NEXT-IMDL: BUILD BENCHMARK FOR NEXT-GENERATION IMAGE MANIPULATION DETECTION & LOCALIZATION

Anonymous authors

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

034

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

The accessibility surge and abuse risks of user-friendly image editing models have created an urgent need for generalizable, up-to-date methods for Image Manipulation Detection and Localization (IMDL). Current IMDL research typically uses cross-dataset evaluation, where models trained on one benchmark are tested on others. However, this simplified evaluation approach conceals the fragility of existing methods when handling diverse AI-generated content, leading to misleading impressions of progress. This paper challenges this illusion by proposing NeXT-IMDL, a large-scale diagnostic benchmark designed not just to collect data, but to probe the generalization boundaries of current detectors systematically. Specifically, NeXT-IMDL categorizes AIGC-based manipulations along four fundamental axes: editing models, manipulation types, content semantics, and forgery granularity. Built upon this, NeXT-IMDL implements five rigorous cross-dimension evaluation protocols. Our extensive experiments on 11 representative models reveal a critical insight: while these models perform well in their original settings, they exhibit systemic failures and significant performance degradation when evaluated under our designed protocols that simulate real-world various generalization scenarios. By providing this diagnostic toolkit and the new findings, we aim to advance the development towards building truly robust, next-generation IMDL models.

1 Introduction

The rapid popularization of easy-to-use generative image editing models (AI, 2023; Zhao et al., 2024a) has largely reduced the barrier of creating authentic manipulated images, shifting from requiring professional Photoshop expertise to a one-click prompt conversation with Multimodal Large Language Models (MLLMs) (OpenAI, 2025). While this advancement fuels mass creativity, it also presents a formidable challenge to information integrity, as malicious actors can now produce highly plausible forgeries with unprecedented ease.

In response, the research community has developed a number of Image Manipulation Detection & Localization (IMDL) models (Sun et al., 2024; Wang et al., 2025; Huang et al., 2024), reaching evergrowing performances under established evaluation protocols. However, we argue that the perceived progress in this field might be a "benchmark illusion". Most existing detectors are evaluated on datasets with a narrow scope of manipulation methods (Sun et al., 2024; Huang et al., 2024) or under simplistic "train-on-one, test-on-others" protocols (Wang et al., 2025). This creates a dangerous disconnect between high reported scores and a model's true robustness in real-world scenarios, where it must confront an unpredictable and ever-expanding universe of forgery techniques. For example, an IMDL model (Wang et al., 2025) can achieve excellent performance when evaluated on a narrow set of familiar manipulation types Wang et al. (2025), creating a misleading impression of its real-world robustness. This apparent success, however, is brittle. As demonstrated in our cross-type evaluation (Table 4.2), the very same model can experience a dramatic performance collapse when confronted with unseen forgery techniques, thus revealing a critical fragility that could lead to the deployment of unreliable forensics systems.

On the other hand, existing benchmarks on AIGC manipulation have largely pushed forward the data scale Wang et al. (2025), whereas the manipulation diversity therein often lacks a systematic

Figure 1: Overview of NeXT-IMDL. We organize predominant works in various dimensions. Moreover, we propose to decouple the AIGC IMDL task into four key aspects and build five comprehensive evaluation protocols. Insights are extracted from the results of our extensive experiments.

structure, focusing on narrow classes of manipulation models or types. The failure of state-of-the-art (SoTA) models from these benchmarks to generalize under our rigorous protocols directly exposes the "benchmark illusion". We therefore argue that the root cause of this illusion is the absence of a systematic framework to dissect the challenge and rigorously probe for model weaknesses. To address this gap, we propose the first comprehensive framework to categorize and analyze AIGC-based manipulations along four distinct and crucial axes of IMDL generalization. Each axis represents a critical potential failure point for a detector: (1) Cross-Edit-Models tests for overfitting to the unique "fingerprints" of specific generator architectures, a vital capability as new models are released constantly. (2) **Cross-Edit-Types** evaluates whether a model has learned the underlying concept of a forgery, or if it has merely memorized the patterns of a specific task like removal (Ekin et al., 2024; Li et al., 2025), replacement (alimama creative, 2024b; Rombach & Esser, 2022), and addition (Wasserman et al., 2024). (3) Cross-Semantic-Labels directly confronts the pervasive issue of "shortcut learning" (Geirhos et al., 2020), examining if a model is truly identifying manipulation artifacts or just flagging images with their unique semantic content. (4) Cross-Edit-Granularity assesses a model's multi-scale analysis capability, as detecting a tiny, localized edit presents a tougher challenge than spotting a large, obvious forgery. To our knowledge, this is the first work to explicitly define this multi-dimensional problem space for AIGC-based IMDL evaluation, shifting the goal from simply measuring general performances to diagnostically understanding the limits of existing approaches.

Built upon our proposed four-dimensional landscape, we introduce **NeXT-IMDL**, a large-scale diagnostic benchmark for **NeXT-**Generation **Image Manipulation Detection & Localization**. The design of NeXT-IMDL is directly guided by the need to populate these four axes with unprecedented diversity, providing the statistical power required for meaningful cross-domain evaluation. Its composition—incorporating 32 widely-used academic and commercial editing tools, covering 4 distinct manipulation types guided by masks, text, and reference images, and spanning a wide range of semantic categories and forgery sizes—is not an end in itself, but a necessary foundation to operationalize our diagnostic approach. The benchmark is thus aimed to serve as an adversarial "stress test," revealing failure modes that remain invisible under conventional evaluation.

Our contributions are threefold: (1) Construction of a large-scale and diverse IMDL training and evaluation benchmark. NeXT-IMDL implements 32 different image editing techniques, including state-of-the-art open-source models and popular commercial tools, such as the just-released GPT-Image-1 (OpenAI, 2025) and Gemini-2.0-flash-Image (Google DeepMind Team). (2) We establish

Table 1: Comparison of previous image manipulation and detection datasets. NeXT-IMDL substantially diversifies previous datasets in terms of the number of included editing methods and manipulation diversity. Rem.

Teme	Name	Venue	Samp	le Number	Traditional		AIGC		
Type	***	venue	Real	Manipulated	Manipulation	Methods Num.	Model Type	Conditions	Manipulation
	Columbia(Ng & Chang, 2004)	ICME2006	183	180	splice	_	_	_	_
	CASIAv2(Dong et al., 2013a)	ISIP2013	7491	5123	copy-move;splice	_	_	_	_
	COVERAGE(Wen et al., 2016a)	ICIP2016	100	100	copy-move	_	_	_	_
Traditional		ECCV2018	0	201	splice	_	_	_	_
	NIST16(Guan et al., 2019)	WACVW2019	875		copy-move;splice;remove		_	_	_
	Fantastic Reality(Kniaz et al., 2019)		16,592	19,423	copy-move;splice;remove		_	_	_
	TrainFors(Nandi et al., 2023)	ICCVW2023	200,000	800,000	copy-move;splice;remove	_	_	_	_
	MIML(Qu et al., 2024)	CVPR2024	0	123,150	splice	_	_	_	_
Traditional	IMD2020	WACV2020	35,000	35,000	copy-move;	1	GAN	Mask	Rep.
+AIGC	(Novozamsky et al., 2020)		,	,	splice;remove	1			•
	AutoSplice(Jia et al., 2023)	CVPRW2023	3,621	2,273	_	1	Diffusion	Mask	Rep.
	CocoGlide(Guillaro et al., 2022)	CVPR2023	0	512	_	1	Diffusion	Mask	Rep.
	GRE(Sun et al., 2024)	MM 2024	0	228,650	_	5	GAN, Diffusion	Mask	Rem., Rep., Add.
AIGC	GIM(Chen et al., 2025)	AAAI2025	1,140,000		_	3	Diffusion	Mask	Rem., Rep.
AIGC	SID-Set(Huang et al., 2024)	CVPR2025	100,000	100,000	_	1	Diffusion	Mask	Rep.
	OpenSDI(Wang et al., 2025)	CVPR2025	300,000	450,000	_	5	Diffusion; FLUX	Mask	Rep., Rem.
	DiQuID(Giakoumoglou et al., 2025)	arXiv2025	78,000	95,000	_	6	Diffusion; CNNs	Text, Mask	Rep., Rem.
	NeXT-IMDL(Ours)	_	558,269	558,269	_	32	GAN; Diffusion; FLUX; Commercial	Mask, Text, Ref.Image	Rem., Rep., Add., Null-Text

i) Types of AIGC Manipulations: removal (Rem.), replacement (Rep.), addition (Add.), null-text (Null-Text).

5 evaluation protocols. Through our extensive experiments of SoTA models, including 6 detection & localization methods, covering representative models built for both traditional and AIGC-based manipulations, and 5 binary detection methods, we found that while achieving satisfactory results on their original settings, all 11 models fail to maintain their original performance and would drop even more significantly when conducting cross-setting evaluation. We accordingly provide 9 valuable findings to the community and aspire to inspire the development of next-generation image manipulation detection & localization models.

