RORem Inst-Inp HIVE Ins-Diff

Set - 1

FreqNet 0.543 0.627 0.549 0.608 0.635 0.669 0.635 0.657 0.617 0.635 0.618
UniFD 0.643 0.597 0.727 0.666 0.704 0.741 0.714 0.657 0.690 0.714 0.685
NPR 0.512 0.615 0.611 0.618 0.705 0.800 0.685 0.651 0.678 0.688 0.656
AIDE 0.491 0.555 0.566 0.477 0.608 0.691 0.635 0.611 0.585 0.565 0.579
FIRE 0.585 0.583 0.585 0.554 0.630 0.743 0.676 0.617 0.626 0.642 0.624

Set - 2

FreqNet 0.543 0.627 0.549 0.608 0.635 0.669 0.635 0.657 0.617 0.635 0.618
UniFD 0.643 0.597 0.727 0.666 0.704 0.741 0.714 0.657 0.690 0.714 0.685
NPR 0.512 0.615 0.611 0.618 0.705 0.800 0.685 0.651 0.678 0.688 0.656
AIDE 0.491 0.555 0.566 0.477 0.608 0.691 0.635 0.611 0.585 0.565 0.579
FIRE 0.585 0.583 0.585 0.554 0.630 0.743 0.676 0.617 0.626 0.642 0.624

Set - 3

FreqNet 0.506 0.899 0.504 0.504 0.504 0.507 0.515 0.965 0.971 0.977 0.685
UniFD 0.628 0.574 0.738 0.692 0.725 0.726 0.695 0.672 0.735 0.729 0.691
NPR 0.497 0.852 0.526 0.549 0.537 0.458 0.540 0.881 0.873 0.851 0.656
AIDE 0.594 0.693 0.458 0.455 0.478 0.746 0.528 0.839 0.744 0.672 0.621
FIRE 0.509 0.880 0.495 0.498 0.500 0.492 0.511 0.953 0.962 0.962 0.676

Set - 4

FreqNet 0.525 0.871 0.531 0.528 0.516 0.495 0.549 0.847 0.893 0.929 0.668
UniFD 0.640 0.544 0.712 0.663 0.682 0.701 0.674 0.600 0.661 0.694 0.657
NPR 0.513 0.842 0.645 0.582 0.559 0.473 0.606 0.801 0.767 0.887 0.668
AIDE 0.550 0.603 0.521 0.501 0.491 0.590 0.545 0.603 0.590 0.809 0.580
FIRE 0.506 0.830 0.506 0.501 0.500 0.496 0.508 0.872 0.895 0.957 0.657

Table 4: Protocol-1: Cross-EM. Removal. Pixel-level (localization) performance.
Set-1 Set-2 Avg

InpAny ZONE CLIPW FLUX-Inp SD2-Inp PowerP RORem
IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

Set-1

MVSS-Net 0.190 0.223 0.205 0.245 0.148 0.185 0.151 0.188 0.046 0.061 0.099 0.126 0.042 0.057 0.126 0.155
PSCC-Net 0.178 0.225 0.127 0.178 0.129 0.176 0.121 0.168 0.043 0.061 0.019 0.043 0.031 0.030 0.092 0.126

TruFor 0.242 0.286 0.191 0.235 0.164 0.202 0.159 0.195 0.039 0.051 0.101 0.128 0.048 0.066 0.135 0.166
IML-ViT 0.236 0.276 0.156 0.194 0.165 0.203 0.192 0.233 0.038 0.050 0.037 0.048 0.016 0.023 0.120 0.147
Mesorch 0.260 0.294 0.255 0.295 0.176 0.210 0.188 0.220 0.028 0.035 0.079 0.096 0.030 0.039 0.145 0.170

MaskCLIP 0.428 0.505 0.398 0.496 0.372 0.452 0.359 0.433 0.091 0.118 0.260 0.327 0.108 0.145 0.288 0.354

Set-2

MVSS-Net 0.034 0.047 0.057 0.075 0.107 0.138 0.040 0.056 0.072 0.098 0.238 0.286 0.153 0.186 0.100 0.127
PSCC-Net 0.023 0.034 0.024 0.036 0.100 0.141 0.017 0.025 0.086 0.124 0.171 0.227 0.119 0.163 0.077 0.107

