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ABSTRACT

This work reexamines conventional views of how neural networks store and trans-
fer memorized information by investigating knowledge distillation for random,
unstructured data. While knowledge distillation typically focuses on transferring
generalizable patterns, we demonstrate that teacher models can encode and trans-
fer purely memorized associations on finite random i.i.d. datasets. Through sys-
tematic experiments with fully connected networks, we show that students trained
on teacher logits or embedding similarities achieve non-trivial accuracy on memo-
rized data they never directly observed. This phenomenon persists across varying
network capacities, dataset compositions, and even with randomized real-world
data. Our findings encourage moving beyond simple key-value views of memory
in neural networks, and highlight the role of spurious yet learnable patterns that
transfer across models.

1 INTRODUCTION

With the advent of foundation models, it has become more popular to exploit and adapt their capa-
bilities to new settings or smaller models via knowledge and dataset distillation (Gou et al., 2021;
Xu et al., 2024). Since using teacher logits as supervised soft labels was proposed by Hinton et al.
(2015), a flurry of methods for different data modalities and architectures have incorporated this idea
and others e.g. (Hsieh et al., 2023; Habib et al., 2024). While the goal of these advanced methods
it to achieve sample and parameter efficiency in knowledge transfer from model to model, Qin et al.
(2025) recently asserted that logit matching on its own is still competitive for modern architectures:
A single logit vector can be worth a thousand images. However, despite some theoretical advances
(Phuong & Lampert, 2019; Boix-Adsera, 2024), it still remains unclear what exactly the “dark
knowledge”(Hinton et al., 2015) is that the logits seem to contain, or even how to quantify it.

Among other hypotheses, a common assumption is that logits are beneficial because they already
encode a hidden structure that represents the data well. This implies that logits should largely be use-
ful when the data distribution involves recurring patterns, and informative representations that allow
for generalizing solutions. However, most of current large language and vision models involve not
only the generalization on skills but also memorization of facts and associations. Transferring their
capabilities to a different model therefore requires transferring knowledge on both aspects. While
there has been a long line of literature dating back to Hopfield (1982) on how neural networks store
associations, there is comparatively little work how memories can be transferred and compressed.
Dataset distillation (Yu et al., 2023; Yang et al., 2024) aims to match the final performance with-
out focusing on different skill modalities such as generalization and memorization. To fill this gap,
our work asks the following: “Do teacher logits encode memorized knowledge? – And if yes, can
students pick up this non-trivial information?”

We investigate this question experimentally, inspired by (Zhang et al., 2017), who examine how
neural networks generalize well in vision tasks despite the ability to memorize randomly labeled
training images. Subsequent work showed that networks trained on this random data still pick
up image features that generalize (Maennel et al., 2020). Since we are interested in transferring
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Figure 1: Information leakage via logits. We examine fully connected networks with ReLU activations
and p hidden neurons. A teacher network is trained on 2-dimensional input data with i.i.d. random uniform
labels drawn from {1, 2, 3} (blue, crimson, yellow markers). (A) Visualizes the training data and decision
boundaries, it memorizes this data perfectly and achieves 100% training accuracy. The teacher training data is
then separated into a student-train and student-test part (60%, 40%). We examine 3 settings: Training student
networks via cross-entropy (B) on the class information only and (C, D) on the teacher logits. While a random
network only achieves trivial accuracy of ∼ 30%, students that fit the teacher logits achieve non-trivial test
accuracy of ∼ 40%. Red and green indicate data from the test set, and whether it was classified wrongly or
correctly. The average test accuracy over 20 student initializations is given along with the standard error on the
mean. Data that has not been seen by the teacher achieves ∼ 30% accuracy.

memorized data, we consider teacher networks that memorized a finite number of random input-
label pairs and examine knowledge that is distilled from them. More specifically, we train a student
via logit or similarity score matching. Crucially, the student only has access to a subset of the
memorized data and is tested on the other held out part. A simple example is shown in Fig. 1. To
the best of our knowledge, in this context our experimental setup has not been used previously.

Using this method, we find that (I) via knowledge distillation and training on the teacher logits, a
student can indeed obtain non-trivial information about memorized random data without full access
to the full memorized dataset. (II) For the student to succeed, the finite random dataset needs to
strike a balance between the input dimension, the number of labels per class and the overall number
of dimensions. Generally, higher capacity students achieve higher test accuracies. (III) Beyond
training on logits, we show that training a student to match the pairwise cosine similarity in the logit
embedding space from teacher model can lead to a similar transfer of memorized data. However,
this method is less efficient and leads to fewer correct predictions.

With these findings, we answer our introductory question positively: Teacher logits, dark knowl-
edge, can contain and transfer information that we would intuitively consider memorized, since the
original data was randomly sampled. Our observation challenges models of neural networks as sim-
ple key-value storage and motivates further investigation as to how spurious correlations (Ye et al.,
2024) affect memorization, see the discussion in Section 4.