2 RELATED WORKS

Generative image editing. Image editing techniques have evolved significantly with generative models. Early methods like basic diffusion(Bertalmio et al., 2000; 2001; Bertalmio, 2005; Chan & Shen, 2001) and exemplar-based approaches(Criminisi et al., 2004; Jin & Ye, 2015; Kawai et al., 2015; Guo et al., 2017) have been succeeded by sophisticated GAN-based models like MAT(Li et al., 2022) and LaMa(Suvorov et al., 2022), and further by powerful diffusion models such as Stable Diffusion(Rombach et al., 2022) and ControlNet(Zhang et al., 2023b). Despite these advances, datasets for evaluating generative editing detection like DeepArt(Wang et al., 2023a), CiFAKE(Bird & Lotfi, 2024), and GenImage(Zhu et al., 2023) remain limited, as they primarily focus on image-level detection rather than the more challenging task of localization. This poses significant challenges for developing robust and generalizable detection models.

AIGC detection datasets and benchmarks. While AIGC detection benchmarks historically focused on facial manipulations with datasets like ForgeryNet(He et al., 2021), DeepFakeFace(Song et al., 2023), and DFFD(Cheng et al., 2024), recent works such as GenImage(Zhu et al., 2023), HiFi-IFDL(Guo et al., 2023), DiffForensics(Wang et al., 2023c), and CIFAKE(Bird & Lotfi, 2024) have expanded to general content from GANs and diffusion models(Ho et al., 2020). However, many datasets are synthetically generated (e.g., ForgeryNet(He et al., 2021), ASVspoof(Liu et al., 2023; Wang et al., 2020), DFDC(Dolhansky et al., 2020)), inadequately representing real-world deepfakes. Current limitations include outdated in-the-wild video data(Zi et al., 2020; Pu et al., 2021) and minimal linguistic diversity in audio datasets(Reimao & Tzerpos, 2019; Wang et al., 2024c; Liu et al., 2023; Pu et al., 2021), highlighting the need for more comprehensive benchmarks.

Image manipulation detection and localization. The paradigm for image manipulation detection primarily focuses on identifying low-level artifacts. Models like SPAN(Hu et al., 2020) and ManTra-Net(Wu et al., 2019) incorporate filters such as SRM(Zhou et al., 2018) and BayarConv(Bayar & Stamm, 2018) into VGG(Simonyan & Zisserman, 2014) backbones to extract these features, a technique also seen in MVSS-Net(Dong et al., 2021). Recent approaches tackle generalization challenges via data augmentation(Wang & Deng, 2021), adversarial training(Chen et al., 2022), and reconstruction techniques(Cao et al., 2022), while others explore frequency domain features(Jeong et al., 2022; Tan et al., 2024b) or spatial-spectral fusion(Duan et al., 2025; Wang et al., 2023b). The field has progressed to include localization, with works(Guillaro et al., 2022; Miao et al., 2023; Nguyen et al., 2024; Zhang et al., 2023a; 2024b) constructing datasets with manipulated masks. Nevertheless, many methods still struggle with overfitting(Sun et al., 2023; Zhou et al., 2023) and

T	able	e 2: .				ed in NeX'I	-IMDL			
Method	ID	Rem.		it-Types Add.	Null-Text	Venue	Condition	Data Use	Sample	Code
Blended-Diffusion (Avrahami et al., 2022)	1		~			CVPR 2022	Mask + Text		6,043	Link
PbE (Yang et al., 2023)	2		✓			arXiv 2022	Mask + Ref.Image		8,778	Link
SD2-Inpainting (AI, 2022)	3	✓	✓		✓	HF 2022	Mask + Src./Tar. Prompt		46,226	Link
Inpainting-Anything (Yu et al., 2023)	4	✓	✓			arXiv 2023	Mask + Text	İ	24,129	Link
anything-4.0-inpainting (Sanster, 2024)	5		✓			HF 2023	Mask + Src./Tar. Prompt		5,116	Link
dreamshaper-8-inpainting (Lykon, 2024)	6		✓		✓	HF 2023	Mask + Src./Tar. Prompt		28,945	Link
SDXL-Inpainting (AI, 2023)	7		✓		✓	HF 2023	Mask + Src./Tar. Prompt		26,063	Link
Blended-Latent-Diffusion (Avrahami et al., 2023)	8		✓	✓		SIGGRAPH 2023	Mask + Text	İ	19,651	Link
ZONE (Li et al., 2024)	9	✓	✓			CVPR 2024	Mask + Text		25,725	Link
PowerPaint (Zhuang et al., 2024)	10	✓	✓	✓		ECCV 2024	Mask + Text	Detection	40,183	Link
UltraEdit (Zhao et al., 2024a)	11		✓	✓		NeurIPS 2024	Mask + Text	& Localization	8,395	Link
CLIPAway (Ekin et al., 2024)	12	✓				NeurIPS 2024	Mask	(Train/Val/Test)	17,586	Link
Diffree (Zhao et al., 2024b)	13		✓	✓		arXiv 2024	Mask + Text		7,585	Link
Kolors-Inpainting (Kwai-Kolors, 2024)	14		✓			HF 2024	Mask + Src./Tar. Prompt		7,258	Link
SD3-Controlnet-Inpainting (alimama creative, 2024b)	15		✓			HF 2024	Mask + Src./Tar. Prompt	İ	8,699	Link
SD-v1.5-Inpainting (Rombach & Esser, 2022)	16		✓		✓	HF 2024	Mask + Src./Tar. Prompt		29,013	Link
FLUX-Inpainting (alimama creative, 2024a)	17	✓	✓		✓	HF 2024	Mask + Src./Tar. Prompt		38,180	Link
HD-Painter (Manukyan et al., 2023)	18		✓			ICLR 2025	Mask + Text	İ	9,257	Link
RORem (Li et al., 2025)	19	✓				CVPR 2025	Mask		17,082	Link
ACE++(Mao et al., 2025)	20		✓	✓		HF 2025	Mask + Text		18,908	Link
inst-inpaint (Yildirim et al., 2023)	21	√				arXiv 2023	Text		19,342	Link
InstructDiffusion (Geng et al., 2024)	22	✓	✓			CVPR 2024	Text		28,862	Link
HIVE (Zhang et al., 2024a)	23	✓	✓	✓		arXiv 2024	Text	Binary Detection	43,209	Link
RF-Solver-Edit (Wang et al., 2024a)	24		✓	✓		arXiv 2024	Src./Tar. Prompt	(Train/Val/Test)	23,836	Link
FlowEdit (Kulikov et al., 2024)	25		✓			arXiv 2024	Src./Tar. Prompt		9,516	Link
FireFlow (Deng et al., 2024)	26		✓	✓		arXiv 2024	Src./Tar. Prompt		23,797	Link
Paint-by-Inpaint(Wasserman et al., 2024)	27			✓		CVPR 2025	Text		14,385	Link
Doubao Vision(ByteDance, 2023)	28	√				\	Mask + Text	Detection	500	Link
Meitu(Meitu Network Technology Co., 2023)	29	✓				\	Mask	& Localization	500	Link
Photoshop(Inc., 2023)	30	✓				\	Mask	(Test Only)	500	Link
GPT-Image-1(OpenAI, 2025)	31	✓	✓	✓		\	Text	Binary Detection	500	Link
Gemini-2.0-flash(Team, 2024)	32	✓	✓	✓		\	Text	(Test Only)	500	Link

Table 2. Mada da in aladad in MaVT IMDI

| 32 | \(\sqrt{} \ \ \ \ \ \ | 32 | 15 | 25 | 11 |

generalization, especially for non-facial content, due to limited high-quality data(Dong et al., 2013a; Novozamsky et al., 2020).

3 **NEXT-IMDL**

162

179

181 182

183

185

187

188

189

190

191

192

193

194 195 196

197

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

The primary goal of the NeXT-IMDL benchmark is to provide a comprehensive and diagnostic testbed for identifying images tampered by generative models and localizing the manipulated areas. We aim to systematically operationalize the four-dimensional framework (Models, Types, Semantics, and Granularity) proposed in the introduction. This principle dictates a focus on creating structured, multi-faceted diversity, rather than merely accumulating a large volume of data. The following subsections detail our paradigm for benchmark construction, which emphasizes systematic diversity and the resulting dataset.

SYSTEMATIC DIVERSITY IN BENCHMARK CONSTRUCTION

Recent benchmarks such as OpenSDI (Wang et al., 2025), SIDA (Huang et al., 2024), and GRE (Sun et al., 2024) have made valuable contributions by introducing AIGC-generated data into the IMDL field. However, their construction methodologies often lack systematic and disentangled diversity. For instance, efforts (Wang et al., 2025) have focused on expanding the number of editing models, but often within the same technical family (e.g., numerous variants of Diffusion Models), which may produce shared, predictable artifacts. Other works (Wang et al., 2025; Huang et al., 2024; Sun et al., 2024) might concentrate primarily on a single guidance condition, like mask-based inpainting, thus failing to capture the full spectrum of real-world user interactions, which include text- or reference-guided edits. Consequently, the diversity within these benchmarks remains limited.