TruFor 0.023 0.032 0.034 0.046 0.114 0.144 0.027 0.035 0.072 0.094 0.234 0.279 0.149 0.184 0.093 0.116
IML-ViT 0.024 0.031 0.028 0.036 0.198 0.234 0.075 0.097 0.096 0.119 0.295 0.342 0.024 0.032 0.106 0.127
Mesorch 0.031 0.041 0.036 0.045 0.184 0.218 0.070 0.088 0.114 0.139 0.251 0.291 0.013 0.017 0.100 0.120

MaskCLIP 0.136 0.178 0.076 0.102 0.272 0.335 0.056 0.071 0.167 0.212 0.499 0.604 0.334 0.408 0.220 0.273

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTS SETUP

All IMDL models (Dong et al., 2021; Liu et al., 2021; Guillaro et al., 2022; Ma et al., 2023; Zhu et al.,
2024; Wang et al., 2025) in our research scope are evaluated using the implementation in the IMDL-
BenCo model zoo with default settings. We use the CAT-Net (Kwon et al., 2022) and TruFor (Guillaro
et al., 2022) data protocol in IMDL-BenCo for training set organization to achieve a balance between
computation resources and sample representatives. For the binary AIGC detection models studies in
our research, we use their default pre-processing, training, and evaluation configurations, and rewrite
their dataloaders to align with the IMDL-BenCo data protocol for a fair comparison. All training
configurations and codes will be publicly available for easy reproduction.

4.2 EVALUATIONS, FINDINGS, AND ANALYSIS

To systematically diagnose the generalization capabilities of current IMDL models, we conduct exten-
sive experiments under five rigorous evaluation protocols designed to probe for specific weaknesses.
Each protocol creates a challenging cross-domain scenario by ensuring the training and testing sets are
disjoint along a key dimension. Specifically, Protocol 1: Cross-Edit-Models (Cross-EM) assesses
generalization to unseen manipulation tools by training on a subset of editing models (Mtrain) and
testing on a disjoint set (Mtest, where Mtrain ∩Mtest = ∅). Similarly, Protocol 2: Cross-Edit-Types
(Cross-ET) tests for a conceptual understanding of forgery by training on one manipulation type
(Ttrain) and evaluating on others (Ttest, with Ttrain ∩ Ttest = ∅). To probe for semantic shortcut learning,
Protocol 3: Cross-Semantic-Labels (Cross-SL) trains on specific object categories (Strain) and
tests on unseen ones (Stest). Protocol 4: Cross-Edit-Granularity (Cross-EG) challenges a model’s
multi-scale analysis by training and testing on disjoint sets of forgery sizes (Gtrain and Gtest). Finally,
Protocol 5: Toward-Realworld-IMDL (RealWorld-IMDL) measures the critical “lab-to-wild” gen-
eralization gap by training on academic models (Macademic) and evaluating exclusively on forgeries
from commercial tools (Mcommercial). From the extensive results of these evaluations (as shown in
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Table 5: Protocol-2: Cross-ET. Pixel-level (localization) performance on Protocol-2.
Rem. Rep. Add. Avg
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IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU IoU

Rem.

MVSS-Net 0.082 0.169 0.175 0.140 0.134 0.130 0.107 0.154 0.112 0.115 0.115 0.134 0.073 0.099 0.121 0.114 0.129 0.040 0.072 0.054 0.113
PSCC-Net 0.044 0.081 0.061 0.057 0.061 0.056 0.066 0.056 0.063 0.057 0.068 0.055 0.026 0.060 0.053 0.049 0.065 0.006 0.009 0.006 0.050

TruFor 0.066 0.199 0.137 0.156 0.129 0.138 0.169 0.173 0.127 0.118 0.100 0.127 0.058 0.087 0.119 0.110 0.158 0.063 0.115 0.054 0.120
IML-ViT 0.085 0.267 0.192 0.193 0.218 0.209 0.091 0.246 0.119 0.120 0.121 0.126 0.041 0.043 0.085 0.110 0.152 0.087 0.107 0.038 0.133
Mesorch 0.000 0.079 0.004 0.009 0.000 0.000 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.002 0.000 0.002 0.000 0.000 0.005

MaskCLIP 0.163 0.410 0.388 0.375 0.331 0.306 0.448 0.385 0.254 0.256 0.207 0.235 0.163 0.152 0.279 0.230 0.321 0.193 0.348 0.123 0.278

Rep.