2 SETTING AND NOTATION

Data. We consider classification datasets with i = 1, . . . , n data samples, with inputs xi ∈ Rd

and labels yi ∈ [1, . . . , C] from c classes. Each input value is sampled i.i.d. uniformly from
the range [−1,+1]. Since we are memorizing finite datasets, for a given dataset of size n =
C · samples per class we assign exactly samples per class labels to each class.
Models. All models are parameterized functions that map from the input dimension d to the number
of classes c, i.e. fθ(x) = z, where z are the logits. The prediction is extracted by using the argmax
over the logits. In this work except for Fig. 1 are 2-hidden layer ReLU neural networks with p hid-
den neurons in both layers.
Training. Training is conducted via the Adam optimizer (Kingma, 2014) with default pytorch set-
tings. When not otherwise mentioned, we use the cross entropy loss for supervised training. For
yi ∈ Rc being the one-hot encoded label vectors, the cross-entropy loss with temperature T is

LCE({xi,yi}n) = −
∑
i

∑
c

(yi)c log [σT (fθ (xi))c] ; σT (z)c =
exp(zc/T )∑C
c=1 exp(zc/T )

.
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Figure 2: Transferring memorized information under capacity constraints. (Left) A student with 2 hidden
layers of varying dimensions is trained on the logits of a given training fraction of the teacher training data (the
teacher with p = 500 fits the complete training data perfectly). The fraction of correct predictions on the
complete teacher training set is shown. Points above the diagonal line indicate that the student classifies more
data correctly than seen from the teacher. (Right) A student with p = 500 trained on the teacher logits. The
accuracy for the training set, the test set and the test set for only a single label. The independent accuracy is the
accuracy achieved on data that is sampled fresh, and not seen by the teacher. Input dimension is 1,000 with 100
classes with 100 samples each in the teacher training data. Points are averages over 20 student initializations
with the standard error on the mean.

To learn from a given teacher t : Rd → Rc, we either train using logits or similarity scores. In the
case of knowledge distillation via logits, we still use the cross-entropy loss, but instead of the ground
truth yi we use a given teacher network’s logits as ŷi = σT (t(xi)).
For learning from similarity scores in an unsupervised context, we train models using a mean-
squared-error loss on the cosine similarity of the embeddings, where we learn from a set of paired
samples, as

LSIM({xi,xj}) =
∑
ij

(ρ[t]ij − ρ[fθ]
ij)2 ; ρ[f ]ij =

f (xi) · f (xj)

∥f (xi) ∥∥f (xj) ∥
.

A similar metric is is used to measure teacher-student similarity in e.g. (Li et al., 2024).

3 KNOWLEDGE DISTILLATION FOR MEMORIZED DATA

In our experiments we randomly sample finite datasets D = {xi, yi}n. A teacher model is trained to
reach to perfect accuracy on this data – it perfectly memorized this random data, hence we call the
full dataset D the memorized data. The trivial accuracy of the teacher the predictive performance on
a different finite dataset D′ which is sampled in the same manner. This accuracy is typically close to
random guessing for random data, and represents the generalization error in conventional settings.
To train the student with an α-fraction of the memorized data D, we randomly select for each class
c an α-fraction of samples for the student to train on. The rest of the memorized data D is held out
for testing. With some abuse of terminology we refer to the memorized data used for learning as
training and the held-out memorized data as test data.

3.1 SUPERVISED TRAINING WITH LOGIT INFORMATION

We first include the teachers logits in the training data for the student. In Fig. 2 we demonstrate
how this strategy allows students of varying capacities to learn from a teacher with p = 500 hidden
units. We vary the fraction of training data α and measure the fraction of memorized data that is
predicted correctly by the student. This indicates that the student indeed learns data that was seen
by the teacher but not by the student. In addition, higher capacity students are able to extract more
information from the logits than lower capacity students. However, a higher capacity is not neces-
sary: For some α a lower capacity of p = 250 is already enough to surpass trivial accuracy. Fig. 2,
right, shows different measures of average accuracy for 20 initializations of students with p = 750.
We observe that for all α it is able to memorize the training data, and even little training data allows
for some non-trivial predictive accuracy on the test set. Further, the accuracy is distributed evenly
over all 100 classes: As an example the test accuracy on the label 0 is shown, which matches the
test accuracy over all test labels. Generally, we observe a strong dependence of the test performance
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Figure 3: Transferring memorized information via similarity scores. In this setting the student learns
embeddings for the training data with pairwise similarities that are close to those exhibited by the teacher that
memorized the data. This training is done without labels in an unsupervised fashion. (Left) The overall number
of correct samples that the student obtains after being trained from the similarity information stemming from
the teacher. (Right) Comparison of the unsupervised training approach to the supervised training method from
Fig. 2. The standard error on the mean is displayed for 20 runs per experiment.