The construction of NeXT-IMDL is founded on the principle of systematic, multi-faceted diversity from the ground up. This is achieved through three core pillars: (1) Diverse Proposal Generation: We leverage a suite of four distinct VLM families to generate editing intentions, mitigating the risk of model-specific biases and ensuring a wide semantic range of manipulation proposals. (2) Diverse Manipulation Methods: We employ 32 editing models that span different architectures, training paradigms, and sources (state-of-the-art academic vs. ubiquitous commercial tools), ensuring a broad and challenging distribution of forgery traces. (3) Diverse Guidance Conditions: We simulate a variety of real-world editing scenarios by systematically incorporating multiple guidance modalities, including textual instructions, region masks, and reference images. This matrix-like approach to diversity ensures our benchmark contains structured, disentangled data, enabling the rigorous diagnostic evaluations that were previously infeasible.

i) Venue of Methods: HF refers to models' release date in Huggingface

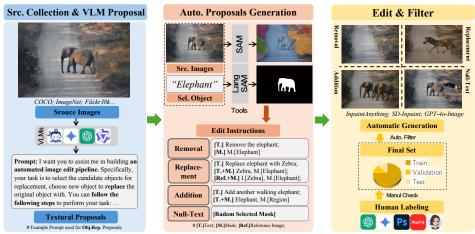


Figure 2: Generation pipeline of our proposed NeXT-IMDL dataset.

Figure 3: Samples from IMDL.

3.2 Dataset construction

Manipulation methods selection. To ensure our benchmark reflects the complexity of real world, a comprehensive investigation of existing generative editing tools was conducted. Our survey spanned three key areas: latest state-of-the-art academic works, popular open-source platforms on GitHub and Huggingface Models, and widely-used commercial applications like Photoshop (Inc., 2023) and GPT-Image-1 (OpenAI, 2025). From an initial pool of over 60 candidates, we selected and deployed 32 distinct models that demonstrated high-quality results and robust instruction-following capabilities, covering a wide spectrum of underlying architectures and generative paradigms. Details of these models are summarized in Table 2.

Original data collection and VLM proposal. We sourced pristine images from established public datasets, including Flickr30k (Plummer et al., 2015), Microsoft COCO (Lin et al., 2014), and OpenImages V7 (Inc., 2017), to serve as the foundation for our benchmark. To generate a diverse and unbiased set of editing intentions, we then prompted a suite of four distinct VLM families (InternVL (Chen et al., 2024b;a), QWen-VL (Wang et al., 2024b; Bai et al., 2025), GPT-40 (OpenAI, 2024a;b), and Gemini (Team, 2024)) to produce manipulation instructions. The corresponding target regions for these instructions were subsequently localized using LangSAM (IndeedMiners, 2025) to create precise segmentation masks.

Manipulation samples generation and post-filtering. The collected source images, textual instructions, and region masks were used to generate manipulated samples across our 32 editing models, covering a wide range of guidance conditions. To guarantee the quality and realism of the final dataset, a rigorous two-stage filtering process was implemented. First, following practice in the generative image editing field (Ma et al., 2024), an automated stage discarded low-quality or failed edits using quantitative metrics like SSIM and CLIP-Similarity-Score (Radford et al., 2021). This was followed by a manual verification process to ensure all samples meet a high standard of visual fidelity. Volunteers are recruited to perform image editing using commercial tools like Photoshop (Inc., 2023). This meticulous process resulted in 558,269 high-quality manipulated samples, which were partitioned into training, validation, and testing sets with a 6:1:1 ratio.

Table 3: **Protocol-1: Cross-EM. Removal.** Image-level (detection) performance.

				Set - 1			Set - 2		Set	- 3	Set - 4	Avg
		Inp-Any	ZONE	CLIPAway	FLUX-Inp	SD2-Inp	PowerP	RORem	Inst-Inp	HIVE	Ins-Diff	
	FreqNet	0.543	0.627	0.549	0.608	0.635	0.669	0.635	0.657	0.617	0.635	0.618
	UniFD	0.643	0.597	0.727	0.666	0.704	0.741	0.714	0.657	0.690	0.714	0.685
Set - 1	NPR	0.512	0.615	0.611	0.618	0.705	0.800	0.685	0.651	0.678	0.688	0.656
	AIDE	0.491	0.555	0.566	0.477	0.608	0.691	0.635	0.611	0.585	0.565	0.579
	FIRE	0.585	0.583	0.585	0.554	0.630	0.743	0.676	0.617	0.626	0.642	0.624
	FreqNet	0.543	0.627	0.549	0.608	0.635	0.669	0.635	0.657	0.617	0.635	0.618
	UniFD	0.643	0.597	0.727	0.666	0.704	0.741	0.714	0.657	0.690	0.714	0.685
Set - 2	NPR	0.512	0.615	0.611	0.618	0.705	0.800	0.685	0.651	0.678	0.688	0.656
	AIDE	0.491	0.555	0.566	0.477	0.608	0.691	0.635	0.611	0.585	0.565	0.579
	FIRE	0.585	0.583	0.585	0.554	0.630	0.743	0.676	0.617	0.626	0.642	0.624
	FreqNet	0.506	0.899	0.504	0.504	0.504	0.507	0.515	0.965	0.971	0.977	0.685
	UniFD	0.628	0.574	0.738	0.692	0.725	0.726	0.695	0.672	0.735	0.729	0.691
Set - 3	NPR	0.497	0.852	0.526	0.549	0.537	0.458	0.540	0.881	0.873	0.851	0.656
	AIDE	0.594	0.693	0.458	0.455	0.478	0.746	0.528	0.839	0.744	0.672	0.621
	FIRE	0.509	0.880	0.495	0.498	0.500	0.492	0.511	0.953	0.962	0.962	0.676
	FreqNet	0.525	0.871	0.531	0.528	0.516	0.495	0.549	0.847	0.893	0.929	0.668
	UniFD	0.640	0.544	0.712	0.663	0.682	0.701	0.674	0.600	0.661	0.694	0.657
Set - 4	NPR	0.513	0.842	0.645	0.582	0.559	0.473	0.606	0.801	0.767	0.887	0.668
	AIDE	0.550	0.603	0.521	0.501	0.491	0.590	0.545	0.603	0.590	0.809	0.580
	FIRE	0.506	0.830	0.506	0.501	0.500	0.496	0.508	0.872	0.895	0.957	0.657

Table 4: **Protocol-1: Cross-EM. Removal.** Pixel-level (localization) performance.

					Se	t-1						Se	t-2			A	vg
		Inp.	Any	ZO	NE	CLI	IPW	FLU:	X-Inp	SD2	2-Inp	Pov	verP	RO	Rem		
		IoU	F1														
	MVSS-Net	0.190	0.223	0.205	0.245	0.148	0.185	0.151	0.188	0.046	0.061	0.099	0.126	0.042	0.057	0.126	0.155
	PSCC-Net	0.178	0.225	0.127	0.178	0.129	0.176	0.121	0.168	0.043	0.061	0.019	0.043	0.031	0.030	0.092	0.126
Set-1	TruFor	0.242	0.286	0.191	0.235	0.164	0.202	0.159	0.195	0.039	0.051	0.101	0.128	0.048	0.066	0.135	0.166
Set-1	IML-ViT	0.236	0.276	0.156	0.194	0.165	0.203	0.192	0.233	0.038	0.050	0.037	0.048	0.016	0.023	0.120	0.147
	Mesorch	0.260	0.294	0.255	0.295	0.176	0.210	0.188	0.220	0.028	0.035	0.079	0.096	0.030	0.039	0.145	0.170
	MaskCLIP	0.428	0.505	0.398	0.496	0.372	0.452	0.359	0.433	0.091	0.118	0.260	0.327	0.108	0.145	0.288	0.354
	MVSS-Net	0.034	0.047	0.057	0.075	0.107	0.138	0.040	0.056	0.072	0.098	0.238	0.286	0.153	0.186	0.100	0.127
	PSCC-Net	0.023	0.034	0.024	0.036	0.100	0.141	0.017	0.025	0.086	0.124	0.171	0.227	0.119	0.163	0.077	0.107
Set-2	TruFor	0.023	0.032	0.034	0.046	0.114	0.144	0.027	0.035	0.072	0.094	0.234	0.279	0.149	0.184	0.093	0.116
Set-2	IML-ViT	0.024	0.031	0.028	0.036	0.198	0.234	0.075	0.097	0.096	0.119	0.295	0.342	0.024	0.032	0.106	0.127
	Mesorch	0.031	0.041	0.036	0.045	0.184	0.218	0.070	0.088	0.114	0.139	0.251	0.291	0.013	0.017	0.100	0.120
	MaskCLIP	0.136	0.178	0.076	0.102	0.272	0.335	0.056	0.071	0.167	0.212	0.499	0.604	0.334	0.408	0.220	0.273

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTS SETUP

All IMDL models (Dong et al., 2021; Liu et al., 2021; Guillaro et al., 2022; Ma et al., 2023; Zhu et al., 2024; Wang et al., 2025) in our research scope are evaluated using the implementation in the IMDL-BenCo model zoo with default settings. We use the CAT-Net (Kwon et al., 2022) and TruFor (Guillaro et al., 2022) data protocol in IMDL-BenCo for training set organization to achieve a balance between computation resources and sample representatives. For the binary AIGC detection models studies in our research, we use their default pre-processing, training, and evaluation configurations, and rewrite their dataloaders to align with the IMDL-BenCo data protocol for a fair comparison. All training configurations and codes will be publicly available for easy reproduction.