MVSS-Net 0.074 0.002 0.056 0.135 0.069 0.004 0.024 0.273 0.219 0.215 0.200 0.190 0.142 0.190 0.236 0.163 0.328 0.081 0.174 0.078 0.143
PSCC-Net 0.093 0.002 0.075 0.112 0.045 0.012 0.329 0.186 0.164 0.163 0.184 0.117 0.107 0.171 0.227 0.139 0.166 0.048 0.112 0.045 0.125

TruFor 0.047 0.000 0.029 0.123 0.043 0.001 0.352 0.220 0.187 0.171 0.173 0.217 0.059 0.155 0.163 0.126 0.198 0.069 0.163 0.059 0.128
IML-ViT 0.087 0.003 0.060 0.140 0.098 0.007 0.374 0.262 0.203 0.204 0.213 0.241 0.111 0.210 0.242 0.161 0.202 0.077 0.170 0.096 0.158
Mesorch 0.059 0.001 0.039 0.121 0.067 0.004 0.330 0.208 0.174 0.169 0.172 0.218 0.100 0.165 0.209 0.130 0.176 0.067 0.116 0.067 0.130

MaskCLIP 0.182 0.030 0.153 0.344 0.157 0.021 0.752 0.603 0.520 0.477 0.459 0.582 0.457 0.470 0.553 0.361 0.473 0.273 0.543 0.278 0.385

Add.

MVSS-Net 0.009 0.001 0.007 0.018 0.020 0.001 0.008 0.041 0.029 0.033 0.022 0.036 0.035 0.029 0.036 0.018 0.034 0.181 0.318 0.280 0.058
PSCC-Net 0.022 0.001 0.009 0.039 0.025 0.002 0.016 0.075 0.050 0.055 0.036 0.045 0.053 0.047 0.050 0.036 0.062 0.167 0.266 0.250 0.065

TruFor 0.007 0.000 0.005 0.019 0.013 0.000 0.006 0.048 0.036 0.038 0.021 0.040 0.025 0.032 0.036 0.018 0.045 0.166 0.344 0.290 0.059
IML-ViT 0.004 0.000 0.007 0.007 0.003 0.001 0.002 0.038 0.014 0.024 0.005 0.011 0.015 0.007 0.017 0.008 0.021 0.240 0.383 0.082 0.044
Mesorch 0.003 0.000 0.002 0.009 0.008 0.001 0.004 0.022 0.014 0.018 0.009 0.014 0.019 0.014 0.013 0.010 0.020 0.223 0.353 0.304 0.053

MaskCLIP 0.021 0.003 0.010 0.054 0.037 0.002 0.027 0.118 0.083 0.079 0.041 0.084 0.086 0.055 0.072 0.034 0.096 0.569 0.800 0.702 0.149

Table 6: Protocol-3: Cross-SL. Pixel-
level (localization) performance on Protocol-3
within the replacement editing.

Training Model Human Animal Object Avg

IoU F1 IoU F1 IoU F1 IoU F1

Human

MVSS-Net 0.114 0.168 0.115 0.169 0.121 0.171 0.117 0.169
PSCC-Net 0.118 0.169 0.102 0.141 0.064 0.088 0.094 0.133

TruFor 0.127 0.171 0.066 0.092 0.043 0.059 0.079 0.108
IML-ViT 0.153 0.200 0.102 0.133 0.057 0.074 0.104 0.136
Mesorch 0.128 0.169 0.054 0.074 0.032 0.043 0.071 0.095

MaskCLIP 0.391 0.496 0.122 0.159 0.114 0.145 0.209 0.267

Animal

MVSS-Net 0.088 0.130 0.183 0.240 0.094 0.131 0.122 0.167
PSCC-Net 0.093 0.132 0.164 0.219 0.079 0.107 0.112 0.153

TruFor 0.039 0.054 0.168 0.211 0.036 0.047 0.081 0.104
IML-ViT 0.064 0.088 0.184 0.228 0.048 0.062 0.099 0.126
Mesorch 0.028 0.038 0.199 0.242 0.036 0.046 0.088 0.109

MaskCLIP 0.184 0.242 0.471 0.570 0.165 0.206 0.274 0.339

Object

MVSS-Net 0.085 0.126 0.123 0.172 0.133 0.178 0.114 0.159
PSCC-Net 0.105 0.150 0.124 0.167 0.132 0.175 0.120 0.164

TruFor 0.022 0.031 0.055 0.072 0.101 0.128 0.059 0.077
IML-ViT 0.063 0.085 0.080 0.103 0.108 0.135 0.083 0.108
Mesorch 0.046 0.060 0.053 0.069 0.107 0.131 0.069 0.087

MaskCLIP 0.224 0.293 0.252 0.316 0.361 0.433 0.279 0.347

Table 7: Protocol-4: Cross-EG. Pixel-level
(localization) performance on Protocol-4, using
all editing samples for the evaluation setup.