both on the learning rate and the temperature of the softmax distribution, where in line with previ-
ous work on non-random data high temperatures seem to be advantageous (Nagarajan et al., 2024),
which we show in Appendix A.1.
In Appendix A.2 we also examine how the test accuracy depends on the composition of the dataset,
i.e. the input dimension, the number of samples per class and the overall number of classes. In order
to compare the accuracy in different settings, we compute the ratio between the test accuracy and the
trivial accuracy for a given number of labels. More samples per class are harder to memorize, and
the input dimension needs to increase. Simultaneously, overly large input dimensions lead to lower
test accuracy. For the optimal transferability, there seems to be a linear relationship where doubling
the samples per class requires doubling the input dimension.
To understand where the information about the memorized data is located, we compare our results to
three settings in which we modify the teacher information. In Appendix A.3, we (1) remove samples
with a given class c from the training data, (2) set the probabilities σT (z)c manually to zero for sam-
ples that are not class c and (3) set the smaller fraction of σT (z) to zero. We compare the general test
accuracy to the class c test accuracy. In (1) and (2) the general test accuracy is not affected strongly.
For (1) the class test accuracy is also maintained at a high level, similar to observations from label
distillation on regular data (Qin et al., 2025), while for (2) it drops below the trivial accuracy. The
memorized data about c must be contained in the other samples logits. For larger fractions of cut tails
in (3) we observe a sharp drop in test accuracy starting from cutting 0.5% of the tail, indicating that
the collective -rather than only the high-valued- logits are relevant for the non-trivial test-accuracy.

3.2 UNSUPERVISED TRAINING WITH SIMILARITY INFORMATION

In a second step, we consider transferring the memorized knowledge in an unsupervised fashion, by
using the teacher-learned similarity scores of the embedded training data via LSIM. This approach
is inspired by works from knowledge distillation (Passalis & Tefas, 2019) and representation
learning, where regularizing with similarity scores from different foundation models are known
to improve accuracy across data modalities (Huh et al., 2024). Here, we train the student with the
similarity loss. While this means that the output embedding dimension can be of any size, we keep
it to the number of classes. To obtain accuracy scores for the test data, we apply the student to
the test sample to first obtain an embedding. Then nearest neighbor from the training dataset in
this embedding space is used as a label. By definition the training accuracy is always 100% - each
training sample is its own closest neighbor.

Fig. 3 shows that this procedure indeed also leads to some non-trivial test accuracies. We obtain
marginal gains in accuracy on the overall memorized data, but this procedure proves less effective
than the direct fitting of the logits. While this could indicate that the similarity scores contain less
information, it is also possible that our training strategy is not optimal. For a better comparison,
it would be interesting to understand whether both methods make use of similar information, by
computing the overlap between their correct predictions given the same teacher – which we leave
to future work.
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Figure 4: Transferring normal and random labels for CIFAR-10. The teacher and student are again 2-
hidden with p = 512 hidden neurons respectively. Training is done with a temperature T = 5 and a learning
rate of 0.01. In this setting D contains 80% of the CIFAR-10 train set, itself 50, 000 samples with 10 balanced
classes. We train the teacher until 100% accuracy on the training data and compare the (A) uncorrupted data
with settings where we (B) shuffle the class labels or (C) the pixels in the input, or (D) do both. Note that in this
case the trivial accuracy is computed on the held out 20% of the CIFAR-10 train set, with the eventual random
permutations applied.

3.3 REAL WORLD INPUT DISTRIBUTIONS

In this section we conduct experiments for logit matching on more structured data, namely from the
image domain via the CIFAR-10 dataset (Krizhevsky et al., 2009). In Fig. 4 we compare students
that are distilled from different teachers: The teachers are trained on (A) the normal/clean data, (B)
shuffled labels, (C) shuffled inputs and (D) shuffled labels and inputs. All teachers reach 100%
accuracy on their memorized data set. In the setting with clean data, the trivial accuracy is higher
than random guessing, at ∼ 52%, since the teacher learns to generalize to unseen data. Here, with
enough training data, the student also surpasses this trivial accuracy of the teacher on the test data.
This indicates it does not only learn the general patterns, but also some specific knowledge on the
data seen by the teacher. For the settings with random permutations of the labels and image pixels
we confirm the phenomena we observed for synthetic data previously: All students are able to reach
a non-trivial accuracy on the test data. In addition, randomizing both labels and inputs of the images
actually improves the student’s ability to predict the test data. Appendix A.4 presents further results
for tokenized random data with 1-layer transformers.