4.2 EVALUATIONS, FINDINGS, AND ANALYSIS

To systematically diagnose the generalization capabilities of current IMDL models, we conduct extensive experiments under five rigorous evaluation protocols designed to probe for specific weaknesses. Each protocol creates a challenging cross-domain scenario by ensuring the training and testing sets are disjoint along a key dimension. Specifically, **Protocol 1: Cross-Edit-Models (Cross-EM)** assesses generalization to unseen manipulation tools by training on a subset of editing models (\mathcal{M}_{train}) and testing on a disjoint set (\mathcal{M}_{test} , where $\mathcal{M}_{train} \cap \mathcal{M}_{test} = \emptyset$). Similarly, **Protocol 2: Cross-Edit-Types (Cross-ET)** tests for a conceptual underding of forgery by training on one manipulation type (\mathcal{T}_{train}) and evaluating on others (\mathcal{T}_{test} , with $\mathcal{T}_{train} \cap \mathcal{T}_{test} = \emptyset$). To probe for semantic shortcut learning, **Protocol 3: Cross-Semantic-Labels (Cross-SL)** trains on specific object categories (\mathcal{S}_{train}) and tests on unseen ones (\mathcal{S}_{test}). **Protocol 4: Cross-Edit-Granularity (Cross-EG)** challenges a model's multi-scale analysis by training and testing on disjoint sets of forgery sizes (\mathcal{G}_{train} and \mathcal{G}_{test}). Finally, **Protocol 5: Toward-Realworld-IMDL** (**RealWorld-IMDL**) measures the critical "lab-to-wild" generalization gap by training on academic models ($\mathcal{M}_{academic}$) and evaluating exclusively on forgeries from commercial tools ($\mathcal{M}_{commercial}$). From the extensive results of these evaluations (as shown in

527

Table 5: **Protocol-2: Cross-ET**. Pixel-level (localization) performance on Protocol-2.

				R	em.								Rep.							Add.		Avg
		Solution Iou	IoU	IoU	IoU	IoU	Jou Iou	IoU	IoU	NOI POU	IoU	Advisor IoU	IoU	IoU	ToU	IoU	IoU	ToU	IoU	IoU	€ ^x IoU	IoU
Rem.	MVSS-Net	0.082	0.169	0.175	0.140	0.134	0.130	0.107	0.154	0.112	0.115	0.115	0.134	0.073	0.099	0.121	0.114	0.129	0.040	0.072	0.054	0.113
	PSCC-Net	0.044	0.081	0.061	0.057	0.061	0.056	0.066	0.056	0.063	0.057	0.068	0.055	0.026	0.060	0.053	0.049	0.065	0.006	0.009	0.006	0.050
	TruFor	0.066	0.199	0.137	0.156	0.129	0.138	<u>0.169</u>	0.173	<u>0.127</u>	0.118	0.100	0.127	0.058	0.087	0.119	0.110	<u>0.158</u>	0.063	0.115	0.054	0.120
	IML-ViT	0.085	<u>0.267</u>	<u>0.192</u>	0.193	0.218	<u>0.209</u>	0.091	<u>0.246</u>	0.119	0.120	<u>0.121</u>	0.126	0.041	0.043	0.085	0.110	0.152	0.087	0.107	0.038	0.133
	Mesorch	0.000	0.079	0.004	0.009	0.000	0.000	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.000	0.002	0.000	0.002	0.000	0.000	0.005
	MaskCLIP	0.163	0.410	0.388	0.375	0.331	0.306	0.448	0.385	0.254	0.256	0.207	0.235	0.163	0.152	0.279	0.230	0.321	0.193	0.348	0.123	0.278
Rep.	MVSS-Net	0.074	0.002	0.056	0.135	0.069	0.004	0.024	0.273	0.219	0.215	0.200	0.190	0.142	0.190	0.236	0.163	0.328	0.081	0.174	0.078	0.143
	PSCC-Net	0.093	0.002	0.075	0.112	0.045	0.012	0.329	0.186	0.164	0.163	0.184	0.117	0.107	0.171	0.227	0.139	0.166	0.048	0.112	0.045	0.125
	TruFor	0.047	0.000	0.029	0.123	0.043	0.001	0.352	0.220	0.187	0.171	0.173	0.217	0.059	0.155	0.163	0.126	0.198	0.069	0.163	0.059	0.128
	IML-ViT	0.087	0.003	0.060	0.140	<u>0.098</u>	0.007	0.374	0.262	0.203	0.204	0.213	0.241	0.111	<u>0.210</u>	0.242	0.161	0.202	0.077	0.170	0.096	0.158
	Mesorch	0.059	0.001	0.039	0.121	0.067	0.004	0.330	0.208	0.174	0.169	0.172	0.218	0.100	0.165	0.209	0.130	0.176	0.067	0.116	0.067	0.130
	MaskCLIP	0.182	0.030	0.153	0.344	0.157	0.021	0.752	0.603	0.520	0.477	0.459	0.582	0.457	0.470	0.553	0.361	0.473	0.273	0.543	0.278	0.385
Add.	MVSS-Net	0.009	0.001	0.007	0.018	0.020	0.001	0.008	0.041	0.029	0.033	0.022	0.036	0.035	0.029	0.036	0.018	0.034	0.181	0.318	0.280	0.058
	PSCC-Net	0.022	0.001	0.009	0.039	0.025	0.002	<u>0.016</u>	0.075	0.050	0.055	<u>0.036</u>	0.045	0.053	<u>0.047</u>	0.050	0.036	0.062	0.167	0.266	0.250	0.065
	TruFor	0.007	0.000	0.005	0.019	0.013	0.000	0.006	0.048	0.036	0.038	0.021	0.040	0.025	0.032	0.036	0.018	0.045	0.166	0.344	0.290	0.059
	IML-ViT	0.004	0.000	0.007	0.007	0.003	0.001	0.002	0.038	0.014	0.024	0.005	0.011	0.015	0.007	0.017	0.008	0.021	0.240	<u>0.383</u>	0.082	0.044
	Mesorch	0.003	0.000	0.002	0.009	0.008	0.001	0.004	0.022	0.014	0.018	0.009	0.014	0.019	0.014	0.013	0.010	0.020	0.223	0.353	<u>0.304</u>	0.053
	MaskCLIP	<u>0.021</u>	0.003	0.010	0.054	0.037	0.002	0.027	0.118	0.083	0.079	0.041	0.084	0.086	0.055	0.072	<u>0.034</u>	0.096	0.569	0.800	0.702	0.149

Table 6: **Protocol-3: Cross-SL.** Pixellevel (localization) performance on Protocol-3 within the replacement editing.

Table 7: Protocol-4: Cross-EG . Pixel-level
(localization) performance on Protocol-4, using
all editing samples for the evaluation setup.

Training	Model	Hur	nan	Ani	mal	Ob	ject	A	vg
		IoU	F1	IoU	F1	IoU	F1	IoU	F1
	MVSS-Net	0.114	0.168	0.115	0.169	0.121	0.171	0.117	0.169
	PSCC-Net	0.118	0.169	0.102	0.141	0.064	0.088	0.094	0.133
Human	TruFor	0.127	0.171	0.066	0.092	0.043	0.059	0.079	0.108
riuman	IML-ViT	0.153	0.200	0.102	0.133	0.057	0.074	0.104	0.136
	Mesorch	0.128	0.169	0.054	0.074	0.032	0.043	0.071	0.095
	MaskCLIP	0.391	0.496	0.122	0.159	0.114	0.145	0.209	0.267
	MVSS-Net	0.088	0.130	0.183	0.240	0.094	0.131	0.122	0.167
	PSCC-Net	0.093	0.132	0.164	0.219	0.079	0.107	0.112	0.153
Animal	TruFor	0.039	0.054	0.168	0.211	0.036	0.047	0.081	0.104
Ammai	IML-ViT	0.064	0.088	0.184	0.228	0.048	0.062	0.099	0.126
	Mesorch	0.028	0.038	0.199	0.242	0.036	0.046	0.088	0.109
	MaskCLIP	0.184	0.242	0.471	0.570	0.165	0.206	0.274	0.339
	MVSS-Net	0.085	0.126	0.123	0.172	0.133	0.178	0.114	0.159
	PSCC-Net	0.105	0.150	0.124	0.167	0.132	0.175	0.120	0.164
Object	TruFor	0.022	0.031	0.055	0.072	0.101	0.128	0.059	0.077
Object	IML-ViT	0.063	0.085	0.080	0.103	0.108	0.135	0.083	0.108
	Mesorch	0.046	0.060	0.053	0.069	0.107	0.131	0.069	0.087
	MaskCLIP	0.224	0.293	0.252	0.316	0.361	0.433	0.279	0.347