Training Model Area - 1 Area - 2 Area - 3 Avg

IoU F1 IoU F1 IoU F1 IoU F1

Area - 1

MVSS - Net 0.072 0.099 0.049 0.068 0.013 0.022 0.045 0.063
PSCC - Net 0.083 0.117 0.081 0.113 0.031 0.051 0.065 0.094

TruFor 0.052 0.067 0.020 0.029 0.002 0.003 0.025 0.033
IML - ViT 0.121 0.148 0.056 0.074 0.006 0.010 0.061 0.077
Mesorch 0.072 0.092 0.025 0.035 0.002 0.003 0.033 0.044

MaskCLIP 0.279 0.344 0.144 0.195 0.012 0.022 0.145 0.187

Area - 2

MVSS - Net 0.036 0.058 0.129 0.176 0.116 0.158 0.093 0.131
PSCC - Net 0.038 0.062 0.123 0.171 0.136 0.186 0.099 0.140

TruFor 0.061 0.080 0.140 0.171 0.068 0.093 0.089 0.115
IML - ViT 0.105 0.134 0.218 0.259 0.121 0.158 0.148 0.184
Mesorch 0.079 0.099 0.203 0.240 0.096 0.128 0.126 0.156

MaskCLIP 0.208 0.268 0.406 0.493 0.198 0.273 0.271 0.344

Area - 3

MVSS-Net 0.015 0.027 0.087 0.131 0.269 0.322 0.123 0.160
PSCC-Net 0.016 0.027 0.076 0.117 0.247 0.307 0.113 0.150

TruFor 0.030 0.046 0.124 0.163 0.286 0.334 0.147 0.181
IML-ViT 0.044 0.062 0.173 0.212 0.341 0.381 0.186 0.218
Mesorch 0.023 0.035 0.151 0.190 0.346 0.385 0.173 0.203

MaskCLIP 0.072 0.105 0.305 0.384 0.633 0.719 0.337 0.403

Table 3.2- 7, Bold & Underline: best & second best results), we derive and analyze the following
critical findings.

Findings-1: IMDL models show systematic and asymmetric semantics and granularity brit-
tleness. As demonstrated in our Protocol-3 (in Table 6) and Protocol-4 (in Table 7) test results,
models trained on one semantic or granularity set show a degradation of performance when there
is a shift in either factor. For some models, this brittleness is also asymmetric. For example, the
SoTA method, MaskCLIP, shows prominent generalization degradation when trained on “Human”
than on others. And in Protocol-4, nearly all tested models achieve the best overall performance
when trained on “Area-3”. These experimental results show that the feature spaces of existing IMDL
models are still prone to relying on semantic and granularity priors, showing brittleness to the bias of
training data. Searching for and building unbiased extractors to leverage “semantic-agnostic” and
“granularity-agnostic” features are important direction for constructing robust next-generation image
manipulation detectors.

Finding-2: The “universal donor” effect of removal forgeries. We find that models trained
exclusively on low-semantic tasks, specifically Object Removal, exhibit significantly better zero-
shot performance on high-semantic tasks like Object Replacement and Addition than the reverse
(Table 4.2, Fig 4). This strong asymmetry suggests that the Removal task acts as a “universal donor”
for learning generalizable forgery features. By stripping away the strong semantic cue of a newly
introduced object, the Removal task forces a “semantic decoupling,” compelling the model to learn the
fundamental, intrinsic artifacts of the generative filling process itself. This insight offers an actionable
strategy for building more robust IMDL models: prioritizing low-semantic tasks in pre-training or
data augmentation can instill a foundational understanding of manipulation physics over superficial
semantic cues.

Finding-3: The architectural advantage of utilizing foundation models. During our experiments,
we found that the MaskCLIP model shows a consistent and significant performance advantage over
other competitors. We attribute this dominance not to incremental improvements but to its foun-
dational Synergizing Pretrained Models (SPM) framework. Unlike monolithic models, MaskCLIP
synergizes two foundation models with complementary strengths: CLIP (Radford et al., 2021), with
its vast pre-training, provides robust global understanding; and MAE (He et al., 2022), which excels
at learning fine-grained pixel-level representations essential for precise localization. The success
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Figure 4: A brief visualization of models’ IoU scores in different protocols. It can be observed from
the chart that models’ performances would decline to varying degrees in all four cross-scene settings.

of MaskCLIP on our diagnostic benchmark indicates a potential paradigm shift for the IMDL field,
moving from designing specialized artifact extractors towards developing sophisticated methods to
align and fuse the powerful, pre-existing knowledge of multiple foundation models.