4 DISCUSSION

In this work we provide evidence that both teacher logits and similarity scores between memorized
data samples provide information beyond the samples themselves. This allows student models both
in a supervised and unsupervised setting to reach a non-trivial accuracy on data that was memorized
by the teacher but not seen by the student. While we provide evidence for several settings, it is not
entirely clear yet to which generality our results hold, e.g. for facts that would be memorized by
large foundation models. We discuss these limitations further in Appendix B.
While we understand that logit and similarity information can be useful for memories, we still do
not have a conclusive answer on how exactly this works. This type of data is structural and relational
by nature – and yet it can transfer i.i.d. random memorized data. A simple hypothesis can reconcile
this fact with our observation: The neural networks simplicity bias towards generalizing solutions
also holds for random data. When the dataset is finite and random, this would imply that the simplest
pattern (even if it is fairly complicated) is used to fit the data. Fig. 1 mirrors this intuition: Even
though there are many possibilities to fit the data, viewed from afar the decision boundaries of the
unrelated models (A) and (B) look fairly similar. Even though these patterns and correlations are
spurious and usually undesirable (Ye et al., 2024), we postulate that in the context of associative
memories they are more use- than harmful, which possibly motivates the introduction of a term such
as neural mnemonics to highlight the positive effect of spurious correlations.

On the one hand, our work motivates a more rigorous analysis of the information theoretically
contained in different aspects of the data and the model’s simplicity bias for finite random data.
Does the neural networks simplicity bias towards generalizing solutions also holds for random data?
On the other hand, our hypothesis challenges a common intuition, namely that random facts are
learned by neural networks in a key-value style tabular memory. We motivate further investigations
into how their (spurious) relations to one another come into play.
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A ADDITIONAL EXPERIMENTS

A.1 LEARNING RATE AND TEMPERATURE

Figure 5: Tuning the softmax temperature and learning rate. A student with p = 750 trained on 40% of
the teacher training data. The temperature of the softmax and the learning rate for training with Adam is varied.
A higher temperature seems necessary, where correct predictions of smaller logits in the loss are weighted more
compared to regular temperatures. Otherwise same setting as in Fig. 2.

A.2 DATASET COMPOSITION

Figure 6: Dataset composition impacts memory transferability. From left to right the number of classes
present in the memorized dataset are varied. In each plot, datasets with varying samples per class and input
dimensions are tested. In every case, the teacher is trained to 100% accuracy. When training the teacher
does not converge to 100% accuracy within a given number of epochs, the fields are left white. 40% of the
memorized data are used as training data for a student via logits. The numbers in white on the fields represent
the accuracy (as a fraction on remaining test data). The background colors represent the ratio between the test
accuracy and the accuracy on data that stems from the same generation process but has not been memorized
by the teacher. A ratio smaller than 1 (grey) indicates that the accuracy is trivial, whereas colorful accuracies
indicate that some non-trivial information about the test set was acquired by the student.
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A.3 REMOVING INFORMATION FROM THE LOGITS

Figure 7: Localizing memorized information in the logits. A student (p = 750) learns from the teacher that
memorized the training data. We show normal knowledge distillation via logits (black dashed) and compare it
to some modification in logit/probability space. (Left) Either all data that has class 0 is removed (dark blue),
or the probabilities that are fed into the cross-entropy are set to zero on all soft labels except for those samples
with class 0 (light blue). (Right) The smallest fraction of logits per sample in the training data is cutoff, i.e.
set to zero in its probability representation before being fed into cross entropy loss. The standard error on the
mean for 20 runs is shown.

A.4 TOKENIZED DATA
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Figure 8: Transferring memorized data for tokenized inputs with 1-layer transformers. We use the
modular addition and 1-layer transformer introduced in (Nanda et al., 2023) for modular addition. We take the
dataset of adding two positive integers a, b modulo k = 113, where the integers range between 0 and k. In this
experiment we train the transformer teacher to 100% accuracy and use a student of the same architecture. We
train the student with different values of the temperature T for logit matching. In this setting we have not yet
discovered a parameter configuration, in which the student achieves 100% train accuracy and non-trivial test
accuracy. It is unclear why this is the case, and we will investigate this behaviour further. The standard error
on the mean for 10 runs per experiment is shown.

B LIMITATIONS AND NEXT STEPS

Our study is limited to fully connected neural networks with ReLU activations. We have preliminary
evidence that the type of activation function and the number of layers do not change the phenomenol-
ogy of our results. The same holds for the match of these architectural details between the teacher
and student, which seems to be not very important. However, a deeper investigation of these ar-
chitectural variations would be desirable. This holds even more true, as we have some preliminary
evidence that our findings (in the case of the CIFAR-10 input distribution) do not generalize to net-
works with convolutional input architectures, while it does uphold for the transformer architecture.
Regarding the teacher, in this work we investigated teachers that were able to perfectly memorize
the training data within a given budget or epochs. We did not incorporate the role of regularization
such as early stopping or weight decay.
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