Training	Model	Are	a - 1	Are	a - 2	Are	a - 3	A	vg
		IoU	Fl	IoU	FI	IoU	Fl	IoU	Fl
	MVSS - Net	0.072	0.099	0.049	0.068	0.013	0.022	0.045	0.06
	PSCC - Net	0.083	0.117	0.081	0.113	0.031	0.051	0.065	0.09
A woo 1	TruFor	0.052	0.067	0.020	0.029	0.002	0.003	0.025	0.03
Area - 1	IML - ViT	0.121	0.148	0.056	0.074	0.006	0.010	0.061	0.07
	Mesorch	0.072	0.092	0.025	0.035	0.002	0.003	0.033	0.04
	MaskCLIP	0.279	0.344	0.144	0.195	0.012	0.022	0.145	0.18
Area - 2	MVSS - Net	0.036	0.058	0.129	0.176	0.116	0.158	0.093	0.13
	PSCC - Net	0.038	0.062	0.123	0.171	0.136	0.186	0.099	0.14
	TruFor	0.061	0.080	0.140	0.171	0.068	0.093	0.089	0.11
	IML - ViT	0.105	0.134	0.218	0.259	0.121	0.158	0.148	0.18
	Mesorch	0.079	0.099	0.203	0.240	0.096	0.128	0.126	0.15
	MaskCLIP	0.208	0.268	0.406	0.493	0.198	0.273	0.271	0.34
	MVSS-Net	0.015	0.027	0.087	0.131	0.269	0.322	0.123	0.16
	PSCC-Net	0.016	0.027	0.076	0.117	0.247	0.307	0.113	0.15
Area - 3	TruFor	0.030	0.046	0.124	0.163	0.286	0.334	0.147	0.18
Aird - 3	IML-ViT	0.044	0.062	0.173	0.212	0.341	0.381	0.186	0.21
	Mesorch	0.023	0.035	0.151	0.190	0.346	0.385	0.173	0.20
	MaskCLIP	0.072	0.105	0.305	0.384	0.633	0.719	0.337	0.40

Table 3.2-7, **Bold** & <u>Underline</u>: best & second best results), we derive and analyze the following critical findings.

Findings-1: IMDL models show systematic and asymmetric semantics and granularity brittleness. As demonstrated in our Protocol-3 (in Table 6) and Protocol-4 (in Table 7) test results, models trained on one semantic or granularity set show a degradation of performance when there is a shift in either factor. For some models, this brittleness is also asymmetric. For example, the SoTA method, MaskCLIP, shows prominent generalization degradation when trained on "Human" than on others. And in Protocol-4, nearly all tested models achieve the best overall performance when trained on "Area-3". These experimental results show that the feature spaces of existing IMDL models are still prone to relying on semantic and granularity priors, showing brittleness to the bias of training data. Searching for and building unbiased extractors to leverage "semantic-agnostic" and "granularity-agnostic" features are important direction for constructing robust next-generation image manipulation detectors.

Finding-2: The "universal donor" effect of removal forgeries. We find that models trained exclusively on low-semantic tasks, specifically Object Removal, exhibit significantly better zero-shot performance on high-semantic tasks like Object Replacement and Addition than the reverse (Table 4.2, Fig 4). This strong asymmetry suggests that the Removal task acts as a "universal donor" for learning generalizable forgery features. By stripping away the strong semantic cue of a newly introduced object, the Removal task forces a "semantic decoupling," compelling the model to learn the fundamental, intrinsic artifacts of the generative filling process itself. This insight offers an actionable strategy for building more robust IMDL models: prioritizing low-semantic tasks in pre-training or data augmentation can instill a foundational understanding of manipulation physics over superficial semantic cues.

Finding-3: The architectural advantage of utilizing foundation models. During our experiments, we found that the MaskCLIP model shows a consistent and significant performance advantage over other competitors. We attribute this dominance not to incremental improvements but to its foundational Synergizing Pretrained Models (SPM) framework. Unlike monolithic models, MaskCLIP synergizes two foundation models with complementary strengths: CLIP (Radford et al., 2021), with its vast pre-training, provides robust global understanding; and MAE (He et al., 2022), which excels at learning fine-grained pixel-level representations essential for precise localization. The success

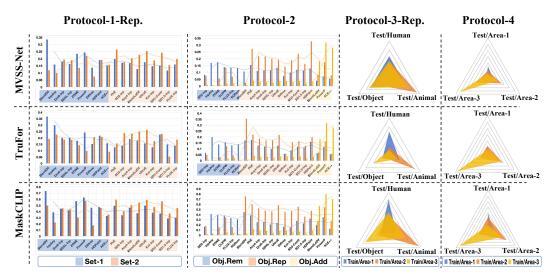


Figure 4: A brief visualization of models' IoU scores in different protocols. It can be observed from the chart that models' performances would decline to varying degrees in all four cross-scene settings.

of MaskCLIP on our diagnostic benchmark indicates a potential paradigm shift for the IMDL field, moving from designing specialized artifact extractors towards developing sophisticated methods to align and fuse the powerful, pre-existing knowledge of multiple foundation models.

Finding-4: The "signal drowning" effect: why global AIGC detectors systematically fail at local manipulation detection. The image-level evaluation in Protocol-1 (in Table 3.2) reveals that state-of-the-art AIGC binary classifiers (e.g., UniFD, RINE) exhibit a systemic failure, with performance often degrading to near-random chance. We identify the cause as the "signal drowning" effect. Global detectors are trained to identify subtle, holistic artifacts distributed across an entire image. In a locally manipulated image, the vast majority of the image is authentic, and its signal effectively drowns out the weak forgery signal from the small manipulated patch. Lacking a localization mechanism, the global detector cannot isolate the signal source, leading to a compromised decision. This finding highlights a fundamental distinction between the tasks of global AIGC detection and local manipulation detection (IMDL), proving that the direct application of global detectors to the IMDL problem is a flawed approach and underscoring the necessity of specialized benchmarks like NeXT-IMDL.

4.3 DISCUSSIONS

Discussion-1: Why is constructing a diverse dataset and benchmark critical for building the next generation IMDL models? As indicated in previous studies in deepfake detection (Yan et al., 2024b), AIGC detection (Park & Owens, 2024), and the preceding attempt in generative IMDL (Wang et al., 2025), the performance of detectors shifts between samples generated by different models. However, for the IMDL task, performance is affected by more factors, including the semantic labels of the target object, the size of the tampered area, and so on. NeXT-IMDL, which greatly diversifies the predominant works in various dimensions and evaluation protocols, is proposed to provide a testbed for building the next-generation IMDL models. The decline of existing IMDL models when conducting cross-scene evaluation in our proposed protocols further indicates the significance of building our benchmark.

Discussion-2: What are the characteristics of the IMDL task in the AIGC era? Compared with traditional manipulation operations, such as splicing and copy-move (Wang et al., 2022; Ma et al., 2023), generative manipulation methods show the following features: (1) Harder to spot. Recently released generative image editing methods (AI, 2023; Rombach & Esser, 2022; Mao et al., 2025) can produce realistic samples, in which the manipulated areas are consistent with other parts of the image, and there are also few forgeries in the boundary of the real and fake areas. (2) Richer diversity. The advancement in AIGC (OpenAI, 2025) has greatly enriched the possibility of public art creation, making diverse image editing easy to reach, such as style transfer (Yu et al., 2024), and background tampering (Yu et al., 2024). Such diversity results in a large scope of semantics and forgery types,

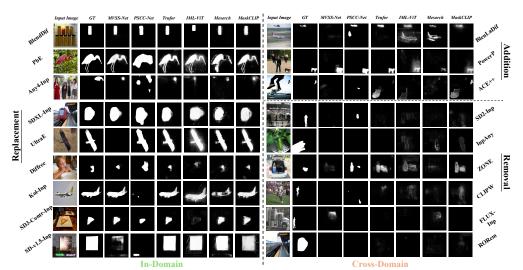


Figure 5: Qualitative results on NeXT-IMDL, Protocol-1.

making a generalizable IMDL model of urgent need. (3) Quicker evolution. The rapid development of generative models (Tian et al., 2024) has made previous SoTA AIGC detection models (Tan et al., 2024a; Yan et al., 2024a; Chu et al., 2024) quickly outdated. It is vital to develop an IMDL model that can generalize to samples manipulated by unseen models or can adapt to new forgeries with an acceptable cost.

Discussion-3: Can existing IMDL models, mainly designed for spotting traditional manipulation forgeries, be effectively applied to solve the newly risen generative fill area localization problem? No. As shown in our extensive experiments (e.g., Fig. 4), existing IMDL models exhibit unsatisfactory performance in in-domain evaluation, and would drop even more when evaluated on different domains. Although the previous method (Wang et al., 2025) that was especially designed for AIGC IMDL shows outstanding and relatively generalizable performance in different protocols, it's still far behind the high scores of SoTA IMDL models (Ma et al., 2023; Zhu et al., 2024) on traditional manipulation benchmarks (Dong et al., 2013b; Wen et al., 2016b; Hsu & Chang, 2006). We believe that building a universal IMDL model in the AIGC era is still waiting for future exploration.

4.4 OPEN QUESTIONS FOR FUTURE RESEARCH

Questions-1: Beyond CLIP+MAE: What is the Ultimate Foundation Model for IMDL? The success of MaskCLIP validates the robustness of large-scale pretrained feature extractors. However, is this combination the ultimate solution? Future research could explore novel ways of leveraging powerful pretrained backbones, for instance, by combining a semantic model like CLIP with a diffusion model's U-Net (Ronneberger et al., 2015) (for diffusion artifact expertise) or a dedicated segmentation model like SAM (Kirillov et al., 2023) (for boundary precision).