Finding-4: The “signal drowning” effect: why global AIGC detectors systematically fail at local
manipulation detection. The image-level evaluation in Protocol-1 (in Table 3.2) reveals that state-
of-the-art AIGC binary classifiers (e.g., UniFD, RINE) exhibit a systemic failure, with performance
often degrading to near-random chance. We identify the cause as the “signal drowning” effect. Global
detectors are trained to identify subtle, holistic artifacts distributed across an entire image. In a
locally manipulated image, the vast majority of the image is authentic, and its signal effectively
drowns out the weak forgery signal from the small manipulated patch. Lacking a localization
mechanism, the global detector cannot isolate the signal source, leading to a compromised decision.
This finding highlights a fundamental distinction between the tasks of global AIGC detection and
local manipulation detection (IMDL), proving that the direct application of global detectors to the
IMDL problem is a flawed approach and underscoring the necessity of specialized benchmarks like
NeXT-IMDL.

4.3 DISCUSSIONS

Discussion-1: Why is constructing a diverse dataset and benchmark critical for building the
next generation IMDL models? As indicated in previous studies in deepfake detection (Yan et al.,
2024b), AIGC detection (Park & Owens, 2024), and the preceding attempt in generative IMDL (Wang
et al., 2025), the performance of detectors shifts between samples generated by different models.
However, for the IMDL task, performance is affected by more factors, including the semantic labels
of the target object, the size of the tampered area, and so on. NeXT-IMDL, which greatly diversifies
the predominant works in various dimensions and evaluation protocols, is proposed to provide a
testbed for building the next-generation IMDL models. The decline of existing IMDL models when
conducting cross-scene evaluation in our proposed protocols further indicates the significance of
building our benchmark.

Discussion-2: What are the characteristics of the IMDL task in the AIGC era? Compared with
traditional manipulation operations, such as splicing and copy-move (Wang et al., 2022; Ma et al.,
2023), generative manipulation methods show the following features: (1) Harder to spot. Recently
released generative image editing methods (AI, 2023; Rombach & Esser, 2022; Mao et al., 2025)
can produce realistic samples, in which the manipulated areas are consistent with other parts of the
image, and there are also few forgeries in the boundary of the real and fake areas. (2) Richer diversity.
The advancement in AIGC (OpenAI, 2025) has greatly enriched the possibility of public art creation,
making diverse image editing easy to reach, such as style transfer (Yu et al., 2024), and background
tampering (Yu et al., 2024). Such diversity results in a large scope of semantics and forgery types,
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Figure 5: Qualitative results on NeXT-IMDL, Protocol-1.

making a generalizable IMDL model of urgent need. (3) Quicker evolution. The rapid development
of generative models (Tian et al., 2024) has made previous SoTA AIGC detection models (Tan et al.,
2024a; Yan et al., 2024a; Chu et al., 2024) quickly outdated. It is vital to develop an IMDL model
that can generalize to samples manipulated by unseen models or can adapt to new forgeries with an
acceptable cost.

Discussion-3: Can existing IMDL models, mainly designed for spotting traditional manipulation
forgeries, be effectively applied to solve the newly risen generative fill area localization problem?
No. As shown in our extensive experiments (e.g., Fig. 4), existing IMDL models exhibit unsatisfactory
performance in in-domain evaluation, and would drop even more when evaluated on different domains.
Although the previous method (Wang et al., 2025) that was especially designed for AIGC IMDL
shows outstanding and relatively generalizable performance in different protocols, it’s still far behind
the high scores of SoTA IMDL models (Ma et al., 2023; Zhu et al., 2024) on traditional manipulation
benchmarks (Dong et al., 2013b; Wen et al., 2016b; Hsu & Chang, 2006). We believe that building a
universal IMDL model in the AIGC era is still waiting for future exploration.

4.4 OPEN QUESTIONS FOR FUTURE RESEARCH

Questions-1: Beyond CLIP+MAE: What is the Ultimate Foundation Model for IMDL? The
success of MaskCLIP validates the robustness of large-scale pretrained feature extractors. However,
is this combination the ultimate solution? Future research could explore novel ways of leveraging
powerful pretrained backbones, for instance, by combining a semantic model like CLIP with a
diffusion model’s U-Net (Ronneberger et al., 2015) (for diffusion artifact expertise) or a dedicated
segmentation model like SAM (Kirillov et al., 2023) (for boundary precision).