Questions-2: How Can We Quantify and Actively Mitigate Semantic Bias? We confirmed a hierarchy of semantic brittleness. This raises deeper questions: Can we develop a formal metric to quantify a model's "semantic dependency"? Furthermore, could novel training strategies, like adversarial attacks on semantic features or contrastive losses that push object and forgery features apart, be designed to explicitly enforce semantic agnosticism?

5 CONCLUSION

In this work, we focus on solving the problem of generative model-based image manipulation detection and localization. We start our research by identifying the four key variants when detecting AIGC manipulations: editing model, types, granularity, and the semantics of the editing area. We then propose NeXT-IMDL, a large-scale generative-based image manipulation dataset and benchmark that substantially diversifies previous works in manipulation methods, types, and evaluation protocols. We hope our findings and discussions based on our extensive experiments can bring new insights to the construction of next-generation IMDL models.

ETHICS STATEMENT

Our work, which introduces the NeXT-IMDL benchmark, is fundamentally motivated by the goal of contributing positively to society and human well-being by advancing the capabilities of image manipulation detection. We are committed to the responsible stewardship of research and have closely followed the ICLR Code of Ethics throughout this project.

Societal Benefit: The primary purpose of NeXT-IMDL is to provide the research community with a robust and comprehensive tool to build and test next-generation detectors against a wide array of AI-generated manipulations. By exposing the vulnerabilities of current models, we aim to spur the development of more reliable technologies to combat the spread of visual misinformation and protect information integrity.

Data and Privacy: The source images for our benchmark were collected from well-established, publicly available datasets (Flickr30k, Microsoft COCO, and OpenImages V7). We have used this data in a manner consistent with their original licenses and terms of use. Our data generation pipeline was automated, and no private or sensitive personal information was targeted or used. Volunteers who assisted in manual editing and quality checks did so with informed consent, and their contributions were anonymized.

Potential for Misuse: We acknowledge that any research in the field of forgery detection carries a potential dual-use risk. Malicious actors could theoretically study our benchmark to understand detector weaknesses and create more sophisticated forgeries. However, we firmly believe that the benefit of openly providing a challenging benchmark for defensive research significantly outweighs this risk. The rapid evolution of generative models means that robust, public-facing evaluation tools are essential for the defense to keep pace with, and ultimately get ahead of, potential threats.

Bias and Fairness: We have made a concerted effort to mitigate bias by incorporating a wide diversity of manipulation models (32 total), manipulation types, semantic content, and forgery sizes. We used four different VLM families to generate editing proposals to reduce the bias from any single model. Nonetheless, we recognize that biases may still exist, inherited from the large-scale source datasets or the generative models themselves. We encourage future work to further expand the diversity of the benchmark, particularly across different cultural and demographic contexts.

Our research upholds the principles of honesty and scientific excellence by transparently documenting our methodology and findings, with the ultimate goal of fostering a more secure and trustworthy digital information ecosystem.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To this end, we will make our dataset, code, and experimental configurations publicly available.

Dataset: The complete NeXT-IMDL dataset, comprising 558,269 high-quality manipulated samples along with their corresponding pristine source images and ground-truth localization masks, will be released. The release will include detailed metadata for each sample, specifying the editing model, manipulation type, guidance condition, semantic label, and forgery granularity. A detailed description of the dataset construction methodology, including source data collection, VLM-based proposal generation, and the filtering process, can be found in Section 3 of the main paper.

Code: We will provide open-source access to the code used for all experiments. This includes scripts for our five evaluation protocols (Cross-EM, Cross-ET, Cross-SL, Cross-EG, and RealWorld-IMDL), data loading and processing, and model evaluation. As stated in Section 4.1, the implementations of the evaluated IMDL models are based on the public IMDL-BenCo model zoo, and we will provide the necessary configurations to replicate our training and testing results.

Experimental Details: All details required to reproduce our experimental results are provided in Section 4 of the paper. This includes descriptions of the model training setups, the specific splits for each evaluation protocol, and the metrics used for both image-level detection and pixel-level localization. The generative models used to create the benchmark are comprehensively listed in Table 2

REFERENCES

- Stability AI. stable-diffusion-2-inpainting. https://huggingface.co/stabilityai/stable-diffusion-2-inpainting, 2022. Accessed: 2025-05-03.
- Stability AI. stable-diffusion-xl-inpainting. https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1, 2023. Accessed: 2025-05-03.
 - alimama creative. FLUX.1-dev ControlNet Inpainting Beta. https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta, 2024a. Accessed: 2025-05-03.
 - alimama creative. SD3-Controlnet-Inpainting. https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting, 2024b. Accessed: 2025-05-03.
 - Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural images. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18187–18197. IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01767. URL http://dx.doi.org/10.1109/CVPR52688.2022.01767.
 - Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. *ACM Transactions on Graphics*, 42(4):1–11, July 2023. ISSN 1557-7368. doi: 10.1145/3592450. URL http://dx.doi.org/10.1145/3592450.
 - Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
 - Belhassen Bayar and Matthew C Stamm. Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection. *IEEE Transactions on Information Forensics and Security*, 13(11):2691–2706, 2018.
 - Marcelo Bertalmio. Contrast invariant inpainting with a 3rd order, optimal pde. In *IEEE International Conference on Image Processing 2005*, volume 2, pp. II–778. IEEE, 2005.
 - Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting. In *Proceedings of the 27th annual conference on Computer graphics and interactive techniques*, pp. 417–424, 2000.
 - Marcelo Bertalmio, Andrea L Bertozzi, and Guillermo Sapiro. Navier-stokes, fluid dynamics, and image and video inpainting. In *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001*, volume 1, pp. I–I. IEEE, 2001.
 - Jordan J Bird and Ahmad Lotfi. Cifake: Image classification and explainable identification of ai-generated synthetic images. *IEEE Access*, 12:15642–15650, 2024.
 - ByteDance. Doubao multimodal large model (including image generation model). https://doubao.com, 2023.
 - Runyuan Cai, Yue Ding, and Hongtao Lu. Frequet: A frequency-domain image super-resolution network with dicrete cosine transform. *arXiv preprint arXiv:2111.10800*, 2021.
 - Junyi Cao, Chao Ma, Taiping Yao, Shen Chen, Shouhong Ding, and Xiaokang Yang. End-to-end reconstruction-classification learning for face forgery detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4113–4122, 2022.
 - Tony F Chan and Jianhong Shen. Nontexture inpainting by curvature-driven diffusions. *Journal of visual communication and image representation*, 12(4):436–449, 2001.
 - Liang Chen, Yong Zhang, Yibing Song, Lingqiao Liu, and Jue Wang. Self-supervised learning of adversarial example: Towards good generalizations for deepfake detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18710–18719, 2022.

- Yirui Chen, Xudong Huang, Quan Zhang, Wei Li, Mingjian Zhu, Qiangyu Yan, Simiao Li, Hanting Chen, Hailin Hu, Jie Yang, et al. Gim: A million-scale benchmark for generative image manipulation detection and localization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 2311–2319, 2025.
 - Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv* preprint arXiv:2412.05271, 2024a.
 - Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites. *Science China Information Sciences*, 67(12):220101, 2024b.
 - Harry Cheng, Yangyang Guo, Tianyi Wang, Liqiang Nie, and Mohan Kankanhalli. Diffusion facial forgery detection. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 5939–5948, 2024.
 - Beilin Chu, Xuan Xu, Xin Wang, Yufei Zhang, Weike You, and Linna Zhou. Fire: Robust detection of diffusion-generated images via frequency-guided reconstruction error. *ArXiv*, abs/2412.07140, 2024.
 - Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region filling and object removal by exemplar-based image inpainting. *IEEE Transactions on image processing*, 13(9):1200–1212, 2004.
 - Yingying Deng, Xiangyu He, Changwang Mei, Peisong Wang, and Fan Tang. Fireflow: Fast inversion of rectified flow for image semantic editing. *arXiv* preprint arXiv:2412.07517, 2024.
 - Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Canton Ferrer. The deepfake detection challenge (dfdc) dataset. *arXiv preprint arXiv:2006.07397*, 2020.
 - Chengbo Dong, Xinru Chen, Ruohan Hu, Juan Cao, and Xirong Li. Myss-net: Multi-view multi-scale supervised networks for image manipulation detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45:3539–3553, 2021.
 - Jing Dong, Wei Wang, and Tieniu Tan. Casia image tampering detection evaluation database. In 2013 IEEE China Summit and International Conference on Signal and Information Processing, pp. 662–667, Beijing, China, July 6-10 2013a. IEEE. ISBN 978-1-4799-1043-4. doi: 10.1109/ChinaSIP.2013.6625374.
 - Jing Dong, Wei Wang, and Tieniu Tan. Casia image tampering detection evaluation database. In 2013 IEEE China summit and international conference on signal and information processing, pp. 422–426. IEEE, 2013b.
 - Xiaoyi Dong, Yinglin Zheng, Jianmin Bao, Ting Zhang, Dongdong Chen, Hao Yang, Ming Zeng, Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, and Nenghai Yu. Maskclip: Masked self-distillation advances contrastive language-image pretraining. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10995–11005, 2022.
 - Junxian Duan, Yuang Ai, Jipeng Liu, Shenyuan Huang, Huaibo Huang, Jie Cao, and Ran He. Test-time forgery detection with spatial-frequency prompt learning. *International Journal of Computer Vision*, 133(2):672–687, 2025.
 - Yiğit Ekin, Ahmet Burak Yildirim, Erdem Eren Çağlar, Aykut Erdem, Erkut Erdem, and Aysegul Dundar. Clipaway: Harmonizing focused embeddings for removing objects via diffusion models. *Advances in Neural Information Processing Systems*, 37:17572–17601, 2024.
 - Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673, 2020.

- Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin Bao, Zheng
 Zhang, Houqiang Li, Han Hu, et al. Instructdiffusion: A generalist modeling interface for vision
 tasks. In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*,
 pp. 12709–12720, 2024.
 - Paschalis Giakoumoglou, Dimitrios Karageorgiou, Symeon Papadopoulos, and Panagiotis C Petrantonakis. A large-scale ai-generated image inpainting benchmark. *arXiv preprint arXiv:2502.06593*, 2025.
 - Google DeepMind Team. Gemini 2.5 flash image generation. https://deepmind.google/technologies/gemini/flash/.
 - Haiying Guan, Mark Kozak, Eric Robertson, Yooyoung Lee, Amy N Yates, Andrew Delgado, Daniel Zhou, Timothee Kheyrkhah, Jeff Smith, and Jonathan Fiscus. Mfc datasets: Large-scale benchmark datasets for media forensic challenge evaluation. In 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 63–72. IEEE, 2019.
 - Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nick Dufour, and Luisa Verdoliva. Trufor: Leveraging all-round clues for trustworthy image forgery detection and localization. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20606–20615, 2022.
 - Qiang Guo, Shanshan Gao, Xiaofeng Zhang, Yilong Yin, and Caiming Zhang. Patch-based image inpainting via two-stage low rank approximation. *IEEE transactions on visualization and computer graphics*, 24(6):2023–2036, 2017.
 - Xiao Guo, Xiaohong Liu, Zhiyuan Ren, Steven Grosz, Iacopo Masi, and Xiaoming Liu. Hierarchical fine-grained image forgery detection and localization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3155–3165, 2023.
 - Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16000–16009, 2022.
 - Yinan He, Bei Gan, Siyu Chen, Yichun Zhou, Guojun Yin, Luchuan Song, Lu Sheng, Jing Shao, and Ziwei Liu. Forgerynet: A versatile benchmark for comprehensive forgery analysis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4360–4369, 2021.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Yu-Feng Hsu and Shih-Fu Chang. Detecting image splicing using geometry invariants and camera characteristics consistency. In 2006 IEEE international conference on multimedia and expo, pp. 549–552. IEEE, 2006.
 - Xuefeng Hu, Zhihan Zhang, Zhenye Jiang, Syomantak Chaudhuri, Zhenheng Yang, and Ram Nevatia. Span: Spatial pyramid attention network for image manipulation localization. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16*, pp. 312–328. Springer, 2020.
 - Zhenglin Huang, Jinwei Hu, Xiangtai Li, Yiwei He, Xingyu Zhao, Bei Peng, Baoyuan Wu, Xiaowei Huang, and Guangliang Cheng. Sida: Social media image deepfake detection, localization and explanation with large multimodal model. *arXiv preprint arXiv:2412.04292*, 2024.
 - Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A Efros. Fighting fake news: Image splice detection via learned self-consistency. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 101–117, 2018.
 - Adobe Inc. Generative fill in adobe photoshop. urlhttps://helpx.adobe.com/photoshop/using/generative-fill.html, 2023. Accessed: 2025-05-13.
 - Google Inc. Open images dataset v7 and extensions, 2017. URL https://storage.googleapis.com/openimages/web/index.html. Accessed: 2025-05-13.

- IndeedMiners. Language segment-anything. https://github.com/paulguerrero/lang-sam, 2025. Accessed: 2025-05-13.
 - Yonghyun Jeong, Doyeon Kim, Youngmin Ro, and Jongwon Choi. Frepgan: robust deepfake detection using frequency-level perturbations. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 1060–1068, 2022.
 - Shan Jia, Mingzhen Huang, Zhou Zhou, Yan Ju, Jialing Cai, and Siwei Lyu. Autosplice: A text-prompt manipulated image dataset for media forensics. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 893–903, 2023.
 - Kyong Hwan Jin and Jong Chul Ye. Annihilating filter-based low-rank hankel matrix approach for image inpainting. *IEEE Transactions on Image Processing*, 24(11):3498–3511, 2015.
 - Norihiko Kawai, Tomokazu Sato, and Naokazu Yokoya. Diminished reality based on image inpainting considering background geometry. *IEEE transactions on visualization and computer graphics*, 22 (3):1236–1247, 2015.
 - Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.
 - Vladimir V Kniaz, Vladimir Knyaz, and Fabio Remondino. The point where reality meets fantasy: Mixed adversarial generators for image splice detection. *Advances in neural information processing systems*, 32, 2019.
 - Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit: Inversion-free text-based editing using pre-trained flow models. *arXiv preprint arXiv:2412.08629*, 2024.
 - Kwai-Kolors. Kolors-Inpainting. https://huggingface.co/Kwai-Kolors/ Kolors-Inpainting, 2024. Accessed: 2025-05-03.
 - Myung-Joon Kwon, Seung-Hun Nam, In-Jae Yu, Heung-Kyu Lee, and Changick Kim. Learning jpeg compression artifacts for image manipulation detection and localization. *International Journal of Computer Vision*, 130(8):1875–1895, 2022.
 - Ruibin Li, Tao Yang, Song Guo, and Lei Zhang. Rorem: Training a robust object remover with human-in-the-loop. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.
 - Shanglin Li, Bohan Zeng, Yutang Feng, Sicheng Gao, Xiuhui Liu, Jiaming Liu, Lin Li, Xu Tang, Yao Hu, Jianzhuang Liu, et al. Zone: Zero-shot instruction-guided local editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6254–6263, 2024.
 - Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. Mat: Mask-aware transformer for large hole image inpainting. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10758–10768, 2022.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13*, pp. 740–755. Springer, 2014.
 - Xiaohong Liu, Yao-Kai Liu, Jun Chen, and Xiaoming Liu. Pscc-net: Progressive spatio-channel correlation network for image manipulation detection and localization. *IEEE Transactions on Circuits and Systems for Video Technology*, 32:7505–7517, 2021.
 - Xuechen Liu, Xin Wang, Md Sahidullah, Jose Patino, Héctor Delgado, Tomi Kinnunen, Massimiliano Todisco, Junichi Yamagishi, Nicholas Evans, Andreas Nautsch, et al. Asvspoof 2021: Towards spoofed and deepfake speech detection in the wild. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 31:2507–2522, 2023.

- Lykon. Dreamshaper-8-Inpainting. https://huggingface.co/Lykon/dreamshaper-8-inpainting, 2024. Accessed: 2025-05-03.
 - Xiaochen Ma, Bo Du, Xianggen Liu, Ahmed Y. Al Hammadi, and Jizhe Zhou. Iml-vit: Image manipulation localization by vision transformer. *ArXiv*, abs/2307.14863, 2023.
 - Yiwei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, Zhibin Wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai Sun, and Rongrong Ji. I2ebench: A comprehensive benchmark for instruction-based image editing. *arXiv* preprint arXiv:2408.14180, 2024.
 - Hayk Manukyan, Andranik Sargsyan, Barsegh Atanyan, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Hd-painter: High-resolution and prompt-faithful text-guided image inpainting with diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2023.
 - Chaojie Mao, Jingfeng Zhang, Yulin Pan, Zeyinzi Jiang, Zhen Han, Yu Liu, and Jingren Zhou. Ace++: Instruction-based image creation and editing via context-aware content filling. *arXiv preprint arXiv:2501.02487*, 2025.
 - Ltd. Meitu Network Technology Co. Meitu. https://www.meitu.com, 2023.
 - Changtao Miao, Qi Chu, Zhentao Tan, Zhenchao Jin, Tao Gong, Wanyi Zhuang, Yue Wu, Bin Liu, Honggang Hu, and Nenghai Yu. Multi-spectral class center network for face manipulation detection and localization. *arXiv preprint arXiv:2305.10794*, 2023.
 - Soumyaroop Nandi, Prem Natarajan, and Wael Abd-Almageed. Trainfors: A large benchmark training dataset for image manipulation detection and localization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 403–414, 2023.
 - Tian-Tsong Ng and Shih-Fu Chang. A data set of authentic and spliced image blocks. Technical Report ADVENT Technical Report #203-2004-3, Electrical Engineering Department, Columbia University, New York, June 2004.
 - Dat Nguyen, Nesryne Mejri, Inder Pal Singh, Polina Kuleshova, Marcella Astrid, Anis Kacem, Enjie Ghorbel, and Djamila Aouada. Laa-net: Localized artifact attention network for quality-agnostic and generalizable deepfake detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17395–17405, 2024.
 - Adam Novozamsky, Babak Mahdian, and Stanislav Saic. Imd2020: A large-scale annotated dataset tailored for detecting manipulated images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision workshops*, pp. 71–80, 2020.
 - Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize across generative models. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24480–24489, 2023.
 - OpenAI. Gpt-4o system card, 2024a. URL https://openai.com/index/gpt-4o-system-card/. Accessed: 2025-05-13.
 - OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. URL https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/. Accessed: 2025-05-13.
 - OpenAI. Addendum to gpt-4o system card: 4o image generation, 2025. URL https://openai.com/index/gpt-4o-image-generation-system-card-addendum/. Accessed: 2025-05-13.
 - Jeongsoo Park and Andrew Owens. Community forensics: Using thousands of generators to train fake image detectors. *arXiv preprint arXiv:2411.04125*, 2024.
 - Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In *Proceedings of the IEEE international conference on computer vision*, pp. 2641–2649, 2015.

- Jiameng Pu, Neal Mangaokar, Lauren Kelly, Parantapa Bhattacharya, Kavya Sundaram, Mobin Javed,
 Bolun Wang, and Bimal Viswanath. Deepfake videos in the wild: Analysis and detection. In
 Proceedings of the Web Conference 2021, pp. 981–992, 2021.
 - Chenfan Qu, Yiwu Zhong, Chongyu Liu, Guitao Xu, Dezhi Peng, Fengjun Guo, and Lianwen Jin. Towards modern image manipulation localization: A large-scale dataset and novel methods. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10781–10790, 2024.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Ricardo Reimao and Vassilios Tzerpos. For: A dataset for synthetic speech detection. In 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), pp. 1–10. IEEE, 2019.
 - Robin Rombach and Patrick Esser. Stable Diffusion v1-5 Inpainting. https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting, 2022. Accessed: 2025-05-03.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241. Springer, 2015.
 - Sanster. anything-4.0-inpainting. https://huggingface.co/Sanster/anything-4.0-inpainting, 2024. Accessed: 2025-05-03.
 - Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
 - Haixu Song, Shiyu Huang, Yinpeng Dong, and Wei-Wei Tu. Robustness and generalizability of deepfake detection: A study with diffusion models. *arXiv preprint arXiv:2309.02218*, 2023.
 - Zhihao Sun, Haoran Jiang, Danding Wang, Xirong Li, and Juan Cao. Safl-net: Semantic-agnostic feature learning network with auxiliary plugins for image manipulation detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 22424–22433, 2023.
 - Zhihao Sun, Haipeng Fang, Juan Cao, Xinying Zhao, and Danding Wang. Rethinking image editing detection in the era of generative ai revolution. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 3538–3547, 2024.
 - Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-robust large mask inpainting with fourier convolutions. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 2149–2159, 2022.
 - Chuangchuang Tan, Huan Liu, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Rethinking the up-sampling operations in cnn-based generative network for generalizable deepfake detection. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 28130–28139, 2024a.
 - Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Frequency-aware deepfake detection: Improving generalizability through frequency space domain learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 5052–5060, 2024b.
 - Google DeepMind Team. Gemini 2 flash, 2024. Accessed: 2025-05-13.

- Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image generation via next-scale prediction. *Advances in neural information processing systems*, 37:84839–84865, 2024.
- Chengrui Wang and Weihong Deng. Representative forgery mining for fake face detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14923–14932, 2021.
- Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li, and Ying Shan. Taming rectified flow for inversion and editing. *arXiv preprint arXiv:2411.04746*, 2024a.
- Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, and Yu-Gang Jiang. Objectformer for image manipulation detection and localization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2364–2373, 2022.
- Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.
- Xin Wang, Junichi Yamagishi, Massimiliano Todisco, Héctor Delgado, Andreas Nautsch, Nicholas Evans, Md Sahidullah, Ville Vestman, Tomi Kinnunen, Kong Aik Lee, et al. Asvspoof 2019: A large-scale public database of synthesized, converted and replayed speech. *Computer Speech & Language*, 64:101114, 2020.
- Xin Wang, Héctor Delgado, Hemlata Tak, Jee-weon Jung, Hye-jin Shim, Massimiliano Todisco, Ivan Kukanov, Xuechen Liu, Md Sahidullah, Tomi Kinnunen, et al. Asvspoof 5: Crowdsourced speech data, deepfakes, and adversarial attacks at scale. *arXiv preprint arXiv:2408.08739*, 2024c.
- Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. Benchmarking deepart detection. *arXiv* preprint *arXiv*:2302.14475, 2023a.
- Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. Opensdi: Spotting diffusion-generated images in the open world. *arXiv preprint arXiv:2503.19653*, 2025.
- Yuan Wang, Kun Yu, Chen Chen, Xiyuan Hu, and Silong Peng. Dynamic graph learning with content-guided spatial-frequency relation reasoning for deepfake detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7278–7287, 2023b.
- Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and Houqiang Li. Dire for diffusion-generated image detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 22445–22455, 2023c.
- Navve Wasserman, Noam Rotstein, Roy Ganz, and Ron Kimmel. Paint by inpaint: Learning to add image objects by removing them first. *arXiv preprint arXiv:2404.18212*, 2024.
- Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-Tsong Ng, Xuanjing Shen, and Stefan Winkler. Coverage—a novel database for copy-move forgery detection. In *2016 IEEE International Conference on Image Processing (ICIP)*, Phoenix, AZ, USA, September 2016a. IEEE. ISBN 978-1-4673-9961-6. doi: 10.1109/ICIP.2016.7532339.
- Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-Tsong Ng, Xuanjing Shen, and Stefan Winkler. Coverage—a novel database for copy-move forgery detection. In *2016 IEEE international conference on image processing (ICIP)*, pp. 161–165. IEEE, 2016b.
- Yue Wu, Wael AbdAlmageed, and Premkumar Natarajan. Mantra-net: Manipulation tracing network for detection and localization of image forgeries with anomalous features. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9543–9552, 2019.
- Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A sanity check for ai-generated image detection. *arXiv preprint arXiv:2406.19435*, 2024a.

- Zhiyuan Yan, Taiping Yao, Shen Chen, Yandan Zhao, Xinghe Fu, Junwei Zhu, Donghao Luo, Chengjie Wang, Shouhong Ding, Yunsheng Wu, et al. Df40: Toward next-generation deepfake detection. *arXiv preprint arXiv:2406.13495*, 2024b.
 - Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18381–18391, 2023.
 - Ahmet Burak Yildirim, Vedat Baday, Erkut Erdem, Aykut Erdem, and Aysegul Dundar. Inst-inpaint: Instructing to remove objects with diffusion models. *arXiv preprint arXiv:2304.03246*, 2023.
 - Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang Tang, Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image editing for any idea. *arXiv preprint arXiv:2411.15738*, 2024.
 - Tao Yu, Runseng Feng, Ruoyu Feng, Jinming Liu, Xin Jin, Wenjun Zeng, and Zhibo Chen. Inpaint anything: Segment anything meets image inpainting. *arXiv preprint arXiv:2304.06790*, 2023.
 - Lingzhi Zhang, Zhengjie Xu, Connelly Barnes, Yuqian Zhou, Qing Liu, He Zhang, Sohrab Amirghodsi, Zhe Lin, Eli Shechtman, and Jianbo Shi. Perceptual artifacts localization for image synthesis tasks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7579–7590, 2023a.
 - Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023b.
 - Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan Wang, Silvio Savarese, Stefano Ermon, et al. Hive: Harnessing human feedback for instructional visual editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9026–9036, 2024a.
 - Yi Zhang, Changtao Miao, Man Luo, Jianshu Li, Wenzhong Deng, Weibin Yao, Zhe Li, Bingyu Hu, Weiwei Feng, Tao Gong, et al. Mfms: Learning modality-fused and modality-specific features for deepfake detection and localization tasks. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11365–11369, 2024b.
 - Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image editing at scale. *Advances in Neural Information Processing Systems*, 37:3058–3093, 2024a.
 - Lirui Zhao, Tianshuo Yang, Wenqi Shao, Yuxin Zhang, Yu Qiao, Ping Luo, Kaipeng Zhang, and Rongrong Ji. Diffree: Text-guided shape free object inpainting with diffusion model. *arXiv* preprint arXiv:2407.16982, 2024b.
 - Jizhe Zhou, Xiaochen Ma, Xia Du, Ahmed Y Alhammadi, and Wentao Feng. Pre-training-free image manipulation localization through non-mutually exclusive contrastive learning. In *Proceedings of* the IEEE/CVF international conference on computer vision, pp. 22346–22356, 2023.
 - Peng Zhou, Xintong Han, Vlad I Morariu, and Larry S Davis. Learning rich features for image manipulation detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1053–1061, 2018.
 - Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated image. *Advances in Neural Information Processing Systems*, 36:77771–77782, 2023.
 - Xuekang Zhu, Xiaochen Ma, Lei Su, Zhuohang Jiang, Bo Du, Xiwen Wang, Zeyu Lei, Wentao Feng, Chi-Man Pun, and Jizhe Zhou. Mesoscopic insights: Orchestrating multi-scale & hybrid architecture for image manipulation localization. In *AAAI Conference on Artificial Intelligence*, 2024.

Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one word: Learning with task prompts for high-quality versatile image inpainting. In *European Conference on Computer Vision*, pp. 195–211. Springer, 2024.

Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and Yu-Gang Jiang. Wilddeepfake: A challenging real-world dataset for deepfake detection. In *Proceedings of the 28th ACM international conference on multimedia*, pp. 2382–2390, 2020.