Questions-2: How Can We Quantify and Actively Mitigate Semantic Bias? We confirmed a
hierarchy of semantic brittleness. This raises deeper questions: Can we develop a formal metric
to quantify a model’s “semantic dependency”? Furthermore, could novel training strategies, like
adversarial attacks on semantic features or contrastive losses that push object and forgery features
apart, be designed to explicitly enforce semantic agnosticism?

5 CONCLUSION

In this work, we focus on solving the problem of generative model-based image manipulation
detection and localization. We start our research by identifying the four key variants when detecting
AIGC manipulations: editing model, types, granularity, and the semantics of the editing area. We then
propose NeXT-IMDL, a large-scale generative-based image manipulation dataset and benchmark that
substantially diversifies previous works in manipulation methods, types, and evaluation protocols.
We hope our findings and discussions based on our extensive experiments can bring new insights to
the construction of next-generation IMDL models.
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ETHICS STATEMENT

Our work, which introduces the NeXT-IMDL benchmark, is fundamentally motivated by the goal
of contributing positively to society and human well-being by advancing the capabilities of image
manipulation detection. We are committed to the responsible stewardship of research and have closely
followed the ICLR Code of Ethics throughout this project.

Societal Benefit: The primary purpose of NeXT-IMDL is to provide the research community with
a robust and comprehensive tool to build and test next-generation detectors against a wide array of
AI-generated manipulations. By exposing the vulnerabilities of current models, we aim to spur the
development of more reliable technologies to combat the spread of visual misinformation and protect
information integrity.

Data and Privacy: The source images for our benchmark were collected from well-established,
publicly available datasets (Flickr30k, Microsoft COCO, and OpenImages V7). We have used this
data in a manner consistent with their original licenses and terms of use. Our data generation pipeline
was automated, and no private or sensitive personal information was targeted or used. Volunteers who
assisted in manual editing and quality checks did so with informed consent, and their contributions
were anonymized.

Potential for Misuse: We acknowledge that any research in the field of forgery detection carries
a potential dual-use risk. Malicious actors could theoretically study our benchmark to understand
detector weaknesses and create more sophisticated forgeries. However, we firmly believe that the
benefit of openly providing a challenging benchmark for defensive research significantly outweighs
this risk. The rapid evolution of generative models means that robust, public-facing evaluation tools
are essential for the defense to keep pace with, and ultimately get ahead of, potential threats.

Bias and Fairness: We have made a concerted effort to mitigate bias by incorporating a wide diversity
of manipulation models (32 total), manipulation types, semantic content, and forgery sizes. We used
four different VLM families to generate editing proposals to reduce the bias from any single model.
Nonetheless, we recognize that biases may still exist, inherited from the large-scale source datasets or
the generative models themselves. We encourage future work to further expand the diversity of the
benchmark, particularly across different cultural and demographic contexts.

Our research upholds the principles of honesty and scientific excellence by transparently documenting
our methodology and findings, with the ultimate goal of fostering a more secure and trustworthy
digital information ecosystem.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To this end, we will make our
dataset, code, and experimental configurations publicly available.

Dataset: The complete NeXT-IMDL dataset, comprising 558,269 high-quality manipulated samples
along with their corresponding pristine source images and ground-truth localization masks, will be
released. The release will include detailed metadata for each sample, specifying the editing model,
manipulation type, guidance condition, semantic label, and forgery granularity. A detailed description
of the dataset construction methodology, including source data collection, VLM-based proposal
generation, and the filtering process, can be found in Section 3 of the main paper.

Code: We will provide open-source access to the code used for all experiments. This includes scripts
for our five evaluation protocols (Cross-EM, Cross-ET, Cross-SL, Cross-EG, and RealWorld-IMDL),
data loading and processing, and model evaluation. As stated in Section 4.1, the implementations of
the evaluated IMDL models are based on the public IMDL-BenCo model zoo, and we will provide
the necessary configurations to replicate our training and testing results.

Experimental Details: All details required to reproduce our experimental results are provided in
Section 4 of the paper. This includes descriptions of the model training setups, the specific splits
for each evaluation protocol, and the metrics used for both image-level detection and pixel-level
localization. The generative models used to create the benchmark are comprehensively listed in Table
2.
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